Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektroradiolog
  • Kwalifikacja: MED.08 - Świadczenie usług medycznych w zakresie diagnostyki obrazowej, elektromedycznej i radioterapii
  • Data rozpoczęcia: 11 stycznia 2026 06:26
  • Data zakończenia: 11 stycznia 2026 06:38

Egzamin zdany!

Wynik: 33/40 punktów (82,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Podczas badania EEG w systemie „10-20” literą A oznacza się elektrody

A. pośrodkowe.
B. skroniowe.
C. móżdżkowe.
D. uszne.
W systemie „10–20” stosowanym w EEG litera A pochodzi od angielskiego słowa „auricular”, czyli uszny, odnoszący się do wyrostka sutkowatego i okolicy małżowiny usznej. Elektrody oznaczone jako A1 i A2 umieszcza się odpowiednio przy lewym i prawym uchu. W praktyce klinicznej często nazywa się je także elektrodami referencyjnymi usznymi, bo bardzo często służą jako elektrody odniesienia w klasycznym montażu EEG. Moim zdaniem warto to mieć „w głowie”, bo w opisach zapisów EEG ciągle się pojawiają skróty typu A1–T3, A2–T4 itp. System 10–20 polega na rozmieszczeniu elektrod na powierzchni czaszki w ściśle określonych odległościach procentowych między punktami anatomicznymi (nasion, inion, wyrostki sutkowate). Litery opisują region mózgu: F – czołowe (frontal), T – skroniowe (temporal), C – centralne (central), P – ciemieniowe (parietal), O – potyliczne (occipital), Fp – bieguny czołowe (frontopolar), a A – właśnie uszne. Dodatkowo liczby nieparzyste oznaczają stronę lewą, parzyste – prawą, a litera Z elektrody pośrodkowe (midline). W praktyce technika EEG poprawne rozpoznanie tych oznaczeń jest kluczowe przy zakładaniu czepka, ustawianiu montażu i potem przy interpretacji, np. lokalizacji napadów padaczkowych czy ognisk zwolnienia czynności bioelektrycznej. Prawidłowe rozumienie, że A to uszy, ułatwia od razu zorientowanie się, gdzie przebiega linia odniesienia i jak może wpływać na wygląd zapisu w różnych montażach odniesieniowych i bipolarach, co jest standardem w pracowniach EEG.

Pytanie 2

W sekwencji echa spinowego obraz T2-zależny uzyskuje się przy czasie repetycji TR

A. od 800 ms do 900 ms
B. od 300 ms do 400 ms
C. powyżej 2000 ms
D. od 500 ms do 700 ms
Prawidłowa odpowiedź „powyżej 2000 ms” dobrze oddaje charakter obrazowania T2-zależnego w klasycznej sekwencji echa spinowego (spin echo). Żeby uzyskać kontrast T2, trzeba możliwie mocno zredukować wpływ różnic w T1, a podkreślić różnice w czasie relaksacji poprzecznej T2 między tkankami. Z praktycznego punktu widzenia oznacza to zastosowanie długiego czasu repetycji TR (typowo > 2000 ms) oraz stosunkowo długiego czasu echa TE (zwykle rzędu 80–120 ms). Długi TR sprawia, że magnetyzacja podłużna większości tkanek zdąży się w dużej mierze zregenerować przed kolejnym impulsem RF, przez co kontrast T1 ulega „spłaszczeniu”. Wtedy głównym czynnikiem różnicującym jasność tkanek na obrazie staje się ich T2. W praktyce klinicznej, np. w badaniach mózgowia, sekwencje T2-zależne (SE lub FSE/TSE) z TR powyżej 2000 ms są standardem do uwidaczniania obrzęku, zmian zapalnych, demielinizacyjnych czy ognisk niedokrwiennych. Płyn mózgowo-rdzeniowy przy długim TR i długim TE jest bardzo jasny, a tkanka tłuszczowa mniej dominuje niż w obrazach T1-zależnych. Moim zdaniem warto zapamiętać prostą zasadę: długie TR = wyciszamy T1, długie TE = podkreślamy T2. W większości protokołów MR stosowanych w szpitalach i przychodniach właśnie takie parametry (TR > 2000 ms) są wpisane jako domyślne dla sekwencji T2-zależnych spin echo, zgodnie z powszechnie przyjętymi rekomendacjami producentów skanerów i standardami opisów radiologicznych.

Pytanie 3

Na obrazie rezonansu magnetycznego strzałką oznaczono wyrostek kolczysty kręgu

Ilustracja do pytania
A. piersiowego w płaszczyźnie czołowej.
B. szyjnego w płaszczyźnie czołowej.
C. piersiowego w płaszczyźnie strzałkowej.
D. szyjnego w płaszczyźnie strzałkowej.
Na przedstawionym obrazie MR widzimy odcinek szyjny kręgosłupa w projekcji bocznej, czyli w płaszczyźnie strzałkowej. Strzałka wskazuje na tylną, ostro zakończoną strukturę kostną wychodzącą ku tyłowi od łuku kręgu – to właśnie wyrostek kolczysty kręgu szyjnego. W rezonansie magnetycznym, szczególnie w sekwencjach T1-zależnych, trzon kręgu i łuk mają jednorodny, dość jasny sygnał, a wyrostki kolczyste układają się w charakterystyczny „łańcuszek” za tylną ścianą kanału kręgowego. W odcinku szyjnym łatwo rozpoznać sąsiednie struktury: z przodu tchawicę i przełyk, powyżej podstawę czaszki, a w kanale kręgowym rdzeń kręgowy o bardziej jednorodnym sygnale niż otaczające go krążki międzykręgowe. Moim zdaniem kluczowe jest tu kojarzenie kształtu i położenia: wyrostek kolczysty zawsze leży po stronie tylnej, w linii pośrodkowej, za łukiem kręgu, a w obrazie strzałkowym widzimy go jak „kolce” ustawione jeden za drugim. W praktyce klinicznej taka orientacja w anatomii obrazowej jest bardzo ważna przy ocenie urazów kręgosłupa szyjnego, np. złamań wyrostków kolczystych, zmian zwyrodnieniowych czy ocenie ustawienia kręgów po urazie komunikacyjnym. Dobre rozpoznawanie płaszczyzn obrazowania (strzałkowa vs czołowa vs poprzeczna) jest standardem w diagnostyce MR – technik i lekarz muszą sprawnie kojarzyć przekrój z anatomią 3D pacjenta. W odcinku szyjnym dodatkowo pomaga charakterystyczne wygięcie lordotyczne oraz obecność czaszki nad kręgami szyjnymi, co tutaj też ładnie widać. Poprawne rozpoznanie wyrostka kolczystego świadczy o tym, że potrafisz „czytać” obraz w sposób przestrzenny, a to w radiologii jest, z mojego doświadczenia, absolutna podstawa dobrej praktyki.

Pytanie 4

Po wykonanej radioterapii do dokumentacji pacjenta należy wpisać dawkę promieniowania w jednostce

A. Grej (Gy)
B. Bekerel (Bq)
C. Siwert (Sv)
D. Kiur (Ci)
Prawidłową jednostką dawki pochłoniętej w radioterapii jest grej (Gy). W dokumentacji po napromienianiu zawsze wpisujemy dawkę w Gy, ponieważ ta jednostka opisuje ile energii promieniowania zostało pochłonięte przez tkankę: 1 Gy = 1 dżul na kilogram. To jest dokładnie to, co nas interesuje przy planowaniu i ocenie skuteczności leczenia onkologicznego – ile energii oddaliśmy do guza i tkanek zdrowych. W praktyce klinicznej zapis wygląda np. tak: „Dawka całkowita: 50 Gy w 25 frakcjach po 2 Gy”, albo przy brachyterapii: „HDR 7 Gy na frakcję do punktu referencyjnego”. Moim zdaniem warto od początku przyzwyczajać się do czytania i pisania takich zapisów, bo to jest codzienny chleb w radioterapii. Grej jest jednostką układu SI i jest standardem w wytycznych międzynarodowych (ICRU, ICRP), w planach leczenia, w systemach TPS i w kartach informacyjnych. Oczywiście w radiologii i ochronie radiologicznej pojawiają się też inne jednostki, jak siwert (Sv) dla dawki równoważnej i skutecznej czy bekerel (Bq) dla aktywności źródła, ale to są inne wielkości fizyczne. W radioterapii, przy opisie konkretnego napromieniania pacjenta, wpisujemy właśnie dawkę pochłoniętą w Gy. W dokumentacji dodatkowo często zaznacza się rozkład dawki (DVH), dawki na narządy krytyczne też w Gy, np. „maks. dawka do rdzenia kręgowego 45 Gy”. To wszystko musi być spójne, dlatego użycie greja nie jest kwestią mody, tylko po prostu standardem i wymogiem poprawnej dokumentacji medycznej.

Pytanie 5

Którą kość zaznaczono strzałką na radiogramie stopy?

Ilustracja do pytania
A. Kość łódkowatą.
B. Kość klinowatą boczną.
C. Kość sześcienną.
D. Kość skokową.
Na radiogramie stopy w projekcji AP strzałka wskazuje kość sześcienną, czyli jedną z kości stępu położoną po stronie bocznej. Kość sześcienna leży dystalnie w stosunku do kości piętowej, a proksymalnie do IV i V kości śródstopia, częściowo także sąsiaduje z III kością śródstopia. Od strony przyśrodkowej łączy się z kością klinowatą boczną oraz z kością łódkowatą. Na prawidłowo wykonanym RTG łatwo ją zlokalizować właśnie jako boczną kość stępu, tworzącą jakby „kostkę” pomiędzy piętą a bocznymi kośćmi śródstopia. Moim zdaniem kluczowe jest tu świadome „czytanie” obrazu: zaczynamy od kości piętowej, idziemy dystalnie po stronie bocznej i pierwsza wyraźna kość stępu przed piętą to właśnie kość sześcienna. W praktyce technika radiologii często musi ocenić tę kość pod kątem złamań zmęczeniowych, urazów w obrębie stawu Choparta, a także przy deformacjach stopy, np. w stopie końsko‑szpotawej. W dobrych praktykach opisowych zwraca się uwagę na ciągłość zarysów korowych kości, szerokość szpar stawowych z sąsiednimi kośćmi śródstopia oraz ewentualne odłamy awulsyjne przy przyczepach więzadeł. W badaniach kontrolnych po unieruchomieniu gipsowym technik powinien zadbać o identyczne lub bardzo zbliżone pozycjonowanie, żeby lekarz mógł wiarygodnie porównać zrost w obrębie kości sześciennej. To z pozoru mała kość, ale w biomechanice stopy odgrywa dość istotną rolę, stabilizując boczny filar stopy i przenosząc obciążenia przy chodzeniu i bieganiu.

