Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektryk
  • Kwalifikacja: ELE.05 - Eksploatacja maszyn, urządzeń i instalacji elektrycznych
  • Data rozpoczęcia: 19 listopada 2025 12:08
  • Data zakończenia: 19 listopada 2025 12:43

Egzamin niezdany

Wynik: 13/40 punktów (32,5%)

Wymagane minimum: 20 punktów (50%)

Udostępnij swój wynik
Szczegółowe wyniki:
Pytanie 1

Podczas wykonywania pomiarów okresowych na kablowej linii zasilającej 110 kV będzie mierzona rezystancja izolacji jednego z żył kabla w stosunku do pozostałych uziemionych żył. Jaki zakres pomiarowy powinien być ustawiony na urządzeniu pomiarowym, aby dokonany pomiar był poprawny?

A. 200 MΩ, 1000 V
B. 200 MΩ, 2500 V
C. 2000 MΩ, 1000 V
D. 2000 MΩ, 2500 V
Wybór zakresu 200 MΩ oraz 1000 V nie jest odpowiedni do pomiaru rezystancji izolacji wysokiego napięcia, jak w przypadku kabli 110 kV. Ustawienie na 200 MΩ ogranicza maksymalną rezystancję, jaką można zmierzyć, co może prowadzić do niedoszacowania stanu izolacji, szczególnie w przypadku kabli o wysokiej rezystancji, które mogą osiągać wartości znacznie przekraczające ten próg. Z kolei, wybór 1000 V jako napięcia pomiarowego nie jest wystarczający do przeprowadzenia wiarygodnych testów na kablach 110 kV. Przemysł elektroenergetyczny zaleca stosowanie wyższych napięć, takich jak 2500 V, aby uzyskać adekwatne wyniki, które odzwierciedlają rzeczywistą jakość izolacji. Przy pomiarach rezystancji izolacji istotna jest nie tylko sama wartość rezystancji, ale również odpowiednie napięcie, które pozwala na zdiagnozowanie potencjalnych defektów, takich jak mikropęknięcia czy degradacja materiałów izolacyjnych. Zbyt niskie napięcie i zakres mogą prowadzić do błędnych wniosków, co w dłuższej perspektywie może skutkować poważnymi awariami, zagrażającymi bezpieczeństwu instalacji oraz osób z nią związanych.

Pytanie 2

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 3

Przed przystąpieniem do prac konserwacyjnych w elektrycznym urządzeniu trwale podłączonym do zasilania, po odcięciu napięcia, jak należy postępować w odpowiedniej kolejności?

A. należy sprawdzić, czy nie ma napięcia, uziemić oraz zewrzeć wszystkie fazy, a następnie zabezpieczyć obwód przed przypadkowym załączeniem
B. należy zabezpieczyć obwód przed przypadkowym załączeniem, sprawdzić, czy nie ma napięcia, uziemić oraz zewrzeć wszystkie fazy
C. należy sprawdzić, czy nie ma napięcia, zabezpieczyć obwód przed przypadkowym załączeniem, uziemić oraz zewrzeć wszystkie fazy
D. należy zabezpieczyć obwód przed przypadkowym załączeniem, uziemić oraz zewrzeć wszystkie fazy, a następnie sprawdzić, czy nie ma napięcia
Kiedy podejmujemy decyzję o kolejności działań przed rozpoczęciem prac konserwacyjnych, kluczowe jest zrozumienie, jak błędy w sekwencji mogą prowadzić do zagrożeń. Zaczynanie od zabezpieczenia obwodu przed przypadkowym załączeniem, a następnie sprawdzanie braku napięcia, wprowadza ryzyko oszacowania, że urządzenie jest całkowicie bezpieczne, zanim upewnimy się, że nie ma napięcia. Z kolei uziemienie i zwarcie wszystkich faz bez wcześniejszego sprawdzenia braku napięcia może prowadzić do niebezpiecznych sytuacji, zwłaszcza w przypadku, gdy w urządzeniu występują nieoczekiwane napięcia, które mogą być spowodowane przez różne czynniki, takie jak indukcja czy błędy w instalacji elektrycznej. Niedostateczne zabezpieczenia mogą skutkować poważnymi wypadkami, na przykład porażeniem prądem lub uszkodzeniem sprzętu. Istotne jest, aby zawsze stosować się do ustalonych norm, takich jak PN-IEC 60364, które jasno określają standardy bezpieczeństwa w instalacjach elektrycznych. Kluczowym błędem myślowym jest założenie, że urządzenie jest bezpieczne tylko dlatego, że zostało odłączone od źródła zasilania, co może prowadzić do nieodpowiedzialnych działań i narażenia zdrowia i życia osób pracujących w pobliżu instalacji.

Pytanie 4

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 5

W celu oceny stanu technicznego instalacji elektrycznej łazienki dokonano jej oględzin i pomiarów.
Na podstawie wyników pomiarów zamieszczonych w tabeli określ uszkodzenie powstałe w instalacji.

