Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik mechatronik
  • Kwalifikacja: ELM.03 - Montaż, uruchamianie i konserwacja urządzeń i systemów mechatronicznych
  • Data rozpoczęcia: 7 grudnia 2025 23:26
  • Data zakończenia: 7 grudnia 2025 23:35

Egzamin zdany!

Wynik: 25/40 punktów (62,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

W rezystancyjnych termometrach (oporowych) wykorzystuje się zjawisko związane ze zmianą

A. rezystancji metali albo półprzewodników przy zmianach temperatury
B. napięcia na końcówkach termoelementu podczas zmian temperatury
C. wielkości elementu aktywnego pod wpływem temperatury
D. rezystywności metali oraz półprzewodników w odpowiedzi na ciśnienie
W termometrach rezystancyjnych wykorzystuje się zjawisko zmiany rezystancji materiałów, takich jak metale czy półprzewodniki, w odpowiedzi na zmiany temperatury. Zjawisko to jest oparte na właściwościach elektrycznych zastosowanych materiałów, które determinują ich rezystywność. Przykładowo, w przypadku platyny, która jest najczęściej stosowanym materiałem w termometrach rezystancyjnych, rezystancja rośnie proporcjonalnie do temperatury. Tego typu termometry są szeroko stosowane w laboratoriach oraz przemyśle, ponieważ zapewniają wysoką dokładność i stabilność pomiarów. W praktyce wykorzystuje się je w różnych zastosowaniach, od monitorowania procesów chemicznych po kontrolę temperatury w systemach HVAC. Normy i standardy, takie jak IEC 60751, określają klasyfikacje i wymagania dla termometrów rezystancyjnych, co zapewnia ich niezawodność i spójność w pomiarach. Zrozumienie zjawiska rezystancji jako funkcji temperatury jest kluczowe dla efektywnego wykorzystania tych urządzeń w różnych aplikacjach.

Pytanie 2

W instalacjach niskonapięciowych (systemach TN) jako elementy zabezpieczające mogą być wykorzystywane

A. wyłączniki montażowe
B. dławiki blokujące
C. izolatory długiej osi
D. wyłączniki różnicowoprądowe
Wyłączniki różnicowoprądowe, znane także jako RCD (Residual Current Devices), odgrywają kluczową rolę w systemach niskiego napięcia, zwłaszcza w układach TN. Ich głównym zadaniem jest ochrona ludzi przed porażeniem prądem elektrycznym oraz zapobieganie pożarom, które mogą być spowodowane upływem prądu do ziemi. Działają na zasadzie wykrywania różnicy prądów między przewodami fazowymi a neutralnym. W przypadku wykrycia takiej różnicy, wyłącznik natychmiast odłącza zasilanie, co może uratować życie w sytuacji zagrożenia. W praktyce, wyłączniki różnicowoprądowe są stosowane w domach, biurach i obiektach przemysłowych, gdzie istnieje ryzyko kontaktu z wodą lub innymi czynnikami, które mogą zwiększyć ryzyko porażenia prądem. Standardy takie jak PN-EN 61008 i PN-EN 61009 określają wymagania dotyczące tych urządzeń, co sprawia, że ich stosowanie jest nie tylko zalecane, ale często obowiązkowe w nowych instalacjach elektrycznych. Ponadto, regularne testowanie wyłączników różnicowoprądowych jest niezbędne dla zapewnienia ich prawidłowego funkcjonowania.

Pytanie 3

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 4

Silnik komutatorowy był narażony na długotrwałe przeciążenie, co doprowadziło do pojawienia się zwarć międzyzwojowych. Proces naprawy silnika polega na wymianie

A. komutatora.
B. uzwojenia.
C. łożysk.
D. szczotek.
Wymiana uzwojenia w silniku komutatorowym jest kluczowym zabiegiem naprawczym, zwłaszcza gdy występują zwarcia międzyzwojowe. Zwarcia te mogą mieć różne przyczyny, w tym długotrwałe przeciążenie, które prowadzi do degradacji izolacji między zwojami. Wymiana uzwojenia polega na demontażu starego uzwojenia oraz nawinięciu nowego, co wymaga precyzyjnych umiejętności oraz znajomości technik nawijania. Uzwojenia są odpowiedzialne za generowanie pola magnetycznego, które napędza wirnik, dlatego ich stan bezpośrednio wpływa na wydajność całego silnika. W praktyce, przed przystąpieniem do wymiany, należy dokładnie zdiagnozować przyczynę uszkodzenia oraz przeprowadzić testy elektryczne, aby upewnić się, że nowe uzwojenie będzie działało poprawnie. Standardy takie jak IEC 60034 dotyczące silników elektrycznych podkreślają znaczenie odpowiednich materiałów izolacyjnych oraz technik montażowych, co zwiększa żywotność i niezawodność silnika. Właściwe podejście do wymiany uzwojenia przyczynia się do minimalizacji ryzyka wystąpienia podobnych problemów w przyszłości.

Pytanie 5

Typowym elementem konstrukcji siłownika, przygotowanego do współpracy z bezdotykowymi czujnikami położenia krańcowego, jest

A. magnes stały
B. membrana
C. zawór dławiący
D. tłumik
Magnes stały jest kluczowym elementem siłowników przystosowanych do współpracy z bezdotykowymi sensorami położeń krańcowych, ponieważ umożliwia precyzyjne i niezawodne określenie pozycji roboczej siłownika. Bezdotykowe sensory, takie jak czujniki Halla, działają w oparciu o pole magnetyczne generowane przez magnes stały, co pozwala na zdalne monitorowanie i kontrolowanie pracy siłownika bez ryzyka mechanicznego zużycia. Przykładem zastosowania jest automatyka przemysłowa, gdzie magnesy stałe są wykorzystywane w siłownikach do precyzyjnego pozycjonowania w systemach transportowych. Dobrym standardem w branży jest stosowanie magnesów neodymowych ze względu na ich wysoką siłę magnetyczną oraz kompaktowe wymiary, co przekłada się na mniejsze rozmiary i większą efektywność systemów automatyki. Ponadto, zastosowanie magnesów stałych zwiększa żywotność komponentów, zmniejsza koszty utrzymania i zwiększa niezawodność całego systemu, co jest zgodne z najlepszymi praktykami inżynieryjnymi.