Pytanie 6

Wysoką rozdzielczość przestrzenną obrazowania MR uzyskuje się przez

A. zmniejszenie wielkości FoV i zmniejszenie matrycy obrazującej.
B. zmniejszenie wielkości FoV i zwiększenie matrycy obrazującej.
C. zwiększenie wielkości FoV i zmniejszenie matrycy obrazującej.
D. zwiększenie wielkości FoV i zwiększenie matrycy obrazującej.
Prawidłowo – wysoka rozdzielczość przestrzenna w MR zależy głównie od wielkości piksela, a ten wynika z relacji: rozmiar piksela = FoV / matryca obrazująca (osobno w kierunku X i Y). Jeśli zmniejszamy FoV i jednocześnie zwiększamy matrycę, to dzielimy mniejszy obszar na większą liczbę elementów, więc każdy piksel reprezentuje mniejszy fragment ciała. To właśnie daje lepszą zdolność do rozróżniania drobnych struktur, czyli wyższą rozdzielczość przestrzenną. W praktyce technik MR, planując badanie, bardzo często świadomie zmniejsza FoV dla małych struktur, np. nadgarstka, kolana, przysadki mózgowej czy drobnych zmian w kręgosłupie, i ustawia możliwie dużą matrycę (np. 320×320, 512×512), oczywiście w granicach czasu badania i dostępnego SNR. Standardy pracy w pracowniach rezonansu, zalecane przez producentów skanerów i towarzystwa radiologiczne, mówią wprost: jeśli chcesz poprawić szczegółowość obrazu, manipuluj FoV i rozdzielczością matrycy, pamiętając o kompromisie z SNR i czasem akwizycji. Moim zdaniem to jedno z kluczowych ustawień, które odróżnia „byle jakie” badanie od naprawdę diagnostycznego. Warto też pamiętać, że przy bardzo małym FoV trzeba uważać na aliasing (zawijanie obrazu), dlatego często stosuje się techniki antyaliasingowe lub oversampling. Zwiększenie matrycy zwykle wydłuża czas sekwencji, więc w praktyce szuka się złotego środka: tak dobra rozdzielczość, żeby lekarz widział szczegóły, ale jednocześnie akceptowalny czas badania i poziom szumów. Dobrą praktyką jest też różnicowanie parametrów: inne FoV i matryca dla sekwencji przeglądowych, a inne – bardziej „wyżyłowane” – dla sekwencji celowanych na konkretną zmianę.

Pytanie 7

Na obrazie rentgenowskim strzałką zaznaczono

Ilustracja do pytania
A. rozwarstwienie aorty piersiowej.
B. tętnik aorty brzusznej.
C. rozwarstwienie aorty brzusznej.
D. tętnik aorty piersiowej.
Na przedstawionym obrazie kontrastowej angiografii widoczny jest odcinek aorty przebiegający w jamie brzusznej, czyli aorta brzuszna – i to właśnie ją zaznaczono strzałką. Świadczy o tym kilka elementów: położenie struktur mniej więcej na wysokości trzonów kręgów lędźwiowych, przebieg naczynia w linii pośrodkowej ciała oraz obecność rozdętego workowatego poszerzenia typowego dla tętniaka aorty brzusznej poniżej odejścia tętnic trzewnych. W badaniach obrazowych, zwłaszcza przy klasycznej angiografii czy angio-TK, kluczowe jest zawsze odniesienie się do orientacji anatomicznej: od przepony w dół mówimy o aorcie brzusznej, a powyżej – o piersiowej. W praktyce technika radiologiczna powinna zwracać uwagę na prawidłowe wypełnienie światła naczynia kontrastem, odpowiedni czas ekspozycji i projekcję (najczęściej AP), tak aby wyraźnie uwidocznić aortę i ewentualne patologie, jak tętniaki czy zwężenia. Moim zdaniem warto wyrobić sobie nawyk „czytania” obrazu od góry do dołu: najpierw łuk aorty, potem zstępująca piersiowa, przejście przez rozwór aortowy przepony i dalej aorta brzuszna aż do jej rozdwojenia na tętnice biodrowe wspólne. W codziennej pracy technika i lekarza radiologa poprawne rozpoznanie odcinka aorty ma ogromne znaczenie, bo od tego zależy np. kwalifikacja do zabiegu endowaskularnego (EVAR), dobór długości stent-graftu czy planowanie zakresu skanowania w angio-TK. Dobre praktyki mówią też, żeby zawsze oceniać nie tylko sam tętniak, ale cały przebieg aorty brzusznej – od tętnic nerkowych aż do rozwidlenia – bo zmiany często są wielopoziomowe.

Pytanie 8

Jakie wymagania techniczne muszą spełniać aparaty terapeutyczne stosowane w zakładach brachyterapii, służące bezpośrednio do napromieniania pacjenta metodą zdalnego wprowadzania źródeł promieniotwórczych?

A. Weryfikują ustawione warunki i nie sygnalizują przypadkowych błędów personelu.
B. Wyłączenie i ponowne włączenie aparatu likwiduje sygnalizowany błąd.
C. Wyłączenie i ponowne włączenie aparatu nie likwiduje sygnalizowanego błędu.
D. Posiadają jeden niezależny system odliczający czas i informujący o zakończeniu napromieniania.
W technice medycznej, szczególnie w radioterapii, bardzo łatwo przenieść nawyki z codziennej obsługi zwykłej elektroniki: jak coś się zawiesi, to „zrestartuj i może zadziała”. W przypadku aparatów do brachyterapii HDR taka logika jest jednak po prostu niebezpieczna. Urządzenie zdalnie wprowadzające źródło promieniotwórcze ma do czynienia z wysokimi dawkami w bardzo krótkim czasie, a każdy błąd systemu sterowania, mechaniki lub zabezpieczeń może oznaczać realne ryzyko dla pacjenta. Dlatego wymagania techniczne są znacznie ostrzejsze niż dla zwykłego sprzętu. Założenie, że wyłączenie i ponowne włączenie aparatu powinno likwidować sygnalizowany błąd, opiera się na błędnym przekonaniu, że błąd jest czymś przypadkowym, mało znaczącym. W rzeczywistości w systemach krytycznych błąd traktuje się jako sygnał potencjalnie poważnej usterki. Jeśli po restarcie wszystko wygląda „czysto”, to łatwo ukryć problem, który może się ujawnić w trakcie kolejnego napromieniania. Z punktu widzenia ochrony radiologicznej i norm jakości, system ma pamiętać, że coś było nie tak, dopóki nie zostanie to świadomie zweryfikowane. Podobnie mylne jest wyobrażenie, że urządzenie nie powinno sygnalizować błędów personelu. W nowoczesnych afterloaderach to właśnie jedna z kluczowych funkcji: weryfikacja ustawionych parametrów, kontroli zgodności planu z konfiguracją aparatu, nadzór nad pozycjonowaniem, blokady przy nieprawidłowym wprowadzeniu danych. To nie jest „przypadkowy błąd”, tylko element systemu bezpieczeństwa, który ma wyłapać ludzkie pomyłki, zanim spowodują one błędne napromienianie. Brak takich ostrzeżeń byłby sprzeczny z zasadami dobrej praktyki klinicznej i wytycznymi QA w radioterapii. Kolejne nieporozumienie dotyczy liczby i charakteru systemów pomiaru czasu napromieniania. Urządzenia do brachyterapii nie mogą polegać na jednym, pojedynczym liczniku. Wymagane są redundantne, niezależne układy nadzoru czasu i pozycji źródła, tak żeby awaria jednego z nich nie doprowadziła do niekontrolowanego wydłużenia ekspozycji. Jeden system odliczający czas bez dodatkowego, niezależnego nadzoru byłby sprzeczny z zasadą redundancji w systemach bezpieczeństwa. Typowym błędem myślowym jest tu uproszczenie: „jeden licznik wystarczy, byle działał”. W rzeczywistości normy projektowania urządzeń radioterapeutycznych wymagają kilku warstw zabezpieczeń, bo tu nie chodzi o wygodę obsługi, tylko o ochronę życia i zdrowia pacjenta oraz personelu. Patrząc całościowo, wszystkie te błędne założenia mają wspólny mianownik: traktowanie aparatu do brachyterapii jak zwykłego sprzętu medycznego, a nie jak systemu krytycznego bezpieczeństwa. Tymczasem konstrukcja afterloadera, jego elektroniki, oprogramowania i interfejsu z użytkownikiem jest podporządkowana zasadzie fail-safe, redundancji i pełnej śledzalności błędów. To właśnie dlatego poprawna odpowiedź mówi o tym, że sam restart nie może kasować sygnalizowanego błędu – musi być ślad, musi być analiza i świadoma decyzja o powrocie do pracy.

Pytanie 9

W której projekcji należy wykonać badanie radiologiczne kręgosłupa lędźwiowego, by na otrzymanym zdjęciu wyrostki kręgów lędźwiowych układały się w charakterystyczny kształt piesków (teriera szkockiego)?

A. Bocznej.
B. PA
C. Skośnej.
D. AP
W diagnostyce radiologicznej kręgosłupa lędźwiowego kluczowe jest zrozumienie, co dokładnie chcemy zobaczyć na obrazie i jak ustawienie pacjenta wpływa na rzutowanie się poszczególnych struktur anatomicznych. Kształt tzw. „piesków” (Scottie dog) nie jest widoczny ani w klasycznej projekcji AP, ani w PA, ani w typowej projekcji bocznej, bo w tych ustawieniach łuki kręgowe i wyrostki stawowe nakładają się na siebie w inny sposób. W projekcji AP promień pada z przodu na tył, dzięki czemu dobrze widać trzon kręgu, przestrzenie międzykręgowe, wyrostki poprzeczne oraz zarys wyrostków kolczystych, ale stawy międzywyrostkowe są rzutowane praktycznie na siebie i nie tworzą tego charakterystycznego obrazu psa. Z kolei projekcja PA w badaniach kręgosłupa lędźwiowego jest bardzo rzadko stosowana, raczej teoretyczna w tym kontekście, bo standardem klinicznym jest AP. Nawet gdyby ją wykonać, geometria rzutowania struktur kostnych pozostaje podobna – nie uzyskamy układu wyrostków przypominającego psa, tylko odwróconą perspektywę w stosunku do AP. Projekcja boczna jest świetna do oceny wysokości trzonów, krążków międzykręgowych, krzywizn kręgosłupa (lordoza lędźwiowa), a także do oceny ewentualnych przemieszczeń trzonów (spondylolisteza). Jednak w bocznej wyrostki stawowe nakładają się liniowo, więc nie tworzą przestrzennego układu potrzebnego do „Scottie dog sign”. Typowym błędem jest myślenie, że skoro coś dotyczy kręgosłupa, to wystarczy AP i boczne, bo to są „podstawowe” projekcje. W praktyce radiologicznej właśnie projekcje skośne są celowane na stawy międzywyrostkowe i łuki kręgów, więc tylko one dają ten charakterystyczny obraz anatomiczny. Dobra praktyka polega na świadomym dobieraniu projekcji do pytania klinicznego, a nie na automatycznym sięganiu po najczęściej wykonywane ustawienia.

Pytanie 10

Na zamieszczonej rycinie przedstawiono

Ilustracja do pytania
A. zjawisko anihilacji.
B. zjawisko fotoelektryczne.
C. zjawisko tworzenia par.
D. efekt Comptona.
Na rycinie widać klasyczny schemat zjawiska fotoelektrycznego: kwant promieniowania γ (lub X) pada na elektron związany w atomie, przekazuje mu energię i wybija go poza atom jako elektron swobodny. Opis matematyczny Ee = hν − Ew pokazuje, że energia kinetyczna elektronu wybitego (Ee) jest równa energii fotonu (hν) pomniejszonej o energię wiązania elektronu w atomie (Ew). To jest dokładnie definicja efektu fotoelektrycznego, tak jak uczą w fizyce medycznej i w podstawach radiologii. W diagnostyce obrazowej to zjawisko ma ogromne znaczenie przy niższych energiach promieniowania, typowych np. dla mammografii czy zdjęć kostnych – tam dominująca absorpcja w tkankach to właśnie fotoefekt. Moim zdaniem warto zapamiętać, że fotoefekt jest mocno zależny od liczby atomowej Z materiału (z grubsza rośnie jak Z³) – dlatego kości, zawierające dużo wapnia, pochłaniają więcej promieniowania niż tkanki miękkie i wychodzą na zdjęciu jaśniej. W praktyce technika radiologiczna wykorzystuje to przy doborze napięcia kV: niższe kV wzmacnia udział zjawiska fotoelektrycznego, poprawia kontrast tkankowy, ale zwiększa dawkę pochłoniętą. Standardy ochrony radiologicznej i dobre praktyki (np. zasada ALARA) wymagają takiego doboru parametrów, żeby uzyskać wystarczającą jakość obrazu przy jak najmniejszej dawce, czyli rozsądnego kompromisu między udziałem fotoefektu a rozpraszaniem Comptona. Warto też pamiętać, że po wybiciu elektronu w atomie powstaje luka w powłoce, co prowadzi do emisji promieniowania charakterystycznego lub elektronów Augera – to z kolei leży u podstaw działania kontrastów zawierających jod czy gadolin w niektórych technikach obrazowania.

