Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik automatyk
  • Kwalifikacja: ELM.01 - Montaż, uruchamianie i obsługiwanie układów automatyki przemysłowej
  • Data rozpoczęcia: 20 stycznia 2026 15:59
  • Data zakończenia: 20 stycznia 2026 16:10

Egzamin niezdany

Wynik: 12/40 punktów (30,0%)

Wymagane minimum: 20 punktów (50%)

Udostępnij swój wynik
Szczegółowe wyniki:
Pytanie 1

Napięcie wyjściowe przetwornika ciśnienia, przy liniowej charakterystyce przetwarzania, przyjmuje wartość z przedziału 0 ÷ 10 V dla ciśnienia z przedziału 0 ÷ 600 kPa. Jaka będzie wartość napięcia wyjściowego dla wartości ciśnienia 450 kPa?

A. 7,5 V
B. 10,0 V
C. 4,5 V
D. 3,0 V
Przyjrzyjmy się najpierw, dlaczego odpowiedź 7,5 V jest poprawna. Mamy liniową charakterystykę przetwornika ciśnienia, co oznacza, że stosunek między ciśnieniem a napięciem jest stały. W tym przypadku wiemy, że dla 0 kPa napięcie wynosi 0 V, a dla 600 kPa jest to 10 V. Zatem możemy łatwo policzyć, że dla 1 kPa przypada 0,0167 V (10 V / 600 kPa). Teraz wystarczy pomnożyć 450 kPa przez ten współczynnik (450 kPa * 0,0167 V/kPa), co daje nam 7,5 V. Taki sposób wyliczania jest standardową praktyką w branży, szczególnie w systemach automatyki, gdzie precyzyjne przetwarzanie danych procesowych jest kluczowe. W praktyce tego typu przetworniki są szeroko stosowane w przemyśle chemicznym i petrochemicznym, gdzie kontrola ciśnienia jest niezmiernie ważna. Przy wyborze przetwornika warto zwrócić uwagę na jego liniowość, ponieważ to wpływa na dokładność pomiaru. Przemyśl, jak łatwo możemy zastosować tę wiedzę do innych zastosowań, np. do kalibracji czujników w różnych urządzeniach elektronicznych. Znajomość takich zasad jest nieodzowna, jeśli chcemy rozumieć, jak działa sprzęt w nowoczesnych fabrykach, gdzie automatyzacja odgrywa kluczową rolę.

Pytanie 2

W której pozycji ustawią się tłoczyska siłowników 1A1 i 2A1 po włączeniu zasilania układu sprężonym powietrzem przy niewzbudzonych cewkach Y1 i Y2?

Ilustracja do pytania
A. Tłoczysko siłownika 1A1 nie wysunie się, a tłoczysko siłownika 2A1 wysunie się.
B. Tłoczysko siłownika 1A1 wysunie się, a tłoczysko siłownika 2A1 nie wysunie się.
C. Tłoczyska obu siłowników wysuną się.
D. Tłoczyska obu siłowników pozostaną wsunięte.
Siłownik 1A1 nie wysunie się z powodu braku zasilania cewki Y1, co pozostawia zawór 1V1 w pozycji, która odcina dopływ powietrza do siłownika 1A1. To jest zgodne z zasadą działania zaworów rozdzielających, które kierują przepływem medium w zależności od stanu cewek. W praktyce oznacza to, że siłownik pozostanie w pozycji wsuniętej, co jest często stosowane w sytuacjach, gdzie bezpieczeństwo wymaga, aby ruch nie został wykonany bez wyraźnego sygnału sterującego. Z kolei siłownik 2A1 wysunie się, ponieważ zawór 2V1, w stanie niewzbudzonym, umożliwia przepływ powietrza, co powoduje ruch tłoczyska. Taka konstrukcja jest używana w systemach, gdzie natychmiastowe działanie siłowników jest wymagane, np. do szybkiego uruchamiania procesów produkcyjnych. Standardy pneumatyki przemysłowej, takie jak ISO 1219, opisują właśnie takie układy jako podstawowe dla zrozumienia sterowania pneumatycznego. Dzięki temu możemy lepiej zaplanować i kontrolować procesy, minimalizując ryzyko błędów i zwiększając efektywność produkcji.

