Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik mechatronik
  • Kwalifikacja: ELM.03 - Montaż, uruchamianie i konserwacja urządzeń i systemów mechatronicznych
  • Data rozpoczęcia: 21 lutego 2026 23:10
  • Data zakończenia: 21 lutego 2026 23:26

Egzamin zdany!

Wynik: 33/40 punktów (82,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 2

Którego klucza należy użyć do odkręcenia przedstawionej na rysunku śruby?

Ilustracja do pytania
A. Oczkowego sześciokątnego.
B. Trzpieniowego sześciokątnego.
C. Z gniazdem sześciokątnym.
D. Płaskiego szczękowego.
Klucz trzpieniowy sześciokątny jest narzędziem zaprojektowanym specjalnie do odkręcania śrub z gniazdem sześciokątnym wewnętrznym, które znajduje się na ich końcach. To gniazdo ma specyficzny kształt, który wymaga zastosowania odpowiedniego klucza, aby zapewnić maksymalny kontakt oraz minimalizację ryzyka uszkodzenia elementu. Klucze trzpieniowe sześciokątne są dostępne w różnych rozmiarach, co pozwala na ich szerokie zastosowanie w mechanice oraz inżynierii. W praktyce, gdy pracujemy ze złożonymi maszynami lub konstrukcjami, często spotykamy się z śrubami tego typu, co czyni klucz trzpieniowy niezbędnym narzędziem w warsztacie. Użycie niewłaściwego klucza, takiego jak klucz oczkowy, może prowadzić do poślizgu lub zniszczenia gniazda, co w efekcie skutkuje trudnościami w demontażu lub wymianie śruby. W standardach mechanicznych przyjmuje się, że klucz trzpieniowy powinien być używany zawsze wtedy, gdy śruba jest dostosowana do takiego typu narzędzia, co zapewnia bezpieczeństwo i efektywność pracy.

Pytanie 3

Jaką kolejność powinny mieć poszczególne elementy zespołu przygotowania powietrza w instalacji pneumatycznej, zasilającej silnik pneumatyczny, patrząc od strony sprężarki?

A. Filtr powietrza, reduktor ciśnienia, układ smarowania, zawór sterujący
B. Reduktor ciśnienia, filtr powietrza, układ smarowania, zawór sterujący
C. Układ smarowania, filtr powietrza, zawór sterujący, reduktor ciśnienia
D. Zawór sterujący, reduktor ciśnienia, układ smarowania, filtr powietrza
Poprawna kolejność montażu elementów składowych zespołu przygotowania powietrza w układzie pneumatycznym zasilającym silnik pneumatyczny to filtr powietrza, reduktor ciśnienia, układ smarowania, a na końcu zawór sterujący. Filtr powietrza jest kluczowy, ponieważ usuwa zanieczyszczenia i wilgoć z powietrza, co chroni dalsze elementy układu przed uszkodzeniem i zapewnia ich dłuższą żywotność. Reduktor ciśnienia reguluje ciśnienie powietrza do odpowiedniego poziomu, co jest istotne dla prawidłowego działania silnika pneumatycznego. Następnie układ smarowania wprowadza odpowiednią ilość smaru, co jest niezbędne do prawidłowej pracy elementów ruchomych w silniku. Ostatnim elementem jest zawór sterujący, który umożliwia kontrolę nad przepływem powietrza do silnika. Taka struktura zapewnia optymalne warunki pracy i wydajność układu, zgodnie z najlepszymi praktykami branżowymi w zakresie automatyki i pneumatyki.

Pytanie 4

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 5

Silnik komutatorowy był narażony na długotrwałe przeciążenie, co doprowadziło do pojawienia się zwarć międzyzwojowych. Proces naprawy silnika polega na wymianie

A. uzwojenia.
B. komutatora.
C. szczotek.
D. łożysk.
Wymiana uzwojenia w silniku komutatorowym jest kluczowym zabiegiem naprawczym, zwłaszcza gdy występują zwarcia międzyzwojowe. Zwarcia te mogą mieć różne przyczyny, w tym długotrwałe przeciążenie, które prowadzi do degradacji izolacji między zwojami. Wymiana uzwojenia polega na demontażu starego uzwojenia oraz nawinięciu nowego, co wymaga precyzyjnych umiejętności oraz znajomości technik nawijania. Uzwojenia są odpowiedzialne za generowanie pola magnetycznego, które napędza wirnik, dlatego ich stan bezpośrednio wpływa na wydajność całego silnika. W praktyce, przed przystąpieniem do wymiany, należy dokładnie zdiagnozować przyczynę uszkodzenia oraz przeprowadzić testy elektryczne, aby upewnić się, że nowe uzwojenie będzie działało poprawnie. Standardy takie jak IEC 60034 dotyczące silników elektrycznych podkreślają znaczenie odpowiednich materiałów izolacyjnych oraz technik montażowych, co zwiększa żywotność i niezawodność silnika. Właściwe podejście do wymiany uzwojenia przyczynia się do minimalizacji ryzyka wystąpienia podobnych problemów w przyszłości.