Pytanie 11

Badanie polegające na wprowadzeniu cewnika przez pęcherz moczowy do moczowodu i miedniczki nerkowej i podaniu środka kontrastującego to

A. urografia.
B. cystografia.
C. pielografia zstępująca.
D. pielografia wstępująca.
Prawidłowa odpowiedź to pielografia wstępująca, bo właśnie tak nazywa się badanie, w którym cewnik wprowadza się przez cewkę moczową do pęcherza, dalej do ujścia moczowodu, a następnie do samego moczowodu i miedniczki nerkowej, i podaje się środek kontrastowy „pod prąd” moczu. Kontrast przemieszcza się z dołu do góry, w kierunku nerki – stąd określenie „wstępująca”. Jest to klasyczne badanie radiologiczne dróg moczowych wykonywane pod kontrolą fluoroskopii, zwykle na sali RTG, często we współpracy z urologiem. W praktyce klinicznej pielografia wstępująca jest stosowana wtedy, gdy urografia dożylna (zwykła urografia) nie daje wystarczających informacji, np. przy podejrzeniu zwężeń moczowodu, zmian nowotworowych, przetok moczowych czy niejasnych poszerzeń układu kielichowo‑miedniczkowego. Dużym plusem tego badania jest możliwość bardzo dokładnego uwidocznienia światła moczowodu na całej jego długości, bo kontrast podajemy bezpośrednio do badanego odcinka, a nie tylko „czekamy”, aż nerka go wydali. Wymaga to jednak bardziej inwazyjnej procedury – cewnikowania, aseptyki, kontroli dawki promieniowania, a także dobrej współpracy z pacjentem. Z mojego doświadczenia typową dobrą praktyką jest wykonywanie serii zdjęć w kilku projekcjach (AP, skośne), przy małej dawce, z dokładnym opisem poziomu ewentualnych zwężeń czy ubytków wypełnienia. W nowoczesnej diagnostyce często porównuje się wynik pielografii wstępującej z TK lub MR, ale sama technika nadal ma swoje miejsce, szczególnie w planowaniu zabiegów urologicznych, np. założenia stentu JJ.

Pytanie 12

Którą metodą zostało wykonane badanie kręgosłupa zobrazowane na zdjęciu?

Ilustracja do pytania
A. Tomografii komputerowej.
B. Scyntygrafii statycznej.
C. Rezonansu magnetycznego.
D. Radiologii klasycznej.
Na przedstawionym obrazie widzisz typowy przekrój strzałkowy kręgosłupa wykonany w tomografii komputerowej (TK). Świadczy o tym kilka charakterystycznych cech: obraz jest warstwowy, o wysokiej rozdzielczości przestrzennej, z bardzo wyraźnym odwzorowaniem beleczkowej struktury kostnej trzonów kręgów, łuków i wyrostków. W TK kość ma bardzo wysoką gęstość w skali Hounsfielda, dlatego widoczna jest jako intensywnie jasna, a tkanki miękkie i tłuszcz są odróżnialne po odcieniach szarości. Moim zdaniem to taki „podręcznikowy” przykład obrazu z tomografu, gdzie granice między strukturami są ostre, a deformacje, złamania czy zmiany zwyrodnieniowe można ocenić bardzo precyzyjnie. W praktyce klinicznej TK kręgosłupa wykonuje się m.in. przy urazach (podejrzenie złamań kompresyjnych, uszkodzeń łuków, zwichnięć), w diagnostyce zmian nowotworowych, przy podejrzeniu zwężeń kanału kręgowego czy przed zabiegami neurochirurgicznymi. Standardem jest rekonstrukcja wielopłaszczyznowa (MPR) – właśnie dzięki niej powstaje taki obraz w płaszczyźnie strzałkowej, mimo że dane źródłowo zbierane są w płaszczyźnie poprzecznej. W dobrych pracowniach zwraca się uwagę na optymalizację dawki promieniowania zgodnie z zasadą ALARA, dobór odpowiednich parametrów (kV, mAs, grubość warstwy) oraz właściwe pozycjonowanie pacjenta, żeby uniknąć artefaktów i konieczności powtarzania badania. Dodatkowo w TK kręgosłupa zwykle nie stosuje się kontrastu dożylnego, chyba że celem jest ocena naciekania nowotworowego, zmian zapalnych czy struktur naczyniowych. W odróżnieniu od rezonansu magnetycznego, w TK lepiej widać szczegóły kostne, natomiast gorzej struktury wewnątrzkanałowe, jak rdzeń kręgowy czy korzenie nerwowe. Dlatego w praktyce często łączy się TK i MR, ale jeśli chodzi o precyzyjną ocenę kości – tomografia komputerowa jest złotym standardem.

Pytanie 13

HRCT (high-resolution computed tomography) jest metodą obrazowania TK

A. średniej rozdzielczości.
B. niskiej rozdzielczości.
C. przeciętnej rozdzielczości.
D. wysokiej rozdzielczości.
HRCT to skrót od angielskiego „high-resolution computed tomography”, czyli tomografia komputerowa wysokiej rozdzielczości. Sama nazwa już mówi, jaka jest poprawna odpowiedź: jest to metoda TK zaprojektowana właśnie po to, żeby uzyskać jak najwyższą rozdzielczość przestrzenną obrazu, szczególnie w obrębie miąższu płuc. W praktyce oznacza to, że na obrazach HRCT bardzo dobrze widać drobne struktury anatomiczne, jak przegrody międzyzrazikowe, małe oskrzeliki, drobne zmiany śródmiąższowe. Stosuje się cienkie warstwy (zwykle 0,5–1,5 mm), wysokoczęstotliwościowe filtry rekonstrukcyjne (tzw. filtr „kostny” lub „wysokiej rozdzielczości”) i odpowiednio dobrane parametry ekspozycji. Moim zdaniem warto kojarzyć, że HRCT to nie jest inny typ aparatu, tylko specyficzny protokół badania i rekonstrukcji danych w standardowym tomografie. W zaleceniach towarzystw radiologicznych (np. Fleischner Society, ERS/ESTS) HRCT jest metodą z wyboru w diagnostyce chorób śródmiąższowych płuc, rozedmy, rozstrzeni oskrzeli, oceny zmian po COVID‑19 czy pylic. W codziennej pracy technika elektroradiologii bardzo ważne jest prawidłowe dobranie grubości warstwy, kolimacji, sposobu oddychania pacjenta (zwykle wdech, niekiedy też wydech), a także unikanie zbędnych serii, żeby niepotrzebnie nie zwiększać dawki. Standardem jest rekonstrukcja obrazów w płaszczyznach MPR (np. czołowej i strzałkowej), co jeszcze bardziej wykorzystuje wysoką rozdzielczość danych. Dobrą praktyką jest też dokładne opisanie w protokole badania, że wykonano HRCT klatki piersiowej, bo to od razu kieruje lekarza opisującego na właściwą interpretację obrazu, z uwzględnieniem bardzo drobnych zmian strukturalnych.

Pytanie 14

W sekwencji echa spinowego obraz T2-zależny uzyskuje się przy czasie repetycji TR

A. powyżej 2000 ms
B. poniżej 400 ms
C. od 800 ms do 900 ms
D. od 500 ms do 700 ms
Poprawna jest odpowiedź „powyżej 2000 ms”, bo obraz T2-zależny w sekwencji echa spinowego uzyskuje się dopiero przy długim czasie repetycji TR i jednocześnie długim czasie echa TE. W uproszczeniu: TR kontroluje, na ile obraz będzie zależny od różnic T1, a TE – od różnic T2. Jeśli TR jest krótki, dominują efekty T1, jeśli TR jest długi (typowo > 2000 ms w klasycznych sekwencjach spin echo), efekt T1 jest mocno „wypłaszczony”, więc lepiej widać różnice relaksacji T2 między tkankami. W praktyce klinicznej, przy klasycznym SE, dla T2-zależnych obrazów stosuje się zwykle TR rzędu 2000–4000 ms i TE około 80–120 ms. Wtedy płyn (np. płyn mózgowo-rdzeniowy) jest bardzo jasny, a tkanki o krótkim T2 (np. istota biała) są ciemniejsze. To jest taki typowy „look” T2, który radiolodzy i technicy od razu rozpoznają. Moim zdaniem warto zapamiętać to w parze: T1 – krótki TR, krótki TE; T2 – długi TR, długi TE. W codziennej pracy, np. przy badaniu mózgowia, kręgosłupa czy stawów, sekwencje T2-zależne są kluczowe do wykrywania obrzęku, wysięku, zmian zapalnych i wielu guzów, bo płyn i obszary o podwyższonej zawartości wody świecą jasno. Dobrą praktyką jest zawsze patrzeć w protokole badania na ustawione TR i TE – dzięki temu łatwiej zrozumieć, dlaczego obraz wygląda tak, a nie inaczej, i odróżnić, czy patrzymy właśnie na T1, T2 czy obraz PD-zależny.

Pytanie 15

W scyntygrafii serca metoda bramkowanej akwizycji SPECT umożliwia między innymi ocenę frakcji wyrzutowej

A. prawego przedsionka.
B. lewej komory.
C. lewego przedsionka.
D. prawej komory.
W bramkowanej akwizycji SPECT serca podstawowym i najlepiej zwalidowanym celem jest ilościowa ocena czynności lewej komory, a nie pozostałych jam serca. Oprogramowanie rekonstrukcyjne i analityczne, którego używa się rutynowo w medycynie nuklearnej, jest projektowane właśnie pod automatyczne wykrywanie konturu lewej komory, analizę jej objętości i kurczliwości oraz obliczenie frakcji wyrzutowej LVEF. Lewa komora ma stosunkowo grube ściany, charakterystyczny kształt i wysokie wychwytywanie radioznacznika perfuzyjnego, co ułatwia algorytmom segmentację i wiarygodne obliczenia. Prawa komora jest w SPECT dużo trudniejsza do oceny ilościowej: ma cieńszą ścianę, bardziej nieregularny kształt i zwykle niższy wychwyt radiofarmaceutyku, przez co granice są słabiej widoczne. Istnieją co prawda metody próbujące szacować frakcję wyrzutową prawej komory z SPECT, ale to nie jest standard kliniczny i w typowych testach podkreśla się właśnie lewą komorę. Przedsionki, zarówno lewy, jak i prawy, praktycznie nie są rutynowo analizowane ilościowo w gated SPECT. Ich ściany są bardzo cienkie, objętość nieduża, a rozdzielczość gammakamery i charakterystyka radioznacznika po prostu nie pozwalają na wiarygodne, powtarzalne wyliczanie frakcji wyrzutowej przedsionków. W praktyce, jeśli kardiolog potrzebuje dokładnej oceny funkcji prawej komory lub przedsionków, sięga po inne metody: rezonans magnetyczny serca, echokardiografię 3D czy czasem tomografię komputerową. Typowym błędem myślowym jest założenie, że skoro obrazowane jest całe serce, to każda jama może być tak samo dokładnie oceniona ilościowo. Niestety fizyka detekcji promieniowania gamma i ograniczenia przestrzenne układu SPECT sprawiają, że tylko lewa komora spełnia kryteria do rutynowego, wiarygodnego wyliczania frakcji wyrzutowej. Dlatego w pytaniach egzaminacyjnych odpowiedź o prawej komorze lub przedsionkach jako głównym celu oceny frakcji wyrzutowej w gated SPECT jest uznawana za nieprawidłową.