Pomiar napięcia między przewodem PE i drugim punktem instalacji:
Drugi punkt pomiaru:Przewód fazowy LPrzewód neutralny NMetalowa rura COMetalowa rura gazowaMetalowa wanna
Wartość:232 V0 V51 V49 V0 V
A. Przebicie izolacji przewodu fazowego do metalowych rur.
B. Uszkodzone połączenia wyrównawcze miejscowe.
C. Uszkodzona izolacja przewodu neutralnego w pobliżu wanny.
D. Zwarcie między przewodem neutralnym, a ochronnym.
Zwarcie między przewodem neutralnym a ochronnym, przebicie izolacji przewodu fazowego do metalowych rur, oraz uszkodzona izolacja przewodu neutralnego w pobliżu wanny to odpowiedzi, które mogą wydawać się logiczne na pierwszy rzut oka, ale nie oddają rzeczywistej sytuacji opisanej w wyniku pomiarów. Przy zwarciu między przewodem neutralnym a ochronnym zwykle obserwuje się znaczny wzrost prądu, co prowadziłoby do zadziałania zabezpieczeń, jak bezpieczniki czy wyłączniki różnicowoprądowe. Jeśli jednak nie doszło do takiej reakcji, to znaczy, że problem nie dotyczy tego aspektu. Przebicie izolacji jest zjawiskiem, które także ujawniałoby się poprzez zjawisko porażenia prądem lub spadek izolacji, co nie zostało wskazane w wynikach pomiarów. Uszkodzona izolacja przewodu neutralnego w pobliżu wanny, chociaż brzmi groźnie, nie jest bezpośrednio związana z pomiarami napięcia między przewodem ochronnym a metalowymi elementami instalacji. W praktyce oznaczałoby to, że metalowe elementy nie byłyby prawidłowo uziemione, co prowadziłoby do niebezpiecznego wzrostu potencjału. Kluczowe jest, aby pamiętać, że nieprawidłowe interpretacje wyników pomiarów mogą prowadzić do błędnych wniosków dotyczących stanu technicznego instalacji, co może mieć poważne konsekwencje dla bezpieczeństwa użytkowników. W przypadku pojawiania się nieprawidłowych wartości napięcia, najpierw należy zweryfikować stan połączeń wyrównawczych, ponieważ to one powinny zapewniać bezpieczeństwo w danym obszarze. Zachowanie ostrożności i dokładne zrozumienie wyników pomiarowych są kluczowe dla zapobiegania poważnym wypadkom.

Pytanie 6

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 7

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 8

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 9

Aby zapewnić ochronę przed porażeniem elektrycznym przy awarii użytkowników silnika elektrycznego klasy ochronności I, jego obudowa w układzie sieci TT powinna być

A. połączona z uziomem
B. elektrycznie odizolowana od gruntu oraz przewodzącego podłoża
C. elektrycznie odizolowana od uziomu za pomocą iskiernika
D. podłączona do przewodu neutralnego
Odpowiedź 'przyłączyć do uziomu' jest prawidłowa, ponieważ w systemie TT, który jest jedną z metod ochrony przeciwporażeniowej, uziemienie urządzenia elektrycznego ma kluczowe znaczenie dla bezpieczeństwa. W przypadku uszkodzenia izolacji silnika elektrycznego I klasy ochronności, potencjalne napięcie na obudowie może wzrosnąć, co stanowi zagrożenie dla użytkowników. Przyłączenie korpusu silnika do uziomu zapewnia, że wszelkie niebezpieczne napięcia zostaną odprowadzone do ziemi, minimalizując ryzyko porażenia. W praktyce, takie rozwiązanie jest zgodne z normami międzynarodowymi, jak np. IEC 60364, które określają zasady instalacji elektrycznych oraz środki ochrony przeciwporażeniowej. Uziemienie także pozwala na szybkie zadziałanie zabezpieczeń, takich jak wyłączniki różnicowoprądowe, co jest istotne w przypadku awarii. Dodatkowo, instalacje z poprawnie wykonanym uziemieniem mogą przyczynić się do zmniejszenia zakłóceń elektromagnetycznych, co jest istotne w kontekście wydajności urządzeń elektrycznych.

Pytanie 10

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 11

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 12

Jakim skrótem literowym określamy system automatyki energetycznej, który umożliwia przywrócenie normalnej pracy linii energetycznej po jej wyłączeniu przez urządzenia zabezpieczające?

A. SPZ
B. SRN
C. SCO
D. SZR
Skrót SPZ (samoczynne przywracanie zasilania) odnosi się do systemu automatyki energetycznej, który ma na celu przywrócenie normalnego funkcjonowania linii energetycznej po jej wyłączeniu przez urządzenia zabezpieczające. System ten jest kluczowy dla zapewnienia ciągłości dostaw energii elektrycznej oraz minimalizacji przerw w zasilaniu. W praktyce, SPZ działa na zasadzie wykrywania awarii lub przeciążeń, co inicjuje proces odłączenia danego obwodu. Po ustabilizowaniu warunków pracy i wykryciu, że awaria została usunięta, system automatycznie przywraca zasilanie. Przykładowo, w przypadku chwilowego wzrostu zapotrzebowania, SPZ może zresetować wyłącznik, co pozwala uniknąć niepotrzebnych przerw w zasilaniu. Praktyczna implementacja SPZ znajduje zastosowanie w różnych sektorach, od przemysłu, przez sieci dystrybucji, aż po systemy energetyczne w budynkach. Wiele krajowych standardów, takich jak PN-EN 50160, podkreśla znaczenie takich rozwiązań dla jakości dostaw energii elektrycznej oraz bezpieczeństwa systemu energetycznego.

Pytanie 13

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 14

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 15

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 16

Na podstawie wyników pomiarów przedstawionych w tabeli określ, który z obwodów nie spełnia warunków ochrony przeciwporażeniowej.