Pytanie 6

Jeśli w trakcie standardowych warunków eksploatacji pneumatyczne urządzenie mechatroniczne generuje duże drgania, to osoba obsługująca powinna być wyposażona w

A. okulary ochronne.
B. kask zabezpieczający.
C. rękawice antywibracyjne.
D. obuwie ochronne.
Rękawice antywibracyjne są kluczowym elementem ochrony osobistej, gdy pracownik obsługuje pneumatyczne urządzenia mechatroniczne, które generują znaczne drgania. Te drgania mogą prowadzić do poważnych urazów, takich jak zespół wibracyjny, który objawia się bólem, mrowieniem i osłabieniem kończyn. Rękawice antywibracyjne są zaprojektowane w taki sposób, aby minimalizować przenoszenie drgań na ręce operatora, co znacząco zmniejsza ryzyko kontuzji. W praktyce, standardy takie jak ISO 10819 dotyczące pomiarów drgań w rękach użytkowników podkreślają znaczenie stosowania odpowiednich środków ochronnych. W przypadku pracy z maszynami, które wytwarzają drgania, inwestycja w wysokiej jakości rękawice antywibracyjne jest nie tylko zgodna z dobrymi praktykami, ale również zapewnia komfort i bezpieczeństwo operatora. Przykładem zastosowania takich rękawic jest praca w branży budowlanej, gdzie narzędzia pneumatyczne, takie jak młoty udarowe, są powszechnie używane. Używanie rękawic antywibracyjnych pozwala pracownikom na dłuższą i bardziej wydajną pracę bez ryzyka zdrowotnego związane z drganiami.

Pytanie 7

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 8

Na podstawie zamieszczonych danych technicznych wybierz model zasilacza do układu elektropneumatycznego, w którym cewki elektrozaworów przystosowane są do zasilania napięciem stałym o wartości 24 V.

Dane techniczne

ModelMDR-40-5MDR-40-12MDR-40-24MDR-40-48
WyjścieNapięcie wyjściowe DC5V12V24V48V
Prąd znamionowy6A3,33A1,7A0,83A
Zakres prądu0-6A0~3,33A0-1,7A0-0,83A
Moc znamionowa30W40W40W40W
Tętnienia i szumy (max.)2)80mVp-p120mVp-p150mVp-p200mVp-p
Regulacja napięcia5-6V12-15V24-30V48-56V
Tolerancja napięcia3)±2,0%±1,0%±1,0%±1,0%
Tolerancja napięcia przy
zmianach zasilania
±1,0%±1,0%±1,0%±1,0%
Tolerancja napięcia przy
zmianach obciążenia
±5,0%±3,0%±3,0%±2,0%
Czas ustalania, narastania500ms, 30ms/230VAC500ms, 30ms/115VAC przy znamionowym obciążeniu
Czas podtrzymania50ms/230VAC20ms/115VAC przy znamionowym obciążeniu
WejścieZakres napięcia85-264VAC120-370VDC
Zakres częstotliwości47-63 Hz
Sprawność (typ.)78%86%88%88%
A. MDR-40-12
B. MDR-40-48
C. MDR-40-5
D. MDR-40-24
Model zasilacza MDR-40-24 jest właściwy dla układu elektropneumatycznego z cewkami elektrozaworów zaprojektowanymi do zasilania napięciem stałym 24 V. W kontekście aplikacji przemysłowych, takie zasilacze są kluczowe, ponieważ zapewniają stabilne i niezawodne napięcie, co jest niezbędne do prawidłowego działania elektrozaworów. Użycie odpowiedniego zasilacza wpływa bezpośrednio na wydajność systemu pneumatycznego, a także na jego bezpieczeństwo, zapobiegając uszkodzeniom komponentów z powodu niewłaściwego napięcia. Przykładowo, w systemach automatyki przemysłowej, wybór zasilacza zgodnego z wymaganiami napięciowymi cewki elektrozaworów gwarantuje, że siłowniki będą mogły działać w odpowiednich parametrach. Stosując zasilacz MDR-40-24, spełniamy normy wydajności i niezawodności, co jest zgodne z najlepszymi praktykami w dziedzinie automatyki oraz elektropneumatyki.

Pytanie 9

Który typ oprogramowania należy zastosować do utworzenia wizualizacji procesu przedstawionego na rysunku?

Ilustracja do pytania
A. CAM
B. CAQ
C. SCADA
D. CAD
SCADA (Supervisory Control and Data Acquisition) jest kluczowym typem oprogramowania wykorzystywanym w automatyzacji procesów przemysłowych, szczególnie w kontekście monitorowania i kontrolowania systemów w czasie rzeczywistym. W przypadku przedstawionego procesu mieszania w zbiornikach, SCADA zapewnia nie tylko wizualizację stanu procesów, ale również interfejs do zarządzania nimi. Przykładem zastosowania SCADA jest monitorowanie poziomów cieczy w zbiornikach, gdzie dane są zbierane z różnych czujników, a operatorzy mogą wprowadzać zmiany w procesie, zapewniając jego efektywność i bezpieczeństwo. SCADA wspiera też analizy historyczne, co pozwala na optymalizację procesów i podejmowanie lepszych decyzji operacyjnych. Dodatkowo, systemy SCADA są zgodne z normami IEC 61131-3, które określają standardy programowania w systemach automatyki, co czyni je niezawodnymi narzędziami w przemyśle.