Pytanie 6

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 7

Zgodnie z normami ochrony przeciwpożarowej, do gaszenia urządzeń elektrycznych pod napięciem przekraczającym 1000 V należy zastosować gaśnicę

A. proszkową oznaczoną ABC/E
B. śniegową oznaczoną BC
C. pianową oznaczoną AF
D. proszkową oznaczoną ABC
Odpowiedź z gaśnicą proszkową ABC/E jest jak najbardziej trafna. Ta klasa gaśnicza jest stworzona do gaszenia pożarów, które mogą się zdarzyć w urządzeniach elektrycznych, gdy napięcie przekracza 1000 V. Gaśnice proszkowe ABC/E zawierają specjalny proszek, który świetnie radzi sobie z pożarami różnych typów – od ciał stałych, przez płyny, aż po gazy. To oznaczenie 'E' mówi nam, że można ich używać przy urządzeniach elektrycznych. Gdy wybuchnie pożar w elektryce, to ważne, żeby nie używać wody ani gaśnic pianowych, bo to może prowadzić do porażenia prądem. Przykładem może być sytuacja, kiedy w biurze zaczyna się palić komputer – wtedy użycie gaśnicy ABC/E pozwala na szybkie i bezpieczne ugaszenie pożaru, bez ryzyka dla ludzi. Przepisy przeciwpożarowe oraz normy, jak PN-EN 2, pokazują, jak ważny jest dobór odpowiedniego sprzętu gaśniczego w miejscach z elektroniką.

Pytanie 8

Jakie narzędzie jest wykorzystywane do zaciskania końcówek na przewodach elektrycznych?

A. pincety
B. praski ręcznej
C. ucinaczki boczne
D. kombinerki
Praska ręczna to narzędzie zaprojektowane specjalnie do zaciskania końcówek przewodów elektrycznych, co zapewnia solidne i trwałe połączenia. Dzięki mechanizmowi dźwigniowemu, praska umożliwia uzyskanie odpowiedniej siły zacisku, co jest kluczowe dla uniknięcia luzów w połączeniach oraz ich późniejszych awarii. Praski ręczne są dostosowane do różnych typów końcówek, takich jak złącza typu ring, fork czy blade, co czyni je uniwersalnym narzędziem w instalacjach elektrycznych. W praktyce, zaciskanie końcówek przy pomocy praski zapewnia nie tylko bezpieczeństwo, ale także efektywność pracy, ponieważ właściwie wykonane połączenia ograniczają straty energii oraz ryzyko przegrzewania się przewodów. Ponadto, stosując praski, można łatwo dostosować siłę zacisku do specyfiki zastosowania, co jest zgodne z najlepszymi praktykami branżowymi wynikającymi z norm IEC oraz PN-EN. Warto również zaznaczyć, że użycie praski jest zalecane w przypadku pracy z przewodami o różnych przekrojach, co zwiększa wszechstronność tego narzędzia.

Pytanie 9

Symbol graficzny którego siłownika, z bezstykową sygnalizacją położenia tłoka jest przedstawiony na rysunku?

Ilustracja do pytania
A. Pneumatycznego dwustronnego działania z hamowaniem dwustronnym.
B. Hydraulicznego dwustronnego działania z hamowaniem dwustronnym.
C. Hydraulicznego dwustronnego działania z hamowaniem jednostronnym.
D. Pneumatycznego dwustronnego działania z hamowaniem jednostronnym.
Poprawna odpowiedź to pneumatyczny siłownik dwustronnego działania z hamowaniem dwustronnym, co znajduje odzwierciedlenie w symbolice graficznej. Siłownik tego typu umożliwia ruch tłoka w obu kierunkach, co jest jednoznacznie oznaczone dwoma strzałkami. Bezstykowa sygnalizacja położenia tłoka sugeruje zastosowanie czujników, które są kluczowe w nowoczesnych systemach automatyzacji, zapewniając precyzyjne monitorowanie pozycji. Hamowanie dwustronne, przedstawione przez prostokąty z przekątnymi liniami, jest szczególnie istotne w kontekście bezpieczeństwa operacji, ponieważ pozwala na kontrolowane zatrzymywanie tłoka zarówno w ruchu w przód, jak i w tył. Tego typu siłowniki znajdują zastosowanie w różnych dziedzinach przemysłu, w tym w automatyzacji procesów produkcyjnych oraz w robotyce. Użycie pneumatyki zamiast hydrauliki, co sugeruje brak lini falistych, może zredukować ciężar systemu oraz koszty eksploatacji, co jest zgodne z najlepszymi praktykami w projektowaniu maszyn. Warto również dodać, że zgodnie z normą ISO 4414, zastosowanie odpowiednich rozwiązań pneumatycznych jest kluczowe dla poprawy efektywności energetycznej oraz bezpieczeństwa w pracy.

Pytanie 10

Podłączenie kondensatora (w układzie równoległym do obciążenia) do wyjścia jednofazowego prostownika działającego w konfiguracji mostka Graetza wpłynie na napięcie wyjściowe w sposób

A. zmiany przebiegu dwupulsowego na jednopulsowy
B. zmniejszenia składowej stałej
C. redukcji tętnień
D. zmiany przebiegu jednopulsowego na dwupulsowy
Dołączenie kondensatora równolegle do obciążenia w wyjściu jednofazowego prostownika pracującego w układzie mostka Graetza ma na celu zmniejszenie tętnień napięcia wyjściowego. Kondensator działa jak filtr, magazynując energię elektryczną podczas szczytów napięcia i oddając ją w czasie, gdy napięcie spada, co prowadzi do bardziej stabilnego poziomu napięcia. W praktyce, zmniejszenie tętnień jest kluczowe w aplikacjach, gdzie wymagane są stałe wartości napięcia, takich jak zasilanie urządzeń elektronicznych, w których wahania napięcia mogą powodować uszkodzenia komponentów. Użycie kondensatora jest zgodne z najlepszymi praktykami inżynieryjnymi, które wskazują na znaczenie filtracji w układach zasilających. Dodatkowo, zastosowanie kondensatorów o odpowiednich parametrach pojemnościowych i napięciowych, zgodnych z normami IEC 61000, przyczynia się do poprawy jakości energii elektrycznej i stabilności systemów zasilających.

