Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektryk
  • Kwalifikacja: ELE.05 - Eksploatacja maszyn, urządzeń i instalacji elektrycznych
  • Data rozpoczęcia: 19 grudnia 2025 09:18
  • Data zakończenia: 19 grudnia 2025 09:49

Egzamin zdany!

Wynik: 33/40 punktów (82,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Podczas użytkowania instalacji elektrycznych w pobliżu urządzeń elektrycznych znajdujących się pod napięciem niedozwolone są prace (z wyłączeniem prac określonych w instrukcji eksploatacji dotyczących obsługi)?

A. przy użyciu specjalnych środków wskazanych w szczegółowych instrukcjach stanowiskowych, zapewniających bezpieczne wykonanie pracy
B. związane z konserwacją i renowacjami instalacji oraz odbiorników elektrycznych
C. dotyczące wymiany wkładek bezpiecznikowych oraz żarówek lub świetlówek w nienaruszonej obudowie i oprawie
D. przy realizacji prób i pomiarów zgodnie z instrukcjami lub wskazówkami bhp na poszczególnych stanowiskach pracy
Odpowiedź, którą zaznaczyłeś, jest w porządku. Przy pracach nad konserwacją i remontem instalacji elektrycznych rzeczywiście trzeba zawsze wyłączać zasilanie. Bezpieczeństwo jest najważniejsze, a prąd potrafi być groźny, więc lepiej nie ryzykować. Zawsze przed wymianą jakiejkolwiek części warto upewnić się, że napięcie nie płynie. Na przykład, jeśli zmieniasz uszkodzoną instalację, to najlepszym pomysłem jest wyłączenie odpowiednich obwodów. No i procedura Lockout-Tagout (LOTO) jest po prostu kluczowa! Dzięki niej nie ma szans, że ktoś przez przypadek włączy prąd, gdy ty akurat pracujesz. Wydaje mi się, że trzymanie się tych zasad nie tylko chroni ludzi, ale także sprawia, że wszystko jest zgodne z BHP i normami bezpieczeństwa, które są naprawdę ważne w tej branży.

Pytanie 2

Podczas wymiany uszkodzonego przewodu PEN w instalacji o napięciu do 1 kV, która jest trwale zamontowana, należy pamiętać, aby nowy przewód miał przekrój co najmniej

A. 10 mm2 Cu lub 10 mm2 Al
B. 16 mm2 Cu lub 16 mm2 Al
C. 16 mm2 Cu lub 10 mm2 Al
D. 10 mm2 Cu lub 16 mm2 Al
Wybór odpowiedzi 10 mm2 Cu lub 16 mm2 Al jako minimalnego przekroju przewodu PEN w instalacji do 1 kV jest zgodny z obowiązującymi standardami oraz najlepszymi praktykami w zakresie instalacji elektrycznych. Przewód PEN, który łączy funkcje przewodu neutralnego i ochronnego, odgrywa kluczową rolę w zapewnieniu bezpieczeństwa instalacji. W przypadku zastosowania przewodów miedzianych, minimalny przekrój 10 mm2 jest zgodny z normą PN-IEC 60364, która określa wymagania dla instalacji elektrycznych. Przewody aluminiowe muszą mieć większy przekrój, 16 mm2, ze względu na niższą przewodność elektryczną w porównaniu do miedzi. W praktyce, zastosowanie przewodu o odpowiednim przekroju zapewnia właściwe odprowadzanie prądu oraz minimalizuje ryzyko przegrzewania się przewodów, co z kolei zmniejsza ryzyko wystąpienia awarii instalacji. Dodatkowo, dobranie odpowiedniego przekroju przewodów wpływa na efektywność energetyczną instalacji oraz na jej długowieczność.

Pytanie 3

Jaka jest podstawowa funkcja wyłącznika różnicowoprądowego?

A. Przekształcenie prądu przemiennego na stały
B. Ochrona przed przeciążeniem obwodu
C. Regulacja napięcia wyjściowego
D. Ochrona przed porażeniem poprzez wykrycie różnicy prądów w przewodach
Wyłącznik różnicowoprądowy jest kluczowym elementem systemów ochrony elektrycznej, którego głównym zadaniem jest zapobieganie porażeniom prądem elektrycznym. Działa on na zasadzie wykrywania różnicy pomiędzy prądem wpływającym a wypływającym z urządzenia lub instalacji. Jeśli taka różnica zostanie wykryta, oznacza to, że część prądu gdzieś 'ucieka', co może sugerować uszkodzenie izolacji lub kontakt prądu z osobą. W praktyce wyłącznik różnicowoprądowy automatycznie odłącza zasilanie w momencie wykrycia tego typu anomalii, minimalizując ryzyko porażenia. To urządzenie jest szeroko stosowane w instalacjach domowych i przemysłowych, zapewniając dodatkową warstwę ochrony w miejscach, gdzie mogą występować uszkodzenia izolacji lub wilgoć. Warto pamiętać, że nie zastępuje on standardowych zabezpieczeń nadprądowych, ale uzupełnia je, oferując ochronę przed skutkami niekontrolowanego przepływu prądu do ziemi. W kontekście bezpieczeństwa użytkownika wyłącznik różnicowoprądowy jest nieocenionym narzędziem, które powinno być standardem w każdej nowoczesnej instalacji elektrycznej.

Pytanie 4

W instalacji elektrycznej w celu stwierdzenia skuteczności ochrony przeciwporażeniowej dokonano pomiarów i otrzymano wartości napięcia fazowego oraz impedancji pętli zwarcia wskazywane przez zamieszczony na rysunku miernik MZC-304. Które z zabezpieczeń nadprądowych przy tym stanie technicznym instalacji spełni warunek samoczynnego wyłączenia zasilania?

Ilustracja do pytania
A. D32
B. C25
C. C32
D. D25
Zabezpieczenie nadprądowe C25 jest w porządku w tej sytuacji, bo jego maksymalny prąd wyzwalania to 250A. Jakby doszło do zwarcia w instalacji, to prąd zwarcia wynosi około 315A, a to już więcej niż C25 może znieść. To zabezpieczenie działa tak, że automatycznie odłącza zasilanie, a to jest naprawdę ważne dla bezpieczeństwa, żeby uniknąć porażenia. W praktyce, takie zabezpieczenia z charakterystyką C są często stosowane tam, gdzie mamy duże obciążenia, które przy zwarciu mogą dawać spore prądy. Różne normy, jak PN-IEC 60364-4-41, mówią o tym, jak ważne jest dobranie odpowiednich zabezpieczeń. Dlatego użycie C25 w tym przypadku jest zgodne z tym, co mówią te normy i daje większą pewność, jeśli chodzi o bezpieczeństwo użytkowników instalacji.

Pytanie 5

Jakie z wymienionych uszkodzeń można zidentyfikować podczas przeglądów podtynkowej instalacji elektrycznej?

A. Przekroczenie maksymalnego czasu reakcji RCD
B. Pogorszenie jakości izolacji przewodów instalacji
C. Uszkodzenia mechaniczne obudów oraz osłon urządzeń elektrycznych
D. Zerwanie w układzie przewodów ochronnych
Uszkodzenia mechaniczne obudów i osłon urządzeń elektrycznych są jednymi z najłatwiejszych do zidentyfikowania podczas oględzin podtynkowej instalacji elektrycznej. Obejmują one widoczne wgniecenia, pęknięcia oraz inne defekty zewnętrzne, które mogą negatywnie wpłynąć na bezpieczeństwo i funkcjonowanie instalacji. Obudowy urządzeń elektrycznych, takie jak skrzynki rozdzielcze czy osłony gniazdek, pełnią kluczową rolę w ochronie przed uszkodzeniami mechanicznymi oraz zapewnieniu bezpieczeństwa użytkowników. Regularne oględziny tych elementów są zalecane w ramach przeglądów okresowych, zgodnie z normami PN-EN 60204-1 dotyczącymi bezpieczeństwa maszyn oraz obowiązującymi przepisami prawa budowlanego. Przykładowo, w przypadku pękniętej obudowy gniazdka, istnieje ryzyko kontaktu z elementami przewodzącymi prąd, co może prowadzić do porażenia elektrycznego. Dlatego kluczowym jest, aby wszelkie uszkodzenia były niezwłocznie naprawiane, co podkreśla znaczenie systematycznych kontroli i odpowiednich działań prewencyjnych w zakresie utrzymania instalacji elektrycznych w dobrym stanie.