Pytanie 10

Przekładnie, które umożliwiają ruch posuwowy w tokarkach CNC, to

A. śrubowe toczne
B. jarzmowe
C. cierne pośrednie
D. korbowe
Odpowiedź 'śrubowe toczne' jest poprawna, ponieważ w tokarkach CNC ruch posuwowy, który jest kluczowy dla precyzyjnego wykonywania obróbki skrawaniem, jest realizowany za pomocą przekładni śrubowych tocznych. Te systemy wykorzystują śruby o dużym skoku, co pozwala na dokładne i płynne przesunięcie narzędzia skrawającego wzdłuż osi roboczej. Przekładnie te są preferowane w aplikacjach CNC, ponieważ zapewniają wysoką precyzję oraz powtarzalność, co jest zgodne z normami branżowymi dotyczącymi jakości obróbki. Na przykład, w przemyśle motoryzacyjnym, gdzie tolerancje wymiarowe są bardzo rygorystyczne, wykorzystanie przekładni śrubowych tocznych pozwala na osiągnięcie wymaganych parametrów przy zachowaniu efektywności produkcji. Warto również zauważyć, że systemy te są stosowane w wielu nowoczesnych maszynach, co czyni je standardem w branży obróbczej. W zakresie najlepszych praktyk, operatorzy powinni regularnie kontrolować stan tych przekładni, aby zapewnić ich długowieczność i niezawodność w pracy.

Pytanie 11

Podczas dokręcania jednakowymi śrubami głowicy przedstawionej na rysunku należy zachować następującą kolejność:

Ilustracja do pytania
A. 2-5-4-1-3-6
B. 6-3-5-2-4-1
C. 1-6-4-3-2-5
D. 5-4-1-2-3-6
Wybór błędnych kolejności dokręcania śrub głowicy może prowadzić do poważnych problemów strukturalnych i funkcjonalnych. Podczas gdy niektóre z zaproponowanych sekwencji mogą wydawać się logiczne, to jednak nie uwzględniają one kluczowego aspektu, jakim jest równomierne rozłożenie nacisku. Przykładowo, kolejności takie jak 5-4-1-2-3-6 czy 6-3-5-2-4-1 mogą spowodować, że pewne obszary uszczelki będą narażone na nadmierny nacisk, podczas gdy inne pozostaną niedostatecznie ściśnięte. To prowadzi do nierównomiernego rozkładu sił, co z kolei może skutkować pojawieniem się nieszczelności, uszkodzeniem uszczelki głowicy, a nawet pęknięciem samej głowicy, co wiąże się z kosztownymi naprawami. Podobne błędy myślowe mogą wynikać z ignorowania faktu, że śruby dokręca się nie tylko w celu ich zabezpieczenia, ale także z myślą o równomiernym rozkładzie sił. Właściwa sekwencja dokręcania, jak 1-6-4-3-2-5, opiera się na sprawdzonych technikach, które są zgodne ze standardami inżynieryjnymi w branży motoryzacyjnej, mając na celu zapewnienie trwałości i funkcjonalności złożonych komponentów silnika.

Pytanie 12

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 13

Który z wymienionych parametrów nie odnosi się do frezarki CNC?

A. Najwyższa prędkość ruchu dla poszczególnych osi.
B. Gramatura wtrysku.
C. Liczba wrzecion.
D. Dokładność pozycjonowania.
Gramatura wtrysku to parametr odnoszący się głównie do procesów wtrysku tworzyw sztucznych, a nie frezowania. Frezarki numeryczne są urządzeniami przeznaczonymi do obróbki skrawaniem, a ich kluczowe parametry dotyczą precyzji i wydajności obróbczej. Liczba wrzecion, powtarzalność pozycjonowania oraz maksymalna prędkość ruchu dla poszczególnych osi to istotne wskaźniki efektywności operacyjnej frezarek. Na przykład, liczba wrzecion określa, ile narzędzi może być jednocześnie używanych do obróbki, co wpływa na zwiększenie wydajności procesu. Powtarzalność pozycjonowania definiuje zdolność maszyny do powtarzania tych samych operacji z dokładnością, co jest kluczowe w produkcji seryjnej. Maksymalna prędkość ruchu osi wpływa na szybkość realizacji zleceń, co ma bezpośrednie przełożenie na czas produkcji oraz koszty. Zrozumienie tych parametrów jest niezbędne dla efektywnego planowania procesów produkcyjnych oraz optymalizacji pracy frezarek numerycznych.

Pytanie 14

Jaki instrument pomiarowy powinno się użyć do określenia amplitudy, częstotliwości oraz kształtu sygnałów w instalowanych urządzeniach mechatronicznych?

A. Oscyloskop
B. Częstościomierz
C. Mostek RLC
D. Multimetr
Oscyloskop to zaawansowane narzędzie pomiarowe, które umożliwia wizualizację kształtu sygnałów elektronicznych w czasie rzeczywistym. Działa na zasadzie przetwarzania napięcia, które jest przedstawiane na ekranie w formie wykresu, gdzie oś X reprezentuje czas, a oś Y napięcie. Dzięki oscyloskopowi inżynierowie mogą analizować zarówno amplitudę, jak i częstotliwość sygnałów, co jest niezbędne przy projektowaniu i testowaniu urządzeń mechatronicznych. W praktyce oscyloskop jest wykorzystywany do badania układów elektronicznych, diagnostyki usterek czy oceny jakości sygnału. Na przykład, podczas analizy sygnałów z czujników w systemach automatyki przemysłowej, oscyloskop pozwala na szybkie wychwycenie anomalii w komunikacji czy nieprawidłowości w działaniu układów przetwarzających dane. W branży mechatronicznej standardem jest korzystanie z oscyloskopów, które spełniają normy IEC 61010, zapewniając bezpieczeństwo i dokładność pomiarów. Używanie oscyloskopu to nie tylko praktyka, ale i dobra praktyka, umożliwiająca skuteczną analizę skomplikowanych sygnałów.