Pytanie 16

Gdzie znajduje się węzeł zatokowo-przedsionkowy wywołujący rytmiczne skurcze mięśnia serca?

A. W lewej komorze.
B. W prawej komorze.
C. W prawym przedsionku.
D. W lewym przedsionku.
Węzeł zatokowo-przedsionkowy (SA, sinoatrial node) rzeczywiście znajduje się w prawym przedsionku serca, w okolicy ujścia żyły głównej górnej. To jest tzw. naturalny rozrusznik serca. Komórki w tym węźle mają zdolność samoistnej depolaryzacji – czyli same generują impuls elektryczny, bez potrzeby zewnętrznego bodźca. Ten impuls rozchodzi się najpierw przez mięsień obu przedsionków, a potem przez węzeł przedsionkowo-komorowy do komór, wywołując ich skurcz w odpowiedniej kolejności. Dzięki temu serce pracuje rytmicznie i w prawidłowej sekwencji: najpierw przedsionki, potem komory. Z praktycznego punktu widzenia lokalizacja w prawym przedsionku ma duże znaczenie np. przy interpretacji EKG – za prawidłowy rytm zatokowy uznaje się taki, w którym impuls pochodzi właśnie z węzła zatokowo-przedsionkowego, co w EKG widać jako prawidłowe załamki P dodatnie w odprowadzeniach I, II, aVF i ujemne w aVR. W badaniach obrazowych, szczególnie w kardiologii interwencyjnej i elektrofizjologii, trzeba kojarzyć, że manipulacje w okolicy prawego przedsionka (np. podczas ablacji czy wszczepiania elektrod stymulatora) mogą wpływać na pracę tego węzła. Moim zdaniem taka podstawowa orientacja anatomiczno-fizjologiczna bardzo ułatwia potem zrozumienie, dlaczego np. niektóre leki (beta-blokery, glikozydy naparstnicy) mogą zwalniać rytm serca, bo wpływają na przewodnictwo i automatyzm właśnie w tej okolicy układu bodźcoprzewodzącego. W praktyce technika EKG czy osoby pracującej przy diagnostyce elektromedycznej, świadomość skąd startuje impuls, pomaga lepiej odróżniać rytm zatokowy od arytmii przedsionkowych czy rytmów ektopowych.

Pytanie 17

Ile razy i jak zmieni się wartość natężenia promieniowania X przy zwiększeniu odległości OF ze 100 cm do 200 cm?

A. Czterokrotnie się zmniejszy.
B. Dwukrotnie się zmniejszy.
C. Dwukrotnie się zwiększy.
D. Czterokrotnie się zwiększy.
Poprawna odpowiedź wynika bezpośrednio z tzw. prawa odwrotności kwadratu odległości. W diagnostyce rentgenowskiej przyjmuje się, że natężenie promieniowania X (a w praktyce: ilość fotonów docierających na jednostkę powierzchni, czyli ekspozycja) jest odwrotnie proporcjonalne do kwadratu odległości od ogniska lampy rentgenowskiej. Matematycznie zapisuje się to jako I ~ 1/d². Jeśli zwiększamy odległość ognisko–film/detektor (OF) z 100 cm do 200 cm, to odległość rośnie dwukrotnie, ale natężenie nie spada „tylko” dwa razy, tylko cztery razy, bo 2² = 4. Czyli promieniowanie na detektorze będzie czterokrotnie mniejsze. Moim zdaniem to jedno z kluczowych praw, które trzeba mieć w małym palcu w pracowni RTG. W praktyce oznacza to, że jeżeli z jakiegoś powodu musisz zwiększyć OF z 100 do 200 cm (np. przy zdjęciach klatki piersiowej wykonywanych w większej odległości, żeby zmniejszyć powiększenie serca i zniekształcenia geometryczne), to żeby utrzymać podobną gęstość optyczną obrazu, trzeba odpowiednio zwiększyć ładunek mAs mniej więcej czterokrotnie. Standardowe zalecenia w radiografii mówią wprost: podwojenie odległości wymaga około czterokrotnego zwiększenia mAs dla utrzymania ekspozycji. Jednocześnie, z punktu widzenia ochrony radiologicznej, zwiększenie odległości jest korzystne dla personelu – im dalej od źródła, tym mniejsze narażenie, dokładnie na tej samej zasadzie. Właśnie dlatego w dobrych praktykach BHP w radiologii podkreśla się zasadę „distance, shielding, time” – odległość jest jednym z podstawowych środków ochrony. Warto też pamiętać, że zmiana OF wpływa nie tylko na dawkę, ale i na parametry geometryczne obrazu (ostrość, powiększenie), więc technik zawsze musi łączyć fizykę promieniowania z wymaganiami jakości obrazu i zasadami ochrony pacjenta.

Pytanie 18

Rytm alfa i beta rejestruje się podczas badania

A. USG
B. EEG
C. EKG
D. HSG
Prawidłowo – rytm alfa i beta to pojęcia typowe dla elektroencefalografii, czyli badania EEG. W EEG rejestrujemy bioelektryczną aktywność mózgu za pomocą elektrod umieszczonych na skórze głowy, zwykle według międzynarodowego systemu 10–20. Rytm alfa to fale o częstotliwości ok. 8–13 Hz, najlepiej widoczne u osoby zrelaksowanej, z zamkniętymi oczami, najczęściej w okolicach potylicznych. Rytm beta ma wyższą częstotliwość, około 13–30 Hz, częściej pojawia się przy stanie czuwania, koncentracji, czasem pod wpływem leków, np. benzodiazepin. W praktyce technik EEG powinien umieć odróżnić fizjologiczne rytmy (alfa, beta, theta, delta) od zmian patologicznych, takich jak wyładowania napadowe czy fale ostre. To jest podstawa prawidłowego opisu zapisu EEG i współpracy z lekarzem. Badanie EEG wykonuje się m.in. w diagnostyce padaczki, zaburzeń świadomości, encefalopatii metabolicznych, a także w ocenie mózgowej aktywności po urazach. Z mojego doświadczenia, im lepiej rozumiesz, co oznaczają poszczególne rytmy, tym łatwiej wychwytujesz subtelne nieprawidłowości w zapisie, np. asymetrię rytmu alfa między półkulami czy nadmierną obecność rytmu beta. W standardach pracowni neurofizjologicznej podkreśla się też znaczenie aktywacji (hiperwentylacja, fotostymulacja) – wtedy zmiany w rytmach mogą się nasilać lub zmieniać, co bywa bardzo przydatne w diagnostyce napadów.

Pytanie 19

„Ognisko zimne” w obrazie scyntygraficznym oznacza

A. zmianę najczęściej o charakterze łagodnym.
B. obszar niegromadzący radioznacznika.
C. obszar gromadzący znacznik.
D. zmianę o większej aktywności hormonalnej.
Prawidłowo – w scyntygrafii „ognisko zimne” oznacza obszar, który nie gromadzi radioznacznika, czyli praktycznie brak rejestracji promieniowania w tym miejscu na obrazie gammakamery. W badaniach medycyny nuklearnej, takich jak scyntygrafia kości, tarczycy czy wątroby, zakładamy, że prawidłowa tkanka wychwytuje podany radiofarmaceutyk w pewnym typowym, dość równomiernym stopniu. Jeśli w tym tle pojawia się „dziura”, miejsce o znacznie mniejszej aktywności niż otoczenie albo wręcz czarne pole na kolorowej mapie, to właśnie mówimy o ognisku zimnym. Moim zdaniem dobrze jest to kojarzyć z „brakiem funkcji”, a nie z konkretnym rozpoznaniem. Przykład praktyczny: w scyntygrafii tarczycy po podaniu jodu promieniotwórczego wole guzkowe może dać obraz guzków „zimnych” – guz nie gromadzi jodu, bo nie produkuje hormonów. Ale taki guzek może być zarówno łagodny, jak i złośliwy, więc sam fakt „zimna” nie rozstrzyga. W scyntygrafii kości zimne ognisko może oznaczać np. rozległą martwicę, torbiel, niektóre przerzuty lityczne, albo też artefakt techniczny (np. metaliczna proteza dająca zacienienie). Według dobrych praktyk medycyny nuklearnej każde ognisko zimne trzeba zawsze interpretować w kontekście: rodzaju radiofarmaceutyku, obrazu klinicznego, innych badań obrazowych (RTG, TK, MR). I jeszcze jedna rzecz: ognisko gorące to nadmierne gromadzenie znacznika, a ognisko zimne – niedobór lub brak, co jest podstawową parą pojęć, którą naprawdę warto mieć „w małym palcu” podczas nauki scyntygrafii.

Pytanie 20

Fala głosowa rozchodzi się

A. w gazach i cieczach.
B. w gazach, cieczach i próżni.
C. w cieczach i próżni.
D. w gazach i próżni.
Poprawnie – fala głosowa, czyli fala akustyczna, w fizyce jest falą mechaniczną. To znaczy, że do swojego rozchodzenia się potrzebuje ośrodka materialnego, w którym cząsteczki mogą drgać i przekazywać energię dalej. Takim ośrodkiem mogą być gazy (np. powietrze), ciecze (np. woda) albo ciała stałe. W próżni nie ma cząsteczek, więc nie ma co drgać i klasyczna fala dźwiękowa po prostu nie może się tam rozchodzić. Dlatego odpowiedź „w gazach i cieczach” jest merytorycznie poprawna, chociaż warto pamiętać, że w rzeczywistości dźwięk rozchodzi się też w ciałach stałych. W praktyce medycznej i okołomedycznej ma to spore znaczenie. W audiometrii, badaniach słuchu czy przy kalibracji sprzętu do pomiaru hałasu zakłada się, że fala dźwiękowa biegnie głównie w powietrzu, czyli w gazie. Z kolei w ultrasonografii medycznej wykorzystujemy rozchodzenie się fal mechanicznych w tkankach, które fizycznie zachowują się jak różne ciecze i ciała stałe – stąd żel USG, żeby poprawić sprzężenie między głowicą a skórą, bo powietrze bardzo słabo przewodzi ultradźwięki. Moim zdaniem to jedno z tych prostych pytań, które później ułatwia zrozumienie, czemu np. badanie USG nie działa w powietrzu i czemu w kosmosie, w próżni, nie „słychać” eksplozji mimo że mogą emitować promieniowanie elektromagnetyczne. W dobrych praktykach technicznych zawsze rozróżniamy fale mechaniczne (wymagające ośrodka, jak dźwięk) od fal elektromagnetycznych (np. promieniowanie RTG, radiowe), które mogą iść w próżni.