Pytanie 6

Jaką wartość ma maksymalna dopuszczalna rezystancja uziomu RA przewodu ochronnego łączącego uziom z dostępnością przewodzącą dla znamionowego prądu różnicowego IN = 30 mA oraz napięcia dotykowego 50 V AC wyłącznika różnicowoprądowego?

A. Około 1 660 Ω
B. Około 830 Ω
C. 2 000 Ω
D. 4 000 Ω
Największa dopuszczalna rezystancja uziomu <i>R<sub>A</sub></i> przewodu ochronnego łączącego uziom z częścią przewodzącą dostępną dla prądu różnicowego <i>I<sub>N</sub> = 30 mA</i> i napięcia dotykowego 50 V AC wynosi około 1 660 Ω. W praktyce oznacza to, że gdy osoba dotknie elementu przewodzącego, prąd różnicowy powinien być w stanie przepływać przez przewód uziemiający, a jego wartość powinna być na tyle niska, aby zminimalizować ryzyko porażenia prądem. Dopuszczalna rezystancja uziomu jest regulowana przez normy, takie jak PN-IEC 60364-4-41, które określają maksymalne wartości dla różnych kategorii instalacji elektrycznych. Używanie tych norm w projektowaniu i budowie instalacji elektrycznych jest kluczowe dla zapewnienia bezpieczeństwa użytkowników. W praktyce, wartość rezystancji powinna być mierzona podczas odbioru instalacji, a także okresowo sprawdzana w celu zapewnienia ciągłej ochrony. Przykładem jest instalacja w budynkach mieszkalnych, gdzie właściwie dobrana rezystancja uziomu zapobiega poważnym skutkom awarii elektrycznych.

Pytanie 7

Której z poniżej wymienionych czynności nie da się wykonać podczas próbnego uruchomienia zgrzewarki oporowej?

A. Mierzenia czasu poszczególnych etapów zgrzewania: docisku oraz przerwy
B. Weryfikacji stanu i poprawności ustawienia elektrod
C. Pomiaru rezystancji izolacji między uzwojeniem pierwotnym transformatora a obudową
D. Sprawdzenia funkcjonowania przełącznika do zgrzewania pojedynczego oraz ciągłego
Pomiar rezystancji izolacji między uzwojeniem pierwotnym transformatora a obudową jest kluczowy dla zapewnienia bezpieczeństwa pracy zgrzewarki oporowej. W czasie próbnego uruchamiania urządzenia, istotne jest, aby skupić się na sprawdzeniu stanu elektrod, prawidłowości ustawienia oraz funkcji zgrzewania. Pomiar rezystancji izolacji, który jest standardową procedurą konserwacyjną, powinien być przeprowadzany przed włączeniem urządzenia do pracy, aby upewnić się, że nie ma niebezpiecznych przebicia elektrycznych, które mogłyby spowodować uszkodzenie sprzętu lub zagrożenie dla operatora. Dobre praktyki w branży wymagają, aby przed rozpoczęciem jakiejkolwiek pracy z urządzeniem elektrycznym, przeprowadzić dokładne pomiary izolacji, co nie jest częścią próbnego uruchamiania, lecz regularnych przeglądów. Takie działania ograniczają ryzyko awarii i zwiększają bezpieczeństwo operacyjne, co jest zgodne z normami ISO 9001 dotyczącymi systemów zarządzania jakością oraz normami bezpieczeństwa elektrycznego. Przykładem zastosowania tych zasad jest wykonywanie pomiarów rezystancji izolacji w przemyśle elektronicznym, gdzie regularne kontrole stanu izolacji są normą.

Pytanie 8

Które z podanych wskazówek nie odnosi się do projektanta oraz wykonawcy nowej instalacji elektrycznej w lokalu mieszkalnym?

A. Oddzielić obwody oświetlenia od obwodów z gniazdami wtykowymi
B. Odbiorniki o dużej mocy, które są zainstalowane na stałe, powinny być zasilane z wydzielonych obwodów
C. Gniazda wtykowe w kuchni należy zasilać z oddzielnego obwodu
D. Gniazda wtykowe w każdym pomieszczeniu zasilane powinny być z oddzielnego obwodu
Gniazda wtykowe każdego pomieszczenia zasilać z osobnego obwodu to zalecenie, które nie znajduje zastosowania w standardach dotyczących instalacji elektrycznych w pomieszczeniach mieszkalnych. Według norm PN-IEC 60364-1 oraz wytycznych związanych z projektowaniem instalacji elektrycznych, obwody gniazd wtykowych mogą być grupowane, aby zminimalizować koszty i uprościć instalację. Zazwyczaj zaleca się, aby gniazda wtykowe w jednym pomieszczeniu były zasilane z jednego obwodu, co pozwala na efektywne wykorzystanie energii oraz ogranicza liczbę wymaganych obwodów w rozdzielnicy. Przykładowo, w typowej kuchni lub salonie, gdzie wykorzystuje się wiele gniazd wtykowych, projektowanie obwodów z wykorzystaniem jednego obwodu dla danego pomieszczenia jest praktycznym rozwiązaniem. Ponadto, stosując się do takich zasad, można uniknąć niepotrzebnej komplikacji w instalacji oraz eksploatacji, co sprzyja bezpieczeństwu użytkowania."

Pytanie 9

Które z poniższych rozwiązań gwarantuje podstawową ochronę przed porażeniem w grzejniku elektrycznym działającym w systemie TN-S?

A. Zastosowanie wyłącznika różnicowoprądowego w obwodzie zasilania
B. Izolacja robocza
C. Podłączenie obudowy do uziemienia ochronnego
D. Zastosowanie wyłącznika instalacyjnego nadprądowego w obwodzie zasilania
Podłączenie obudowy do uziemienia ochronnego jest często mylone z podstawową ochroną przeciwporażeniową, jednak w przypadku grzejnika elektrycznego pracującego w sieci TN-S to podejście nie jest wystarczające. Uziemienie ma na celu zabezpieczenie przed skutkami awarii w sytuacji, gdy izolacja robocza zawiedzie, jednak nie eliminuje konieczności stosowania izolacji jako pierwszej linii obrony. Uziemienie chroni użytkownika w przypadku, gdy obudowa urządzenia staje się naładowana wskutek uszkodzenia, ale nie chroni przed porażeniem w sytuacji, gdy elementy elektryczne są w kontakcie z użytkownikiem, zanim dojdzie do zadziałania systemu uziemiającego. Izolacja robocza zapewnia, że nawet w przypadku uszkodzenia, nie dojdzie do sytuacji, w której prąd elektryczny może przepłynąć przez obudowę grzejnika. Ponadto zastosowanie wyłącznika różnicowoprądowego lub instalacyjnego nadprądowego to metody zabezpieczające, które działają w momencie wykrycia nieprawidłowości, ale nie eliminują ryzyka podczas normalnej pracy urządzenia. Błędem może być zatem postrzeganie uziemienia lub wyłączników jako samodzielnych rozwiązań ochronnych, zamiast traktowania ich jako uzupełniających elementów systemu ochrony, który powinien zawsze obejmować odpowiednią izolację roboczą, jako fundamentalny wymóg bezpieczeństwa w instalacjach elektrycznych.

Pytanie 10

Jakim środkiem ochrony przeciwporażeniowej zapewnia się bezpieczeństwo przed dotykiem pośrednim?

A. Samoczynnego szybkiego wyłączenia napięcia
B. Umieszczenia elementów z napięciem poza zasięgiem ręki
C. Instalowania osłon i barier
D. Izolowania części czynnych
Wybierając odpowiedzi, które nie dotyczą samoczynnego szybkiego wyłączenia napięcia, można napotkać na szereg nieporozumień odnośnie metod ochrony przed dotykiem pośrednim. Instalowanie osłon i zagrodzeń, mimo że jest zalecaną praktyką w wielu instalacjach, nie zapewnia wystarczającej ochrony w sytuacji, gdy dojdzie do awarii izolacji. Osłony mogą jedynie ograniczyć dostęp do części czynnych, ale ich skuteczność zależy od prawidłowego ich montażu i utrzymania. Ponadto, umieszczanie elementów pod napięciem poza zasięgiem ręki, chociaż może zapobiec przypadkowemu dotykaniu, nie eliminuje ryzyka porażenia w przypadku uszkodzenia tych elementów. Ostatecznie, izolowanie części czynnych jest istotne, ale nie wystarczające jako jedyne zabezpieczenie. Gdy izolacja ulegnie uszkodzeniu, nie można polegać wyłącznie na niej dla bezpieczeństwa. Z perspektywy norm i przepisów, kluczowe jest implementowanie zintegrowanych systemów ochrony, gdzie samoczynne szybkie wyłączenie napięcia działa jako krytyczny mechanizm awaryjny, który powinien być stosowany równolegle z innymi metodami, aby zapewnić maksymalne bezpieczeństwo. Warto zauważyć, że błędne wnioski często wynikają z pomijania złożoności problemu oraz niepełnego zrozumienia zasady działania poszczególnych elementów ochrony przeciwporażeniowej.