Pytanie 15

Na rysunku przedstawione zostały fragmenty dwóch elementów, które należy połączyć techniką połączenia wciskowego wtłaczanego. Jaka powinna być zależność pomiędzy wymiarami d1 i d2?

Ilustracja do pytania
A. dl ≤ d2
B. dl < d2
C. dl = d2
D. dl > d2
W odpowiedzi dl > d2 uznano, że średnica otworu (d2) musi być mniejsza od średnicy wału (d1) w połączeniu wciskowym wtłaczanym. Ta zasada jest fundamentalna dla zapewnienia stabilności i trwałości połączenia. W praktyce, podczas projektowania komponentów mechanicznych, inżynierowie często korzystają z tej zasady, aby zminimalizować ryzyko luzów i zapewnić odpowiednią siłę tarcia między elementami. Na przykład, w zastosowaniach motoryzacyjnych, takie jak łączenie wałów napędowych z osią, dokładne dopasowanie średnic jest kluczowe dla uniknięcia awarii i zwiększenia żywotności komponentów. W standardach branżowych, jak ISO lub ANSI, zaleca się określenie tolerancji wymiarowych, aby zminimalizować ryzyko nadmiernych naprężeń. Różnica pomiędzy wymiarami musi być starannie dobrana, aby umożliwić efektywne przekazywanie obciążeń, a jednocześnie unikać zbyt dużych naprężeń, które mogą prowadzić do deformacji lub pęknięć. Takie podejście jest zgodne z najlepszymi praktykami inżynieryjnymi, co podkreśla znaczenie właściwego doboru wymiarów w projektowaniu komponentów mechanicznych.

Pytanie 16

Który rodzaj prądów i napięć można zmierzyć miernikiem przedstawionym na rysunku?

Ilustracja do pytania
A. Prąd stały i zmienny, napięcia tylko zmienne.
B. Prąd tylko zmienny, napięcia tylko zmienne.
C. Prąd tylko zmienny, napięcia stałe i zmienne.
D. Prąd stały i zmienny, napięcia stałe i zmienne.
Patrząc na inne odpowiedzi, widać, że pojawiły się pewne nieporozumienia co do funkcji miernika. Niektóre opcje mówią, że miernik potrafi mierzyć prąd stały, ale to nie jest prawda, bo cęgowe mierniki prądu, jak ten w zdjęciu, są głównie do pomiaru prądu zmiennego. Wiele osób myli pomiar prądu stałego z pomiarem napięcia, co prowadzi do niepoprawnych wniosków. A jeszcze niektóre odpowiedzi twierdzą, że miernik działa tylko z napięciem zmiennym, co też jest błędne, bo on umie zmierzyć także napięcie stałe. Te błędne interpretacje wynikają często z braku zrozumienia różnicy między prądami i napięciami oraz z niewystarczającej wiedzy o działaniu cęgów. Wszyscy powinni wiedzieć, że wybór odpowiedniego narzędzia pomiarowego jest mega ważny, bo każdy przyrząd ma swoje zastosowanie i ograniczenia. Edukacja na temat różnych typów mierników i ich właściwego użycia może naprawdę pomóc w poprawie jakości pomiarów i bezpieczeństwa pracy.

Pytanie 17

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 18

Który materiał o właściwościach podanych w tabeli należy wybrać do konstrukcji lekkiej i odpornej na odkształcenia mobilnej podstawy konstrukcyjnej urządzenia mechatronicznego?

Gęstość
ρ
[g/cm3]
Granica plastyczności
Re
[MPa]
Materiał 1.2,7040
Materiał 2.2,75320
Materiał 3.7,70320
Materiał 4.8,8535
A. Materiał 4.
B. Materiał 1.
C. Materiał 2.
D. Materiał 3.
Materiał 2 jest najodpowiedniejszym wyborem do konstrukcji lekkiej i odpornej na odkształcenia, co wynika z jego korzystnych właściwości fizycznych. Gęstość materiału wynosząca 2,75 g/cm3 oznacza, że jest on stosunkowo lekki w porównaniu do innych materiałów, co jest kluczowe w projektach wymagających mobilności i łatwego transportu. Wysoka granica plastyczności na poziomie 320 MPa zapewnia, że materiał ten może wytrzymać znaczące obciążenia bez deformacji, co jest niezbędne w kontekście zastosowań mechatronicznych, gdzie precyzja i niezawodność są kluczowe. Przykłady zastosowania Materiału 2 obejmują elementy konstrukcyjne w robotyce, gdzie wymagana jest zarówno lekkość, jak i wytrzymałość, jak również w produkcji różnych komponentów w systemach automatyki. Wybór odpowiednich materiałów jest zgodny z dobrymi praktykami inżynieryjnymi, gdzie zawsze należy dążyć do optymalizacji masy i wytrzymałości, co pozwala na zwiększenie efektywności energetycznej i poprawę wydajności całego systemu.

Pytanie 19

Do czego służy przedstawione na rysunku narzędzie?