Pytanie 3

Który typ złącza przedstawiono na rysunku?

Ilustracja do pytania
A. USB
B. RS-232
C. RJ-45
D. HDMI
Wybrałeś poprawną odpowiedź, ponieważ złącze RS-232 to klasyczny interfejs, który przez lata był standardem komunikacji szeregowej w komputerach i urządzeniach przemysłowych. Złącze te, najczęściej spotykane w wersji DB9, umożliwia przesyłanie danych szeregowo, co oznacza, że bity są przesyłane jeden po drugim. Jest znane ze swojej prostoty i niezawodności, chociaż jego prędkość transmisji nie jest zbyt wysoka w porównaniu z nowoczesnymi standardami. Używane jest często w aplikacjach przemysłowych, systemach POS czy do podłączania modemów i drukarek. Mimo że RS-232 zostało wypierane przez nowsze technologie, takie jak USB czy Ethernet, nadal znajduje zastosowanie tam, gdzie wymagana jest długa odległość transmisji i odporność na zakłócenia. W praktyce, złącza RS-232 są często wykorzystywane do konfiguracji urządzeń sieciowych czy w systemach automatyki przemysłowej. Warto także pamiętać, że ten typ połączenia wymaga odpowiedniego kabla z ekranowaniem, aby zminimalizować wpływ zakłóceń elektromagnetycznych. Moim zdaniem, znajomość RS-232 to podstawa dla każdego, kto interesuje się elektroniką i telekomunikacją, ponieważ pozwala zrozumieć fundamenty komunikacji szeregowej i jej zastosowania w praktyce.

Pytanie 4

Który z elementów należy zastosować do wykonania rozgałęzienia sygnału/przewodu pneumatycznego w celu podłączenia w układzie manometru?

A. Element 2.
Ilustracja do odpowiedzi A
B. Element 1.
Ilustracja do odpowiedzi B
C. Element 4.
Ilustracja do odpowiedzi C
D. Element 3.
Ilustracja do odpowiedzi D
Element przedstawiony na zdjęciu numer 2 to trójnik pneumatyczny i to właśnie on służy do wykonania rozgałęzienia przewodu – pozostałe elementy pełnią zupełnie inne funkcje. Pierwszy z nich to zawór dławiąco-zwrotny, który reguluje prędkość przepływu powietrza (czyli np. prędkość ruchu siłownika), ale nie nadaje się do rozdzielania sygnału, bo ma przepływ kierunkowy. Trzeci element to zawór odcinający lub dławiący – służy do regulacji i zamykania przepływu, a nie do tworzenia odgałęzień. Czwarty natomiast to trójnik z wbudowanym zaworem dławiącym – stosowany do regulacji przepływu tylko w jednym kierunku, nie do prostego podziału sygnału. Typowym błędem przy doborze elementów pneumatycznych jest pomylenie funkcji kształtek i zaworów – z zewnątrz wyglądają podobnie, ale różnią się wewnętrzną budową. W praktyce, jeśli chcemy podłączyć manometr do działającego układu bez przerywania przepływu, zawsze wybiera się zwykły trójnik, który równomiernie rozdziela ciśnienie na dwa tory. Dzięki temu sygnał dociera zarówno do elementu wykonawczego, jak i do urządzenia pomiarowego. Użycie innego elementu – np. zaworu lub regulatora – w tym miejscu spowodowałoby błędny odczyt ciśnienia lub ograniczenie przepływu, co jest niepożądane w układach pneumatycznych.

Pytanie 5

Który przyrząd należy zastosować, aby zmierzyć z dokładnością 0,1 mm otwory o średnicy Φ10 wykonane pod montaż czujników indukcyjnych?