Pytanie 11

Jakie oznaczenie stopnia ochrony powinna mieć obudowa urządzenia elektrycznego, które jest zainstalowane w pomieszczeniach o dużej wilgotności?

A. IP32
B. IP44
C. IP11
D. IP22
Oznaczenie stopnia ochrony IP44 wskazuje, że urządzenie elektryczne jest chronione przed ciałami stałymi o średnicy 1 mm oraz przed wodą, która może padać w dowolnym kierunku. To czyni je odpowiednim rozwiązaniem do stosowania w pomieszczeniach wilgotnych, takich jak łazienki czy kuchnie, gdzie występuje ryzyko kontaktu z wodą i wilgocią. Zgodnie z normą IEC 60529, IP44 zapewnia odpowiedni poziom ochrony, który minimalizuje ryzyko uszkodzeń związanych z wilgocią, co jest kluczowe dla zapewnienia bezpieczeństwa użytkowników. W praktyce, urządzenia takie jak oświetlenie zewnętrzne, gniazda elektryczne czy wyłączniki umieszczone w wilgotnych pomieszczeniach powinny posiadać tę klasę ochrony, aby zminimalizować ryzyko zwarcia elektrycznego oraz wypadków. Dobrą praktyką jest również regularne sprawdzanie stanu obudów i uszczelek, aby zapewnić ich ciągłą skuteczność ochrony przed wodą i zanieczyszczeniami.

Pytanie 12

Jaki jest maksymalny dopuszczalny czas wyłączenia zasilania w celu zapewnienia ochrony przed porażeniem elektrycznym w przypadku uszkodzenia w systemie sieciowym TN-S, kiedy napięcie fazowe przekracza 400 V, a obwody odbiorcze mają prąd znamionowy do 32 A?

A. 0,1 s
B. 0,5 s
C. 0,8 s
D. 0,2 s
Czas wyłączenia zasilania w instalacjach elektrycznych jest kluczowym elementem ochrony przed porażeniem prądem. W przypadku odpowiedzi, które wskazują na czasy wyłączenia dłuższe niż 0,1 s, istnieje fundamentalne nieporozumienie dotyczące norm ochrony przeciwporażeniowej. Czas 0,5 s czy 0,2 s, choć mogą wydawać się wystarczające, nie spełniają wymogów stawianych przez normy, takie jak PN-EN 60364-4-41, które jasno określają, że najkrótszy czas wyłączenia zasilania powinien wynosić 0,1 s dla obwodów o prądzie znamionowym do 32 A w układzie TN-S. W wydłużonych czasach wyłączenia zwiększa się ryzyko dla zdrowia użytkowników, ponieważ dłuższa ekspozycja na prąd może prowadzić do poważnych obrażeń. Typowe błędy myślowe prowadzące do takich wniosków obejmują ignorowanie specyfiki norm oraz nieprawidłowe rozumienie zasad działania zabezpieczeń elektrycznych. Często myli się również czasy wyłączenia dla różnych rodzajów instalacji, co prowadzi do stosowania niewłaściwych wartości czasowych, które mogą być nieadekwatne do zapewnienia bezpieczeństwa. Wiedza o ochronie przed porażeniem prądem oraz znajomość aktualnych norm są kluczowe dla projektowania i eksploatacji instalacji elektrycznych, aby zminimalizować ryzyko wypadków i zapewnić bezpieczeństwo użytkowników.

Pytanie 13

Zgodnie z obowiązującymi przepisami, minimalna rezystancja izolacji uzwojeń silnika asynchronicznego o mocy 5 kW w temperaturze 20˚C powinna wynosić

A. 3 MΩ
B. 1 MΩ
C. 5 MΩ
D. 10 MΩ
Minimalna rezystancja izolacji uzwojeń silnika asynchronicznego o mocy 5 kW, zgodnie z normami obowiązującymi w branży, powinna wynosić co najmniej 5 MΩ. Wartość ta jest kluczowa dla zapewnienia bezpieczeństwa i niezawodności urządzenia. Izolacja uzwojeń odgrywa fundamentalną rolę w ochronie przed zwarciami oraz w minimalizowaniu strat energii. W praktyce, pomiar rezystancji izolacji przeprowadza się regularnie, aby ocenić stan techniczny silnika, a także zidentyfikować potencjalne problemy, takie jak degradacja izolacji spowodowana wilgocią lub starzeniem się materiałów. Przykładowo, w przypadku silników pracujących w trudnych warunkach środowiskowych, takich jak przemysł chemiczny czy metalurgiczny, wartość ta powinna być monitorowana szczególnie pilnie, aby uniknąć niebezpiecznych sytuacji i kosztownych przestojów. Przestrzeganie tych norm to nie tylko kwestia zgodności z przepisami, ale również kluczowy element zarządzania ryzykiem w eksploatacji maszyn.

Pytanie 14

Jakie zadanie związane z utrzymaniem sprawności technicznej instalacji elektrycznej spoczywa na dostawcy energii?

A. Zachowanie zasad bezpieczeństwa korzystania z urządzeń elektrycznych
B. Prowadzenie dokumentacji dotyczącej eksploatacji obiektu
C. Nadzór nad jakością realizacji prac eksploatacyjnych
D. Okresowa legalizacja, naprawa lub wymiana licznika energii
Odpowiedź dotycząca okresowej legalizacji, naprawy lub wymiany licznika energii jest poprawna, ponieważ dostawcy energii są odpowiedzialni za zapewnienie, że urządzenia pomiarowe są w dobrym stanie technicznym i zgodne z obowiązującymi normami. Legalizacja licznika oznacza jego zatwierdzenie przez odpowiednie organy, co gwarantuje, że pomiary energii są wiarygodne i zgodne z przepisami prawa. W praktyce, dostawcy przeprowadzają regularne kontrole i konserwacje liczników, aby upewnić się, że działają one z wymaganymi tolerancjami. Na przykład, zgodnie z normą PN-EN 62053-21, liczniki energii elektrycznej muszą być regularnie sprawdzane, aby zapewnić ich dokładność. Dobre praktyki w tym zakresie obejmują również prowadzenie szczegółowej dokumentacji dotyczącej stanu technicznego liczników oraz przeprowadzonych działań, co pozwala na łatwe monitorowanie i zarządzanie infrastrukturą pomiarową. Współpraca między dostawcami a organami regulacyjnymi w zakresie legalizacji liczników jest kluczowa dla utrzymania jakości usług i ochrony konsumentów.

Pytanie 15

Jakiego typu zakłócenie zabezpieczają samodzielnie wkładki topikowe typu aM w przypadku przewodów zasilających urządzenia odbiorcze?

A. Przed zwarciem i przeciążeniem
B. Przed przepięciem i przeciążeniem
C. Wyłącznie przed przeciążeniem
D. Wyłącznie przed zwarciem
Zrozumienie funkcji wkładek topikowych aM w kontekście zabezpieczeń elektrycznych wymaga znajomości mechanizmów, które je definiują. Odpowiedzi sugerujące, że wkładki aM chronią tylko przed przeciążeniem, są błędne, ponieważ te elementy nie mają zdolności do wykrywania długotrwałych przeciążeń prądowych. W przypadku przeciążenia, wkładki te w ogóle nie reagują, co prowadzi do ich powolnego przegrzewania się, a w konsekwencji może doprowadzić do uszkodzenia instalacji. Ponadto, twierdzenie, że wkładki aM chronią przed przepięciem, jest również mylące. Przepięcia, które są nagłymi wzrostami napięcia, wymagają innych typów zabezpieczeń, takich jak ograniczniki przepięć, które są zaprojektowane do szybkiej reakcji na zmiany napięcia. Właściwe zrozumienie zabezpieczeń elektrycznych polega na znajomości ich specyfikacji i zastosowań, co jest kluczowe dla zapewnienia bezpieczeństwa i efektywności działania instalacji. Często dochodzi do pomylenia funkcji różnych zabezpieczeń, co prowadzi do niewłaściwego ich doboru i tym samym zwiększa ryzyko awarii lub pożaru. Dlatego ważne jest, aby projektując instalacje elektryczne, opierać się na standardach branżowych, które jasno definiują wymagania dla zabezpieczeń, tak aby każda ich funkcja była zrozumiana i stosowana w odpowiednich warunkach.

