Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektronik
  • Kwalifikacja: ELM.02 - Montaż oraz instalowanie układów i urządzeń elektronicznych
  • Data rozpoczęcia: 21 października 2025 19:07
  • Data zakończenia: 21 października 2025 19:37

Egzamin zdany!

Wynik: 32/40 punktów (80,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Którą z czynności serwisowych w instalacji sieciowej można zignorować?

A. Wymiana luźnych złączy RJ
B. Ocena stanu zewnętrznej powłoki przewodów
C. Sprawdzenie przewodów sieciowych omomierzem
D. Testowanie przewodów sieciowych za pomocą testera
Odpowiedź dotycząca pominięcia sprawdzenia przewodów sieciowych omomierzem jest prawidłowa, ponieważ omomierz jest narzędziem stosowanym głównie do pomiaru oporu elektrycznego, co nie jest krytyczne dla prawidłowego działania instalacji sieciowej. W praktyce, bardziej istotne jest zapewnienie, że złącza RJ są prawidłowo zamocowane (wymiana obluzowanych złącz), ponieważ to bezpośrednio wpływa na jakość sygnału i stabilność połączenia. Sprawdzanie przewodów sieciowych testerem pozwala na wykrycie ewentualnych błędów w okablowaniu, takich jak zwarcia czy przerwy, które mogą prowadzić do problemów z transmisją danych. Z kolei ocena stanu powłoki zewnętrznej przewodów jest kluczowa dla ochrony przed uszkodzeniami mechanicznymi oraz wpływem środowiska. W związku z tym, choć pomiar omomierzem może być użyteczny w niektórych kontekstach, nie jest on niezbędny do utrzymania sprawności instalacji sieciowej.

Pytanie 2

Aby podłączyć sygnalizator optyczno-akustyczny z syreną, należy zastosować złącze śrubowe. Mając na uwadze, że syrena działa na napięciu 24 V i zużywa prąd 3,45 A, wskaż odpowiednie złącze spełniające te parametry?

A. 30 V; 3 A; 0,5 mm2
B. 12 V; 9 A; 0,75 mm2
C. 230 V; 1,25 A; 0,4 mm2
D. 30 V; 9 A; 0,75 mm2
Złącze, które wybrałeś, czyli 30 V; 9 A; 0,75 mm2, jest całkiem spoko pod względem wymagań dla syreny. Ta syrena działa przy napięciu 24 V i bierze prąd 3,45 A. Chodzi o to, żeby prąd, który złącze przenosi, był co najmniej równy temu, co potrzeba, albo lepiej, żeby był większy. W tym przypadku 9 A daje nam zapas, co jest zgodne z zasadami bezpieczeństwa i zapobiega przeciążeniom. Przewód 0,75 mm2 też jest w porządku, bo zgodnie z normami, powinno się dobierać przewody wg maksymalnego prądu, żeby zredukować straty energii i odpowiednio odprowadzić ciepło. Dobrym przykładem mogą być instalacje alarmowe, gdzie sygnalizatory muszą działać bez problemów, więc ważne jest, żeby wszystkie komponenty były dobrze dobrane do obciążeń. Moim zdaniem, lepiej mieć coś z zapasem, bo wtedy to wszystko dłużej posłuży i będzie bezpieczniejsze.

Pytanie 3

Jakie urządzenie należy zastosować do gaszenia pożarów w miejscach, gdzie działają urządzenia elektryczne?