A. Mikrometr zewnętrzny.
B. Przymiar kreskowy.
C. Czujnik zegarowy.
D. Suwmiarkę uniwersalną.
Suwmiarka uniwersalna to narzędzie, które świetnie się sprawdza do mierzenia otworów z dokładnością do 0,1 mm. Jest to bardzo wszechstronne urządzenie, które dzięki swojej budowie pozwala na szybkie i dokładne pomiary zarówno zewnętrznych, jak i wewnętrznych wymiarów. W przypadku otworów o średnicy Φ10, suwmiarka pozwala na precyzyjne zmierzenie ich średnicy dzięki specjalnym szczękom pomiarowym umieszczonym na końcu ramion. Moim zdaniem, suwmiarka to podstawowe narzędzie w każdym warsztacie, ale trzeba pamiętać, by stosować ją zgodnie z zaleceniami producenta, ponieważ niewłaściwe użytkowanie może prowadzić do błędnych odczytów. Warto również zaznaczyć, że suwmiarki są dostępne w różnych wersjach - cyfrowej i analogowej. W przemyśle standardem jest stosowanie suwmiarki cyfrowej ze względu na łatwość odczytu i eliminację błędów związanych z interpretacją skali. Pamiętaj też, że dokładność pomiaru zależy nie tylko od narzędzia, ale również od umiejętności i doświadczenia osoby mierzącej.

Pytanie 6

Który układ łagodnego rozruchu (softstart) należy zastosować do silnika 1-fazowego prądu przemiennego o mocy 0,3 kW, jeżeli będzie on zamontowany bez dodatkowej obudowy, bezpośrednio przy silniku pracującym w środowisku wysokiego zapylenia?

Ilustracja do pytania
A. ATS01N103
B. ATS01N125
C. ATS01N212
D. ATS01N109
Analizując inne dostępne opcje, łatwo dostrzec, dlaczego wybór ATS01N125 jest najbardziej odpowiedni. Zacznijmy od ATS01N109. Choć jest to układ, który może obsługiwać mniejsze moce, to jego obudowa o stopniu ochrony IP20 nie jest odpowiednia dla środowisk o wysokim zapyleniu. Taka obudowa zapewnia jedynie ochronę przed większymi ciałami stałymi i nie zabezpiecza urządzenia przed pyłem, co w praktyce może prowadzić do uszkodzeń i awarii urządzenia w trudnych warunkach przemysłowych. ATS01N212, mimo że posiada obudowę IP67, jest przeznaczony dla znacznie większych mocy, co czyni go nieekonomicznym wyborem dla silnika o mocy jedynie 0,3 kW. Nadmierna specyfikacja może prowadzić do niepotrzebnego wzrostu kosztów instalacji i utrzymania. ATS01N103, podobnie jak ATS01N109, charakteryzuje się niskim poziomem ochrony (IP20), co czyni go nieodpowiednim dla zapylonych środowisk. Dodatkowo, jego parametry mocy nie pasują optymalnie do wymagań naszego silnika. Wybierając urządzenie do pracy w specyficznych warunkach, takich jak wysokie zapylenie, należy zawsze kierować się nie tylko mocą i napięciem, ale przede wszystkim odpowiednim stopniem ochrony IP, co jest jednym z kluczowych standardów w przemysłowych instalacjach elektrycznych. Ignorowanie tego aspektu może prowadzić do zwiększonego ryzyka uszkodzeń urządzenia i nieplanowanych przestojów.

Pytanie 7

Która ilustracja przedstawia zawór szybkiego spustu?