Pytanie 16

Inspekcje instalacji u odbiorców energii elektrycznej powinny być realizowane nie rzadziej niż co

A. rok
B. 5 lat
C. 3 lata
D. miesiąc
Odpowiedź "5 lat" jest zgodna z wymaganiami określonymi w polskich przepisach dotyczących eksploatacji i utrzymania instalacji elektrycznych. Zgodnie z normą PN-IEC 60364 oraz wytycznymi URE (Urząd Regulacji Energetyki), okresowe oględziny instalacji u odbiorców mocy powinny być przeprowadzane nie rzadziej niż co pięć lat. Taki cykl przeglądów ma na celu zapewnienie bezpieczeństwa użytkowników, identyfikację potencjalnych usterek oraz utrzymanie instalacji w odpowiednim stanie technicznym. Przykładowo, regularne przeglądy mogą pomóc w wykryciu uszkodzeń izolacji kabli czy awarii zabezpieczeń, co w dłuższej perspektywie może zapobiec poważniejszym awariom oraz obniżyć ryzyko pożarów. W praktyce, wiele firm stosuje systemy zarządzania utrzymaniem ruchu, w których terminy przeglądów są udokumentowane i monitorowane, co sprzyja lepszemu zarządzaniu bezpieczeństwem energetycznym. Ostatnie badania pokazują, że zaniechanie regularnych przeglądów może prowadzić do wzrostu liczby awarii oraz zwiększenia kosztów napraw, dlatego przestrzeganie pięcioletniego cyklu przeglądów jest kluczowe.

Pytanie 17

W tabeli przedstawiono parametry znamionowe silnika jednofazowego. Uruchomienie tego silnika bez kondensatora rozruchowego spowoduje

Typ silnikaSEh 80-2BF
Moc1,1 kW
Prędkość obrotowa2780 obr/min
Sprawność72%
Napięcie zasilania230 V, 50 Hz
Stopień ochronyIP 54
Rodzaj pracyS1
Współczynnik mocy0,97
Pojemność kondensatora pracy25 μF
Pojemność kondensatora rozruchowego70 μF
A. zadziałanie wyłącznika różnicowoprądowego.
B. zmniejszenie momentu rozruchowego.
C. zmniejszenie mocy silnika.
D. uszkodzenie silnika.
Silnik jednofazowy rzeczywiście wymaga kondensatora rozruchowego do prawidłowego startu. Kondensator ten wytwarza przesunięcie fazowe, co jest kluczowe dla generowania odpowiedniego momentu obrotowego. Kiedy silnik jest uruchamiany, kondensator rozruchowy tworzy pole magnetyczne, które pozwala na zainicjowanie ruchu wirnika. Bez tego kondensatora silnik nie jest w stanie wytworzyć wystarczającego momentu obrotowego, co prowadzi do problemów z uruchomieniem. W praktyce, takie silniki są powszechnie stosowane w domowych urządzeniach, takich jak wentylatory czy pompy, gdzie ich niezawodność jest kluczowa. W standardach branżowych, zgodnie z zasadami eksploatacji silników elektrycznych, konieczne jest stosowanie odpowiednich komponentów, aby zapewnić optymalne warunki pracy. Dlatego brak kondensatora rozruchowego skutkuje nie tylko trudnościami w uruchomieniu, ale także może prowadzić do uszkodzeń silnika w dłuższej perspektywie czasowej.

Pytanie 18

Na jaką wielkość prądu nominalnego silnika klatkowego trójfazowego, który napędza hydrofor w gospodarstwie domowym, powinno się ustawić zabezpieczenie termiczne?

A. 1,4·In
B. 1,1·In
C. 2,2·In
D. 0,8·In
Odpowiedź 1,1·In jest prawidłowa, ponieważ dla silników klatkowych trójfazowych, zwłaszcza w przypadku napędu pomp hydroforowych, ustalenie odpowiedniej wartości zabezpieczenia termicznego jest kluczowe dla ich poprawnej pracy. Ustawienie termika na poziomie 1,1·In oznacza, że zabezpieczenie termiczne toleruje przeciążenie do 10% powyżej prądu znamionowego silnika, co jest zgodne z normami zawartymi w standardzie IEC 60947-4-1. W praktyce, takie ustawienie pozwala na chwilowe przeciążenia, które mogą wystąpić przy rozruchu lub w przypadku chwilowego wzrostu ciśnienia w systemie, jednocześnie chroniąc silnik przed nadmiernym przegrzaniem. Zbyt niskie ustawienie zabezpieczenia może skutkować częstymi wyłączeniami silnika, podczas gdy zbyt wysokie może nie zapewnić odpowiedniej ochrony. W związku z tym, dla silników napędzających pompy, które są obciążone zmiennymi warunkami pracy, wartość 1,1·In jest często uznawana za optymalną dla ochrony oraz efektywności operacyjnej.

Pytanie 19

Podstawowa ochrona przed porażeniem prądem za pomocą przegród lub obudów jest realizowana dzięki

A. umieszczeniu elementów aktywnych poza zasięgiem ręki
B. całkowitemu i trwałemu pokryciu części czynnych materiałem izolacyjnym
C. wprowadzeniu barier chroniących przed przypadkowym kontaktem
D. zastosowaniu osłon chroniących przed zamierzonym dotykiem
Pomimo że różne metody ochrony przed porażeniem prądem są ważnymi zagadnieniami w inżynierii elektrycznej, to odpowiedzi dotyczące umieszczenia części czynnych poza zasięgiem ręki, całkowitego pokrycia materiałem izolacyjnym oraz zastosowania przeszkód chroniących przed przypadkowym dotykiem nie są wystarczające. Umieszczenie części czynnych poza zasięgiem ręki może w pewnym stopniu ograniczyć ryzyko, jednak nie zapewnia skutecznej ochrony przed zamierzonym dotykiem. W praktyce, takie podejście może być stosowane jedynie w ograniczonym zakresie, np. w instalacjach, gdzie dostęp do urządzeń jest kontrolowany. Ponadto, całkowite pokrycie części czynnych materiałem izolacyjnym, choć może być skuteczne w pewnych warunkach, nie zawsze jest wykonalne ze względów praktycznych i technologicznych. Izolacja musi być zgodna z normami, aby rzeczywiście spełniać swoje funkcje. Zastosowanie przeszkód chroniących przed przypadkowym dotykiem również nie rozwiązuje problemu celowego kontaktu z częściami czynnymi. Ostatecznie, aby skutecznie chronić przed porażeniem, niezbędne jest zastosowanie kompleksowego podejścia, które uwzględnia zarówno osłony ochronne, jak i odpowiednie zabezpieczenia, zgodne z międzynarodowymi standardami bezpieczeństwa. Kluczowe jest zrozumienie, że ochrona przeciwporażeniowa wymaga nie tylko fizycznych barier, ale również edukacji użytkowników oraz przestrzegania norm i zasad bezpieczeństwa.

Pytanie 20

Kto jest uprawniony do przeprowadzenia konserwacji silnika tokarki TUE-35 w zakładzie elektromechanicznym?

A. Operator tej maszyny
B. Kierownik grupy mechaników
C. Każdy pracownik na pisemne zlecenie pracodawcy
D. Osoba, która posiada odpowiednie przeszkolenie i uprawnienia
Odpowiedź, że konserwację silnika tokarki TUE-35 może przeprowadzić osoba przeszkolona i uprawniona, jest prawidłowa ze względu na konieczność przestrzegania standardów bezpieczeństwa oraz eksploatacji maszyn. W branży mechanicznej i elektromechanicznej, konserwacja urządzeń mechanicznych, takich jak tokarki, wymaga specjalistycznej wiedzy oraz umiejętności, które zdobywa się podczas szkoleń. Tylko wykwalifikowany personel ma odpowiednie kompetencje do zdiagnozowania potencjalnych problemów, dokonywania niezbędnych napraw oraz przeprowadzania regularnych przeglądów technicznych, co zapobiega dalszym uszkodzeniom maszyny. Przykładem może być sytuacja, w której nieprzeszkolona osoba próbuje wymienić uszczelnienia w silniku, co może prowadzić do jego awarii lub nawet zagrożenia dla zdrowia pracowników. Warto zauważyć, że w wielu zakładach przemysłowych obowiązują określone normy, takie jak ISO 9001, które wymagają, aby wszystkie prace konserwacyjne były przeprowadzane przez wykwalifikowany personel, co podkreśla znaczenie odpowiednich uprawnień.