A. hydronetki wodnej
B. koca azbestowego
C. gaśnicy proszkowej
D. gaśnicy pianowej
Gaśnica proszkowa jest najlepszym środkiem gaśniczym do zwalczania pożarów w pomieszczeniach, w których znajdują się urządzenia elektryczne. Działa na zasadzie rozpraszania proszku gaśniczego, który skutecznie tłumi ogień, jednocześnie nie przewodząc prądu. To sprawia, że można jej używać w sytuacjach, gdzie niebezpieczeństwo porażenia prądem jest realne, co jest kluczowe w przypadku pożarów wywołanych przez urządzenia elektryczne. Zgodnie z normami, takimi jak PN-EN 2, gaśnice proszkowe klasy B i C są zalecane do gaszenia pożarów, które mogą pojawić się w pomieszczeniach biurowych czy warsztatach. Dodatkowym atutem jest ich wszechstronność, ponieważ mogą być stosowane do gaszenia pożarów cieczy łatwopalnych, gazów oraz urządzeń elektrycznych do napięcia 1000V. W praktyce, wybór gaśnicy proszkowej przyczynia się do szybkiego i skutecznego opanowania sytuacji, co może uratować życie oraz mienie. Warto również podkreślić, że regularne szkolenia dotyczące obsługi gaśnic i procedur bezpieczeństwa powinny być częścią każdej organizacji, aby zapewnić gotowość na ewentualne sytuacje awaryjne.

Pytanie 4

Przy regulacji urządzeń elektronicznych zasilanych energią należy korzystać z narzędzi

A. zasilanych akumulatorowo
B. wykonanych z elastycznych tworzyw sztucznych
C. odpornych na wysoką temperaturę
D. izolowanych
Używanie narzędzi izolowanych podczas pracy z urządzeniami elektronicznymi pod napięciem jest kluczowe dla zapewnienia bezpieczeństwa operatora. Narzędzia te są zaprojektowane w taki sposób, aby minimalizować ryzyko porażenia prądem elektrycznym. Izolacja narzędzi wykonana jest z materiałów, które nie przewodzą prądu, co daje dodatkową ochronę w przypadku kontaktu z przewodzącymi elementami urządzeń. Przykładem mogą być wkrętaki czy szczypce, które posiadają uchwyty pokryte materiałem izolacyjnym, takim jak guma czy plastik. Pracując w środowisku, gdzie istnieje ryzyko wystąpienia napięcia, korzystanie z narzędzi izolowanych jest standardem w branży elektrycznej, zgodnie z normą IEC 60900, która określa wymagania dla narzędzi ręcznych używanych w pracy pod napięciem do 1000 V AC i 1500 V DC. Właściwe użycie takich narzędzi w połączeniu z odzieżą ochronną oraz przestrzeganiem zasad BHP stanowi fundament bezpiecznej pracy z instalacjami elektrycznymi.

Pytanie 5

Jaką funkcję pełni czasza w antenie satelitarnej?

A. umożliwienie zamontowania konwertera pod właściwym kątem
B. odbicie fal i skierowanie ich do konwertera
C. umożliwienie odbioru konkretnych częstotliwości sygnału
D. skierowanie konwertera w stronę wybranego satelity
Czasza w antenie satelitarnej odgrywa kluczową rolę w procesie odbioru sygnałów satelitarnych. Jej głównym zadaniem jest odbicie fal elektromagnetycznych, które są następnie skierowane do konwertera. Dzięki temu, antena może efektywnie zbierać sygnały o różnych częstotliwościach, co ma szczególne znaczenie w kontekście różnorodności usług satelitarnych, takich jak transmisja telewizyjna, internet satelitarny czy telekomunikacja. Odbicie fal jest możliwe dzięki odpowiedniej geometrii czaszy, która jest najczęściej paraboliczna. Ta geometria pozwala na skupienie fal na konwerterze, co zwiększa efektywność odbioru. Przykładem zastosowania tej zasady są instalacje antenowe w telewizji satelitarnej, gdzie precyzyjne ustawienie czaszy pozwala na odbiór sygnałów z satelitów, które znajdują się na różnych orbitach geostacjonarnych. Zgodnie z najlepszymi praktykami, odpowiednie ustawienie kąta nachylenia oraz azymutu czaszy jest kluczowe dla uzyskania optymalnej jakości sygnału, co podkreśla znaczenie wiedzy na temat zasady działania czaszy w antenach satelitarnych.