Pytanie 11

W układzie elektropneumatycznym przedstawionym na ilustracji należy zamontować zawór rozdzielający w wersji

Wersja zaworuW1W2W3W4
Liczba cewek1212
Typ zaworu4/24/35/25/2
Biegunowość zasilaniadowolnadowolnadowolnadowolna
Ilustracja do pytania
A. W2.
B. W3.
C. W4.
D. W1.
Zawór W4 to naprawdę dobry wybór w tym układzie elektropneumatycznym, bo pasuje do wymagań dla systemu z dwoma siłownikami pneumatycznymi. To zawór 5/2, więc ma pięć portów i dwie pozycje. Dzięki temu możemy bardzo dokładnie sterować siłownikami 1M1 i 1M2. W praktyce oznacza to, że każdy z siłowników możemy kontrolować niezależnie, co jest kluczowe, gdy potrzebujemy różne cykle robocze. Wybierając W4, możemy też korzystać ze standardowych komponentów w układach pneumatycznych, co potem ułatwia modyfikacje i konserwację. Przy projektowaniu takich układów trzeba zwracać uwagę na normy branżowe, jak ISO 4414, które mówią o bezpieczeństwie i efektywności w systemach pneumatycznych. Użycie odpowiedniego zaworu jest istotne, bo to zapewnia płynność pracy i zmniejsza ryzyko awarii spowodowanej złym doborem komponentów. Kiedy myślimy nad wyborem zaworu, ważne, żeby uwzględnić takie rzeczy jak ciśnienie robocze, przepływ i rodzaj medium, bo to wszystko wpływa na wydajność układu.

Pytanie 12

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 13

Na podstawie widoku płytki drukowanej i schematu ideowego wskaż, który element należy zamontować na płytce drukowanej w miejscu oznaczonym C3.

Ilustracja do pytania
A. Element 2.
B. Element 4.
C. Element 3.
D. Element 1.
Zgadza się, że element 2 to kondensator elektrolityczny o pojemności 100uF. To pasuje do tego, co widzimy w schemacie na miejscu oznaczonym C3. Wiesz, dobór odpowiednich komponentów w obwodach jest naprawdę ważny, bo od tego zależy, jak całość będzie działać. Kondensatory mają do odegrania sporo ról, zwłaszcza w filtracji sygnałów i stabilizacji napięcia. Gdybyśmy użyli kondensatora o innej pojemności, to mogłoby to wprowadzać jakieś zakłócenia w pracy urządzenia. Dlatego warto być dokładnym w projektowaniu i trzymać się specyfikacji, które podają producenci. Używanie komponentów zgodnych z normami, takimi jak IPC-2221, to dobry pomysł, bo to pomaga uniknąć problemów. No i pamiętajmy o montażu kondensatorów – jeśli podłączymy je źle, to możemy stracić ich wydajność. Dlatego warto mieć pod ręką dobrą dokumentację i umieć czytać schematy.

Pytanie 14

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 15

W celu sprawdzenia poprawności działania układu przedstawionego na schemacie, zmierzono napięcie zasilania. Wskaż wynik pomiaru, który świadczy, że napięcie zasilania jest prawidłowe?

Ilustracja do pytania
A. 400 V
B. 24 V
C. 230 V
D. 380 V
Jeśli odpowiedź nie wynosi 230 V, to może oznaczać, że coś nie do końca rozumiesz standardy napięcia w elektryce. Te inne wartości, które podałeś, jak 380 V czy 400 V, są raczej do przemysłowych zastosowań i zasilają duże maszyny. W codziennym życiu w naszych domach to 230 V jest tym, czego potrzebujemy. Jakby wzięło się coś z wyższej półki, to urządzenia, które mają działać na 230 V, mogą nie działać prawidłowo. A te 24 V, to jest typowe dla systemów niskonapięciowych, które są używane w automatyce budynków, ale w standardowej elektryce ich nie spotkasz. Wybierając niewłaściwe napięcie, możesz narazić swój sprzęt na uszkodzenie, co jest dość niebezpieczne. Dlatego tak ważne jest, żeby znać te standardowe wartości napięć w zależności od tego, co robisz z elektrycznością.