Pytanie 21

Brachyterapia wewnątrzprzewodowa jest stosowana w leczeniu

A. raka nerwu wzrokowego.
B. nowotworu narządu rodnego.
C. raka skóry.
D. nowotworu przełyku.
Prawidłowo wskazany nowotwór przełyku dobrze pokazuje, że rozumiesz ideę brachyterapii wewnątrzprzewodowej. W tej technice źródło promieniowania jonizującego umieszcza się w świetle narządu rurowego, czyli właśnie „wewnątrz przewodu”. W praktyce klinicznej najczęściej dotyczy to przełyku, oskrzeli czy dróg żółciowych, ale w standardach radioterapii to rak przełyku jest takim klasycznym, podręcznikowym przykładem. Do przełyku wprowadza się aplikator lub specjalny cewnik, który pozycjonuje się w miejscu guza, a następnie za pomocą afterloadera wprowadza się radioaktywny izotop (najczęściej Ir-192 w HDR). Dzięki temu dawka jest bardzo wysoka w obrębie guza, a stosunkowo szybko spada w tkankach zdrowych otaczających przełyk. Z mojego doświadczenia, na zajęciach zawsze podkreśla się, że to metoda szczególnie przydatna w leczeniu paliatywnym – np. przy zwężeniach przełyku powodujących problemy z połykaniem, kiedy celem jest poprawa komfortu życia pacjenta. Ważne jest też, że taka brachyterapia wymaga bardzo dokładnego planowania w systemie 3D, zwykle w oparciu o TK, z precyzyjnym określeniem długości odcinka napromienianego i położenia aplikatora. Standardy i wytyczne (np. ESTRO, PTRO) podkreślają konieczność weryfikacji położenia aplikatora obrazowaniem przed rozpoczęciem frakcji oraz ścisłego przestrzegania zasad ochrony radiologicznej personelu. Co istotne, brachyterapia wewnątrzprzewodowa nie jest terapią „uniwersalną” – stosuje się ją w wybranych lokalizacjach, głównie właśnie w przewodach i światłach narządów, a nie w guzach litej skóry czy narządów rodnych, gdzie używa się innych technik brachyterapii. W praktyce technik radioterapii musi umieć odróżnić brachyterapię śródjamową, śródmiąższową i wewnątrzprzewodową, bo od tego zależy sposób przygotowania pacjenta, dobór aplikatorów i cały tok postępowania.

Pytanie 22

W systemie międzynarodowym czwarty górny ząb mleczny po stronie prawej oznacza się symbolem

A. 24
B. 84
C. 54
D. 14
W tym pytaniu łatwo się pomylić, bo odpowiedzi wyglądają podobnie, a różnica między zębami stałymi i mlecznymi w systemie FDI bywa mylona. Symbole 14 i 24 odnoszą się do zębów stałych, nie mlecznych. W systemie FDI dla uzębienia stałego ćwiartki oznaczamy cyframi 1–4: 1 – górny prawy, 2 – górny lewy, 3 – dolny lewy, 4 – dolny prawy. Druga cyfra określa numer zęba liczony od linii pośrodkowej. Ząb 14 to zatem pierwszy przedtrzonowiec stały w górnym prawym kwadrancie, a 24 – pierwszy przedtrzonowiec stały po stronie lewej w szczęce. W pytaniu mowa jest wyraźnie o zębie mlecznym, więc samo użycie „1” lub „2” na początku numeru jest już sprzeczne z zasadami oznaczania zębów mlecznych. Symbol 84 z kolei dotyczy zęba mlecznego, ale w zupełnie innej lokalizacji: ósemka jako pierwsza cyfra oznacza dolną prawą ćwiartkę uzębienia mlecznego, a nie górną. Ząb 84 to dolny prawy drugi trzonowiec mleczny, a pytanie wymaga wskazania zęba górnego po stronie prawej. Typowy błąd polega na tym, że ktoś pamięta tylko numer „4” jako czwarty ząb w ćwiartce, ale nie zwraca uwagi na to, że przy mleczakach używamy cyfr 5–8, a przy stałych 1–4. Drugi częsty skrót myślowy to patrzenie tylko na stronę (prawa/lewa) i pomijanie rozróżnienia góra/dół. Dobre praktyki w stomatologii i w opisie badań radiologicznych wymagają bardzo precyzyjnego oznaczania zębów, bo błędny numer może prowadzić do leczenia niewłaściwego zęba albo do niejasnej dokumentacji. Dlatego warto sobie uporządkować: 5 i 6 – szczęka (góra), 7 i 8 – żuchwa (dół), a następnie dopiero szukać konkretnego numeru zęba w tej ćwiartce. To naprawdę ułatwia pracę przy analizie zdjęć pantomograficznych, skrzydłowo-zgryzowych czy punktowych.

Pytanie 23

Badanie przewodu pokarmowego metodą podwójnego kontrastu wiąże się z podaniem pacjentowi

A. barytu i Magnevistu.
B. podwójnej ilości Magnevistu.
C. barytu i powietrza.
D. podwójnej ilości barytu.
Prawidłowa odpowiedź odnosi się do klasycznej techniki tzw. podwójnego kontrastu w badaniach przewodu pokarmowego, głównie żołądka, dwunastnicy i jelita grubego. W tej metodzie zawsze chodzi o połączenie środka cieniującego na bazie barytu z gazem, najczęściej powietrzem lub dwutlenkiem węgla. Baryt (siarczan baru) działa jako kontrast dodatni – silnie pochłania promieniowanie rentgenowskie i na zdjęciu wychodzi jako struktura biała, wyraźnie odcinająca się od tła. Powietrze natomiast to kontrast ujemny – nie pochłania promieniowania, więc daje obraz ciemny, wypełnia światło przewodu pokarmowego i „rozdmuchuje” ściany. Dzięki temu kombinacja barytu i powietrza pozwala bardzo ładnie uwidocznić fałdy błony śluzowej, drobne nadżerki, polipy, guzki czy nieregularności obrysu. W praktyce radiologicznej, zgodnie z typowymi procedurami, podaje się najpierw baryt, a następnie pacjent połyka tabletki musujące albo otrzymuje powietrze przez zgłębnik, żeby uzyskać równomierne rozdęcie. Moim zdaniem to jedna z bardziej „wdzięcznych” technik, bo dobrze wykonane badanie podwójnym kontrastem daje bardzo szczegółowy obraz i jest świetne diagnostycznie, zwłaszcza tam, gdzie endoskopia jest ograniczona albo pacjent jej nie toleruje. Warto pamiętać, że w odróżnieniu od badań z kontrastem jodowym czy paramagnetycznym, baryt w RTG przewodu pokarmowego nie wchłania się z przewodu i działa czysto miejscowo. Standardy opisów radiologicznych przy tej technice zakładają ocenę zarysu ściany, fałdów, perystaltyki oraz obecności ubytków cienia lub sztywności ściany, co w dużej mierze jest możliwe właśnie dzięki temu, że mamy jednocześnie biały kontrast barytowy i ciemne tło powietrzne.

Pytanie 24

Brachyterapia polegająca na wielokrotnym wsuwaniu i wysuwaniu źródła promieniowania do tego samego aplikatora nosi nazwę

A. HDR
B. PDR
C. LDR
D. MDR
Prawidłowa odpowiedź to PDR – czyli Pulsed Dose Rate brachyterapia. W praktyce oznacza to technikę, w której wysokoaktywny radionuklid (najczęściej Ir-192) jest wielokrotnie wsuwany i wysuwany do tego samego aplikatora w krótkich, powtarzających się „pulsach” dawki. Z zewnątrz wygląda to jak seria krótkich frakcji HDR, ale rozkład dawki w czasie ma naśladować efekt biologiczny klasycznej LDR (ciągłego, niskiego tempo dawki). Moim zdaniem to jest fajny przykład, jak fizyka medyczna i radiobiologia łączą się z techniką – mamy źródło HDR, ale sposób jego użycia sprawia, że tkanki widzą coś bardziej zbliżonego do LDR. W PDR źródło jest automatycznie przesuwane przez afterloader do poszczególnych pozycji w aplikatorze, zatrzymuje się tam na określony czas (tzw. dwell time), a potem jest wycofywane do bezpiecznego położenia. Cały cykl powtarza się co określony interwał, np. co godzinę, przez kilkanaście–kilkadziesiąt godzin. W wytycznych wielu ośrodków radioterapii podkreśla się, że PDR jest szczególnie użyteczna tam, gdzie chcemy mieć lepszą kontrolę nad rozkładem dawki niż w LDR, ale jednocześnie zachować korzystny profil powikłań późnych. Stosuje się ją m.in. w guzach ginekologicznych, nowotworach głowy i szyi czy w niektórych nawrotach nowotworów, gdzie precyzyjna rekonstrukcja pozycji aplikatora w TK lub MR i planowanie 3D pozwalają dokładnie zoptymalizować dawkę. W codziennej pracy technika PDR wymaga dobrej koordynacji zespołu: prawidłowego założenia aplikatorów, weryfikacji ich położenia obrazowaniem, rzetelnego planowania w systemie TPS oraz ścisłego przestrzegania procedur ochrony radiologicznej, bo mimo że źródło jest schowane w afterloaderze, jego aktywność jest wysoka i każda ekspozycja musi być pod pełną kontrolą.

Pytanie 25

Na zamieszczonym obrazie TK strzałką zaznaczono zatokę

Ilustracja do pytania
A. szczękową w przekroju strzałkowym.
B. szczękową w przekroju czołowym.
C. czołową w przekroju czołowym.
D. czołową w przekroju strzałkowym.
Na obrazie TK widzisz klasyczny przekrój czołowy (koronalny) przez okolice zatok przynosowych. Świadczy o tym układ struktur: symetrycznie położone oczodoły po obu stronach, przegroda nosa biegnąca pionowo pośrodku oraz charakterystyczny kształt małżowin nosowych. Strzałka wskazuje dużą, powietrzną jamę położoną bocznie i nieco poniżej jamy nosowej – to właśnie zatoka szczękowa. Zatoki czołowe leżałyby znacznie wyżej, nad oczodołami, w obrębie kości czołowej, a tutaj ich po prostu nie widać. W praktyce technik i lekarz radiolog muszą bardzo dobrze rozpoznawać takie przekroje, bo od poprawnej identyfikacji zależy opis zmian zapalnych, torbieli, polipów czy poziomów płynu. W badaniach TK zatok standardem jest wykonywanie serii przekrojów koronalnych, bo najlepiej pokazują drożność kompleksu ujściowo-przewodowego i relacje między zatoką szczękową a jamą nosową. Moim zdaniem warto się „oswoić” z obrazem tej zatoki: położenie bocznie od jamy nosowej, cienka kostna ściana dolna sąsiadująca z korzeniami zębów trzonowych i przedtrzonowych, przyśrodkowa ściana granicząca z małżowinami nosowymi. W praktyce laryngologicznej i stomatologicznej to ma duże znaczenie – np. przy planowaniu podniesienia dna zatoki, implantów czy ocenie powikłań zapaleń okołowierzchołkowych. Dobre rozpoznanie, że jest to zatoka szczękowa w przekroju czołowym, jest więc zgodne z typowym standardem interpretacji badań TK zatok i pokazuje, że prawidłowo orientujesz się w anatomii w obrazowaniu.