Pytanie 6

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 7

Założenie opaski uziemiającej na nadgarstek jest niezbędne przed rozpoczęciem wymiany

A. procesora w komputerze PC
B. sygnalizatora akustycznego w systemie alarmowym
C. rozgałęźnika sygnału w sieci telewizji kablowej
D. bezpiecznika topikowego w zasilaczu
Założenie opaski uziemiającej na rękę przed wymianą procesora w komputerze PC jest kluczowym krokiem w celu zapewnienia bezpieczeństwa oraz ochrony delikatnych komponentów. Uziemienie ma na celu zminimalizowanie ryzyka wystąpienia wyładowań elektrostatycznych (ESD), które mogą uszkodzić wrażliwe obwody elektroniczne procesora. Procesory są szczególnie wrażliwe na takie zjawiska, a ich uszkodzenia mogą prowadzić do poważnych problemów z funkcjonowaniem systemu komputerowego. Zgodnie z najlepszymi praktykami w zakresie serwisowania sprzętu, zawsze należy stosować środki ochrony elektrostatycznej, takie jak opaski uziemiające, maty antyelektrostatyczne oraz unikać dotykania styków procesora. Przykładem może być sytuacja, w której użytkownik wymienia procesor w swoim komputerze stacjonarnym; przy użyciu opaski uziemiającej zapewnia sobie i sprzętowi maksymalne bezpieczeństwo, co jest zgodne z normami IEC 61340-5-1 dotyczącymi ochrony przed ESD.

Pytanie 8

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 9

W procesie lutowania komponentów elektronicznych topnik stosuje się w celu

A. chemicznego oczyszczenia powierzchni łączonych metali
B. obniżenia temperatury topnienia lutowia
C. polepszenia twardości spoiny lutowniczej
D. zwiększenia przewodności elektrycznej spoiny lutowniczej
Topnik jest substancją chemiczną, której główną funkcją podczas lutowania jest chemiczne oczyszczenie powierzchni łączonych metali. W procesie lutowania, metalowe powierzchnie muszą być dokładnie oczyszczone z tlenków, zanieczyszczeń oraz innych osadów, które mogą utrudniać prawidłowe połączenie. Topniki, takie jak kalafonia, są używane, aby zapewnić, że powierzchnie będą wolne od tlenków i innych zanieczyszczeń, co pozwala na lepszą adhezję stopu lutowniczego. Przykładem może być lutowanie elementów w elektronice, gdzie niewłaściwe przygotowanie powierzchni może prowadzić do słabych połączeń i awarii urządzeń. Dobre praktyki branżowe sugerują stosowanie topników o odpowiednich właściwościach chemicznych, które są zgodne z normami IPC (Institute of Printed Circuits), aby zapewnić wysoką jakość połączeń lutowniczych. Dodatkowo, stosowanie topników może również umożliwić obniżenie temperatury lutowania, co jest korzystne w przypadku elementów wrażliwych na wysokie temperatury. Warto również wspomnieć, że po lutowaniu, pozostałości topnika powinny być odpowiednio usunięte, aby zapobiec korozji i innym problemom z działaniem urządzenia.

Pytanie 10

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 11

Mechanizmem zabezpieczającym przed porażeniem elektrycznym, który automatycznie przerywa zasilanie w przypadku wystąpienia nadmiernego prądu doziemnego, jest

A. zerowanie
B. wyłącznik różnicowoprądowy
C. uziemienie robocze
D. uziemienie ochronne
Uziemienie robocze jest stosowane do zapewnienia stabilności układów elektrycznych oraz do minimalizowania zakłóceń elektromagnetycznych, lecz nie jest to rozwiązanie, które automatycznie wyłącza zasilanie w przypadku wystąpienia prądu doziemnego. Jego główną funkcją jest ochrona przed wzrostem napięcia, a nie bezpośrednie przerywanie obwodu w sytuacji ryzyka porażenia. Uziemienie ochronne, z kolei, ma na celu odprowadzenie nadmiaru energii elektrycznej do ziemi, co ma na celu ochronę urządzeń oraz osób przed skutkami przepięć, jednak nie reaguje na sytuacje, w których prąd doziemny przekracza dopuszczalne wartości. Zerowanie jest metodą ochrony polegającą na połączeniu części przewodzących z uziemieniem, ale podobnie jak uziemienie robocze i ochronne, nie oferuje automatycznego odłączenia zasilania w przypadku wystąpienia prądu doziemnego. Istotnym błędem jest mylenie funkcji tych systemów z automatycznym odłączeniem zasilania, co może prowadzić do błędnych założeń na temat ich właściwego zastosowania i ograniczenia bezpieczeństwa elektrycznego. Aby zapewnić skuteczną ochronę przed porażeniem prądem, niezbędne jest zrozumienie specyfiki działania wyłączników różnicowoprądowych i ich roli w instalacjach elektrycznych.