Ilustracja do pytania
A. Wiercenia otworów.
B. Szlifowania otworów.
C. Gwintowania otworów.
D. Wytaczania otworów.
Narzędzie przedstawione na zdjęciu to stopniowe wiertło stożkowe, które jest powszechnie stosowane do wiercenia otworów o różnych średnicach w materiałach takich jak metal, tworzywa sztuczne czy drewno. Jego stożkowa konstrukcja umożliwia precyzyjne stopniowe zwiększanie średnicy otworu, co pozwala na uzyskanie wymaganej tolerancji i gładkości powierzchni bez potrzeby zmiany narzędzia. Dzięki zastosowaniu wierteł stożkowych, można zaoszczędzić czas i zwiększyć efektywność pracy, eliminując konieczność ręcznego przygotowywania otworów o różnych rozmiarach. W praktyce, wiertła te są często wykorzystywane w warsztatach mechanicznych oraz w procesach produkcyjnych, w których precyzja i szybkość są kluczowe. Rekomendowane standardy w branży zalecają stosowanie wierteł odpowiednio dobranych do rodzaju materiału oraz parametrów obróbczych, aby uzyskać optymalne wyniki.

Pytanie 20

W celu sprawdzenia poprawności działania układu przedstawionego na schemacie, zmierzono napięcie zasilania. Wskaż wynik pomiaru, który świadczy, że napięcie zasilania jest prawidłowe?

Ilustracja do pytania
A. 380 V
B. 24 V
C. 230 V
D. 400 V
Jeśli odpowiedź nie wynosi 230 V, to może oznaczać, że coś nie do końca rozumiesz standardy napięcia w elektryce. Te inne wartości, które podałeś, jak 380 V czy 400 V, są raczej do przemysłowych zastosowań i zasilają duże maszyny. W codziennym życiu w naszych domach to 230 V jest tym, czego potrzebujemy. Jakby wzięło się coś z wyższej półki, to urządzenia, które mają działać na 230 V, mogą nie działać prawidłowo. A te 24 V, to jest typowe dla systemów niskonapięciowych, które są używane w automatyce budynków, ale w standardowej elektryce ich nie spotkasz. Wybierając niewłaściwe napięcie, możesz narazić swój sprzęt na uszkodzenie, co jest dość niebezpieczne. Dlatego tak ważne jest, żeby znać te standardowe wartości napięć w zależności od tego, co robisz z elektrycznością.

Pytanie 21

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 22

Który z przedstawionych symboli graficznych oznacza tranzystor MOSFET ze wzbogaconym kanałem typu n?

Ilustracja do pytania
A. Symbol 4.
B. Symbol 1.
C. Symbol 2.
D. Symbol 3.
Wybór innego symbolu niż Symbol 3 może wynikać z nieporozumienia dotyczącego oznaczeń tranzystorów MOSFET. Każdy z pozostałych symboli może przedstawiać różne typy tranzystorów, ale brak w nich poprawnych cech, które definiują tranzystor MOSFET ze wzbogaconym kanałem typu n. Niezrozumienie symboliki może prowadzić do zastosowania niewłaściwych komponentów w projektach, co w efekcie może skutkować nieprawidłowym działaniem całego układu. Często zdarza się, że osoby projektujące obwody mylą tranzystory typu n z tranzystorami typu p, co może wynikać z niedostatecznej znajomości podstawowych cech tych komponentów. Przykładowo, tranzystory typu p mają strzałki skierowane do wnętrza kanału, co odzwierciedla ich odmienny charakter. Kluczowym aspektem, który należy wziąć pod uwagę, jest także charakterystyka elektryczna zastosowanego tranzystora, która różni się w zależności od typu i może mieć wpływ na wydajność obwodu. Dlatego ważne jest, aby inżynierowie mieli solidną wiedzę na temat symboliki oraz właściwości tranzystorów MOSFET, aby uniknąć typowych błędów, które mogą prowadzić do awarii systemów. Zrozumienie, jak interpretować symbole i jakie mają implikacje dla projektowania układów, jest niezbędne w praktyce inżynierskiej.

Pytanie 23

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 24

Połączenia nitowe metalowej obudowy urządzenia należy wykonać przy użyciu narzędzia przedstawionego na rysunku

Ilustracja do pytania
A. C.
B. B.
C. A.
D. D.
Nitownica ręczna, oznaczona literą B, jest kluczowym narzędziem w procesie wykonywania połączeń nitowych w metalowych obudowach urządzeń. Jej konstrukcja pozwala na precyzyjne i efektywne wprowadzenie nitów w miejsca wymagające solidnego połączenia. W praktyce nitownice ręczne znajdują zastosowanie w wielu branżach, takich jak motoryzacja, budownictwo oraz produkcja mebli metalowych. Dobrze wykonane połączenie nitowe gwarantuje trwałość oraz odporność na działanie różnych czynników mechanicznych i chemicznych. Przy prawidłowym użyciu, nitownica pozwala na uzyskanie połączeń o wysokiej wytrzymałości, co jest zgodne z normami jakościowymi, takimi jak ISO 9001. Warto także pamiętać, że nitownice ręczne są dostępne w różnych rozmiarach, co umożliwia ich użycie w różnych aplikacjach, w zależności od grubości materiału i wymagań dotyczących obciążenia.