Pytanie 21

Podczas wymiany gniazdka trójfazowego w instalacji przemysłowej należy

A. utrzymać odpowiednią kolejność przewodów fazowych w zaciskach gniazda
B. zagiąć oczka na końcach przewodów
C. zmienić przewody na nowe o większym przekroju
D. zamontować końcówki oczkowe na przewodach
Zachowanie kolejności przewodów fazowych w zaciskach gniazda trójfazowego jest kluczowym aspektem bezpieczeństwa i prawidłowego działania instalacji. W układach trójfazowych, każdy z przewodów fazowych (L1, L2, L3) ma przypisane określone funkcje oraz wartości napięć, które powinny być utrzymywane w odpowiedniej sekwencji. Niezachowanie tej kolejności może prowadzić do problemów z równowagą obciążenia, co z kolei może skutkować uszkodzeniem urządzeń elektrycznych, a nawet zagrożeniem pożarowym. W praktyce, np. w przypadku podłączania silników elektrycznych, niewłaściwa kolejność faz może spowodować, że silnik będzie działał w odwrotnym kierunku, co może prowadzić do poważnych uszkodzeń. Zgodnie z normami PN-IEC 60364, zachowanie odpowiedniej kolejności połączeń jest niezbędne dla zapewnienia właściwej funkcjonalności oraz bezpieczeństwa instalacji elektrycznych.

Pytanie 22

Jak często, według podanych w tabeli i zalecanych przez Prawo Budowlane czasookresów, należy wykonywać pomiary okresowe skuteczności ochrony przeciwporażeniowej i rezystancji izolacji instalacji elektrycznych w szkołach?

Zalecana częstotliwość wykonywania okresowych badań sprawności technicznej instalacji elektrycznych
w zależności od warunków środowiskowych
Lp.Rodzaj pomieszczeniaPomiar skuteczności ochrony
przeciwporażeniowej
(nie rzadziej niż):
Pomiar rezystancji izolacji
(nie rzadziej niż):
1O wyziewach żrących1 rok1 rok
2Zagrożonych wybuchem1 rok1 rok
3Otwarta przestrzeń1 rok5 lat
4Wilgotne i bardzo wilgotne
(o wilgotności względnej 75-100%)
1 rok5 lat
5Gorące (temperatura powyżej 35 °C)1 rok5 lat
6Zagrożone pożarem5 lat1 rok
7Stwarzające zagrożenie dla ludzi
(ZL I, ZL II, ZL III)
5 lat1 rok
8Zapylone5 lat5 lat


Pomiar skuteczności ochrony
przeciwporażeniowej
(nie rzadziej niż):
Pomiar rezystancji izolacji
(nie rzadziej niż):
A1 rok1 rok
B1 rok5 lat
C5 lat1 rok
D5 lat5 lat
A. D.
B. B.
C. C.
D. A.
Odpowiedź C jest prawidłowa, ponieważ zgodnie z obowiązującymi przepisami prawa budowlanego oraz standardami technicznymi, pomiary skuteczności ochrony przeciwporażeniowej w szkołach powinny być przeprowadzane co 5 lat, natomiast pomiary rezystancji izolacji wymagają okresowego sprawdzania co rok. Takie podejście ma na celu zapewnienie bezpieczeństwa użytkowników obiektów edukacyjnych, gdzie prawidłowa ochrona przed porażeniem prądem elektrycznym jest kluczowa. Przykładowo, w przypadku awarii systemów ochronnych, konsekwencje mogą być nie tylko materialne, ale przede wszystkim zdrowotne, zagrażające życiu uczniów i personelu. Regularne kontrole pozwalają na wczesne wykrycie potencjalnych usterek, co z kolei przyczynia się do zmniejszenia ryzyka wypadków. Warto zwrócić uwagę na standardy, takie jak PN-IEC 60364, które szczegółowo regulują wymagania dotyczące instalacji elektrycznych oraz ich okresowej konserwacji. Przestrzeganie tych zasad jest nie tylko obowiązkiem, ale również najlepszą praktyką w zarządzaniu bezpieczeństwem elektrycznym w obiektach edukacyjnych.

Pytanie 23

Na wartość impedancji pętli zwarcia w systemie sieciowym TN-C mają wpływ

A. liczba zamontowanych ochronników przeciwprzepięciowych
B. pole przekroju poprzecznego żył przewodów
C. wytrzymałość napięciowa izolacji przewodów
D. rodzaj zamontowanych ochronników przeciwprzepięciowych
Wartość impedancji pętli zwarcia w układzie sieciowym TN-C jest ściśle związana z polem przekroju poprzecznego żył przewodów. Pole to wpływa na opór przewodzenia prądu, co z kolei ma istotne znaczenie dla działania zabezpieczeń w przypadku zwarcia. Przewody o większym przekroju charakteryzują się mniejszym oporem, co pozwala na szybsze zadziałanie zabezpieczeń, takich jak wyłączniki nadprądowe. W praktyce oznacza to, że zwiększenie przekroju przewodów w instalacji elektrycznej może poprawić bezpieczeństwo, zmniejszając ryzyko uszkodzenia urządzeń oraz zapewniając lepszą ochronę osób. W Polskich Normach i europejskich standardach, takich jak PN-HD 60364-5-54, podkreśla się znaczenie odpowiedniego doboru przekrojów przewodów w kontekście ich zastosowania, zwłaszcza w instalacjach narażonych na zwarcia. Dlatego kluczowe jest, aby projektanci instalacji elektrycznych zwracali uwagę na te aspekty, aby zapewnić optymalną funkcjonalność oraz bezpieczeństwo systemów elektrycznych.

Pytanie 24

Obroty silnika indukcyjnego klatkowego obciążonego nominalnym momentem znacząco spadły. Jakie mogą być tego przyczyny?

A. Zwarcie w obwodzie wirnika
B. Przepalony bezpiecznik topikowy w jednej z faz
C. Zbyt wysoka temperatura uzwojeń
D. Zadziałanie przekaźnika termicznego
Przepalony bezpiecznik topikowy w jednej fazie to jedna z najczęstszych przyczyn nagłego spadku obrotów silnika indukcyjnego klatkowego. Silnik tego typu działa na zasadzie zasilania trójfazowego, a każdy z obwodów fazowych jest kluczowy dla prawidłowego funkcjonowania całego układu. W przypadku przepalenia bezpiecznika w jednej z faz, silnik zostaje zasilany tylko z dwóch faz, co prowadzi do znacznego spadku momentu obrotowego i w konsekwencji obrotów. Gdy obciążenie silnika osiąga wartość znamionową, a jedna z faz jest wyłączona, silnik nie jest w stanie dostarczyć wymaganego momentu obrotowego. Przykładem zastosowania tej wiedzy jest regularne monitorowanie stanu bezpieczników w instalacjach przemysłowych oraz korzystanie z systemów detekcji, które mogą zasygnalizować spadek wydajności zasilania. Dobrym rozwiązaniem jest także wprowadzenie systemów automatycznego wyłączania urządzeń w przypadku wykrycia problemów z zasilaniem, co może zapobiec uszkodzeniom silnika.

Pytanie 25

Jaką maksymalną wartość prądu zadziałania można ustawić na przekaźniku termobimetalowym w obwodzie zasilającym silnik asynchroniczny o parametrach UN = 400 V, PN = 0,37 kW, I = 1,05 A, n = 2710 l/min, aby zapewnić skuteczną ochronę przed przeciążeniem?

A. It=0,88 A
B. It=1,05 A
C. It=1,33 A
D. It=1,15 A
Prąd zadziałania 1,15 A na przekaźniku termobimetalowym to naprawdę dobry wybór do ochrony silnika asynchronicznego o takich danych jak U<sub>N</sub> = 400 V, P<sub>N</sub> = 0,37 kW oraz I = 1,05 A. W praktyce przekaźniki termobimetalowe ustawiamy na wartość trochę wyższą od prądu znamionowego silnika. W tym przypadku 1,15 A to dobra decyzja, bo zapewnia odpowiednią ochronę przed przeciążeniem, a jednocześnie daje trochę luzu na krótkie wzrosty prądu, które mogą wystąpić na przykład podczas rozruchu. Ta zasada jest zgodna z normą PN-EN 60204-1, która mówi o bezpieczeństwie w instalacjach elektrycznych maszyn. Dzięki temu silnik nie będzie miał problemów z uszkodzeniami spowodowanymi długotrwałym przeciążeniem, co w efekcie wydłuża jego żywotność i zwiększa niezawodność całego systemu. Na przykład, w przemyśle silnik napędzający wentylator potrzebuje odpowiednio ustawionych przekaźników, żeby wszystko działało bez zarzutu i żeby zminimalizować ryzyko awarii.