A. Ilustracja 1
Ilustracja do odpowiedzi A
B. Ilustracja 4
Ilustracja do odpowiedzi B
C. Ilustracja 2
Ilustracja do odpowiedzi C
D. Ilustracja 3
Ilustracja do odpowiedzi D
Na ilustracjach 2, 3 i 4 widoczne są zupełnie inne elementy pneumatyki i automatyki, które często bywają mylone z zaworami szybkiego spustu. Drugi element to zawór rozdzielający (najczęściej 5/2 lub 4/2) sterowany ręcznie – służy do zmiany kierunku przepływu powietrza, a nie do jego szybkiego upustu. Trzeci element to zawór dławiąco-zwrotny, którego zadaniem jest regulacja prędkości przepływu powietrza w jednym kierunku (czyli kontrola szybkości ruchu siłownika). Czwarty element natomiast to wyłącznik krańcowy (mechaniczny), wykorzystywany w automatyce do sygnalizacji położenia elementu ruchomego, nie mający żadnego związku z pneumatyką przepływową. Zawór szybkiego spustu można rozpoznać po masywnej, często metalowej obudowie i trzech przyłączach – jedno do zasilania, jedno do siłownika i jedno odpowietrzające. W praktyce stosuje się go bezpośrednio przy siłowniku, żeby skrócić czas opróżniania przewodu roboczego. Typowym błędem jest użycie zwykłego zaworu sterującego zamiast szybkiego spustu, co prowadzi do spowolnienia ruchu tłoka. W układach przemysłowych taki zawór zwiększa efektywność i pozwala osiągnąć większą częstotliwość cykli pracy urządzenia. Rozpoznanie właściwego elementu opiera się więc na analizie jego funkcji – szybkie odprowadzenie powietrza po stronie roboczej jest jednoznacznym zadaniem zaworu szybkiego spustu.

Pytanie 8

Na rysunku przedstawiono symbol graficzny

Ilustracja do pytania
A. przepływomierza.
B. przetwornika pomiarowego.
C. separatora.
D. wzmacniacza operacyjnego.
Przetwornik pomiarowy to urządzenie niezbędne w systemach automatyki i pomiarów, które przekształca jedną formę sygnału w inną. Może to być np. zamiana sygnału analogowego na cyfrowy lub przetwarzanie wielkości fizycznej, jak temperatura, na sygnał elektryczny. Moim zdaniem, to kluczowy element, który pozwala na integrację i automatyzację procesów przemysłowych. Przetworniki są powszechnie stosowane w systemach monitoringu i kontroli, gdzie precyzyjne dane są nieodzowne dla optymalizacji procesów. W praktyce, przy wyborze przetwornika, warto zwrócić uwagę na jego dokładność, zakres pomiarowy oraz kompatybilność z innymi elementami systemu. Przykładowo, w przemyśle chemicznym, przetwornik może mierzyć stężenie substancji i przekazywać te dane do systemu zarządzania produkcją. Standardy takie jak IEC i ANSI definiują wytyczne dotyczące konstrukcji i działania przetworników, co zapewnia ich niezawodność i bezpieczeństwo w różnych aplikacjach. Z tego powodu, prawidłowe zrozumienie funkcji i specyfikacji przetworników jest kluczowe dla specjalistów zajmujących się projektowaniem systemów pomiarowych.

Pytanie 9

W celu wykonania połączeń wysokonapięciowych przewodem z jednodrutowymi żyłami miedzianymi w izolacji z polwinitu należy wybrać przewód oznaczony jako

Ilustracja do pytania
A. DY-w
B. DG-w
C. DS-w
D. LY-w
Wybór przewodu oznaczonego jako DY-w jest trafny, ponieważ wskazuje on na przewód z jednodrutowymi żyłami miedzianymi w izolacji z polwinitu, przeznaczony do połączeń wysokonapięciowych. Litera 'D' oznacza, że mamy do czynienia z żyłą jednodrutową, co jest typowe dla przewodów, które muszą wytrzymać wysokie napięcia. Miedź jako materiał przewodzący jest idealnym wyborem ze względu na doskonałą przewodność elektryczną i mechaniczną wytrzymałość. Izolacja z polwinitu ('Y') jest powszechnie stosowana w sytuacjach wymagających trwałości i odporności na różne czynniki środowiskowe, takie jak wilgoć czy chemikalia. Dodatek 'w' w oznaczeniu informuje nas, że przewód jest przeznaczony na wysokie napięcie, co czyni go odpowiednim do zastosowań w energetyce i przemysłowych instalacjach elektrycznych. Polwinit jako izolacja nie tylko chroni przed uszkodzeniami, ale również posiada właściwości samogasnące, co jest kluczowe w przypadku ewentualnego zwarcia. Standardy branżowe zalecają stosowanie takich przewodów w instalacjach, gdzie niezawodność i bezpieczeństwo są priorytetem.