Pytanie 12

Urządzenie służące do pomiaru bitowej stopy błędów (BER) stosuje się do analizy parametrów

A. telewizji dozorowej
B. instalacji antenowej
C. systemu alarmowego
D. sieci komputerowej
Instalacja antenowa to obszar, w którym miernik bitowej stopy błędów (BER) odgrywa kluczową rolę w ocenie jakości sygnałów transmisyjnych. BER jest wskaźnikiem określającym stosunek liczby błędnie odebranych bitów do całkowitej liczby bitów przesłanych w czasie określonym. W kontekście instalacji antenowych, szczególnie w systemach telekomunikacyjnych i satelitarnych, niska stopa błędów jest kluczowym parametrem gwarantującym niezawodność i jakość odbioru sygnału. Przykładowo, w przypadku telewizji satelitarnej, jeśli BER przekracza akceptowalny poziom, może to prowadzić do przerw w odbiorze sygnału. Właściciele instalacji antenowych mogą korzystać z mierników BER do szybkiej diagnozy problemów, takich jak niewłaściwe ustawienie anteny, zły jakościowo kabel czy interferencje z innymi źródłami sygnału. Dobre praktyki branżowe zalecają regularne monitorowanie BER, aby zapewnić ciągłość i jakość usług. Warto także nadmienić, że standardy takie jak DVB-S2 dla telewizji satelitarnej definiują konkretne wartości BER, które muszą być spełnione, aby system mógł działać poprawnie.

Pytanie 13

Który rodzaj kondensatora wymaga zachowania polaryzacji w trakcie wymiany?

A. Foliowy
B. Elektrolityczny
C. Powietrzny
D. Ceramiczny
Kondensatory elektrolityczne są elementami elektronicznymi, które charakteryzują się wyraźnie określoną polaryzacją. Oznacza to, że przy ich wymianie niezwykle istotne jest, aby zachować odpowiednią orientację biegunów, czyli podłączyć je w odpowiedni sposób do obwodu. W przeciwnym razie, mogą one ulec uszkodzeniu poprzez zwarcie, co może prowadzić do wydzielania się szkodliwych substancji i w konsekwencji do niebezpieczeństwa, takiego jak zwarcia i pożary. Elektryczna polaryzacja kondensatorów elektrolitycznych wynika z ich konstrukcji, w której jeden z biegunów, zwykle oznaczony jako „+”, jest anodem, a biegun ujemny jest katodem. W praktyce, stosowanie kondensatorów elektrolitycznych jest powszechne w zasilaczach, filtrach oraz w układach audio, gdzie wymagane są dużej pojemności wartości. Zgodnie z dobrymi praktykami, podczas wymiany kondensatora elektrolitycznego powinno się zawsze używać elementów o takich samych parametrach elektrycznych, w tym napięciu roboczym i pojemności, aby zapewnić stabilność i bezpieczeństwo działania całego układu.

Pytanie 14

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 15

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 16

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 17

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 18

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 19

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 20

Jak nazywa się układ elektroniczny określany jako wtórnik emiterowy?

A. Źródło prądowe oparte na tranzystorze bipolarnym
B. Wzmacniacz z tranzystorem bipolarnym w układzie OC
C. Ogranicznik prądowy zrealizowany w technologii bipolarnej
D. Wzmacniacz z tranzystorem bipolarnym w układzie OB
Wtórnik emiterowy, znany również jako wzmacniacz emiterowy, to układ elektroniczny oparty na tranzystorze bipolarnym, który działa w konfiguracji OC (emiter wspólny). Jego główną cechą jest to, że sygnał wyjściowy jest pobierany z emitera tranzystora, co pozwala na uzyskanie wysokiej impedancji wejściowej oraz niskiej impedancji wyjściowej. Dzięki temu, wtórnik emiterowy jest szczególnie efektywny w aplikacjach, gdzie wymagana jest izolacja pomiędzy różnymi stopniami układu. Przykładem zastosowania wtórnika emiterowego może być tor sygnałowy w systemach audio, gdzie zapewnia on stabilne napięcie wyjściowe niezależnie od obciążenia. Zastosowania w branży obejmują również układy zasilające, gdzie wtórnik emiterowy stabilizuje napięcie na poziomie wymaganym przez podłączone urządzenia. Dobre praktyki projektowe sugerują stosowanie wtórników emiterowych w przypadkach, gdy zachowanie integralności sygnału jest kluczowe, a obciążenia są zmienne.