Pytanie 26

Które z wymienionych wskazówek nie dotyczy projektanta oraz realizatora nowej instalacji elektrycznej w lokalu mieszkalnym?

A. Rozdzielenie obwodów oświetleniowych od obwodów gniazd wtykowych
B. Zasilanie gniazd wtykowych w każdym pomieszczeniu z oddzielnego obwodu
C. Zasilanie odbiorników o dużej mocy, zainstalowanych na stałe, z wydzielonych obwodów
D. Zasilanie gniazd wtykowych w kuchni z oddzielnego obwodu
Wybór odpowiedzi dotyczącej zasilania gniazd wtykowych każdego pomieszczenia z osobnego obwodu jest uzasadniony. Zgodnie z normami instalacji elektrycznych, takimi jak PN-IEC 60364, zaleca się, aby gniazda wtykowe w pomieszczeniach mieszkalnych były podłączone do odrębnych obwodów. Taki układ zwiększa bezpieczeństwo, ponieważ w przypadku przeciążenia lub zwarcia, wyłączenie jednego obwodu nie wpływa na pozostałe gniazda w innych pomieszczeniach. Przykładem praktycznym jest sytuacja, gdy w jednym pomieszczeniu używamy wielu urządzeń elektrycznych, takich jak komputer, lodówka czy telewizor. Dzieląc zasilanie na poszczególne obwody, minimalizujemy ryzyko spadku napięcia i zapewniamy stabilność zasilania. Dodatkowo, urządzenia wymagające dużej mocy, jak pralki czy kuchenki, powinny być zasilane z osobnych obwodów, co wynika z zasad bezpieczeństwa oraz efektywności energetycznej.

Pytanie 27

Urządzenie oznaczone przedstawionym symbolem klasy ochronności można podłączyć do instalacji

Ilustracja do pytania
A. ze stykiem ochronnym.
B. separowanej elektrycznie od linii zasilającej.
C. bez przewodu ochronnego.
D. o obniżonym napięciu zasilania SELV lub PELV.
Zastanawiając się nad podłączaniem urządzeń elektrycznych, trzeba mieć na uwadze kilka ważnych rzeczy. Wydaje mi się, że nie do końca zrozumiałeś, jak działa klasa ochronności III. To, co napisałeś, sugeruje, że takie urządzenie powinno być odseparowane od zasilania, a to nie jest do końca prawda. Klasa III dotyczy niskonapięciowych systemów, które wcale nie potrzebują takiej separacji, jak to wskazujesz. Dodatkowo, jeśli podłączysz je do instalacji z ochronnym stykem, to może być niebezpieczne, bo klasa III działa na niskich napięciach, więc nie ma potrzeby dodatkowych zabezpieczeń. Warto pamiętać, że źle jest mylić te klasy ochronności i nie rozumieć, kiedy stosować styki ochronne. W każdym razie, jeśli chcesz bezpiecznie korzystać z takich urządzeń, trzeba trzymać się standardów jak IEC 61140.

Pytanie 28

Podczas badania skuteczności działania dwóch wyłączników różnicowoprądowych, których znamionowy prąd różnicowy wynosi 30 mA, uzyskano wyniki przedstawione w tabeli. Przy założeniu, że prąd wyzwalający nie powinien być mniejszy niż 0,5 znamionowego prądu różnicowego oraz nie powinien przekraczać wartości znamionowego prądu różnicowego, o działaniu tych wyłączników można powiedzieć, że

Numer wyłącznika różnicowoprądowegoRzeczywisty, zmierzony prąd różnicowy
120 mA
210 mA
A. pierwszy i drugi działają prawidłowo.
B. pierwszy i drugi działają nieprawidłowo.
C. pierwszy działa nieprawidłowo, a drugi działa prawidłowo.
D. pierwszy działa prawidłowo, a drugi działa nieprawidłowo.
Wyłącznik różnicowoprądowy nr 1 działa prawidłowo, co oznacza, że jego rzeczywisty prąd wyzwalający wynoszący 20 mA jest zgodny z wymaganiami. Zgodnie z normami, prąd wyzwalający powinien mieścić się w przedziale od 0,5 do 1,0 wartości znamionowej, w tym przypadku od 15 mA do 30 mA. Taki wyłącznik zapewnia odpowiednią ochronę przed porażeniem prądem elektrycznym oraz minimalizuje ryzyko uszkodzenia instalacji elektrycznej. W praktyce, wyłączniki różnicowoprądowe są kluczowe w instalacjach elektrycznych, szczególnie w miejscach narażonych na wilgoć. Ważne jest, aby regularnie testować ich działanie, co można zrealizować za pomocą przycisków testowych umieszczonych na obudowie urządzenia. Zgodnie z zasadami dobrej praktyki, zaleca się, aby co najmniej raz na pół roku przeprowadzać kontrolę działania wyłączników, aby upewnić się, że są w pełni sprawne i mogą skutecznie chronić użytkowników.

Pytanie 29

Jakim skrótem literowym określamy system automatyki energetycznej, który umożliwia przywrócenie normalnej pracy linii energetycznej po jej wyłączeniu przez urządzenia zabezpieczające?

A. SRN
B. SPZ
C. SCO
D. SZR
Skrót SPZ (samoczynne przywracanie zasilania) odnosi się do systemu automatyki energetycznej, który ma na celu przywrócenie normalnego funkcjonowania linii energetycznej po jej wyłączeniu przez urządzenia zabezpieczające. System ten jest kluczowy dla zapewnienia ciągłości dostaw energii elektrycznej oraz minimalizacji przerw w zasilaniu. W praktyce, SPZ działa na zasadzie wykrywania awarii lub przeciążeń, co inicjuje proces odłączenia danego obwodu. Po ustabilizowaniu warunków pracy i wykryciu, że awaria została usunięta, system automatycznie przywraca zasilanie. Przykładowo, w przypadku chwilowego wzrostu zapotrzebowania, SPZ może zresetować wyłącznik, co pozwala uniknąć niepotrzebnych przerw w zasilaniu. Praktyczna implementacja SPZ znajduje zastosowanie w różnych sektorach, od przemysłu, przez sieci dystrybucji, aż po systemy energetyczne w budynkach. Wiele krajowych standardów, takich jak PN-EN 50160, podkreśla znaczenie takich rozwiązań dla jakości dostaw energii elektrycznej oraz bezpieczeństwa systemu energetycznego.

Pytanie 30

Zespół elektryków ma wykonać na polecenie pisemne prace konserwacyjne przy urządzeniu elektrycznym.
Jak powinien postąpić kierujący zespołem w przypadku stwierdzenia niedostatecznego oświetlenia w miejscu pracy?

Wykonać zleconą pracęPowiadomić przełożonego
o niedostatecznym oświetleniu
A.TAKNIE
B.TAKTAK
C.NIETAK
D.NIENIE
A. B.
B. C.
C. D.
D. A.
Wybór odpowiedzi C jest zgodny z zasadami BHP, które nakładają na kierownika zespołu obowiązek zapewnienia bezpiecznych warunków pracy. Niedostateczne oświetlenie stwarza ryzyko wypadków, co może prowadzić do poważnych konsekwencji zarówno dla pracowników, jak i dla pracodawcy. W sytuacji, gdy oświetlenie nie spełnia norm, kierujący zespołem powinien niezwłocznie zaprzestać wszelkich prac i poinformować przełożonego. Zgodnie z normą PN-EN 12464-1, miejsca pracy powinny być odpowiednio oświetlone, aby zminimalizować ryzyko błędów i wypadków. Przykładowo, w przypadku prac konserwacyjnych na wysokości, odpowiednie oświetlenie jest kluczowe dla bezpiecznej nawigacji i wykonywania zadań. Oprócz tego, zgodnie z wytycznymi BHP, pracownicy powinni być szkoleni w zakresie identyfikacji zagrożeń związanych z oświetleniem i wiedzieć, jak reagować w takich sytuacjach. Dlatego odpowiedź C nie tylko wskazuje na właściwe postępowanie, ale także na dbałość o bezpieczeństwo i zdrowie zespołu.