Pytanie 10

Przedstawiony fragment programu realizuje funkcję

Ilustracja do pytania
A. NOR
B. NAND
C. AND
D. OR
Odpowiedź OR jest poprawna, ponieważ program zrealizowany w języku drabinkowym (Ladder Diagram) wykorzystuje operację OR, która jest logicznym lub. Instrukcja LD (Load) ładuje wartość wejścia X1:I0.0, a następnie instrukcja OR dodaje do tego wartość wejścia X2:I0.1. Wynik operacji jest zapisywany w wyjściu Y1:Q0.0 za pomocą instrukcji ST (Store). Logika OR działa w ten sposób, że wynik jest prawdą, jeśli przynajmniej jedno z wejść jest prawdą. Praktyczne zastosowanie takiego schematu można znaleźć w automatyce przemysłowej, na przykład kiedy chcemy uruchomić maszynę, jeśli jeden z dwóch różnych czujników wykryje określony stan. Standardy programowania PLC, takie jak IEC 61131-3, wskazują na stosowanie drabinkowych schematów do tworzenia czytelnych logik dla techników. Logika OR jest jednym z podstawowych bloków budujących bardziej złożone systemy automatyki, gdzie często wymagana jest elastyczność w reagowaniu na wiele warunków wejściowych. Moim zdaniem w automatyce przemysłowej umiejętność czytania i interpretacji takich prostych programów jest kluczowa do szybkiego diagnozowania i naprawy systemów.

Pytanie 11

Przetwornik przedstawiony na rysunkach to

Ilustracja do pytania
A. przetwornica napięcia.
B. analogowo-cyfrowy konwerter USB.
C. zadajnik cyfrowo-analogowy.
D. przetwornik PWM.
Zgadza się, przedstawiony przetwornik to analogowo-cyfrowy konwerter USB. Dlaczego? Konwertery tego rodzaju służą do przekształcania sygnałów analogowych na cyfrowe, co jest kluczowe w wielu aplikacjach, gdzie potrzebujemy monitorować i analizować sygnały analogowe za pomocą komputerów. Proces ten odbywa się dzięki przetwornikowi analogowo-cyfrowemu (A/D), który zamienia sygnał analogowy na cyfrowy, a następnie poprzez interfejs USB przekazuje go do komputera. USB zapewnia także zasilanie i komunikację, co czyni te urządzenia bardzo praktycznymi i wszechstronnymi. W praktyce takie konwertery są często używane w laboratoriach, przemyśle oraz w projektach inżynieryjnych, gdzie dokładne pomiary i analiza danych są niezbędne. Z mojego doświadczenia, są one również bardzo wygodne w zastosowaniach edukacyjnych, ponieważ pozwalają na szybkie i bezproblemowe podłączenie urządzeń pomiarowych do PC.

Pytanie 12

Która z przedstawionych tabliczek znamionowych opisuje silnik elektryczny przeznaczony do pracy ciągłej?

Ilustracja do pytania
A. Tabliczka 4.
B. Tabliczka 3.
C. Tabliczka 2.
D. Tabliczka 1.
Silnik opisany na tabliczce 1 jest przeznaczony do pracy ciągłej, co oznacza, że jest zaprojektowany do pracy przez długi czas bez przerw. Informację tę można znaleźć w oznaczeniu 'S1', które w standardach międzynarodowych, takich jak IEC 60034, wskazuje na ciągłą pracę. Tego typu silniki są często stosowane w aplikacjach, gdzie wymagana jest stabilność i niezawodność przez dłuższe okresy, na przykład w taśmociągach czy pompowaniu wody. Charakteryzują się dobrą sprawnością energetyczną oraz trwałością, co jest kluczowe w zastosowaniach przemysłowych. Standardy takie jak IEC 60034 definiują klasy ochrony IP, które w przypadku tego silnika wynoszą IP54, co oznacza ochronę przed pyłem oraz rozpryskami wody. To istotne w wielu środowiskach przemysłowych. Moim zdaniem, wybór silnika do pracy ciągłej powinien uwzględniać również czynniki takie jak koszty eksploatacji i konserwacji, co w dłuższej perspektywie przekłada się na oszczędności i wydajność operacyjną.