Pytanie 21

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 22

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 23

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 24

Wyładowania elektryczne w atmosferze mogą prowadzić do powstawania niepożądanych napięć, które oddziałują na parametry anteny, skutkując

A. obniżeniem rezystancji promieniowania
B. zmianą długości oraz powierzchni efektywnej
C. zniekształceniem charakterystyki kierunkowej
D. zmniejszeniem impedancji wejściowej
Wyładowania atmosferyczne, takie jak pioruny, mogą wprowadzać niepożądane napięcia, które wpływają na parametry anteny, szczególnie na jej charakterystykę kierunkową. Zniekształcenia te wynikają z zakłóceń elektromagnetycznych, które mogą powodować zmiany w rozkładzie pola elektromagnetycznego wokół anteny. Kiedy indukowane napięcia wpływają na elementy anteny, mogą one zmieniać sposób, w jaki antena emituje lub odbiera fale radiowe. Przykładem może być antena Yagi, której charakterystyka kierunkowa jest kluczowa dla jej funkcji. Zniekształcenia mogą prowadzić do osłabienia sygnału w kierunkach, w których antena powinna być najbardziej czuła. Dlatego istotne jest stosowanie odpowiednich środków ochrony przed przepięciami, takich jak ograniczniki napięcia czy systemy uziemiające, co jest zgodne z normami takimi jak IEEE 1100-2005. Dzięki takim działaniom, można zminimalizować ryzyko uszkodzenia anteny oraz poprawić jej wydajność, co jest kluczowe w zastosowaniach takich jak komunikacja bezprzewodowa czy systemy radarowe.

Pytanie 25

Urządzenie działające w sieci komputerowej, mające na celu powiększenie zasięgu transmisji przez odtworzenie pierwotnego kształtu sygnału, bez oceny poprawności przesyłanych informacji, to

A. repeater
B. switch
C. bridge
D. hub
Repeater, znany również jako wzmacniacz sygnału, jest urządzeniem, które działa na warstwie fizycznej modelu OSI. Jego głównym zadaniem jest odbieranie sygnałów sieciowych, a następnie ich regeneracja i ponowne przesyłanie, co pozwala na zwiększenie zasięgu transmisji. Przykład zastosowania repeatera można zobaczyć w dużych biurach lub na kampusach uniwersyteckich, gdzie dystans między urządzeniami sieciowymi może przekraczać standardowy zasięg sieci Ethernet. W takich przypadkach repeater pozwala na efektywne łączenie kilku segmentów sieci, eliminując utratę jakości sygnału. Repeater działa bez analizy danych, co oznacza, że nie filtruje ani nie interpretuje przesyłanych informacji, co czyni go idealnym rozwiązaniem do rozszerzenia zasięgu. Dobre praktyki zalecają umieszczanie repeaterów w miejscach, gdzie sygnał jest najsłabszy, by maksymalnie wykorzystać ich możliwości. Warto również pamiętać o stosowaniu repeaterów w sieciach Wi-Fi, gdzie mogą znacznie poprawić jakość sygnału w trudno dostępnych lokalizacjach.

Pytanie 26

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 27

Jakie urządzenia pomiarowe powinny być użyte do określenia charakterystyki przenoszenia wzmacniacza selektywnego LC zasilanego napięciem ±12 V?