Pytanie 16

Silniki, które mają największy moment rozruchowy to

A. asynchroniczne prądu przemiennego
B. synchroniczne prądu przemiennego
C. bocznikowe prądu stałego
D. szeregowe prądu stałego
Silniki szeregowe prądu stałego charakteryzują się największym momentem rozruchowym spośród różnych typów silników elektrycznych. Dzieje się tak, ponieważ w silniku szeregowym wirnik i uzwojenie wzbudzenia są połączone szeregowo, co prowadzi do zmaksymalizowania prądu, który płynie przez uzwojenie wzbudzenia podczas rozruchu. W rezultacie moment obrotowy generowany w chwilach niskich prędkości jest znacznie większy niż w innych typach silników. Praktycznie rzecz biorąc, silniki te są często stosowane w aplikacjach, gdzie wymagany jest wysoki moment obrotowy przy niskich prędkościach, takich jak wózki widłowe, dźwigi czy pojazdy elektryczne. Dzięki ich konstrukcji, silniki te mogą przekazywać dużą moc przy niewielkich prędkościach, co czyni je idealnym wyborem w sytuacjach, gdzie siła jest kluczowa. W branży inżynieryjnej standardy dotyczące doboru silników pod kątem momentu rozruchowego są ściśle przestrzegane, co pozwala na optymalne dobieranie urządzeń do konkretnych zadań.

Pytanie 17

W jakiej kolejności należy dokręcać śruby pokrywy, których układ przedstawiono na rysunku, aby uzyskać równomierne przyleganie pokrywy do korpusu?

Ilustracja do pytania
A. 2-5-3-6-1-4
B. 1-4-3-6-2-5
C. 1-2-3-6-5-4
D. 2-5-3-4-6-1
Dokręcanie śrub pokrywy w kolejności 2-5-3-4-6-1 jest zgodne z najlepszymi praktykami inżynieryjnymi, ponieważ stosuje metodę dokręcania na krzyż. Taki sposób działania minimalizuje ryzyko wyginania się pokrywy oraz zapewnia równomierne rozkładanie sił na całej powierzchni styku. Kluczowym aspektem jest przechodzenie z jednej śruby do przeciwległej, co pozwala na stopniowe ugruntowanie docisku w sposób, który unika tworzenia naprężeń w materiale. Przykładem zastosowania tej metody jest montaż pokryw silników w motoryzacji, gdzie równomierne przyleganie elementów jest kluczowe dla prawidłowego funkcjonowania jednostki napędowej oraz zapobiegania wyciekom. Dobrze przeprowadzone dokręcanie wpływa na trwałość i żywotność komponentów, co jest szczególnie istotne w przypadku konstrukcji narażonych na wibracje i zmiany temperatury. Zastosowanie narzędzi z momentem obrotowym oraz przestrzeganie zaleceń producenta dotyczących kolejności i siły dokręcania są również ważnymi elementami tego procesu.

Pytanie 18

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 19

Zgodnie z normą PN-M-85002 na wale o średnicy 12 mm można osadzić wpust pryzmatyczny o wymiarach

Wpis z normy PN-M-85002
Wałek — d mmWpust
ponaddob×h mm
682×2
8103×3
10124×4
12175×5
17226×6
22308×7
A. 3x3 mm
B. 6x6 mm
C. 4x4mm
D. 5x5 mm
Odpowiedź 4x4 mm jest poprawna, ponieważ zgodnie z normą PN-M-85002 dla wałów o średnicy od 10 do 12 mm, przewidziano wpust pryzmatyczny o wymiarach 4x4 mm. Wpust pryzmatyczny jest kluczowym elementem w mechanice, który zapewnia efektywne przenoszenie momentu obrotowego między wałem a piastą. W praktyce, stosowanie odpowiednich wymiarów wpustów jest niezbędne dla zapewnienia stabilności i trwałości połączeń mechanicznych. W przypadku zastosowań w przemyśle, niewłaściwy dobór wymiarów wpustu może prowadzić do problemów z przenoszeniem momentu, co skutkuje zwiększeniem zużycia elementów oraz ryzykiem awarii. Przykładowo, w układach napędowych maszyn, zastosowanie wpustu o niewłaściwych wymiarach może skutkować poślizgiem, co negatywnie wpływa na wydajność całego systemu. Dlatego znajomość norm oraz precyzyjne dobieranie wymiarów wpustów pryzmatycznych jest kluczowe dla inżynierów mechaników oraz technologów.

Pytanie 20

Pokazany na rysunku sposób montowania podzespołów elektronicznych, na płytce obwodu drukowanego, to

Ilustracja do pytania
A. klejenie.
B. zgrzewanie.
C. spawanie.
D. lutowanie.
Lutowanie jest standardową metodą łączenia podzespołów elektronicznych na płytkach obwodów drukowanych (PCB). Proces ten polega na użyciu stopu lutowniczego, który po podgrzaniu w płynnej formie wypełnia szczeliny między elementami a płytką, a następnie po schłodzeniu tworzy trwałe połączenie. Zaletą lutowania jest jego zdolność do zapewnienia nie tylko solidnego połączenia elektrycznego, ale również wytrzymałości mechanicznej, co jest kluczowe w zastosowaniach elektronicznych. W praktyce lutowanie stosowane jest w produkcji urządzeń elektronicznych, takich jak komputery, telewizory czy telefony. Istnieją różne techniki lutowania, w tym lutowanie ręczne, lutowanie na fali czy lutowanie w piecu, które są dostosowane do różnych potrzeb produkcyjnych i typów urządzeń. Warto zaznaczyć, że lutowanie powinno być przeprowadzane zgodnie z normami IPC (Institute for Printed Circuits), które określają wymagania dotyczące jakości i niezawodności połączeń lutowanych.