Pytanie 13

Którego z wymienionych przyrządów pomiarowych należy użyć w celu oceny jakości istniejących połączeń elektrycznych w układzie automatyki?

A. omomierza.
B. megaomomierza.
C. woltomierza.
D. watomierza.
Omomierz to bardzo przydatne narzędzie w ocenie jakości połączeń elektrycznych. Dlaczego? Ponieważ mierzy rezystancję, czyli opór elektryczny. W praktyce, kiedy oceniamy połączenia elektryczne, chcemy upewnić się, że przewodzą prąd efektywnie, a to oznacza, że ich rezystancja powinna być jak najniższa. Wyższa rezystancja może wskazywać na słabe połączenia, korozję czy uszkodzenie. Omomierz ułatwia znalezienie problematycznych połączeń. Z mojego doświadczenia, w automatyce, gdzie precyzja i niezawodność są kluczowe, zawsze warto sprawdzić najpierw rezystancję. Standardy branżowe, takie jak IEC, wskazują na konieczność regularnej konserwacji i oceny połączeń elektrycznych właśnie przy użyciu takich mierników. Praktyczne zastosowanie omomierza obejmuje np. sprawdzanie ciągłości obwodu czy weryfikację poprawności montażu w rozdzielnicach. Korzystanie z omomierza to podstawa w diagnostyce i konserwacji sprzętu elektrycznego. Ostatecznie, dobry specjalista potrafi z jego pomocą unikać błędów, które mogłyby prowadzić do awarii systemu."

Pytanie 14

Urządzenie połączone ze sterownikiem PLC, oznaczone ADMC-1801 pełni w układzie przedstawionym na rysunku funkcję

Ilustracja do pytania
A. modułu wyjściowego.
B. interfejsu komunikacyjnego.
C. modułu wejściowego.
D. zasilacza sterownika PLC.
Moduł wejściowy, w tym przypadku oznaczony jako ADMC-1801, to kluczowy komponent w systemach sterowania opartych na PLC. Jego główną funkcją jest przetwarzanie sygnałów z różnych czujników i przekazywanie ich do sterownika PLC. Dzięki temu sterownik może podjąć decyzje na podstawie aktualnych danych z procesu, co jest fundamentalne w automatyce przemysłowej. Moduły wejściowe mogą obsługiwać różne typy sygnałów, w tym cyfrowe i analogowe, co pozwala na elastyczność w projektowaniu systemów. W naszym przypadku, czujnik PT100, który jest czujnikiem temperatury, podłączony jest do tego modułu. To typowy przykład zastosowania modułu wejściowego do monitorowania parametrów procesowych. Dzięki takim rozwiązaniom, systemy sterowania mogą być bardziej precyzyjne i niezawodne. Dobre praktyki branżowe zalecają regularne testowanie i kalibrację modułów wejściowych, aby zapewnić ich dokładność i niezawodność. Warto również pamiętać o zgodności z normami, takimi jak IEC 61131, które definiują wymagania dla systemów sterowania. Moim zdaniem, zrozumienie roli modułów wejściowych jest kluczowe dla każdego, kto zajmuje się automatyką przemysłową, ponieważ pozwala to na lepsze zaprojektowanie i optymalizację procesów.

Pytanie 15

Według której zasady należy w układzie sterowania zaprojektować działanie umożliwiające wyłączenie zautomatyzowanego systemu sterowanego przez sterownik PLC?