A. Zasilacz symetryczny, generator funkcyjny oraz oscyloskop
B. Zasilacz napięcia stałego, generator funkcyjny oraz oscyloskop
C. Generator funkcyjny oraz cyfrowy multimetr
D. Zasilacz symetryczny oraz cyfrowy multimetr
Aby wyznaczyć charakterystykę przenoszenia wzmacniacza selektywnego LC, konieczne jest zastosowanie zasilacza symetrycznego, generatora funkcyjnego oraz oscyloskopu. Zasilacz symetryczny zapewnia stabilne napięcie zasilające wzmacniacz, co jest kluczowe dla uzyskania dokładnych pomiarów. Generator funkcyjny umożliwia generowanie sygnałów o różnych częstotliwościach oraz amplitudach, co pozwala na badanie odpowiedzi wzmacniacza na różne częstotliwości. Oscyloskop jest niezbędny do wizualizacji sygnału wyjściowego wzmacniacza, co umożliwia analizę jego charakterystyki przenoszenia. Przykładowo, podczas testowania wzmacniacza selektywnego LC, można wykorzystać generator do przesyłania sygnału sinusoidalnego o zmiennej częstotliwości, a oscyloskop do obserwacji, jak zmienia się amplituda sygnału wyjściowego, co pozwala na określenie pasma przenoszenia oraz zysku wzmacniacza. Stosowanie tych przyrządów jest zgodne z najlepszymi praktykami w dziedzinie elektroniki, co zapewnia wiarygodność i rzetelność uzyskanych wyników pomiarów.

Pytanie 28

W urządzeniu elektronicznym narażonym na drgania może dojść do

A. spadku efektywności zasilacza
B. utraty danych w pamięci wewnętrznej
C. uszkodzenia obwodów drukowanych
D. zmniejszenia pojemności kondensatorów
Uszkodzenie obwodów drukowanych w urządzeniach elektronicznych narażonych na wibracje jest rzeczywiście problemem technicznym, który może prowadzić do poważnych awarii sprzętowych. Wibracje mechaniczne mogą wpływać na integralność fizyczną ścieżek prowadzących sygnały w obwodach drukowanych, co w konsekwencji prowadzi do przerwania połączeń lub zwarć. Przykładem mogą być urządzenia stosowane w przemyśle motoryzacyjnym, gdzie komponenty elektroniczne są wystawione na stałe drgania podczas jazdy. Standardy takie jak IPC-A-600 dotyczące akceptacji obwodów drukowanych podkreślają znaczenie projektowania z myślą o takich warunkach, oferując wytyczne dotyczące materiałów i technik montażu, aby zminimalizować ryzyko uszkodzeń. Wysokiej jakości projektowanie obwodów, stosowanie odpowiednich technologii lutowania oraz użycie materiałów odpornych na wibracje są kluczowe w zapewnieniu trwałości urządzeń. Dodatkowo, testy w warunkach ekstremalnych, takie jak testy wibracyjne zgodne z normą MIL-STD-810, mogą pomóc w ocenie odporności urządzeń na drgania, zapewniając ich niezawodność w trudnych warunkach operacyjnych.

Pytanie 29

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 30

Jaką rozdzielczość obrazu oferuje telewizja w standardzie HDTV?

A. 1280x1024
B. 1360x768
C. 1920x1080
D. 1024x768
Telewizja HDTV (High Definition Television) emituje obraz w rozdzielczości 1920x1080 pikseli, co jest standardem dla technologii Full HD. Taka rozdzielczość oznacza, że obraz składa się z 1920 pikseli w poziomie i 1080 pikseli w pionie, co daje łącznie około 2 milionów pikseli. Dzięki temu obraz jest znacznie bardziej szczegółowy i wyraźniejszy w porównaniu do standardowej telewizji SD (Standard Definition), która ma rozdzielczość 720x480 pikseli. Przykładem zastosowania tej technologii są nowoczesne telewizory, które obsługują różnorodne formaty wideo, od filmów po transmisje sportowe, które korzystają z większej ilości szczegółów, co zapewnia lepsze wrażenia wizualne. Ponadto, standard 1920x1080 jest również przyjęty w branży filmowej i gier komputerowych, co ułatwia produkcję i dystrybucję treści. Przy wyborze sprzętu do oglądania telewizji HDTV ważne jest również, aby wspierał on inne standardy, takie jak HDR (High Dynamic Range), co poprawia jakość obrazu o dodatkowe szczegóły w jasnych i ciemnych partiach obrazu.