Pytanie 21

Demontaż połączenia kołkowego wykonuje się narzędziem przedstawionym na rysunku

Ilustracja do pytania
A. C.
B. D.
C. B.
D. A.
Odpowiedź D jest prawidłowa, ponieważ narzędzie przedstawione jako przecinak jest specjalistycznym narzędziem przeznaczonym do demontażu połączeń kołkowych. Przecinak działa poprzez wybijanie kołków, co jest kluczowe w wielu procesach montażowych i demontażowych w różnych branżach, takich jak budownictwo, mechanika czy inżynieria. Użycie przecinaka wymaga precyzyjnej aplikacji siły, aby nie uszkodzić otaczających elementów. Zgodnie z najlepszymi praktykami, przed użyciem tego narzędzia należy ocenić, czy kołki są odpowiednio zabezpieczone i czy materiał, z którego są wykonane, nie jest podatny na uszkodzenia. Zastosowanie przecinaka w pracy z połączeniami kołkowymi pozwala na szybkie i efektywne usunięcie elementów łączących, co może znacznie przyspieszyć procesy naprawcze i konserwacyjne.

Pytanie 22

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 23

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 24

Z którym czujnikiem współpracuje magnes zamontowany w siłowniku w sposób przedstawiony na rysunku?

Ilustracja do pytania
A. Optycznym.
B. Indukcyjnym.
C. Ciśnienia.
D. Kontaktronowym.
Czujnik kontaktronowy współpracuje z magnesem dzięki zastosowaniu zjawiska magnetycznego, które jest kluczowe w wielu aplikacjach automatyki i technologii. Gdy magnes zainstalowany w siłowniku zbliża się do czujnika, pola magnetyczne aktywują styk w czujniku kontaktronowym, co skutkuje jego zamknięciem lub otwarciem. Takie rozwiązania są powszechnie stosowane w systemach bezpieczeństwa, automatyce budynkowej oraz w różnorodnych urządzeniach przemysłowych, takich jak zautomatyzowane bramy czy systemy monitoringu. Dzięki swojej prostocie i efektywności, czujniki kontaktronowe stają się standardem w aplikacjach, gdzie wymagana jest detekcja ruchu lub pozycji. Zgodnie z najlepszymi praktykami inżynieryjnymi, instalacja czujników powinna być przeprowadzona zgodnie z wytycznymi producenta oraz obowiązującymi normami, co zapewnia ich niezawodność oraz długowieczność w działaniu.

Pytanie 25

Jaka powinna być wartość znamionowego napięcia zasilania urządzenia, aby mogło być zasilane przez zasilacz impulsowy o charakterystyce napięciowo-prądowej przedstawionej na rysunku?

Ilustracja do pytania
A. 60V
B. 150V
C. 160V
D. 80V
Poprawna odpowiedź to 150V, ponieważ w analizowanym wykresie zauważamy, że w punkcie zwrotnym napięcie wynosi właśnie tę wartość. Zasilacze impulsowe są projektowane tak, aby działać w określonym zakresie napięć, a 150V zapewnia optymalne warunki pracy urządzenia. W praktyce, stosując zasilacz o takim znamionowym napięciu, możemy osiągnąć nie tylko stabilność, ale również efektywność energetyczną. Zasilacze impulsowe są powszechnie stosowane w nowoczesnych urządzeniach elektronicznych ze względu na swoją wysoką sprawność energetyczną oraz zdolność do regulacji napięcia w odpowiedzi na zmieniające się obciążenia. Ponadto, w kontekście krajowych i międzynarodowych norm, takich jak IEC 60950, ważne jest, aby dobierać zasilacze zgodnie z wymaganiami producenta urządzenia, aby unikać uszkodzeń i zapewnić bezpieczeństwo użytkowania. Dlatego odpowiednia wartość znamionowego napięcia zasilania jest kluczowa dla długotrwałego i efektywnego działania systemów elektronicznych.

Pytanie 26

Jaki środek smarny oraz o jakiej konsystencji powinno się wykorzystać w celu zmniejszenia oporu tarcia w siłownikach pneumatycznych?

A. Smar o stałej konsystencji
B. Półciekły smar plastyczny
C. Olej w postaci płynnej
D. Olej w postaci mgły olejowej
Olej w postaci mgły olejowej jest optymalnym środkiem smarnym do zastosowania w siłownikach pneumatycznych, ponieważ skutecznie obniża tarcie i zużycie elementów ruchomych, co przekłada się na ich dłuższą żywotność. Typowa mgła olejowa jest wytwarzana poprzez rozpylanie oleju, co pozwala na równomierne pokrycie powierzchni roboczych. Dzięki temu olej penetruje w najtrudniej dostępne miejsca w mechanizmach, co zwiększa efektywność smarowania. W praktyce, olej w postaci mgły jest często używany w zautomatyzowanych systemach, gdzie precyzja i efektywność smarowania są kluczowe. Zgodnie z normami ISO 6743-99, oleje do smarowania pneumatycznego powinny spełniać określone wymagania dotyczące lepkości i stabilności. Wybór odpowiedniego środka smarnego jest kluczowy nie tylko dla wydajności, ale i dla bezpieczeństwa operacji, dlatego dobór oleju w postaci mgły jest zgodny z najlepszymi praktykami branżowymi.

Pytanie 27

Na którym rysunku przedstawiono triak?