Pytanie 26

W standardowym badaniu elektrokardiologicznym elektrodę C4 należy umocować

A. w IV międzyżebrzu przy prawym brzegu mostka.
B. w połowie odległości między punktem C2 i C4.
C. w V międzyżebrzu w linii środkowo-obojczykowej lewej.
D. w IV międzyżebrzu przy lewym brzegu mostka.
Prawidłowe umiejscowienie elektrody C4 w standardowym 12‑odprowadzeniowym EKG to V4, czyli V międzyżebrze w linii środkowo‑obojczykowej lewej. To jest klasyczny, opisany w wytycznych punkt: najpierw lokalizujemy lewe V międzyżebrze, potem wyznaczamy linię środkowo‑obojczykową (mniej więcej przez środek obojczyka) i tam przyklejamy elektrodę przedsercową V4. Ten punkt jest kluczowy, bo odprowadzenie V4 bardzo dobrze „patrzy” na ścianę przednio‑przegrodową i koniuszek lewej komory. W zawale przednim, zwłaszcza w okolicy koniuszka, zmiany w V4 są często jednymi z pierwszych i najbardziej wyraźnych. Moim zdaniem to jedno z najważniejszych odprowadzeń w praktyce ratunkowej i kardiologicznej. W standardzie rozmieszczenia elektrod przedsercowych przyjmuje się kolejność: V1 – IV międzyżebrze przy prawym brzegu mostka, V2 – IV międzyżebrze przy lewym brzegu mostka, V4 – V międzyżebrze linia środkowo‑obojczykowa lewa, dopiero potem V3 pomiędzy V2 i V4, a V5 i V6 bocznie w linii pachowej przedniej i środkowej. Właśnie dlatego w pytaniu mowa o C4 (oznaczenie stosowane często zamiennie z V4 w niektórych aparatach i opisach). Trzymanie się tych lokalizacji nie jest „fanaberią”, tylko elementem standaryzacji. Jeżeli przesuniemy elektrodę nawet o jedno międzyżebrze w górę czy w dół, możemy sztucznie zmienić amplitudę zespołów QRS, wygląd odcinka ST czy załamków T. W praktyce może to prowadzić np. do fałszywego podejrzenia przerostu komór, zawału lub odwrotnie – do przeoczenia zmian niedokrwiennych. Z mojego doświadczenia wynika, że dobrze wyrobiony nawyk liczenia żeber i świadomego szukania V międzyżebrza bardzo ułatwia szybkie, poprawne zakładanie elektrod, nawet u osób z otyłością czy u kobiet z dużymi piersiami (gdzie czasem trzeba minimalnie „obejść” tkankę, ale zachowując poziom V międzyżebrza i linię środkowo‑obojczykową). To wszystko składa się na dobrą praktykę techniczną w diagnostyce elektromedycznej.

Pytanie 27

Którą tętnicę zaznaczono strzałką na obrazie MR?

Ilustracja do pytania
A. Śledzionową.
B. Krezkową dolną.
C. Nerkową lewą.
D. Krezkową górną.
Prawidłowo wskazana tętnica krezkowa górna jest głównym naczyniem zaopatrującym środkowy odcinek przewodu pokarmowego, czyli mniej więcej od części zstępującej dwunastnicy do 2/3 poprzecznicy. Na obrazie MR-angiografii, takim jak w pytaniu, wychodzi ona z przedniej ściany aorty brzusznej, tuż poniżej pnia trzewnego, a wyraźnie powyżej odejścia tętnic nerkowych. Na tym konkretnym obrazie widać obie tętnice nerkowe odchodzące bocznie, mniej więcej na poziomie wnęk nerek, natomiast strzałka pokazuje naczynie biegnące lekko w dół i do przodu z przedniej powierzchni aorty – to typowy obraz tętnicy krezkowej górnej na MR. Z mojego doświadczenia w opisach badań studenci najczęściej mylą ją właśnie z tętnicą nerkową lub śledzionową, bo patrzą bardziej na „okołośrodkowe” położenie niż na kierunek i poziom odejścia. W praktyce klinicznej rozpoznanie tętnicy krezkowej górnej na obrazach MR czy CT jest bardzo ważne np. przy podejrzeniu niedokrwienia jelit, w planowaniu zabiegów wewnątrznaczyniowych (stenty, angioplastyka) czy przed operacjami resekcyjnymi jelita cienkiego. Standardem dobrej praktyki w diagnostyce obrazowej jamy brzusznej jest zawsze ocena osi aorty i kolejno odchodzących z niej pni: pień trzewny, tętnica krezkowa górna, tętnice nerkowe, a niżej tętnica krezkowa dolna. W MR-angiografii, przy prawidłowym pozycjonowaniu pacjenta i odpowiednio dobranym oknie, tętnica krezkowa górna tworzy charakterystyczny łuk skierowany w dół, którego nie da się pomylić z bocznie odchodzącą tętnicą nerkową czy dużo wyżej położoną gałęzią śledzionową pnia trzewnego. Warto sobie to utrwalać, porównując różne projekcje i badania CT/MR, bo potem w praktyce radiologicznej naprawdę przyspiesza to opis i zmniejsza ryzyko pomyłek.

Pytanie 28

Na obrazie TK kręgosłupa strzałką wskazano wyrostek

Ilustracja do pytania
A. żebrowy.
B. kolczysty.
C. stawowy.
D. poprzeczny.
Prawidłowo rozpoznano, że strzałka na rekonstrukcji 3D TK kręgosłupa wskazuje wyrostek kolczysty. Na takim obrazie wyrostki kolczyste widzimy jako wydłużone, dość masywne wypustki kostne ustawione niemal w linii pośrodkowej tylnej części kręgosłupa. Tworzą one coś w rodzaju „grzebienia” biegnącego wzdłuż całej osi kręgosłupa. To właśnie te struktury wyczuwamy palpacyjnie przez skórę na plecach u pacjenta – od karku aż do okolicy lędźwiowo-krzyżowej. Moim zdaniem w praktyce technika obrazowania to jedno z kluczowych miejsc, gdzie trzeba dobrze ogarniać anatomię wyrostków. Przy ustawianiu pacjenta do TK czy MR kręgosłupa często kontrolnie patrzy się na przebieg wyrostków kolczystych, żeby ocenić, czy kręgosłup nie jest skręcony (rotacja), czy nie ma znacznej skoliozy, czy oś jest prosta. W standardowych opisach radiologicznych zmiany zwyrodnieniowe, pourazowe czy pooperacyjne bardzo często lokalizuje się właśnie w odniesieniu do wyrostków kolczystych (np. złamanie wyrostka kolczystego C7, resekcja wyrostków przy stabilizacji). Wyrostek kolczysty jest tylnym wypustkiem łuku kręgu, miejscem przyczepu więzadeł (więzadło nadkolcowe, międzykolcowe) i mięśni prostowników grzbietu. Na obrazach TK w oknach kostnych będzie on miał wysoką gęstość (biel), wyraźnie odgraniczoną od otaczających tkanek miękkich. W badaniach z rekonstrukcjami 3D, tak jak na tym przykładzie, wyrostki kolczyste szczególnie dobrze widać i łatwo je odróżnić od wyrostków poprzecznych, które są bardziej boczne, oraz od wyrostków stawowych, które tworzą stawy międzykręgowe. Z mojego doświadczenia, jeśli na obrazach bocznych widzisz pojedynczy, pośrodkowy, do tyłu skierowany „kolec”, to niemal na pewno jest to wyrostek kolczysty. W codziennej pracy z TK i MR kręgosłupa prawidłowa identyfikacja tych struktur bardzo ułatwia orientację w poziomach kręgów i ocenę patologii, np. urazów, przerzutów czy zmian zapalnych.

Pytanie 29

W lampie rentgenowskiej promieniowanie X powstaje w wyniku hamowania

A. protonów na anodzie.
B. protonów na katodzie.
C. elektronów na anodzie.
D. elektronów na katodzie.
Poprawnie – w lampie rentgenowskiej promieniowanie X powstaje głównie w wyniku gwałtownego hamowania szybkich elektronów na anodzie. W typowej lampie mamy katodę (żarnik), która emituje elektrony przez emisję termojonową. Następnie między katodą a anodą przykładane jest wysokie napięcie, zwykle kilkadziesiąt do nawet ponad 100 kV. To napięcie bardzo mocno przyspiesza elektrony w próżni w kierunku anody. Kiedy te rozpędzone elektrony uderzają w materiał anody (najczęściej wolfram, rzadziej molibden lub inne stopy), są gwałtownie hamowane w polu elektrycznym jąder atomowych anody. I właśnie to hamowanie powoduje emisję promieniowania hamowania, tzw. bremsstrahlung, które stanowi podstawową część widma promieniowania rentgenowskiego. Dodatkowo dochodzi jeszcze promieniowanie charakterystyczne, gdy elektron wybija elektron z wewnętrznej powłoki atomu wolframu, ale ono też powstaje w materiale anody, a nie na katodzie. W praktyce technik obrazowania musi rozumieć, że zmiana napięcia na lampie (kV) wpływa na energię elektronów i tym samym na energię i przenikliwość promieniowania X, a zmiana natężenia prądu (mA) wpływa głównie na ilość elektronów, czyli na ilość promieniowania. Z mojego doświadczenia opłaca się to dobrze ogarnąć, bo potem łatwiej rozumie się zależności między ustawieniami aparatu a jakością obrazu i dawką dla pacjenta. W nowoczesnych aparatach RTG cała konstrukcja lampy, chłodzenie anody (np. anoda obrotowa) i dobór materiałów są oparte właśnie na tym zjawisku hamowania elektronów w anodzie, żeby uzyskać dużo stabilnego promieniowania przy jednoczesnym bezpiecznym odprowadzeniu ciepła.

Pytanie 30

W badaniu EKG różnice potencjałów pomiędzy lewym podudziem a lewym przedramieniem rejestruje odprowadzenie

A. aVR
B. I
C. aVL
D. III
W tym pytaniu łatwo się pomylić, bo nazwy odprowadzeń aVR, aVL i III brzmią dość podobnie, a jeszcze dochodzi odprowadzenie I, które też jest kończynowe. Kluczowa sprawa to odróżnienie odprowadzeń dwubiegunowych (I, II, III) od jednobiegunowych wzmocnionych (aVR, aVL, aVF). Dwubiegunowe rejestrują różnicę potencjałów między dwiema konkretnymi elektrodami kończynowymi, natomiast odprowadzenia aV korzystają z tzw. elektrody wirtualnej (średnia potencjałów z dwóch kończyn) i porównują ją z trzecią kończyną. Dlatego mówienie, że aVL „mierzy” między lewym podudziem a lewym przedramieniem jest po prostu fizjologicznie i technicznie niepoprawne. aVL patrzy na lewą rękę względem średniej z prawej ręki i lewej nogi, więc to zupełnie inna konfiguracja. Podobnie aVR nie może być poprawną odpowiedzią, bo to odprowadzenie „patrzące” z punktu widzenia prawej ręki, z odniesieniem do średniej z lewej ręki i lewej nogi. W praktyce klinicznej aVR używa się do oceny np. odwróconego obrazu ściany bocznej czy w niektórych zaburzeniach przewodzenia, ale nie jest to proste porównanie dwóch kończyn jak w odprowadzeniu III. Odprowadzenie I też bywa mylące, bo część osób kojarzy je ogólnie z kończynami górnymi. Tymczasem w standardzie Einthovena odprowadzenie I to różnica potencjałów między prawą ręką (RA) a lewą ręką (LA), więc noga w ogóle tu „nie wchodzi do gry”. Typowy błąd myślowy polega na tym, że ktoś patrzy tylko na nazwę (np. „aVL – pewnie lewe coś tam”) i nie analizuje, jak naprawdę są podłączone elektrody i jakie jest odniesienie elektryczne. Dobra praktyka, moim zdaniem, to nauczyć się na pamięć prostego schematu: I = LA – RA, II = LL – RA, III = LL – LA oraz zapamiętać, że aVR, aVL, aVF są jednobiegunowe i zawsze porównują jedną kończynę do średniej z dwóch pozostałych. Dzięki temu łatwiej unika się takich pomyłek i można świadomie interpretować zapis EKG, a nie tylko odczytywać go z automatu aparatu.

Pytanie 31

Jak oznacza się w systemie międzynarodowym czwarty górny ząb mleczny po stronie prawej?