ObwódNazwa urządzenia elektrycznegoZastosowane zabezpieczeniePrąd wyłączalny z charakterystykiCzas wyłączeniaZmierzona impedancjaPrąd zwarcia obliczeniowy
Ib w AIw w AT≤... w sZz w ΩIzw w A
A.gniazdo jednofazoweB16800,22,30100,00
B.gniazdo jednofazoweB16800,22,5390,09
C.gniazdo jednofazoweB16800,23,3668,45
D.gniazdo jednofazoweB16800,21,32174,24
A. A.
B. B.
C. C.
D. D.
Obwód C został zidentyfikowany jako ten, który nie spełnia warunków ochrony przeciwporażeniowej ze względu na prąd różnicowy równy 68,45A, który jest niższy niż prąd wyzwalający zabezpieczenia wynoszący 80A. Zgodnie z normą IEC 60364-4-41, prąd różnicowy powinien być wystarczająco duży, aby zapewnić skuteczne zadziałanie zabezpieczenia w przypadku awarii. W praktyce oznacza to, że jeśli wystąpiłby prąd upływowy, zabezpieczenie nie zadziałałoby, co stwarzałoby ryzyko porażenia prądem. Przykładem zastosowania tych norm może być instalacja zabezpieczeń różnicowoprądowych w budynkach mieszkalnych. Wysokiej jakości zabezpieczenia są niezbędne, aby zminimalizować ryzyko porażenia i pożaru, co jest kluczowe dla bezpieczeństwa użytkowników. Ponadto, regularne kontrole i testy tych zabezpieczeń są zalecane w celu upewnienia się, że działają one prawidłowo, co jest zgodne z praktykami utrzymania bezpieczeństwa elektrycznego.

Pytanie 17

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 18

Dodatkowy przewód ochronny w instalacji wykonanej przewodem LYd 750 4x2,5 zamocowanej na uchwytach na ścianie piwnicy powinien być oznaczony symbolem

A. ADY 750 1x2,5
B. YDY 450/750 1x2,5
C. Dyd 750 1x4
D. LYc 300/500 1x6
Wybór innych oznaczeń przewodów, takich jak YDY 450/750 1x2,5, ADY 750 1x2,5 czy LYc 300/500 1x6, wskazuje na nieporozumienie w zakresie doboru przewodów ochronnych w instalacjach elektrycznych. Przewód YDY 450/750 1x2,5 charakteryzuje się niższą klasą napięciową, co sprawia, że nie jest odpowiedni do zastosowań, gdzie występują napięcia do 750V. Podobnie przewód ADY 750 1x2,5, mimo że oznaczenie sugeruje, iż jest przystosowany do napięcia 750V, nie spełnia wymogów dotyczących ochrony, które są kluczowe w instalacjach z przewodami LYd. Z kolei przewód LYc 300/500 1x6 ma oznaczenie wskazujące na jeszcze niższe napięcie i nieodpowiednią średnicę, co czyni go nieodpowiednim do warunków wymagających solidnej ochrony. Typowym błędem myślowym, prowadzącym do wyboru tych przewodów, jest skupienie się wyłącznie na oznaczeniu napięcia, bez uwzględnienia ich rzeczywistej charakterystyki oraz przeznaczenia. Kluczowe jest, aby przy doborze przewodów nie tylko kierować się wartościami napięcia, ale również odpowiednimi normami bezpieczeństwa, jak PN-IEC 60364, które określają wymagania dla instalacji elektrycznych. W praktyce, stosowanie niewłaściwych przewodów może prowadzić do poważnych skutków, takich jak uszkodzenia sprzętu, a co gorsza, zagrożenia dla życia użytkowników.

Pytanie 19

Kto jest uprawniony do przeprowadzenia konserwacji silnika tokarki TUE-35 w zakładzie elektromechanicznym?

A. Kierownik grupy mechaników
B. Osoba, która posiada odpowiednie przeszkolenie i uprawnienia
C. Każdy pracownik na pisemne zlecenie pracodawcy
D. Operator tej maszyny
Rozważając odpowiedzi, które nie są zgodne z prawidłowym podejściem, warto zwrócić uwagę na ich konsekwencje. Stwierdzenie, że konserwację może przeprowadzić szef zespołu mechaników, pomija kluczową kwestię specjalistycznego przeszkolenia, które jest niezbędne do skutecznego i bezpiecznego przeprowadzenia takich prac. Chociaż szef może mieć ogólne pojęcie o maszynach, brak konkretnego doświadczenia i specjalizacji w obsłudze danego typu urządzeń stwarza ryzyko poważnych błędów. Z kolei zezwolenie na przeprowadzenie konserwacji przez dowolnego pracownika na polecenie pracodawcy nie uwzględnia odpowiedzialności, jaką niesie za sobą niewłaściwie przeprowadzona konserwacja. Pracownik bez odpowiednich kwalifikacji może nie zrozumieć skomplikowanych systemów maszyny, co może prowadzić do trwałych uszkodzeń. Stwierdzenie, że operator maszyny ma prawo do jej konserwacji, jest również mylące; operatorzy są szkoleni głównie w zakresie obsługi i eksploatacji maszyny, a nie w przeprowadzaniu jej konserwacji, która wymaga bardziej zaawansowanej wiedzy technicznej oraz umiejętności serwisowych. Podsumowując, tylko osoby przeszkolone i posiadające odpowiednie uprawnienia powinny zajmować się konserwacją silników tokarek, aby zapewnić nie tylko sprawność maszyn, ale także bezpieczeństwo pracy w zakładzie.