Ilustracja do pytania
A. C.
B. A.
C. D.
D. B.
Triak, będący elementem półprzewodnikowym, odgrywa kluczową rolę w aplikacjach związanych z kontrolą mocy w obwodach prądu przemiennego. W odpowiedzi B widoczny jest triak, który można łatwo zidentyfikować dzięki jego unikalnym oznaczeniom oraz kształtowi. Triaki są powszechnie stosowane w regulatorach oświetlenia, silnikach elektrycznych oraz w systemach grzewczych, gdzie konieczne jest precyzyjne sterowanie mocą. W praktyce triak działa jako przełącznik, który może włączać i wyłączać przepływ prądu w cyklu AC, co pozwala na skuteczną kontrolę energii bez strat mocy. Dodatkowo, triaki są projektowane zgodnie z normami IEC, co zapewnia ich wysoką jakość i niezawodność. Znajomość triaków oraz ich zastosowań jest niezbędna dla inżynierów i techników, którzy pracują w dziedzinie elektroniki i automatyki.

Pytanie 28

W której sprężarce występują elementy przedstawione na rysunku?

Ilustracja do pytania
A. Śrubowej.
B. Osiowej.
C. Rootsa.
D. Tłokowej.
Sprężarki śrubowe są powszechnie stosowane w wielu aplikacjach przemysłowych, a ich konstrukcja opiera się na dwóch współpracujących wirnikach, które sprężają gaz. Elementy przedstawione na rysunku to właśnie wirniki sprężarki śrubowej, które charakteryzują się unikalnym, śrubowym kształtem. W procesie sprężania, jednym z wirników napędza silnik, a drugi wirnik obraca się w przeciwną stronę, co pozwala na efektywne i ciche sprężanie gazu. Sprężarki tego typu są często wykorzystywane w przemyśle, gdzie wymagane są stałe i niezawodne źródła sprężonego powietrza, na przykład w systemach pneumatycznych, a także w aplikacjach wymagających sprężania gazów przemysłowych. Warto zwrócić uwagę, że sprężarki śrubowe są bardziej efektywne energetycznie niż inne typy sprężarek, co czyni je korzystnym wyborem w dłuższym okresie użytkowania. Ich zastosowanie w lokalach przemysłowych podlega również standardom, które określają wymagania dotyczące efektywności energetycznej, co wpływa na ich popularność.

Pytanie 29

Na płytce drukowanej w miejscach oznaczonych cyframi 1, 2, 3 należy zamontować

Ilustracja do pytania
A. 1 - kondensator elektrolityczny, 2 - diodę prostowniczą, 3 - rezystor.
B. 1 - kondensator elektrolityczny, 2 - rezystor, 3 - diodę prostowniczą.
C. 1 - diodę prostowniczą, 2 - rezystor, 3 - kondensator elektrolityczny.
D. 1 - diodę prostowniczą, 2 - kondensator elektrolityczny, 3 - rezystor.
Twoja odpowiedź jest prawidłowa. Miejsce oznaczone cyfrą 1 jest przeznaczone na diodę prostowniczą, co można zidentyfikować po charakterystycznym symbolu diody, który często przedstawia trójkąt i linię. Dioda prostownicza jest kluczowym elementem w obwodach elektronicznych, gdzie pełni funkcję prostowania prądu, co jest istotne w zasilaczach i układach rectifier. Miejsce oznaczone cyfrą 2 jest przeznaczone na kondensator elektrolityczny. Kondensatory te są używane głównie do filtracji w zasilaczach oraz do stabilizacji napięcia, co jest niezbędne dla prawidłowego działania układów elektronicznych. Ostatnie miejsce, oznaczone cyfrą 3, jest przeznaczone na rezystor. Rezystory są powszechnie stosowane do ograniczenia przepływu prądu w obwodach oraz do regulacji napięcia. Zrozumienie funkcji tych komponentów jest kluczowe w projektowaniu i analizie obwodów elektronicznych, a ich prawidłowy montaż na płytce drukowanej zgodnie z oznaczeniami jest niezbędny dla stabilności i bezpieczeństwa całego układu.

Pytanie 30

Jaki rodzaj wyłącznika przedstawiono na rysunku?

Ilustracja do pytania
A. Silnikowy.
B. Krańcowy.
C. Nadprądowy.
D. Różnicowoprądowy.
Wybór wyłącznika krańcowego, silnikowego lub nadprądowego jest błędny, ponieważ te urządzenia mają zupełnie inne funkcje i zastosowanie w instalacjach elektrycznych. Wyłącznik krańcowy jest elementem automatyki, stosowanym głównie w systemach, które wymagają detekcji położenia elementów mechanicznych, takich jak drzwi czy dźwigi. Odpowiada on za sygnalizowanie, gdy dany element osiągnie skrajne położenie, a nie za ochronę przed prądem upływowym. Wyłącznik silnikowy, z kolei, jest używany do ochrony silników elektrycznych przed przeciążeniem i zwarciem, co również nie jest związane z detekcją różnicy prądów. Natomiast wyłącznik nadprądowy zabezpiecza instalacje przed skutkami przeciążeń i zwarć, ale nie jest w stanie zareagować na niebezpieczne prądy upływowe, które mogą prowadzić do porażeń elektrycznych. W związku z tym, wybór któregoś z tych urządzeń zamiast wyłącznika różnicowoprądowego wskazuje na niepełne zrozumienie zasad bezpieczeństwa w instalacjach elektrycznych oraz ich funkcji, co może prowadzić do poważnych konsekwencji w obszarze ochrony zdrowia i życia użytkowników. Ważne jest, aby przy projektowaniu instalacji elektrycznych stosować odpowiednie środki ochrony, zgodne z normami oraz wymaganiami prawnymi.