Pytanie 31

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 32

Na wychyłowym przyrządzie do pomiaru napięcia umieszczono symbol przedstawiony na rysunku. Jaki ustrój zastosowano w tym mierniku?

Ilustracja do pytania
A. Ferrodynamiczny
B. Elektrodynamiczny
C. Elektromagnetyczny
D. Magnetoelektryczny
Wybrane odpowiedzi, takie jak "Elektromagnetyczny", "Ferrodynamiczny" oraz "Elektrodynamiczny", opierają się na niepełnym zrozumieniu zasad działania mierników napięcia. Ustroje elektromagnetyczne są oparte na interakcji między polem elektromagnetycznym a przewodnikami, jednak nie są one stosowane w tradycyjnych miernikach analogowych, które wykorzystują magnes trwały. Z kolei ustroje ferrodynamiczne opierają się na ruchu elementów ferromagnetycznych w polu magnetycznym, co sprawia, że są bardziej skomplikowane w konstrukcji i zastosowaniu. Mierniki elektrodynamiczne, chociaż również stosują zasadę interakcji pola magnetycznego, różnią się od magnetoelektrycznych, ponieważ wykorzystują dwa zestawy cewek, co nie odpowiada symbolowi przedstawionemu na rysunku. Często pojawia się mylne przekonanie, że różne typy ustrojów pomiarowych mogą być stosowane zamiennie, co prowadzi do błędnych wniosków i wyników pomiarów. Zrozumienie różnic między tymi technologiami jest kluczowe dla skutecznego wykorzystania przyrządów pomiarowych w praktyce oraz dla zachowania standardów jakości w pomiarach elektrycznych.

Pytanie 33

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 34

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 35

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 36

Który rodzaj pamięci półprzewodnikowej po zaprogramowaniu powinien być chroniony przed działaniem światła słonecznego, aby zabezpieczyć jej dane?

A. EEPROM
B. DDR
C. SRAM
D. EPROM
EPROM, czyli Erasable Programmable Read-Only Memory, to taki typ pamięci, który po zaprogramowaniu należy chronić przed światłem słonecznym, żeby nie stracić danych. Jest to pamięć, która przechowuje informacje na stałe, ale można ją wymazać, wystawiając na działanie promieniowania UV. Dlatego podczas używania urządzeń z EPROM ważne jest, żeby nie były one narażone na bezpośrednie światło słoneczne, bo to może przypadkowo skasować dane. W praktyce EPROM często stosuje się, kiedy potrzebujemy trwale trzymać dane, jak w systemach wbudowanych czy w elektronice, gdzie programowanie odbywa się wielokrotnie, ale nie wymaga szybkiego dostępu do zmieniających się danych. Warto też wiedzieć, że są standardy techniczne, takie jak JEDEC, które regulują parametry EPROM, by mieć pewność, że działa niezawodnie w różnych zastosowaniach komercyjnych. Zrozumienie tych rzeczy jest kluczowe, zwłaszcza dla projektantów systemów elektronicznych, jeśli chodzi o długoterminowe przechowywanie danych.

Pytanie 37

Operatorzy kablowych sieci telewizyjnych sprawdzają jakość sygnału u poszczególnych subskrybentów, wykonując pomiary parametrów sygnału