Pytanie 31

Kontrole instalacji elektrycznej w obiektach użyteczności publicznej powinny być przeprowadzane nie rzadziej niż co

A. 4 lata
B. 5 lat
C. 3 lata
D. 2 lata
Przeglądy instalacji elektrycznej w budynkach użyteczności publicznej powinny być przeprowadzane nie rzadziej niż co 5 lat, co jest zgodne z przepisami oraz normami zawartymi w Polskich Normach (PN). Regularne przeglądy mają na celu zapewnienie bezpieczeństwa użytkowników obiektów oraz zachowanie sprawności technicznej instalacji. W trakcie przeglądów dokonuje się oceny stanu technicznego instalacji, co pozwala na wczesne wykrycie ewentualnych usterek czy nieprawidłowości, które mogłyby prowadzić do niebezpiecznych sytuacji, takich jak pożar czy porażenie prądem. Przykładowo, w obiektach takich jak szkoły czy szpitale, gdzie bezpieczeństwo jest kluczowe, regularne przeglądy są niezbędne, aby spełniać wymogi prawa oraz zapewnić komfort i bezpieczeństwo ich użytkowników. Pamiętajmy, że odpowiedzialność za przeprowadzanie tych przeglądów spoczywa na właścicielu obiektu, który powinien współpracować z wyspecjalizowanymi firmami elektrycznymi, aby mieć pewność, że prace są prowadzone zgodnie z aktualnymi normami i najlepszymi praktykami.

Pytanie 32

W tabeli przedstawiono parametry znamionowe silnika. Do jakiego rodzaju pracy jest on przeznaczony?

Typ silnikaSEh 80-4CF
Moc1,1 kW
Prędkość obrotowa1400 obr/min
ObudowaAluminium
Napięcie zasilania230 V, 50 Hz
Stopień ochronyIP 54
Rodzaj pracyS2
Sprawność74%
Pojemność kondensatora pracy30 μF
Pojemność kondensatora rozruchowego75 μF
A. Dorywczej.
B. Przerywanej z hamowaniem elektrycznym.
C. Ciągłej.
D. Przerywanej z rozruchem.
Silnik oznaczony jako przeznaczony do pracy dorywczej (S2) jest zaprojektowany do pracy przez określony czas, po którym konieczne jest schłodzenie. Przykładem zastosowania takiego silnika mogą być urządzenia, które pracują w cyklach, np. pompy, wentylatory czy maszyny przemysłowe, które nie wymagają ciągłej eksploatacji. W praktyce oznacza to, że silnik może pracować w trybie dorywczym przez kilka minut do kilku godzin, w zależności od jego parametrów znamionowych, a następnie musi zostać wyłączony, aby uniknąć przegrzania. Standardy normatywne, takie jak IEC 60034-1, definiują takie klasy pracy silników elektrycznych, co zapewnia, że inżynierowie projektujący systemy napędowe mogą odpowiednio dobierać silniki do wymagań aplikacji. Wiedza o tych oznaczeniach jest kluczowa dla zapewnienia efektywności energetycznej oraz długowieczności urządzeń, co ma bezpośredni wpływ na koszty eksploatacji.

Pytanie 33

Jakie będą konsekwencje zasilenia silnika asynchronicznego, którego znamionowa częstotliwość napięcia stojana wynosi 50 Hz, z sieci o częstotliwości 60 Hz?

A. Uszkodzenie wirnika silnika
B. Nawrót wirnika silnika
C. Zwiększenie prędkości obrotowej wirnika silnika
D. Zmniejszenie prędkości obrotowej wirnika silnika
Zwiększenie prędkości obrotowej wirnika silnika asynchronicznego zasilanego napięciem o częstotliwości 60 Hz w porównaniu do znamionowej częstotliwości 50 Hz jest wynikiem zjawiska zwanego poślizgiem. W przypadku silników asynchronicznych prędkość obrotowa wirnika jest zawsze niższa od prędkości synchronicznej, która zależy od częstotliwości zasilania oraz liczby par biegunów. Wzór na prędkość synchroniczną jest następujący: n_s = (120 * f) / P, gdzie n_s to prędkość synchroniczna w obrotach na minutę (RPM), f to częstotliwość zasilania w hercach, a P to liczba par biegunów. W przypadku zasilania 60 Hz, prędkość synchroniczna wzrośnie, co skutkuje wzrostem prędkości obrotowej wirnika. Praktycznie, dla silnika z dwiema parami biegunów zasilanego z sieci 50 Hz, prędkość będzie wynosić 1200 RPM, natomiast przy 60 Hz wzrośnie do 1440 RPM. Takie zjawisko może być wykorzystywane w aplikacjach, gdzie wymagana jest większa prędkość obrotowa, jednak należy pamiętać o możliwych konsekwencjach, takich jak zwiększone straty cieplne i ryzyko uszkodzenia silnika. W przemyśle standardem jest dostosowywanie zasilania do znamionowych parametrów silnika w celu zapewnienia jego długowieczności i efektywności.

Pytanie 34

Dokumentacja użytkowania instalacji elektrycznych chronionych wyłącznikami nadmiarowoprądowymi nie jest zobowiązana do zawierania

A. spisu terminów oraz zakresów testów i pomiarów kontrolnych
B. zasad bezpieczeństwa dotyczących wykonywania prac eksploatacyjnych
C. opisu doboru urządzeń zabezpieczających
D. charakterystyki technicznej instalacji
Twoja odpowiedź jest całkiem trafna. Wiesz, że instrukcje dotyczące eksploatacji instalacji elektrycznych zabezpieczonych wyłącznikami nadmiarowoprądowymi nie muszą zawierać szczegółowych informacji o doborze urządzeń. Z mojego doświadczenia, dobór tych urządzeń najczęściej robi się na etapie projektowania, według norm, jak chociażby PN-IEC 60364-1. W instrukcji powinno być raczej opisane, jak działają już wybrane urządzenia, ich typy i zasady użytkowania. Na przykład, lista terminów i zakresów prób oraz pomiarów kontrolnych jest kluczowa, żeby wszystko działało bezpiecznie i sprawnie. No i oczywiście, zasady bezpieczeństwa przy pracach eksploatacyjnych to podstawa, bo przecież chcemy zminimalizować ryzyko wypadków. Dobrze, żeby dokumentacja była jasna i zgodna z aktualnymi przepisami – to przecież wpływa na bezpieczeństwo i efektywność pracy. Instrukcja to powinna być pomoc, która zapewnia, że instalacja będzie działać prawidłowo, a nie miejsce na podstawowe zasady doboru zabezpieczeń.

Pytanie 35

Wirnik w szlifierce uległ uszkodzeniu. Na schemacie z dokumentacji techniczno-ruchowej jest on oznaczony numerem

A. 35
B. 50
C. 9
D. 12
Odpowiedź 9 jest właściwa, ponieważ zgodnie z dokumentacją techniczno-ruchową, wirnik szlifierki oznaczony jest właśnie tym numerem. Znajomość oznaczeń w dokumentacji jest kluczowa dla efektywnego przeprowadzania konserwacji oraz napraw urządzeń. Na przykład, w przypadku wymiany uszkodzonego wirnika, technik powinien korzystać z dokumentacji, aby zidentyfikować odpowiednią część zamienną. Oznaczenia w dokumentacji są często zgodne z normami branżowymi, takimi jak ISO 9001, które podkreślają znaczenie dokumentacji w zarządzaniu jakością. Używanie właściwych numerów oznaczeń pozwala na przyspieszenie procesu naprawy i minimalizację przestojów w pracy. Również, dla techników i inżynierów, umiejętność szybkiego lokalizowania i identyfikowania części przy pomocy oznaczeń jest niezbędna w codziennej pracy, co wpływa na efektywność i bezpieczeństwo procesów produkcyjnych.

Pytanie 36

W układzie, którego schemat zamieszczono na rysunku, sprawdzono cztery różne urządzenia ochronne różnicowoprądowe. Wyniki wskazań amperomierza (IA) w momencie zadziałania urządzenia zestawiono w tabeli. Które urządzenie ochronne jest sprawne?