Pytanie 31

Który z wymienionych elementów zabezpiecza łożysko przed wysunięciem z obudowy urządzenia przedstawionego na rysunku?

Ilustracja do pytania
A. Nakrętka koronowa.
B. Pierścień Segera.
C. Podkładka dystansująca.
D. Zawleczka zabezpieczająca.
Pierścień Segera to naprawdę ważny element w wielu zastosowaniach inżynieryjnych. Służy do zabezpieczania łożysk przed ich przypadkowym wysunięciem z obudowy. Jego specyficzny kształt i sprężystość sprawiają, że świetnie trzyma się w rowkach na wałku lub w otworze, co naprawdę skutecznie zapobiega przesunięciom wzdłuż osi. Widziałem, że używa się pierścieni Segera w takich rzeczach jak silniki czy różne przekładnie. To naprawdę ważne dla uniknięcia uszkodzeń spowodowanych ruchem łożysk. Standardy branżowe, jak ISO 14120, mówią, jak ważne są odpowiednie zabezpieczenia mechaniczne, więc pierścień Segera to musi być kluczowy element, gdy projektujemy i produkujemy maszyny. Fajnie jest też zauważyć, że inne elementy jak nakrętki koronowe czy zawleczki mają swoje zastosowania, ale nie dają takiej ochrony jak pierścień Segera, jeśli chodzi o łożyska.

Pytanie 32

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 33

Który opis siłowników hydraulicznych przedstawionych na rysunkach jest poprawny?

Siłownik hydraulicznyA.B.C.D.
TeleskopowyRys. 1Rys. 4Rys. 3Rys. 4
Jednostronnego działaniaRys. 2Rys. 1Rys. 4Rys. 1
Dwustronnego działania z dwustronnym tłoczyskiemRys. 3Rys. 2Rys. 1Rys. 3
Dwustronnego działania z jednostronnym tłoczyskiemRys. 4Rys. 3Rys. 2Rys. 2
Ilustracja do pytania
A. B.
B. D.
C. C.
D. A.
Poprawna odpowiedź to D, ponieważ rysunek 4 przedstawia siłownik teleskopowy, który jest konstrukcją wykorzystywaną w wielu zastosowaniach inżynieryjnych i przemysłowych. Siłowniki teleskopowe charakteryzują się tym, że składają się z kilku segmentów, które mogą się wysuwać jeden z drugiego, co pozwala na uzyskanie dużych skoków przy stosunkowo niewielkich wymiarach konstrukcyjnych. Tego typu siłowniki znajdują zastosowanie w budownictwie, automatyce przemysłowej, a także w systemach transportowych, gdzie przestrzeń jest ograniczona. W kontekście standardów branżowych, siłowniki teleskopowe muszą spełniać określone normy dotyczące wytrzymałości i bezpieczeństwa, co zapewnia ich niezawodność i długą żywotność w trudnych warunkach pracy. Zrozumienie różnych typów siłowników hydraulicznych, takich jak jednostronne czy dwustronne, jest kluczowe dla prawidłowego doboru komponentów w systemach hydraulicznych.

Pytanie 34

Siłownik, zasilany sprężonym powietrzem o ciśnieniu roboczym 8 bar, ma maksymalną liczbę cykli nmax = 50/min oraz zużywa 1,4 litra powietrza w trakcie jednego cyklu. Jakie parametry powinna mieć sprężarka tłokowa do zasilania tego siłownika?

A. wydajność 5,3 m3/h, ciśnienie maksymalne 1,0 MPa
B. wydajność 5,3 m3/h, ciśnienie maksymalne 0,7 MPa
C. wydajność 3,6 m3/h, ciśnienie maksymalne 0,7 MPa
D. wydajność 3,6 m3/h, ciśnienie maksymalne 1,0 MPa
Wybrana odpowiedź jest poprawna, ponieważ wymagana wydajność sprężarki tłokowej wynosi co najmniej 5,3 m3/h, aby sprostać zapotrzebowaniu siłownika. Siłownik wykonuje 50 cykli na minutę, zużywając 1,4 litra powietrza na cykl. Łączne zużycie powietrza wynosi 50 cykli/min x 1,4 litra/cykl = 70 litrów/minutę, co przelicza się na 4,2 m3/h. Wybór sprężarki o wydajności 5,3 m3/h zapewnia odpowiedni zapas, co jest zgodne z praktykami inżynieryjnymi, które zalecają uwzględnienie marginesu zapasu wydajności dla osiągnięcia stabilnej pracy. Dodatkowo, maksymalne ciśnienie 1,0 MPa (10 bar) spełnia wymagania robocze siłownika, który działa przy ciśnieniu 8 bar. Użycie sprężarki z wyższym ciśnieniem pozwoli również na ewentualne straty ciśnienia w systemie oraz wzmożone zapotrzebowanie w przypadku intensywnej pracy siłownika, co jest istotne w aplikacjach przemysłowych, takich jak automatyzacja produkcji oraz systemy transportu pneumatycznego.