Pytanie 25

Zwiększenie wartości częstotliwości wyjściowej falownika zasilającego silnik indukcyjny, przy niezmiennym obciążeniu silnika, prowadzi do

A. zwiększenia prędkości obrotowej
B. spadku rezystancji uzwojeń
C. wzrostu rezystancji uzwojeń
D. zmniejszenia prędkości obrotowej
Wzrost wartości częstotliwości wyjściowej falownika zasilającego silnik indukcyjny prowadzi do zwiększenia prędkości obrotowej silnika. Wynika to z faktu, że prędkość obrotowa silnika indukcyjnego jest bezpośrednio proporcjonalna do częstotliwości zasilania, co jest opisane równaniem: n = (120 * f) / p, gdzie n to prędkość obrotowa w obrotach na minutę (RPM), f to częstotliwość w hercach (Hz), a p to liczba par biegunów silnika. W praktyce oznacza to, że zmiana częstotliwości zasilania pozwala na precyzyjne sterowanie prędkością obrotową silnika, co jest kluczowe w wielu aplikacjach przemysłowych, takich jak napędy wentylatorów, pomp czy przenośników taśmowych. Wzrost prędkości obrotowej może również skutkować zwiększeniem wydajności procesu produkcyjnego oraz optymalizacją zużycia energii, ponieważ falowniki pozwalają na dostosowanie parametrów pracy silnika w zależności od aktualnych potrzeb. Współczesne standardy w automatyce przemysłowej promują wykorzystanie falowników jako najbardziej efektywnego sposobu zarządzania napędami elektrycznymi, co przekłada się na większą elastyczność i oszczędności energetyczne.

Pytanie 26

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 27

Na rysunku przedstawiono połączenie uzwojeń silnika na tabliczce zaciskowej w

Ilustracja do pytania
A. podwójną gwiazdę.
B. trójkąt.
C. zygzak.
D. gwiazdę.
Jeśli wybrałeś coś innego niż "trójkąt", to sądzę, że może być coś nie tak z Twoim rozumieniem połączeń uzwojeń w silnikach. Połączenie w gwiazdę oczywiście jest też stosowane, ale różni się od trójkąta, bo uzwojenia są tam połączone w jednym punkcie i to zmienia parametry pracy. W gwieździe obniża się napięcie i moment obrotowy, co czasem może być przydatne, ale nie zawsze, szczególnie jak potrzebujesz pełnej mocy. A co do połączenia zygzakowego, to to chyba jakieś nieporozumienie, bo to nie jest standardowa metoda. Jest też połączenie podwójnej gwiazdy, ale to rzadko się stosuje i tylko w specyficznych przypadkach. Musisz lepiej zrozumieć te różnice, bo to ważne w projektowaniu i użytkowaniu systemów elektrycznych. Często ludzie mylą sobie wymagania co do napięcia, mocy czy momentu, co prowadzi do błędnych decyzji.

Pytanie 28

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 29

Której końcówki należy użyć do montażu elementów za pomocą śrub torx?

Ilustracja do pytania
A. B.
B. D.
C. A.
D. C.
Końcówka B jest właściwym wyborem do montażu elementów za pomocą śrub Torx ze względu na jej specyficzny kształt, który idealnie pasuje do gwiazdkowego profilu śrub Torx. Śruby te są szeroko stosowane w przemyśle motoryzacyjnym, elektronice oraz w meblarstwie, gdzie zapewniają lepsze trzymanie i odporność na poślizg w porównaniu do tradycyjnych śrub z łbem płaskim czy krzyżowym. Użycie odpowiedniej końcówki jest kluczowe dla uniknięcia uszkodzeń zarówno samej śruby, jak i narzędzia. W praktyce, końcówki Torx oznaczone są literami i numerami, co ułatwia ich rozpoznanie. Warto również zwrócić uwagę na to, że stosowanie nieodpowiednich końcówek może prowadzić do uszkodzenia śruby, co w konsekwencji może wymusić wymianę całego elementu. Z tego powodu, w branży inżynieryjnej oraz produkcyjnej, stosowanie właściwych narzędzi jest zgodne z najlepszymi praktykami i normami jakości, co przyczynia się do zwiększenia wydajności oraz bezpieczeństwa pracy.

Pytanie 30

Na rysunku przedstawiono sprzęgło

Ilustracja do pytania
A. pierścieniowe.
B. elastyczne palcowe.
C. jednokierunkowe.
D. elastyczne kłowe.
Jeśli wybrałeś coś innego niż elastyczne kłowe, to może to być przez jakieś nieporozumienie co do nazw i rodzajów sprzęgieł. Na przykład, elastyczne palcowe różni się od kłowego tym, że ma elementy, które wyglądają jak palce i są mniej efektywne w tłumieniu wibracji. Sprzęgła pierścieniowe, które również nie były zaznaczone, nie mają elastyczności, przez co przenoszą większe drgania i obciążenia, co może wpływać negatywnie na trwałość systemu. Z jednokierunkowymi sprzęgłami sprawa jest podobna – przenoszą moment obrotowy tylko w jednym kierunku i nie redukują odchyleń, więc nie są dobre do sytuacji, gdzie potrzeba elastycznego połączenia. Zrozumienie różnic między tymi typami sprzęgieł i ich zastosowaniami jest kluczowe dla inżynierów. Często mylenie elastycznych sprzęgieł z ich sztywnymi odpowiednikami prowadzi do błędów, jak na przykład wybór sprzęgła, które nie redukuje drgań, co może powodować problemy z wydajnością i niezawodnością systemu.

Pytanie 31

Materiał o których właściwościach należy wybrać do konstrukcji lekkiej i odpornej na odkształcenia mobilnej podstawy konstrukcyjnej urządzenia mechatronicznego?