Pytanie 20

Gdy prace pomiarowe i kontrolne w instalacjach elektrycznych są wymagane do wykonania przez dwie osoby, to osoba przeprowadzająca pomiary powinna mieć odpowiednie kwalifikacje, a druga osoba wspierająca

A. nie jest zobowiązana do posiadania świadectwa kwalifikacji, jeśli ukończyła szkołę zawodową
B. nie musi mieć świadectwa kwalifikacji, jeśli przeszła odpowiednie szkolenie
C. powinna posiadać świadectwo kwalifikacyjne na stanowisku eksploatacji w zakresie pomiarów
D. musi dysponować świadectwem kwalifikacyjnym na stanowisku dozoru, lecz bez zakresu pomiarów
Zrozumienie wymagań dotyczących kwalifikacji osób wykonujących prace pomiarowo-kontrolne instalacji elektrycznych jest kluczowe dla zapewnienia bezpieczeństwa i jakości wykonywanych zadań. Odpowiedzi sugerujące, że osoba wspomagająca musi posiadać świadectwo kwalifikacji, ignorują fakt, że nie każde stanowisko wymaga formalnych certyfikatów, zwłaszcza jeśli mowa o pracach, które można przeprowadzać w oparciu o odpowiednie przygotowanie i szkolenie. Posiadanie wykształcenia zawodowego nie jest równoznaczne ze zdolnością do przeprowadzania skomplikowanych pomiarów elektrycznych, gdzie kluczowe są umiejętności praktyczne i znajomość procedur bezpieczeństwa. W praktyce, wiele osób podejmujących się wsparcia podczas pomiarów, posiada doświadczenie nabyte w trakcie praktyk czy kursów, które nie zawsze kończą się formalnym świadectwem, ale są wystarczające do bezpiecznego i efektywnego działania. Zatem, stawianie wymogu posiadania świadectwa kwalifikacyjnego na stanowisku dozoru, jeśli osoba nie wykonuje czynności wymagających takiej kwalifikacji, wprowadza zbędne ograniczenia i może prowadzić do niepoprawnych wniosków o kompetencjach pracowników. Warto podkreślić, że na rynku pracy, elastyczność w podejściu do kwalifikacji i umiejętności pracowników w kontekście ich faktycznych obowiązków jest nie tylko korzystna, ale także zgodna z nowoczesnymi trendami w zarządzaniu zasobami ludzkimi.

Pytanie 21

Jaki przekrój przewodu należy dobrać do zasilania odbiornika jednofazowego o danych Sn = 4,6 kVA i Un = 230 V, stosując kryterium obciążalności prądowej na podstawie danych przedstawionych w tabeli?

Obciążalność
mm21,01,52,54,06,0
A1519243242
A. 4,0 mm2
B. 1,5 mm2
C. 6,0 mm2
D. 2,5 mm2
Wybór przekroju przewodu 2,5 mm2 jest uzasadniony, ponieważ przekrój ten zapewnia odpowiednią obciążalność prądową dla odbiornika jednofazowego o mocy 4,6 kVA i napięciu 230 V. Obliczony prąd obciążenia wynosi około 20 A, co mieści się w granicach obciążalności prądowej przewodu 2,5 mm2, wynoszącej 24 A. Zastosowanie przewodu o właściwej średnicy jest kluczowe dla zapewnienia bezpieczeństwa instalacji elektrycznej i minimalizowania strat energetycznych. W praktyce, dobór odpowiedniego przekroju przewodu powinien być zawsze oparty na rzeczywistych warunkach eksploatacji, takich jak długość przewodu, temperatura otoczenia oraz sposób układania (np. w rurach, na otwartej przestrzeni). Przy projektowaniu instalacji elektrycznych warto również uwzględnić normy PN-IEC, które określają wymagania dotyczące obciążalności przewodów oraz ich zastosowania w różnych warunkach. Prawidłowy dobór przekroju przewodu jest kluczowym elementem zapobiegania przegrzewaniu się instalacji, co może prowadzić do uszkodzeń oraz zwiększonego ryzyka pożaru.

Pytanie 22

Ile maksymalnie gniazd wtykowych można zainstalować w jednym obwodzie w instalacjach elektrycznych w budynkach mieszkalnych?

A. 6
B. 10
C. 12
D. 4
Odpowiedź 10 gniazd wtyczkowych na jedno gniazdo obwodowe jest zgodna z normami oraz praktykami stosowanymi w instalacjach elektrycznych. Zgodnie z Polskimi Normami, a także wytycznymi zawartymi w normach europejskich, maksymalna liczba gniazd wtyczkowych, które można podłączyć do jednego obwodu, powinna wynosić 10. To ograniczenie wynika z konieczności zapewnienia bezpieczeństwa użytkowników oraz ochrony instalacji przed przeciążeniem. Zbyt duża liczba gniazd wtyczkowych podłączonych do jednego obwodu może prowadzić do przegrzewania się przewodów, a co za tym idzie, do ryzyka pożaru. Przykładem może być sytuacja, w której użytkownik podłącza wiele urządzeń o dużym poborze mocy, takich jak czajniki, mikrofalówki czy komputery, co może przekroczyć dopuszczalny prąd obwodu. Dlatego ważne jest przestrzeganie zasad bezpieczeństwa oraz odpowiednie projektowanie instalacji elektrycznych, aby uniknąć niebezpieczeństw związanych z przeciążeniem.

Pytanie 23

Jak często powinno się przeprowadzać przeglądy okresowe sprzętu ochronnego, takiego jak: drążki izolacyjne do manipulacji, kleszcze oraz uchwyty izolacyjne, a także dywaniki i chodniki gumowe?