A. 14
B. 24
C. 84
D. 54
W tym pytaniu bardzo łatwo pogubić się w numeracji, bo na pierwszy rzut oka wszystkie odpowiedzi wyglądają „dość podobnie”. Problem zwykle zaczyna się od pomieszania systemu oznaczeń dla zębów stałych z systemem dla zębów mlecznych. W systemie FDI pierwsza cyfra mówi nam, czy mówimy o uzębieniu stałym, czy mlecznym, a dopiero druga określa konkretny ząb w danym kwadrancie. Cyfry 1–4 jako pierwsza pozycja są zarezerwowane dla zębów stałych: 1 – górna prawa, 2 – górna lewa, 3 – dolna lewa, 4 – dolna prawa. Dlatego oznaczenia 14 i 24 opisują odpowiednio zęby stałe: 14 to czwarty ząb stały w górnym prawym kwadrancie, a 24 – czwarty ząb stały w górnym lewym kwadrancie. W kontekście pytania o ząb mleczny są one więc całkowicie nie na miejscu, nawet jeśli anatomicznie pozycja wydaje się podobna. To jest typowy błąd: ktoś kojarzy „czwórkę w górze po prawej” i automatycznie bierze zapis dla zębów stałych. Z kolei oznaczenie 84 jest już z grupy zębów mlecznych, bo pierwsza cyfra 8 oznacza dolną prawą ćwiartkę uzębienia mlecznego. Jednak tu myli się płaszczyzna – mamy dół zamiast góry. W praktyce klinicznej taki błąd w dokumentacji czy opisie RTG jest bardzo niebezpieczny: lekarz czy technik może zinterpretować, że zmiana dotyczy zęba w żuchwie, a nie w szczęce. Z mojego doświadczenia najłatwiej to ogarnąć tak: 1–4 stałe, 5–8 mleczne; nieparzyste – prawa strona, parzyste – lewa; 5 i 6 – góra, 7 i 8 – dół. Dopiero druga cyfra, od 1 do 5 w mlecznym, mówi który to konkretnie ząb od linii pośrodkowej. Jeśli brakuje tego schematu w głowie, człowiek zaczyna zgadywać „na oko” i stąd biorą się takie wybory jak 14 czy 24 przy zębach mlecznych. W opisach radiologicznych i w kartach pacjenta takie zgadywanie jest po prostu niedopuszczalne, dlatego tak mocno kładzie się nacisk na znajomość systemu FDI.

Pytanie 32

W medycznym przyspieszaczu liniowym jest generowana wiązka fotonów o energii w zakresie

A. 100 + 150 MeV
B. 1 + 3 MeV
C. 0,1 + 0,3 MeV
D. 4 + 25 MeV
Poprawna odpowiedź „4–25 MeV” dobrze oddaje typowy zakres energii wiązki fotonowej generowanej w medycznym przyspieszaczu liniowym stosowanym w radioterapii. W praktyce klinicznej większość akceleratorów terapeutycznych pracuje z energiami fotonów około 4, 6, 10, 15, czasem 18 MV (czyli MeV, bo w tym kontekście używa się zamiennie skrótu MV), a górna granica rzędu 20–25 MeV jest już stosowana rzadziej, ale wciąż mieści się w standardach. Takie energie pozwalają na głęboką penetrację w tkankach, co jest kluczowe przy napromienianiu nowotworów położonych kilka–kilkanaście centymetrów pod powierzchnią skóry, np. guzów w miednicy czy w śródpiersiu. Z mojego doświadczenia, w codziennej pracy klinicznej najczęściej używa się wiązek 6 i 10 MV, bo dają dobry kompromis między głębokością dawki a ochroną skóry. Dzięki zjawisku tzw. build-up dawka maksymalna odkłada się na pewnej głębokości, a nie od razu na powierzchni, co jest ważnym elementem dobrej praktyki radioterapeutycznej. Standardy planowania (np. zalecenia ESTRO, IAEA) zakładają stosowanie właśnie takich energii w teleterapii megawoltowej, z użyciem technik IMRT czy VMAT. Przy niższych energiach fotonów nie uzyskano by odpowiedniej głębokości penetracji, a przy dużo wyższych pojawiłyby się dodatkowe problemy, jak nasilona produkcja neutronów i trudniejsza ochrona radiologiczna bunkra. Warto też pamiętać, że inny jest zakres energii w diagnostyce (kilkadziesiąt–kilkaset keV), a inny w terapii megawoltowej, i to pytanie właśnie ładnie to rozgranicza. W praktyce technik radioterapii, wiedza o typowym zakresie 4–25 MeV pomaga lepiej rozumieć krzywe procentowej dawki w głębokości, dobór energii do lokalizacji guza i ograniczeń narządów krytycznych, a więc realnie przekłada się na bezpieczeństwo i skuteczność leczenia.

Pytanie 33

Jaki sposób frakcjonowania dawki jest stosowany w radioterapii konwencjonalnej?

A. Dawka frakcyjna w zakresie 2,5-3,5 Gy 1 raz dziennie.
B. Dawka frakcyjna w zakresie 1,8-2,5 Gy 2 razy dziennie.
C. Dawka frakcyjna w zakresie 2,5-3,5 Gy 2 razy dziennie.
D. Dawka frakcyjna w zakresie 1,8-2,5 Gy 1 raz dziennie.
W radioterapii konwencjonalnej przyjmuje się tzw. frakcjonowanie standardowe: dawka frakcyjna w granicach ok. 1,8–2,0 Gy (czasem do 2,2–2,3 Gy, w zależności od ośrodka) podawana raz dziennie, 5 razy w tygodniu. Dlatego odpowiedź z zakresem 1,8–2,5 Gy 1 raz dziennie najlepiej oddaje klasyczną praktykę kliniczną. Kluczowa jest tu zasada: jedna frakcja na dobę, z przerwami nocnymi pozwalającymi na naprawę uszkodzeń w zdrowych tkankach. To wynika z radiobiologii – zdrowe komórki lepiej regenerują DNA między frakcjami, a komórki nowotworowe gorzej, więc z czasem różnica uszkodzeń działa na korzyść pacjenta. Standardowe frakcjonowanie stosuje się np. w leczeniu raka piersi po operacji, w radioterapii raka prostaty w klasycznych schematach, przy napromienianiu guzów głowy i szyi czy guzów płuca, szczególnie w leczeniu radykalnym. Typowy plan: 1,8–2 Gy dziennie do dawki całkowitej 50–70 Gy, w zależności od wskazań. Z mojego doświadczenia to właśnie ten schemat jest domyślny, jeśli w dokumentacji nie ma adnotacji o hipofrakcjonowaniu, hiperfrakcjonowaniu czy przyspieszonym (akcelerowanym) schemacie. W wielu wytycznych (np. ESMO, ASTRO) konwencjonalna radioterapia jest definiowana właśnie przez ten rząd wielkości dawki frakcyjnej i częstość 1x/dobę. W praktyce technik radioterapii planując harmonogram, wpisuje pacjentowi jedną sesję dziennie, pilnując stałych godzin, bo stały rytm dobowy też ma znaczenie dla tolerancji leczenia. Ważne jest też to, że takie frakcjonowanie jest kompromisem między skutecznością onkologiczną a toksycznością – większe dawki na frakcję szybciej przekładają się na powikłania późne w narządach krytycznych.

Pytanie 34

Na radiogramie TK głowy strzałką wskazano

Ilustracja do pytania
A. zatokę sitową.
B. zatokę klinową.
C. zbiornik wielki.
D. przegrodę nosową.
Na przedstawionym przekroju osiowym TK głowy strzałka wskazuje prawidłowo zatokę klinową. W tomografii komputerowej w projekcji poprzecznej zatoka klinowa leży centralnie, w linii pośrodkowej, tuż za jamą nosową i poniżej siodła tureckiego. Ma charakterystyczny, dość symetryczny kształt, a jej światło w badaniu bez kontrastu jest hipodensyjne (ciemne), wypełnione powietrzem, otoczone grubszą warstwą kości trzonu kości klinowej. Moim zdaniem to jest jedno z tych miejsc, które warto sobie „zakodować”, bo w praktyce radiologicznej często ocenia się właśnie zatokę klinową pod kątem zmian zapalnych, polipów, guzów czy szerzenia się patologii z przysadki mózgowej. W standardowych opisach TK zatok czy TK głowy zwraca się uwagę na drożność ujść zatok, obecność płynu, pogrubienie błony śluzowej czy całkowite zacienienie zatoki klinowej. Dobre praktyki uczą, żeby zawsze porównywać obustronne struktury oraz oceniać zatokę klinową w kilku kolejnych warstwach – unikamy wtedy pomyłek wynikających z artefaktów albo nietypowego ułożenia głowy. W wielu pracowniach technik wykonujący badanie ma obowiązek sprawdzenia, czy zakres skanowania obejmuje cały kompleks zatok przynosowych, w tym właśnie zatokę klinową, bo bywa ona pomijana przy zbyt małym zakresie. W codziennej pracy klinicznej obraz zatoki klinowej ma znaczenie np. przed planowanym dostępem chirurgicznym przez zatokę klinową do przysadki (dostęp endoskopowy przez nos). Chirurdzy laryngolodzy i neurochirurdzy opierają się wtedy na dokładnym opisie TK i znajomości anatomicznych wariantów tej zatoki. Dlatego rozpoznanie jej na obrazie TK to taki absolutny „must have” w diagnostyce obrazowej głowy.

Pytanie 35

W obrazowaniu MR do uwidocznienia naczyń krwionośnych jest stosowana sekwencja

A. TOF
B. EPI
C. STIR
D. DWI
Prawidłowa odpowiedź to TOF, czyli technika Time of Flight. Jest to specjalny rodzaj angiografii MR (MRA), który wykorzystuje zjawisko napływu świeżej, niespoczynkowej krwi do warstwy obrazowania. Krew płynąca w naczyniach ma inny stan namagnesowania niż otaczające ją tkanki stacjonarne, dzięki czemu w odpowiednio zaprojektowanej sekwencji gradientowo-echo (GRE) naczynia wychodzą bardzo jasno na tle przytłumionych tkanek. Moim zdaniem to jedna z fajniejszych sztuczek fizycznych w MR, bo pozwala zobaczyć naczynia bez podawania kontrastu. W praktyce klinicznej TOF stosuje się głównie do oceny tętnic wewnątrzczaszkowych, tętnic szyjnych, czasem tętnic kręgowych i koła Willisa. Standardem jest 3D TOF w badaniach neuroangiograficznych – daje wysoką rozdzielczość przestrzenną, możliwość rekonstrukcji MIP (maximum intensity projection) oraz dobre uwidocznienie zwężeń, tętniaków czy malformacji naczyniowych. W badaniach wydolności tętnic szyjnych często łączy się TOF z sekwencjami T1 i T2, żeby jednocześnie ocenić zarówno światło naczynia, jak i blaszkę miażdżycową. Warto też kojarzyć, że TOF jest techniką niekontrastową, w przeciwieństwie do klasycznej angiografii kontrastowej czy MRA z gadolinem – szczególnie ważne u pacjentów z niewydolnością nerek, gdzie unikamy kontrastu. Dobrą praktyką jest odpowiednie ustawienie kierunku przepływu względem płaszczyzny skanowania, bo TOF najlepiej działa, gdy krew napływa prostopadle do warstwy. Jeśli przepływ jest bardzo wolny albo bardzo turbulentny, kontrast naczyń może się pogarszać, więc technik musi świadomie dobrać parametry TR, flip angle i grubość warstw. W diagnostyce radiologicznej TOF jest po prostu podstawowym narzędziem do nieinwazyjnej oceny naczyń w MR bez kontrastu.