A. w poszczególnych gniazdach abonenckich
B. nadanego przez stację czołową
C. na wyjściach poszczególnych węzłów optycznych
D. w kanale zwrotnym
Wybór odpowiedzi związanych z pomiarem sygnału nadawanego przez stację czołową, w poszczególnych gniazdach abonenckich czy na wyjściach węzłów optycznych nie odzwierciedla rzeczywistych praktyk monitorowania jakości sygnału w telewizji kablowej. Monitorowanie sygnału nadawanego przez stację czołową jest istotne, ale dotyczy ono głównie analizy jakości źródłowego sygnału, a nie jego odbioru przez abonentów. Istotnym elementem jest kanał zwrotny, który umożliwia spływ informacji z sieci abonenckiej do centralnej bazy danych operatora. Pomiar jakości sygnału bezpośrednio w gniazdach abonenckich nie jest praktyczny, ponieważ czynniki lokalne mogą wprowadzać zbyt wiele zmiennych, takich jak uszkodzenia kabli czy nieprawidłowe podłączenia, co znacznie utrudnia diagnozowanie ogólnych problemów w sieci. Podobnie, pomiar na wyjściu węzłów optycznych może dostarczać informacji na temat jakości sygnału, ale nie odzwierciedla to doświadczenia konkretnego abonenta, który może doświadczyć różnych problemów w zależności od lokalnych warunków. Dlatego kluczowe jest monitorowanie sygnału w kanale zwrotnym, co pozwala na zbieranie danych od wszystkich abonentów i wczesne wykrywanie problemów w sieci, a tym samym zapewnienie lepszej jakości usług. Niepoprawne podejścia mogą prowadzić do błędnych wniosków i opóźnień w diagnostyce problemów, co jest niepożądane w branży, gdzie jakość usług ma kluczowe znaczenie dla zadowolenia klientów.

Pytanie 38

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 39

Stabilizator o symbolu LM7812 charakteryzuje się

A. regulowanym ujemnym napięciem na wyjściu
B. nieregulowanym dodatnim napięciem na wyjściu
C. regulowanym dodatnim napięciem na wyjściu
D. nieregulowanym ujemnym napięciem na wyjściu
Stabilizator LM7812 jest typowym stabilizatorem napięcia, który zapewnia stałe wyjściowe napięcie dodatnie o wartości 12V. Jest to model nieregulowany, co oznacza, że użytkownik nie ma możliwości dostosowania jego napięcia wyjściowego. Stabilizatory tego typu są powszechnie stosowane w różnych aplikacjach elektronicznych, gdzie wymagane jest zasilanie układów o stałym napięciu, takich jak mikroprocesory, moduły komunikacyjne, czy systemy zasilania w projektach DIY. LM7812 charakteryzuje się dużą prostotą w użyciu, a jego podłączenie wymaga jedynie kilku dodatkowych komponentów, jak kondensatory filtrujące na wejściu i wyjściu, które stabilizują napięcie i zapewniają odpowiednią jakość sygnału. Zgodnie z dobrymi praktykami, stabilizatory takie jak LM7812 są często wykorzystywane w zasilaczach laboratoryjnych, zasilaczach do projektów hobbystycznych oraz w urządzeniach przemysłowych, co czyni je niezawodnym wyborem dla inżynierów i konstruktorów.

Pytanie 40

Terminologie takie jak Fullband, Twin, Quad, Monoblock odnoszą się do

A. filtrów
B. multiswitchów
C. rozgałęźników antenowych
D. konwerterów satelitarnych
Odpowiedź 'konwerterów satelitarnych' jest prawidłowa, ponieważ nazwy takie jak Fullband, Twin, Quad i Monoblock odnoszą się właśnie do typów konwerterów używanych w systemach satelitarnych. Konwertery satelitarne są kluczowymi komponentami, które przekształcają sygnał satelitarny na sygnał elektryczny, który może być odbierany przez odbiornik telewizyjny. Fullband to konwerter, który jest w stanie odbierać sygnały o szerokim zakresie częstotliwości, co pozwala na lepszą jakość odbioru. Konwertery Twin mają dwa wyjścia, co umożliwia jednoczesne podłączenie dwóch różnych urządzeń, natomiast Quad posiada cztery wyjścia, co pozwala na podłączenie kilku tunerów. Monoblock to specjalny typ konwertera, który łączy w sobie dwa konwertery w jednym urządzeniu, co jest praktyczne w przypadku odbioru sygnałów z dwóch satelitów. Zrozumienie tych typów konwerterów jest niezbędne dla profesjonalistów zajmujących się instalacjami satelitarnymi, aby prawidłowo dobierać sprzęt w zależności od potrzeb klienta oraz warunków lokalnych, co zgodne jest z najlepszymi praktykami w branży.