A. Co 3 lata
B. Co 5 lat
C. Co 1 rok
D. Co 2 lata
Odpowiedzi sugerujące rzadziej przeprowadzane badania okresowe, takie jak co 5 lat, co 3 lata czy co 1 rok, opierają się na błędnym zrozumieniu znaczenia regularnych przeglądów sprzętu ochronnego. Zwłaszcza w przypadku urządzeń izolacyjnych, jak drążki czy kleszcze, standardy bezpieczeństwa wyraźnie wskazują, że ich właściwości izolacyjne mogą ulegać degradacji z czasem, nawet przy normalnym użytkowaniu. Przeprowadzanie badań co 5 lat może prowadzić do sytuacji, w której sprzęt, który powinien już zostać wymieniony, nadal jest używany, co stwarza ogromne ryzyko porażenia prądem. Co więcej, odpowiedzi sugerujące przeglądy co 3 lata lub co 1 rok również mogą nie spełniać wymogów bezpieczeństwa, ponieważ nie uwzględniają specyfiki i intensywności użytkowania sprzętu w różnych warunkach. W praktyce, nieprzestrzeganie zalecanych cykli przeglądów może skutkować zarówno uszkodzeniem sprzętu, jak i narażeniem pracowników na niebezpieczeństwo. Właściwe zrozumienie tych zasad jest kluczowe dla ochrony zdrowia i życia osób pracujących w branży elektrycznej, a także dla zachowania zgodności z obowiązującymi normami i przepisami prawa, co jest niezwykle istotne w kontekście odpowiedzialności prawnej i etycznej pracodawców.

Pytanie 24

Najtrudniejsze okoliczności gaszenia łuku elektrycznego występują w obwodzie o charakterze

A. rezystancyjnym, przy przepływie prądu stałego
B. rezystancyjnym, przy przepływie prądu przemiennego
C. indukcyjnym, przy przepływie prądu sinusoidalnego
D. indukcyjnym, przy przepływie prądu stałego
Obwody rezystancyjne, zarówno przy prądzie stałym, jak i przemiennym, charakteryzują się innymi zasadami działania, które wpływają na zjawisko gaszenia łuku elektrycznego. W przypadku obwodów rezystancyjnych, prąd elektryczny ma tendencję do zmniejszania się, co prowadzi do łatwiejszego gaszenia łuku. W obwodach z przepływem prądu zmiennego, zjawisko gaszenia łuku jest dodatkowo wspomagane przez cykliczne przechodzenie prądu przez zero. Ludzie często myślą, że wszystkie obwody działają na podobnych zasadach, jednak kluczowym aspektem jest różnica w charakterystyce indukcyjnej i rezystancyjnej. W obwodach indukcyjnych, obecność reaktancji indukcyjnej powoduje dążenie do utrzymania łuku za sprawą nagromadzonej energii w polu elektromagnetycznym. Dlatego w zastosowaniach przemysłowych, takich jak zasilanie silników elektrycznych, gdzie obwody są dość często indukcyjne, musimy projektować zabezpieczenia, które radzą sobie z trudnościami gaszenia łuku. Ignorowanie tych różnic prowadzi do poważnych problemów w systemach zabezpieczeń i może skutkować awariami w instalacjach. Kluczowe jest zrozumienie, że obwody indukcyjne wymagają specjalnych metod gaszenia, takich jak zastosowanie łuków gaszących lub technologii MMC (Modular Multilevel Converter), które są zgodne z normami IEEE i IEC. Takie podejście minimalizuje ryzyko oraz zwiększa bezpieczeństwo w codziennych operacjach elektrycznych.

Pytanie 25

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 26

Jakiego składnika nie powinien mieć kabel zasilający do głównej rozdzielnicy w strefie przemysłowej, która jest klasyfikowana jako niebezpieczna pod względem pożaru?

A. Żył z aluminium.
B. Pokrywy polietylenowej.
C. Zewnętrznego splotu włóknistego.
D. Obudowy stalowej.
Pomieszczenia przemysłowe o podwyższonym ryzyku pożarowym wymagają zastosowania odpowiednich materiałów w konstrukcji kabli zasilających. Pancerz stalowy stanowi skuteczną barierę przed mechanicznymi uszkodzeniami, co jest szczególnie istotne w środowiskach, gdzie mogą występować różne czynniki ryzyka. Powłoka polietylenowa natomiast zapewnia nie tylko izolację, ale również odporność na działanie wysokich temperatur. W świetle obowiązujących norm, takie jak PN-EN 50575, istotne jest, aby używane materiały charakteryzowały się niskim poziomem wydzielania dymu oraz niską toksycznością, co ma kluczowe znaczenie w przypadku pożaru. Wybór żył aluminiowych może wydawać się atrakcyjny ze względu na ich niższą wagę i koszt, jednak w kontekście bezpieczeństwa i przewodnictwa elektrycznego, stalowe żyły są preferowane, zwłaszcza w trudnych warunkach eksploatacyjnych. Zastosowanie zewnętrznego oplotu włóknistego w kablach zasilających w takich miejscach jest nieodpowiednie, ponieważ nie spełnia wymogów odporności na ogień. Oploty te nie tylko mogą ulegać uszkodzeniu w wysokich temperaturach, ale również przyczyniać się do szybszego rozprzestrzeniania się ognia. Podejmując decyzję o wyborze odpowiednich materiałów w konstrukcji kabli, kluczowe jest zrozumienie ich właściwości oraz dostosowanie ich do specyfiki środowiska pracy.

Pytanie 27

W tabeli przedstawiono parametry znamionowe silnika. Do jakiego rodzaju pracy jest on przeznaczony?