Gęstość
ρ
[g/cm3]
Granica plastyczności
Re
[MPa]
A.2,7040
B.2,75320
C.7,70320
D.8,8535
A. C.
B. A.
C. B.
D. D.
Wybór błędnej odpowiedzi może wynikać z niepełnego zrozumienia właściwości materiałów stosowanych w konstrukcjach lekkich i odpornych na odkształcenia. Materiały o wysokiej gęstości mogą być atrakcyjne ze względu na większą wytrzymałość, jednak w kontekście mechatroniki kluczowe jest osiągnięcie optymalnej równowagi między wagą a wytrzymałością. Wiele osób mylnie zakłada, że im większa gęstość materiału, tym lepsza jego wydajność. Takie podejście prowadzi do zastosowania cięższych materiałów, które negatywnie wpływają na mobilność i efektywność energetyczną systemów mechatronicznych. Ponadto, pewne materiały mogą posiadać wysoką granicę plastyczności, ale ich gęstość może być zbyt duża, co skutkuje nadmiernym obciążeniem konstrukcji. Kluczowe jest zrozumienie, że materiały muszą spełniać specyficzne wymagania projektowe i użytkowe, a nie tylko ogólne kryteria wytrzymałościowe. Wybór materiałów powinien być dokonywany na podstawie analiz inżynieryjnych i wytycznych branżowych, takich jak normy ISO dotyczące procesów projektowych i materiałowych. Niezbędne jest zatem przeprowadzenie dokładnej analizy materiałów w kontekście ich zastosowania w konkretnych warunkach operacyjnych.

Pytanie 32

Jakie rozwiązanie pozwala na zwiększenie prędkości ruchu tłoka w siłowniku pneumatycznym?

A. zawór szybkiego spustu
B. zawór podwójnego sygnału
C. przełącznik obiegu
D. zawór zwrotny
Zawór szybkiego spustu to naprawdę ważny element w systemach pneumatycznych. Jego główną rolą jest szybkie obniżenie ciśnienia w siłownikach. Dzięki temu tłok porusza się znacznie szybciej. Działa to tak, że sprężone powietrze ma szybki ujście, co pozwala na błyskawiczne zwolnienie siłownika. W praktyce, takie zawory są super przydatne, na przykład w przemyśle motoryzacyjnym czy automatyzacji produkcji, gdzie czas reakcji jest mega istotny. Zgodnie z normami ISO 4414, odpowiednio zainstalowany zawór szybkiego spustu powinien być standardem w każdej instalacji pneumatycznej, żeby zwiększyć wydajność i bezpieczeństwo. Jeżeli system jest dobrze zaprojektowany i wykorzystuje te zawory, to może to znacznie poprawić efektywność produkcji, a przy okazji obniżyć zużycie energii i skrócić czas cyklu procesów.

Pytanie 33

Lampka sygnalizacyjna RUN w programowalnym sterowniku PLC wskazuje, że

A. konieczna jest wymiana baterii zasilającej pamięć RAM sterownika
B. nastąpiła awaria wewnętrzna sterownika
C. istnieje możliwość edytowania nowego programu kontrolnego przy użyciu komputera
D. program kontrolny znajduje się w pamięci RAM sterownika i może zostać uruchomiony
Świecący element sygnalizacyjny RUN w sterowniku programowalnym PLC wskazuje, że program sterowniczy jest załadowany do pamięci RAM sterownika i jest gotowy do uruchomienia. Pamięć RAM jest kluczowym elementem w systemach PLC, ponieważ służy do przechowywania aktywnego programu oraz danych operacyjnych, co pozwala na dynamiczne sterowanie procesami przemysłowymi. W praktyce oznacza to, że operator może bez problemu uruchomić proces produkcyjny, a także wprowadzać zmiany w czasie rzeczywistym, co jest niezwykle istotne w kontekście elastyczności i efektywności systemów automatyki. W standardach branżowych, takich jak IEC 61131, wyróżnia się różne tryby pracy sterowników, a sygnalizacja RUN jest jednym z podstawowych wskaźników stanu, który informuje o poprawnym działaniu systemu. Prawidłowe działanie tego wskaźnika jest także istotne w kontekście diagnostyki, gdyż pozwala na szybką weryfikację, czy urządzenie jest gotowe do pracy.

Pytanie 34

Zamieniając stycznikowy system sterowania silnikiem elektrycznym na system oparty na sterowniku PLC, należy

A. usunąć przyciski sterujące i zastąpić je sterownikiem
B. odłączyć stycznik z układu i w jego miejsce wstawić sterownik
C. rozłączyć główny obwód i obwód sterujący silnikiem, a następnie podłączyć wszystkie elementy do sterownika
D. rozłączyć jedynie obwód sterujący silnikiem i podłączyć jego elementy do sterownika PLC
Rozłączenie wyłącznie obwodu sterowania silnika i podłączenie jego elementów do sterownika PLC jest prawidłowym podejściem, ponieważ zapewnia pełną funkcjonalność układu, jednocześnie umożliwiając integrację z nowoczesnymi systemami automatyki. W praktyce oznacza to, że istniejący obwód sterowania, który może składać się z przycisków, przekaźników i innych komponentów, zostanie podłączony do PLC, co umożliwi programowanie i zdalne sterowanie. Zastosowanie PLC w miejsce tradycyjnego stycznika zwiększa elastyczność i możliwości modyfikacji układu, co jest zgodne z aktualnymi trendami w automatyce przemysłowej. Ponadto, standardy takie jak IEC 61131-3 definiują zasady programowania dla urządzeń PLC i zapewniają, że systemy te są kompatybilne z różnorodnymi komponentami automatyki. Wymiana i modernizacja obwodów sterowania za pomocą PLC to praktyka, która pozwala na bardziej zaawansowane funkcje, takie jak monitorowanie stanu maszyny czy zdalne zarządzanie, co jest kluczowe w dzisiejszym przemyśle.