Pytanie 35

Jaką metodę należy wykorzystać do pomiaru prędkości obrotowej wirnika silnika napędzającego system mechatroniczny?

A. Stroboskopową
B. Termoluminescencyjną
C. Ultradźwiękową
D. Radiometryczną
Odpowiedź stroboskopowa jest prawidłowa, ponieważ technika ta jest powszechnie stosowana do pomiaru prędkości obrotowej wirujących elementów, takich jak wały silników. Stroboskopowe pomiary opierają się na zjawisku stroboskopowym, które wykorzystuje krótkie impulsy światła emitowane przez stroboskop do oświetlania wirującego obiektu. W momencie, gdy częstotliwość błysków stroboskopu jest zsynchronizowana z prędkością obrotową wału, obiekt wydaje się zatrzymany, co pozwala dokładnie określić jego prędkość obrotową. Przykładem zastosowania tej metody mogą być sytuacje w przemyśle, gdzie konieczne jest monitorowanie prędkości wałów w maszynach produkcyjnych. Metoda stroboskopowa jest również preferowana w badaniach laboratoryjnych, ponieważ nie wpływa na działanie mierzonych elementów, co jest zgodne z najlepszymi praktykami w inżynierii. Dodatkowo, ta metoda jest szeroko opisana w normach takich jak ISO 24410, które określają wymagania dotyczące pomiarów prędkości obrotowej.

Pytanie 36

Przyłącze T zaworu hydraulicznego przedstawionego na rysunku należy podłączyć do

Ilustracja do pytania
A. pompy.
B. zbiornika oleju.
C. siłownika dwustronnego działania.
D. siłownika jednostronnego działania.
Przyłącze T w zaworze hydraulicznym to naprawdę ważny element w systemach hydraulicznych. Jego główne zadanie to odprowadzanie oleju z powrotem do zbiornika, co jest kluczowe dla prawidłowego działania całego układu. Kiedy zawór jest w pozycji neutralnej, olej nie zasila siłowników, więc nadmiar musi wrócić do zbiornika, żeby uniknąć zbyt dużego ciśnienia. Widziałem to na budowie, gdzie koparki i dźwigi używają takich rozwiązań, żeby wszystko działało stabilnie i bezpiecznie. Jeśli przyłącze T jest źle podłączone, może to prowadzić do uszkodzenia hydrauliki, więc naprawdę warto trzymać się dobrych praktyk i standardów, jak choćby ISO 4413, które regulują te kwestie.

Pytanie 37

Podczas instalacji systemu z kontrolerem PLC, przewody magistrali Profibus powinny

A. być kładzione w bezpośrednim sąsiedztwie kabli energetycznych
B. być wciągane do osłon jako pierwsze
C. być układane jak najdalej od przewodów silnoprądowych
D. być wciągane do osłon jako ostatnie
Układanie przewodów magistrali Profibus jak najdalej od przewodów silnoprądowych jest kluczowe dla zapewnienia niezawodności i integralności sygnału w systemach automatyki przemysłowej. Przewody silnoprądowe emitują pole elektromagnetyczne, które może zakłócać transmisję danych w kablach magistrali, prowadząc do błędów komunikacyjnych i spadku wydajności systemu. Dobre praktyki montażowe, zgodne z normami, takimi jak IEC 61158, zalecają trzymanie przynajmniej 30 centymetrów odstępu pomiędzy przewodami sygnałowymi a przewodami zasilającymi. Ponadto, umieszczając przewody w odpowiednich osłonach, można zminimalizować ryzyko uszkodzeń mechanicznych oraz wpływu czynników zewnętrznych, co ma istotne znaczenie w trudnych warunkach przemysłowych. Przykładowo, w zakładach produkcyjnych, w których występuje intensywna obecność maszyn elektrycznych, przestrzeganie tych zasad zapewnia stabilność działania systemu sterowania oraz minimalizuje ryzyko awarii, co przekłada się na zwiększenie efektywności produkcji.

Pytanie 38

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 39

W przedstawionym na rysunku siłowniku dwustronnego działania ruch tłoka odbywa się w kierunku wskazanym strzałką. Która komora oznaczona została literą B?

Ilustracja do pytania
A. Spływowa.
B. Nadtłokowa.
C. Podtłokowa.
D. Tłoczna.
Wybierając inną komorę, widać, że nie do końca rozumiesz, jak działają różne części siłownika hydraulicznego. Komora nadtłokowa, jak można się domyślić, jest nad tłokiem i tam nie dochodzi olej pod ciśnieniem, więc nie wprawia tłoka w ruch. Podobnie, komora spływowa to nie ta, która generuje siłę, a raczej miejsce, gdzie olej odpływa. W siłownikach to komora tłoczna powoduje ruch tłoka w kierunku strzałki, a pomylenie tych terminów może prowadzić do naprawdę poważnych błędów. Też błędne wskazanie komory podtłokowej, która jest pod tłokiem i odpowiada za jego powrót do wyjściowej pozycji, pokazuje, że jest tu typowe nieporozumienie z hydrauliką. Ważne, żeby zwracać uwagę na te różnice, bo to kluczowe w projektowaniu i użytkowaniu układów hydraulicznych. Dobrze jest naprawdę zrozumieć, co robi każda komora, bo błędna interpretacja może skutkować niewłaściwym działaniem urządzeń i zwiększa ryzyko awarii.

Pytanie 40

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.