Typ silnikaSEh 80-4CF
Moc1,1 kW
Prędkość obrotowa1400 obr/min
ObudowaAluminium
Napięcie zasilania230 V, 50 Hz
Stopień ochronyIP 54
Rodzaj pracyS2
Sprawność74%
Pojemność kondensatora pracy30 μF
Pojemność kondensatora rozruchowego75 μF
A. Ciągłej.
B. Przerywanej z rozruchem.
C. Przerywanej z hamowaniem elektrycznym.
D. Dorywczej.
Silnik oznaczony jako przeznaczony do pracy dorywczej (S2) jest zaprojektowany do pracy przez określony czas, po którym konieczne jest schłodzenie. Przykładem zastosowania takiego silnika mogą być urządzenia, które pracują w cyklach, np. pompy, wentylatory czy maszyny przemysłowe, które nie wymagają ciągłej eksploatacji. W praktyce oznacza to, że silnik może pracować w trybie dorywczym przez kilka minut do kilku godzin, w zależności od jego parametrów znamionowych, a następnie musi zostać wyłączony, aby uniknąć przegrzania. Standardy normatywne, takie jak IEC 60034-1, definiują takie klasy pracy silników elektrycznych, co zapewnia, że inżynierowie projektujący systemy napędowe mogą odpowiednio dobierać silniki do wymagań aplikacji. Wiedza o tych oznaczeniach jest kluczowa dla zapewnienia efektywności energetycznej oraz długowieczności urządzeń, co ma bezpośredni wpływ na koszty eksploatacji.

Pytanie 28

Jakim rodzajem wyłączników nadprądowych powinien być zabezpieczony obwód zasilania silnika klatkowego trójfazowego, którego parametry znamionowe to: PN = 11 kW, UN = 400 V, cos φ = 0,73, η = 80%?

A. S303 C40
B. S303 C32
C. S303 C25
D. S303 C20
Poprawna odpowiedź to S303 C32, ponieważ w przypadku obwodu zasilania trójfazowego silnika klatkowego o mocach znamionowych 11 kW i napięciu 400 V, należy obliczyć prąd roboczy silnika. Prąd ten można wyznaczyć ze wzoru: I = P / (√3 * U * cos φ), co daje wartość około 18,5 A. Z uwagi na istotne zmiany w obciążeniu oraz do ochrony przed przeciążeniem i zwarciem, stosuje się wyłączniki nadprądowe, które powinny mieć wartość znamionową prądu nie niższą niż 125% prądu roboczego silnika. W tym przypadku 125% z 18,5 A to 23,125 A, co wskazuje na to, że wyłącznik S303 C25 (25 A) byłby niewystarczający. Wyłącznik S303 C32 z wartością 32 A jest odpowiedni, ponieważ zapewnia odpowiedni margines bezpieczeństwa. Tego typu wyłączniki są szeroko stosowane w przemyśle i są zgodne z normami EN 60947-2, co zapewnia ich wysoką jakość i niezawodność.

Pytanie 29

Której z poniższych czynności nie obejmuje zakres kontrolny badań instalacji elektrycznej?

A. Oględzin związanych z ochroną przeciwpożarową
B. Badania zabezpieczeń przed dotykiem pośrednim
C. Pomiarów oraz weryfikacji spadków napięć
D. Pomiarów rezystancji izolacji przewodów
Pomiarów i sprawdzania spadków napięć nie przewiduje zakres badań okresowych instalacji elektrycznej, ponieważ tego rodzaju pomiary są wykonywane w ramach diagnostyki systemów energetycznych, a nie standardowych przeglądów instalacji elektrycznych. W badaniach okresowych koncentruje się na ocenie stanu technicznego instalacji oraz zabezpieczeń, takich jak odporność izolacji przewodów. Pomiar rezystancji izolacji przewodów pozwala na ocenę stanu izolacji i identyfikację potencjalnych zagrożeń związanych z przebiciem. Badania ochrony przed dotykiem pośrednim są kluczowe dla zapewnienia bezpieczeństwa użytkowników, gdyż dotyczą oceny skuteczności systemów zabezpieczeń. Oględziny dotyczące ochrony przeciwpożarowej są niemniej istotne, gdyż pozwalają na wykrycie nieprawidłowości mogących prowadzić do pożaru. Standardy, takie jak PN-IEC 60364, określają szczegółowe wymagania dotyczące badań okresowych, co podkreśla znaczenie poszczególnych metod oceny stanu instalacji elektrycznych.

Pytanie 30

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 31

Jakie maksymalne napięcie elektryczne należy wykorzystać do zasilania lampy oświetleniowej zlokalizowanej w łazience w strefie 0?

A. 230 V AC
B. 12 V AC
C. 50 V AC
D. 110 V DC
Wybór napięcia zasilania lampy w strefie 0 łazienki powinien być przemyślany, gdyż nieodpowiednie napięcie może prowadzić do poważnych zagrożeń. Zasilanie 50 V AC, mimo że jest bezpieczniejsze niż standardowe 230 V AC, wciąż może nie spełniać norm dotyczących obszarów o podwyższonym ryzyku, takich jak strefa 0, gdzie kontakt z wodą jest niemal pewny. To napięcie, będąc wyższym niż 12 V, może w sytuacji awaryjnej, na przykład w przypadku uszkodzenia izolacji, stwarzać ryzyko porażenia prądem elektrycznym. Co więcej, napięcie 230 V AC jest zdecydowanie nieodpowiednie w tych warunkach, gdyż jest standardowym napięciem w domowych instalacjach elektrycznych, które może być niebezpieczne w obszarze narażonym na kontakt z wodą. Z kolei 110 V DC również nie jest optymalnym rozwiązaniem, ponieważ takie napięcie nie jest powszechnie stosowane w instalacjach oświetleniowych, a jego użycie w strefie 0 może nie zapewnić odpowiedniego poziomu bezpieczeństwa. Kluczowe jest, aby pamiętać o zasadach bezpieczeństwa, które są zgodne z normami, takimi jak IEC 60364, które zalecają stosowanie niskiego napięcia w miejscach, gdzie ryzyko kontaktu z wodą jest najwyższe. Dlatego stosowanie 12 V AC jest jedynym rozwiązaniem, które spełnia wymogi bezpieczeństwa i gwarantuje minimalizację ryzyka w łazienkach.