Pytanie 35

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 36

Po przesunięciu suwaka potencjometru z pozycji "c" do pozycji "a" wartość prądu płynącego w obwodzie

Ilustracja do pytania
A. wzrośnie i będzie równa 6 mA
B. zmaleje i będzie równa 4 mA
C. wzrośnie i będzie równa 4 mA
D. zmaleje i będzie równa 6 mA
Przesunięcie suwaka potencjometru z pozycji "c" do pozycji "a" skutkuje wyłączeniem rezystancji potencjometru z obwodu, co prowadzi do zmniejszenia całkowitej rezystancji obwodu. Przy stałym napięciu zasilania, zgodnie z prawem Ohma (I = U/R), mniejsza rezystancja powoduje wzrost prądu. W tym przypadku, całkowita rezystancja obwodu po przesunięciu suwaka wynosi 4kΩ. Przy standardowym napięciu 24V, obliczamy prąd: I = 24V / 4000Ω = 0,006A, co odpowiada 6 mA. Taka zmiana prądu jest istotna w kontekście obwodów elektronicznych, gdzie precyzyjne regulowanie wartości prądu ma kluczowe znaczenie dla poprawnej pracy urządzeń. Przykładem zastosowania może być układ audio, w którym regulacja głośności odbywa się za pomocą potencjometru. Zmniejszenie rezystancji prowadzi do większego prądu, co z kolei wpływa na głośność emitowanego dźwięku. Takie zasady są fundamentem w projektowaniu układów elektronicznych i są szeroko stosowane w praktyce inżynierskiej.

Pytanie 37

Aby przeprowadzić bezdotykowy pomiar bardzo wysokiej temperatury, powinno się użyć

A. termometru półprzewodnikowego
B. termopary
C. pirometru
D. termometru rezystancyjnego
Pirometr to instrument przeznaczony do bezdotykowego pomiaru temperatury, wykorzystujący promieniowanie podczerwone emitowane przez obiekty. Jego działanie opiera się na zasadzie, że wszystkie obiekty emitują promieniowanie w zależności od swojej temperatury. Pirometry są szczególnie przydatne w sytuacjach, gdzie tradycyjne metody pomiaru, takie jak termometry cieczowe czy termopary, są niewłaściwe lub niemożliwe do zastosowania, na przykład w przypadku gorących lub trudno dostępnych powierzchni. W przemyśle metalurgicznym, hutniczym czy w obiektach energetycznych pirometry znajdują szerokie zastosowanie do monitorowania procesów technologicznych oraz do oceny temperatury w piecach. Standardy takie jak ASTM E2877-13 definiują metody i procedury pomiarowe dla pirometrów, co zwiększa ich wiarygodność i precyzję. Dzięki zastosowaniu pirometrów można także uniknąć kontaktu z niebezpiecznymi materiałami oraz zredukować ryzyko uszkodzenia czujników w ekstremalnych warunkach temperaturowych.

Pytanie 38

Podnośnik hydrauliczny do samochodów dysponuje tłokiem roboczym o średnicy 100 mm. Tłoczek pompy w tym urządzeniu ma średnicę 10 mm. Kiedy podnośnik unosi obciążenie wynoszące 20 kN, jaka jest siła działająca na tłoczek pompy?

A. 2000 N
B. 20 N
C. 200 N
D. 2 N
Odpowiedź 200 N jest prawidłowa, ponieważ w hydraulicznych systemach podnośników działa zasada Pascala, która stwierdza, że zmiana ciśnienia w cieczy rozprzestrzenia się równomiernie we wszystkich kierunkach. W tym przypadku mamy do czynienia z tłokiem roboczym o średnicy 100 mm, co daje mu promień 50 mm. Obliczając pole powierzchni tego tłoka, używamy wzoru na pole koła: A = πr², co daje A = π(50 mm)² = 7854 mm². Tłoczek pompy z średnicą 10 mm ma promień 5 mm, więc jego pole wynosi A = π(5 mm)² = 78,5 mm². Wykorzystując równanie siły F = P*A, gdzie P to ciśnienie, możemy wyznaczyć siłę na tłoczku. Siła działająca na tłok roboczy wynosi 20 kN, czyli 20000 N. Ciśnienie w układzie obliczamy jako P = F/A = 20000 N / 7854 mm² = 2,546 N/mm². Następnie obliczamy siłę na tłoczku pompy: F = P*A = P * 78,5 mm² = 2,546 N/mm² * 78,5 mm² = 200 N. Takie obliczenia są kluczowe w inżynierii hydraulicznej, ponieważ pozwalają na prawidłowe dobieranie komponentów oraz ich późniejsze eksploatowanie zgodnie z normami bezpieczeństwa.

Pytanie 39

Podłączenie kondensatora (w układzie równoległym do obciążenia) do wyjścia jednofazowego prostownika działającego w konfiguracji mostka Graetza wpłynie na napięcie wyjściowe w sposób

A. zmniejszenia składowej stałej
B. zmiany przebiegu jednopulsowego na dwupulsowy
C. redukcji tętnień
D. zmiany przebiegu dwupulsowego na jednopulsowy
Dołączenie kondensatora równolegle do obciążenia w wyjściu jednofazowego prostownika pracującego w układzie mostka Graetza ma na celu zmniejszenie tętnień napięcia wyjściowego. Kondensator działa jak filtr, magazynując energię elektryczną podczas szczytów napięcia i oddając ją w czasie, gdy napięcie spada, co prowadzi do bardziej stabilnego poziomu napięcia. W praktyce, zmniejszenie tętnień jest kluczowe w aplikacjach, gdzie wymagane są stałe wartości napięcia, takich jak zasilanie urządzeń elektronicznych, w których wahania napięcia mogą powodować uszkodzenia komponentów. Użycie kondensatora jest zgodne z najlepszymi praktykami inżynieryjnymi, które wskazują na znaczenie filtracji w układach zasilających. Dodatkowo, zastosowanie kondensatorów o odpowiednich parametrach pojemnościowych i napięciowych, zgodnych z normami IEC 61000, przyczynia się do poprawy jakości energii elektrycznej i stabilności systemów zasilających.

Pytanie 40

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.