Pytanie 36

Który załamek w zapisie EKG odpowiada zjawisku depolaryzacji przedsionków mięśnia sercowego?

A. T
B. R
C. P
D. Q
W zapisie EKG bardzo łatwo pomylić poszczególne załamki, zwłaszcza na początku nauki. Typowy błąd polega na kojarzeniu każdego wyraźnego załamka z „jakimś skurczem serca”, bez dokładnego rozróżniania, która część mięśnia sercowego jest pobudzana. Depolaryzacja przedsionków dotyczy wyłącznie załamka P, natomiast pozostałe załamki – T, Q, R – odnoszą się już do zjawisk w obrębie komór. Jeśli ktoś wybiera załamek T, zwykle myli pojęcia depolaryzacji i repolaryzacji. Załamek T odzwierciedla repolaryzację komór, czyli powrót komórek mięśnia komór do stanu spoczynkowego po skurczu. To jest końcowa faza cyklu komorowego, a nie początek pobudzenia. Klinicznie ocena załamka T jest ważna np. w niedokrwieniu, zaburzeniach elektrolitowych czy działaniach niepożądanych leków, ale nie ma związku z depolaryzacją przedsionków. Z kolei załamki Q i R wchodzą w skład zespołu QRS, który jako całość opisuje depolaryzację komór. Załamek Q jest zwykle pierwszym ujemnym wychyleniem przed dodatnim R i odzwierciedla wczesną fazę pobudzenia przegrody międzykomorowej. Załamek R to główny dodatni komponent zespołu QRS, związany z rozprzestrzenianiem się fali depolaryzacji przez masę mięśnia komór. W praktyce diagnostycznej to właśnie kształt i szerokość zespołu QRS, a nie załamek P, wykorzystuje się do oceny bloków odnóg pęczka Hisa czy komorowych zaburzeń rytmu. Błąd myślowy polega często na tym, że skoro załamki Q, R i T są „większe”, to wydają się ważniejsze i automatycznie przypisuje im się rolę w inicjacji pobudzenia. Tymczasem przedsionki mają dużo mniejszą masę mięśniową niż komory, więc ich aktywność elektryczna generuje mniejszy załamek – właśnie P. Standardy opisowe EKG jasno wskazują: P = depolaryzacja przedsionków, QRS = depolaryzacja komór, T = repolaryzacja komór. Jeśli ten schemat się dobrze utrwali, interpretacja EKG staje się dużo prostsza i bardziej logiczna.

Pytanie 37

Rak drobnokomórkowy i rak niedrobnokomórkowy to postacie organiczne nowotworów złośliwych

A. płuc.
B. tarczycy.
C. prostaty.
D. piersi.
Rak drobnokomórkowy i rak niedrobnokomórkowy to klasyczny, wręcz podręcznikowy podział raka płuca. W praktyce klinicznej, w opisie histopatologicznym i w dokumentacji onkologicznej bardzo często zobaczysz właśnie takie sformułowanie: „rak płuca drobnokomórkowy (SCLC)” lub „rak płuca niedrobnokomórkowy (NSCLC)”. Ten podział jest kluczowy, bo obie grupy różnią się przebiegiem choroby, rokowaniem, a przede wszystkim wyborem leczenia. Rak drobnokomórkowy rośnie szybko, wcześnie daje przerzuty i zwykle jest bardzo wrażliwy na chemioterapię i radioterapię, ale niestety też często szybko nawraca. Rak niedrobnokomórkowy to cała grupa nowotworów: gruczołowy, płaskonabłonkowy, wielkokomórkowy. Dla nich podstawową metodą leczenia we wczesnych stadiach jest chirurgia (resekcja płuca lub płata), a radioterapia i chemioterapia są stosowane jako leczenie uzupełniające lub paliatywne. W diagnostyce obrazowej, szczególnie w RTG i TK klatki piersiowej, technik i lekarz muszą mieć z tyłu głowy, że każdy podejrzany guzek lub naciek w płucu może być jednym z tych typów raka. Moim zdaniem warto od razu kojarzyć: guz płuca + opis hist-pat = myślimy, czy to SCLC czy NSCLC, bo od tego zależy np. planowanie pola napromieniania, dobór protokołu TK z kontrastem, kwalifikacja do PET-CT. W dobrych praktykach klinicznych zawsze dąży się do potwierdzenia rozpoznania biopsją (bronchoskopia, biopsja przezskórna pod kontrolą TK), a dopiero potem planuje leczenie onkologiczne. Ten podział nie dotyczy piersi, prostaty ani tarczycy – tam obowiązują zupełnie inne klasyfikacje histologiczne, więc prawidłowe skojarzenie go wyłącznie z rakiem płuca jest bardzo ważne w codziennej pracy z opisami badań obrazowych i dokumentacją onkologiczną.

Pytanie 38

Rumień skóry pojawiający się podczas radioterapii jest objawem

A. późnego odczynu miejscowego.
B. późnego odczynu ogólnoustrojowego.
C. ostrego odczynu miejscowego.
D. ostrego odczynu ogólnoustrojowego.
Rumień skóry pojawiający się w trakcie radioterapii jest klasycznym przykładem ostrego odczynu miejscowego, czyli takiej reakcji tkanek, która rozwija się w czasie napromieniania lub w ciągu kilku tygodni po jego zakończeniu i jest ograniczona dokładnie do pola napromienianego. Skóra reaguje na promieniowanie podobnie jak na oparzenie słoneczne: pojawia się zaczerwienienie, lekki obrzęk, czasem świąd czy uczucie pieczenia. W praktyce klinicznej określa się to jako wczesny odczyn skórny i klasyfikuje według skal, np. RTOG/EORTC lub CTCAE, co jest standardem w radioterapii. Moim zdaniem warto zapamiętać, że wszystko, co dotyczy rumienia, suchości skóry, łuszczenia, a nawet wilgotnego złuszczania w obrębie pola napromienianego, zaliczamy właśnie do ostrych odczynów miejscowych. Pojawiają się one zwykle po dawkach rzędu kilkunastu–kilkudziesięciu Gy i są ściśle zależne od frakcjonowania, techniki planowania (IMRT, 3D-CRT) oraz pielęgnacji skóry w trakcie leczenia. W dobrych praktykach radioterapii bardzo pilnuje się obserwacji skóry pacjenta w każdym tygodniu napromieniania, edukuje się chorego, żeby nie drażnił skóry (brak gorących kąpieli, unikanie tarcia, odpowiednie kremy), bo to pozwala ograniczyć nasilenie odczynu. Rumień nie jest odczynem ogólnoustrojowym – nie wiąże się z gorączką czy zaburzeniami krążeniowymi, tylko z miejscowym uszkodzeniem komórek naskórka i drobnych naczyń w skórze. Nie jest też odczynem późnym, bo nie ma tu włóknienia, teleangiektazji, zaniku skóry czy martwicy, które mogą się pojawić miesiące lub lata po zakończeniu radioterapii. W praktyce technika radioterapii i prawidłowe rozłożenie dawki w planie leczenia mają ogromne znaczenie, żeby rumień był jak najłagodniejszy i szybko się cofał po terapii.

Pytanie 39

Dobierz dla standardowego pacjenta projekcję, pozycję i sposób ułożenia kasety o wymiarach 30 cm x 40 cm do zdjęcia przeglądowego układu moczowego.

ProjekcjaPozycjaUłożenie kasety
1.AP3.stojąca5.poprzeczne
2.PA4.leżąca6.podłużne
A. 2, 3, 6
B. 1, 4, 6
C. 1, 3, 5
D. 2, 4, 5
Prawidłowo dobrana kombinacja 1, 4, 6 oznacza projekcję AP, pozycję leżącą i ułożenie kasety podłużne – dokładnie tak, jak wykonuje się standardowe zdjęcie przeglądowe układu moczowego (tzw. KUB – kidneys, ureters, bladder). W praktyce klinicznej większość takich badań robi się w pozycji leżącej na plecach, bo pozwala to spokojnie ułożyć pacjenta, dobrze wycentrować wiązkę i zminimalizować poruszenie. Projekcja AP oznacza, że promień główny biegnie od przodu do tyłu pacjenta, czyli pacjent leży plecami na detektorze, a lampa jest nad brzuchem. To jest najbardziej klasyczny układ w radiografii przeglądowej jamy brzusznej i miednicy. Kaseta 30×40 cm w tym badaniu powinna być ułożona wzdłuż długiej osi ciała (podłużnie), żeby objąć od górnych biegunów nerek aż do okolicy spojenia łonowego i pęcherza moczowego. Przy ułożeniu poprzecznym zwykle zabrakłoby zasięgu w kierunku czaszkowo-ogonowym, szczególnie u wyższych pacjentów. Moim zdaniem warto zapamiętać prostą regułę: gdy interesuje nas cały układ moczowy w jednym ujęciu, wybieramy AP leżące z kasetą podłużnie, centrowanie na poziom grzebieni biodrowych, lekkie zwiększenie kV w stosunku do typowego brzucha, tak żeby dobrze uwidocznić zarysy nerek, cienie złogów i gaz w jelitach. W wielu pracowniach to badanie jest jednym z podstawowych przed urografią czy TK, więc dobrze opanowana technika AP leżące + kaseta podłużnie to po prostu codzienny chleb technika RTG.

Pytanie 40

Bezwzględnym przeciwwskazaniem do wykonania badania rezonansem magnetycznym jest

A. proteza tytanowa.
B. pompa insulinowa.
C. stent naczyniowy.
D. opiłek metalu w oku.
Prawidłowa odpowiedź wskazuje na jedno z klasycznych, bezwzględnych przeciwwskazań do badania rezonansem magnetycznym: obecność ferromagnetycznego opiłka metalu w oku. Pole magnetyczne w tomografie MR jest bardzo silne (najczęściej 1,5–3,0 T), a gradienty pola i impulsy RF mogą zadziałać na taki opiłek jak na mały „pocisk”. Może dojść do jego przemieszczenia, przecięcia siatkówki, uszkodzenia nerwu wzrokowego, a nawet perforacji gałki ocznej. Z mojego doświadczenia to jest coś, czego personel boi się najbardziej, bo uszkodzenie jest nagłe i praktycznie nieodwracalne. Dlatego zgodnie z dobrymi praktykami, wytycznymi producentów aparatów MR i standardami bezpieczeństwa (np. zasady strefowania w pracowni MR, procedury ACR czy europejskie rekomendacje) każdy pacjent z wywiadem pracy w warunkach narażenia na opiłki metalu (ślusarze, spawacze, pracownicy hut) powinien mieć dokładnie zebrany wywiad oraz często wykonane RTG oczodołów przed dopuszczeniem do badania. W praktyce technik zawsze powinien podejrzliwie traktować odpowiedzi w ankiecie: jeśli pacjent nie jest pewien, czy miał kiedyś uraz metaliczny oka, lepiej opóźnić MR i wyjaśnić sprawę, niż ryzykować powikłanie. Wiele elementów metalowych w ciele może być oznaczonych jako MRI-safe lub MRI-conditional, ale opiłek w oku traktuje się jak potencjalnie ferromagnetyczny, niekontrolowany i bardzo niebezpieczny. To właśnie odróżnia go od np. nowoczesnych protez czy części stentów. W realnej pracy w pracowni rezonansu jednym z kluczowych zadań technika jest więc selekcja pacjentów pod kątem takich przeciwwskazań i bezwzględne przestrzeganie procedur bezpieczeństwa zanim ktokolwiek wjedzie na stół do gantry.