Pytanie 32

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 33

Który z poniższych pomiarów potwierdza ciągłość przewodu ochronnego w układzie TN-S?

A. Rezystancji izolacji przewodu ochronnego
B. Rezystancji uziomu
C. Impedancji pętli zwarcia
D. Prądu upływu w przewodzie ochronnym
Pomiary takie jak rezystancja izolacji przewodu ochronnego, prąd upływu w przewodzie ochronnym oraz rezystancja uziomu, mimo że są istotne dla ogólnego bezpieczeństwa systemów elektrycznych, nie potwierdzają bezpośrednio ciągłości przewodu ochronnego w sieci TN-S. Rezystancja izolacji odnosi się do stanu izolacji przewodów, co ma na celu zapobieganie wyciekom prądów do ziemi, jednak nie daje jednoznacznych informacji o ciągłości przewodu ochronnego. Prąd upływu może wskazywać na problemy związane z izolacją, ale jego pomiar nie dostarcza danych na temat ciągłości samego przewodu ochronnego. Z kolei rezystancja uziomu dotyczy przewodów uziemiających, a nie ochronnych, i ma na celu zapewnienie, że prąd zwarciowy skutecznie przepływa do ziemi, co jest innym zagadnieniem. Często myląc te parametry, można dojść do błędnych wniosków, co może prowadzić do niewłaściwego diagnozowania problemów z instalacją i w konsekwencji do zagrożenia bezpieczeństwa. Zrozumienie różnych ról tych pomiarów jest kluczowe dla właściwej oceny stanu instalacji elektrycznych i zapewnienia odpowiednich środków ochrony przed porażeniem prądem elektrycznym.

Pytanie 34

Jaki parametr transformatora zmieni się, gdy podczas jego przezwajania w uzwojeniu wtórnym użyto drutu nawojowego o mniejszej średnicy?

A. Przekładnia zwojowa
B. Przekładnia napięciowa
C. Straty w uzwojeniu
D. Straty w rdzeniu
Analizując inne odpowiedzi, można zauważyć, że straty w rdzeniu nie ulegają zmianie przy zmianie średnicy drutu uzwojenia wtórnego. Straty w rdzeniu transformatora są ściśle związane z jego konstrukcją, materiałem oraz częstotliwością, przy której pracuje transformator. Wybór drutu do uzwojenia nie wpływa na te parametry, więc odpowiedź dotycząca strat w rdzeniu jest niepoprawna. Ponadto, przekładnia zwojowa oraz przekładnia napięciowa to pojęcia, które odnoszą się do stosunku liczby zwojów w uzwojeniach transformatora oraz napięć na tych uzwojeniach. Zmiana średnicy drutu w uzwojeniu wtórnym nie wpływa bezpośrednio na przekładnię zwojową ani napięciową, o ile liczba zwojów pozostaje taka sama. Przekładnia zwojowa jest funkcją liczby zwojów w uzwojeniach pierwotnym i wtórnym, a nie ich średnicy. Jakiekolwiek błędne myślenie w tym zakresie może prowadzić do nieporozumień dotyczących działania transformatorów. W praktyce, konstruktorzy transformatorów powinni mieć na uwadze rozważenie wszystkich parametrów, aby zminimalizować straty energetyczne i zwiększyć efektywność działania, co jest zgodne z dobrymi praktykami inżynieryjnymi i normami branżowymi.

Pytanie 35

Co należy zrobić w przypadku przeciążenia silnika elektrycznego podczas pracy?

A. Zwiększyć napięcie zasilające
B. Zredukować obciążenie lub sprawdzić wyłączniki termiczne
C. Zastosować dodatkowy filtr harmonicznych
D. Zwiększyć długość przewodów zasilających
W przypadku przeciążenia silnika elektrycznego kluczowe jest szybkie zidentyfikowanie i zredukowanie obciążenia, które może być przyczyną problemu. Przeciążenie często wynika z nadmiernego zapotrzebowania na moc, co prowadzi do przegrzania i potencjalnego uszkodzenia silnika. Standardy branżowe zalecają, aby regularnie monitorować obciążenie silników i odpowiednio reagować na wszelkie nieprawidłowości. Dodatkowo, sprawdzenie wyłączników termicznych to dobra praktyka, która pozwala na wykrycie i zapobieganie dalszym uszkodzeniom. Wyłączniki termiczne są zabezpieczeniem, które automatycznie odłącza zasilanie w przypadku wykrycia nadmiernego wzrostu temperatury, co chroni silnik przed uszkodzeniem. Regularna konserwacja i kontrola tych elementów jest niezbędna, aby zapewnić bezpieczną i efektywną pracę silników elektrycznych. Praktyczne zastosowanie tej wiedzy pozwala na dłuższą żywotność urządzeń i zmniejszenie ryzyka kosztownych napraw.

Pytanie 36

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 37

Który z poniższych środków ostrożności nie jest wymagany do bezpiecznego przeprowadzenia prac na linii napowietrznej odłączonej od zasilania?