Urządzenie
ochronne
różnicowoprądowe
Prąd
znamionowy IΔN
Prąd IA
A.10 mA0,02 A
B.30 mA0,04 A
C.100 mA0,15 A
D.300 mA0,24 A
Ilustracja do pytania
A. D.
B. C.
C. B.
D. A.
Urządzenie ochronne różnicowoprądowe D zostało uznane za sprawne, ponieważ jego prąd zadziałania wynosi 0,24 A (240 mA), co mieści się w określonym zakresie od 0,5 IΔn do IΔn, gdzie IΔn dla tego urządzenia wynosi 300 mA. Oznacza to, że urządzenie zadziała w odpowiednim momencie, skutecznie chroniąc instalację elektryczną oraz osoby przed skutkami porażenia prądem. W branży elektroenergetycznej zasady działania urządzeń różnicowoprądowych są ściśle regulowane przez normy, takie jak PN-EN 61008-1. Te urządzenia są kluczowe w zapewnieniu bezpieczeństwa, zwłaszcza w obiektach, gdzie występuje ryzyko kontaktu z wodą lub innymi przewodnikami prądu. Właściwy dobór urządzenia ochronnego i jego parametry są fundamentalne dla efektywności ochrony. Przykładem zastosowania może być instalacja w łazience, gdzie obecność wody zwiększa ryzyko porażenia prądem, a zastosowanie różnicowoprądowego urządzenia ochronnego o odpowiednich parametrach jest koniecznością. To pokazuje, jak ważne jest nie tylko zrozumienie działania tych urządzeń, ale również ich praktyczne zastosowanie w codziennym życiu.

Pytanie 37

Przedstawione w tabeli wyniki pomiarów rezystancji uzwojeń i izolacji silnika trójfazowego wskazują na

Pomiar między
zaciskami silnika
Rezystancja
U1 – U232 Ω
V1 – V232 Ω
W1 – W232 Ω
U1 – V10
V1 – W15 MΩ
U1– W15 MΩ
U1 – PE0
V1 – PE0
W1 – PE5 MΩ
A. uszkodzoną izolację w uzwojeniach U1 — U2 oraz V1 — V2
B. zwarcie między uzwojeniami U1 — U2 oraz W1 - W2
C. zwarcie międzyzwojowe w uzwojeniu W1 — W2
D. przerwę w uzwojeniu U1 — U2
Wybrałeś odpowiedź mówiącą o uszkodzonej izolacji w uzwojeniach U1 — U2 oraz V1 — V2, i to jest akurat słuszne. Wyniki pomiarów rezystancji pokazują wyraźne anomalie. Na przykład, rezystancja izolacji między uzwojeniem U1 a V1 wynosi 0 Ω, co jasno wskazuje, że izolacji tam nie ma. Prowadzi to do potencjalnego zagrożenia dla bezpieczeństwa zarówno urządzenia, jak i użytkowników. Z mojej perspektywy, dobrze jest pamiętać, że normy branżowe, jak IEC 60034 dotyczące silników elektrycznych, mówią, że odpowiednie wartości rezystancji są kluczowe dla bezpieczeństwa i niezawodności silnika. Regularne pomiary rezystancji izolacji powinny być częścią rutyny konserwacji, żeby móc wcześnie wykrywać problemy i unikać awarii. Dbanie o tę izolację jest naprawdę istotne, bo jej uszkodzenie może prowadzić do zwarcia, co może zrujnować silnik i inne elementy systemu zasilania. W praktyce, ważne jest, żeby trzymać się pewnych procedur pomiarowych i konserwacyjnych – to naprawdę fundament, by działać zgodnie z najlepszymi praktykami.

Pytanie 38

Jaki jest minimalny stopień zabezpieczenia sprzętu oraz osprzętu używanego na placach budowy?

A. IP 67
B. IP 44
C. IP 35
D. IP 55
Odpowiedź IP 44 jest prawidłowa, ponieważ oznacza ona, że sprzęt i osprzęt instalacyjny są chronione przed ciałami stałymi o średnicy większej niż 1 mm oraz przed wodą, która będzie miała wpływ na działanie urządzenia w ograniczonym stopniu. To szczególnie ważne na placach budowy, gdzie sprzęt narażony jest na pył, brud oraz wilgoć. W praktyce oznacza to, że urządzenia z klasą IP 44 mogą być używane w warunkach, gdzie może wystąpić kontakt z wodą, na przykład w przypadku deszczu. Taki stopień ochrony jest zalecany w normach ISO oraz IEC, które regulują bezpieczeństwo i niezawodność urządzeń elektrycznych. W kontekście budowy, zastosowanie takich urządzeń minimalizuje ryzyko awarii, a także zapewnia bezpieczeństwo użytkowników i personelu. Przykładem mogą być skrzynki elektryczne, które są używane do zasilania narzędzi i maszyn na otwartej przestrzeni, gdzie ochrona przed wodą i kurzem jest kluczowa dla ich prawidłowego funkcjonowania.

Pytanie 39

W obwodzie gniazd w przedpokoju zainstalowano przewód YDYt 3×2,5 mm2. Podczas wiercenia w ścianie pracownik przypadkowo uszkodził przewód, przecinając dwie jego żyły. Jak należy prawidłowo naprawić powstałą usterkę?

A. Zdemontować tynk w miejscu uszkodzenia, zainstalować dodatkową puszkę i w niej połączyć żyły.
B. Zdemontować tynk w miejscu uszkodzenia, połączyć przewody, zaizolować taśmą i zatynkować ścianę.
C. Przeciągnąć nowy przewód pomiędzy najbliższymi puszkami, używając pilota.
D. Przeciągnąć wyłącznie uszkodzone żyły, zastępując każdą przewodem jednodrutowym.
Usunięcie usterki w instalacji elektrycznej przez przeciągnięcie uszkodzonych żył za pomocą przewodów jednodrutowych jest niewłaściwym podejściem, które może prowadzić do poważnych problemów. Przewody jednodrutowe mają inne właściwości mechaniczne i elektryczne niż przewody wielodrutowe, co może skutkować niższą elastycznością oraz zwiększoną podatnością na uszkodzenia. Ponadto, takie połączenia są często niezgodne z obowiązującymi normami i przepisami dotyczącymi instalacji elektrycznych, co może narażać użytkownika na niebezpieczeństwo. Przeprowadzenie naprawy bez montażu puszki zwiększa ryzyko wystąpienia zwarć i utrudnia ewentualne przyszłe konserwacje. Połączenie przewodów jedynie za pomocą taśmy izolacyjnej jest również niewłaściwe, ponieważ nie zapewnia stabilności oraz bezpieczeństwa elektrycznego. W kontekście przepisów, jak norma PN-IEC 60364, zaleca się unikanie takich praktyk, które mogą prowadzić do nieodwracalnych uszkodzeń instalacji. Ważne jest, aby pamiętać, że każdy interwencja w instalacji elektrycznej powinna być przeprowadzana zgodnie z zasadami sztuki, co zapewnia bezpieczeństwo oraz trwałość wykonania. Zastosowanie pilotów do przeciągania nowych przewodów bez odpowiedniej inspekcji i naprawy uszkodzeń jest także niebezpieczne, ponieważ może wpłynąć na integralność całego obwodu.

Pytanie 40

Na podstawie wyników pomiarów przedstawionych w tabeli określ, który z obwodów nie spełnia warunków ochrony przeciwporażeniowej.

ObwódNazwa urządzenia elektrycznegoZastosowane zabezpieczeniePrąd wyłączalny z charakterystykiCzas wyłączeniaZmierzona impedancjaPrąd zwarcia obliczeniowy
Ib w AIw w AT≤... w sZz w ΩIzw w A
A.gniazdo jednofazoweB16800,22,30100,00
B.gniazdo jednofazoweB16800,22,5390,09
C.gniazdo jednofazoweB16800,23,3668,45
D.gniazdo jednofazoweB16800,21,32174,24
A. C.
B. A.
C. B.
D. D.
Obwód C został zidentyfikowany jako ten, który nie spełnia warunków ochrony przeciwporażeniowej ze względu na prąd różnicowy równy 68,45A, który jest niższy niż prąd wyzwalający zabezpieczenia wynoszący 80A. Zgodnie z normą IEC 60364-4-41, prąd różnicowy powinien być wystarczająco duży, aby zapewnić skuteczne zadziałanie zabezpieczenia w przypadku awarii. W praktyce oznacza to, że jeśli wystąpiłby prąd upływowy, zabezpieczenie nie zadziałałoby, co stwarzałoby ryzyko porażenia prądem. Przykładem zastosowania tych norm może być instalacja zabezpieczeń różnicowoprądowych w budynkach mieszkalnych. Wysokiej jakości zabezpieczenia są niezbędne, aby zminimalizować ryzyko porażenia i pożaru, co jest kluczowe dla bezpieczeństwa użytkowników. Ponadto, regularne kontrole i testy tych zabezpieczeń są zalecane w celu upewnienia się, że działają one prawidłowo, co jest zgodne z praktykami utrzymania bezpieczeństwa elektrycznego.