A. Zarządzanie pracą w grupie
B. Ogrodzenie obszaru pracy
C. Używanie sprzętu izolacyjnego
D. Uziemienie odłączonej linii
Prace przy linii napowietrznej wyłączonej spod napięcia wymagają przestrzegania określonych zasad bezpieczeństwa, które zapewniają ochronę pracowników i minimalizują ryzyko wystąpienia niebezpiecznych sytuacji. Wykonywanie pracy zespołowo jest kluczowym elementem, ponieważ zespół wzajemnie się wspiera, co pozwala na szybsze reagowanie w przypadku niespodziewanych okoliczności. Pracownicy powinni być świadomi otoczenia i potencjalnych zagrożeń, co skutkuje zwiększoną ochroną. Uziemienie wyłączonej linii jest kolejnym kluczowym środkiem ostrożności. Uziemienie nie tylko chroni przed przypadkowym porażeniem, ale także zapewnia, że w przypadku jakiejkolwiek nieprzewidzianej sytuacji, nie wystąpi niebezpieczne napięcie. Ogrodzenie miejsca wykonywania pracy również odgrywa ważną rolę; zabezpiecza obszar przed dostępem osób nieuprawnionych, co jest zgodne z zasadami BHP. Błędne jest przekonanie, że te środki są zbędne, ponieważ każdy moment pracy przy instalacjach elektrycznych wiąże się z potencjalnym niebezpieczeństwem, nawet jeśli linia jest wyłączona. Standardy BHP oraz normy krajowe wyraźnie wskazują, że zabezpieczenie miejsca pracy i stosowanie odpowiednich procedur są nie tylko zalecane, ale wręcz wymagane, aby zapewnić maksymalne bezpieczeństwo w miejscu pracy.

Pytanie 38

W skład badań eksploatacyjnych silnika klatkowego wchodzi pomiar

A. rezystancji uzwojeń wirnika
B. stratności magnetycznej blach stojana
C. rezystancji uzwojeń stojana
D. natężenia pola magnetycznego rozproszenia
Pomiar stratności magnetycznej blach stojana, choć istotny w kontekście strat energetycznych, nie jest bezpośrednio związany z podstawowymi badaniami eksploatacyjnymi silnika klatkowego. Używanie tej metody mogą prowadzić do błędnych wniosków, ponieważ skupia się na innych aspektach konstrukcji silnika. Użytkownicy mogą mylić ten pomiar z diagnostyką stanu silnika, co jest nieprecyzyjne, gdyż blachy stojana mają na celu redukcję strat energetycznych, a nie bezpośrednią ocenę stanu uzwojeń. Kolejną nieprawidłową koncepcją jest pomiar rezystancji uzwojeń wirnika, który, chociaż ma znaczenie dla detekcji usterek, nie jest częścią standardowej procedury badań eksploatacyjnych silnika klatkowego. Użytkownicy mogą błędnie przypisywać równą wagę pomiarom uzwojeń wirnika i stojana, co prowadzi do niepełnej analizy stanu silnika. Właściwe podejście do badań eksploatacyjnych powinno koncentrować się na pomiarach, które dostarczają natychmiastowych informacji o stanie silnika, takich jak rezystancja uzwojeń stojana, co jest zgodne z najlepszymi praktykami branżowymi. Natężenie pola magnetycznego rozproszenia, mimo że jest istotne dla analizy działania silnika, nie jest typowo mierzone w kontekście rutynowych badań eksploatacyjnych. Błędem może być również założenie, że wszystkie wymienione pomiary są równie ważne, co prowadzi do nieefektywnej diagnostyki i potencjalnych problemów w eksploatacji silnika.

Pytanie 39

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 40

Podczas użytkowania instalacji elektrycznych w pobliżu urządzeń elektrycznych znajdujących się pod napięciem niedozwolone są prace (z wyłączeniem prac określonych w instrukcji eksploatacji dotyczących obsługi)?

A. związane z konserwacją i renowacjami instalacji oraz odbiorników elektrycznych
B. dotyczące wymiany wkładek bezpiecznikowych oraz żarówek lub świetlówek w nienaruszonej obudowie i oprawie
C. przy użyciu specjalnych środków wskazanych w szczegółowych instrukcjach stanowiskowych, zapewniających bezpieczne wykonanie pracy
D. przy realizacji prób i pomiarów zgodnie z instrukcjami lub wskazówkami bhp na poszczególnych stanowiskach pracy
Wybrałeś odpowiedź o wymianie wkładek bezpiecznikowych i żarówek, co nie jest najlepszym wyborem. Może na pierwszy rzut oka to wydaje się proste i można to robić pod napięciem, ale w rzeczywistości jest to niebezpieczne. Wymiana nawet dobrych elementów elektrycznych może być ryzykowna, zwłaszcza jeśli nie zachowasz ostrożności. Prace przy instalacji elektrycznej powinny zawsze odbywać się bez napięcia. Jakiekolwiek złamanie tej zasady może prowadzić do niebezpiecznych sytuacji. Normy, jak PN-IEC 60364-5-51, mówią jasno, że prace pod napięciem to coś, co powinno być naprawdę ograniczone i przed tym powinno się dokładnie ocenić ryzyko. A jeśli chodzi o pomiary, to też warto pamiętać, że są one czasem dozwolone, ale tylko przy zachowaniu wszystkich zasad i użyciu odpowiednich narzędzi. Także przestrzeganie przepisów BHP to podstawa, żeby w pracy z prądem było bezpiecznie.