A. Zasady blokady sygnałów wyjściowych.
B. Zasady przerwy roboczej - podanie stanu 0 na wejście sterownika.
C. Zasady prądu roboczego - podanie stanu 1 na wejście sterownika.
D. Zasady blokady programowej sygnałów wejściowych.
Rozważając zasady blokady sygnałów wyjściowych, można dojść do wniosku, że ich stosowanie w celu wyłączenia systemu sterowanego przez PLC nie jest właściwe. Blokada wyjść dotyczy przede wszystkim zatrzymania działania urządzeń wykonawczych, co niekoniecznie oznacza bezpieczne wyłączenie całego systemu. W praktyce, blokada sygnałów wejściowych, choć mogłaby wydawać się sposobem na wyłączenie systemu, w rzeczywistości skupia się bardziej na ochronie przed niepożądanymi sygnałami zewnętrznymi niż na stopowaniu pracy sterownika. To podejście często prowadzi do błędnego myślenia, że ograniczenie informacji docierających do PLC wystarczy do jego wyłączenia. Zasady prądu roboczego, polegające na podaniu stanu 1 na wejście, są zazwyczaj wykorzystywane do aktywacji obwodów. W praktyce oznacza to, że w kontekście wyłączania, poleganie na stanie 1 może prowadzić do problematycznych sytuacji, zwłaszcza w przypadku awarii zasilania. Tego rodzaju koncepcje mogą być mylnie interpretowane jako właściwe, ponieważ w pewnych sytuacjach stan 1 jest utożsamiany z aktywnością. Jednakże w automatyce przemysłowej, szczególnie z perspektywy bezpieczeństwa, bardziej liczy się niezawodne przejście do stanu bezpiecznego, co zapewnia przerwa robocza, czyli stan 0. W konkluzji, niepoprawne zrozumienie tych zasad może wynikać z niepełnej znajomości standardów bezpieczeństwa lub specyfiki działania systemów PLC, co może prowadzić do nieodpowiednich implementacji w projektach inżynieryjnych.

Pytanie 16

Na rysunku przedstawiono przytwierdzenie siłownika za pomocą

Ilustracja do pytania
A. ucha ze sworzniem.
B. kołnierza.
C. uchwytu widełkowego ze sworzniem.
D. łap mocujących.
Łapy mocujące to bardzo popularny sposób przytwierdzania siłowników, zwłaszcza w zastosowaniach przemysłowych. Dzięki swojej konstrukcji zapewniają stabilność i łatwość montażu w różnych pozycjach. Są często używane w systemach, gdzie istnieje potrzeba montażu na powierzchniach płaskich. Mocowanie za pomocą łap jest zgodne z wieloma standardami, takimi jak ISO 6020/2 dla siłowników hydraulicznych. W praktyce stosuje się je w maszynach budowlanych, liniach produkcyjnych czy w przemyśle samochodowym. Przewagą łap mocujących jest możliwość łatwego dostosowania i demontażu, co jest kluczowe w środowiskach, gdzie częsta konserwacja jest niezbędna. Co więcej, umożliwiają one absorpcję obciążeń bocznych, co zwiększa trwałość i żywotność całego układu. Dzięki temu ich użycie jest efektywne i ekonomiczne na dłuższą metę. Warto również pamiętać, że odpowiednie rozmieszczenie śrub mocujących łapy do podłoża gwarantuje równomierne rozłożenie obciążeń, co jest podstawą dobrej praktyki inżynierskiej.

Pytanie 17

Według której zasady należy w układzie sterowania zaprojektować działanie umożliwiające wyłączenie zautomatyzowanego systemu sterowanego przez sterownik PLC?

A. Zasady przerwy roboczej - podanie stanu 0 na wejście sterownika.
B. Zasady blokady programowej sygnałów wejściowych.
C. Zasady blokady sygnałów wyjściowych.
D. Zasady prądu roboczego - podanie stanu 1 na wejście sterownika.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Projektowanie układu sterującego bazującego na zasadach przerwy roboczej to kluczowy aspekt bezpieczeństwa i niezawodności w systemach zautomatyzowanych. Zasady te mówią, że w przypadku awarii lub konieczności bezpiecznego wyłączenia systemu, należy zapewnić możliwość wprowadzenia stanu 0 na wejście sterownika PLC. To działanie jest zgodne z podejściami fail-safe, które są powszechnie stosowane w przemyśle, aby minimalizować ryzyko niekontrolowanych operacji. W praktyce, projektując systemy sterowania, inżynierowie muszą przewidzieć scenariusze awaryjne i zbudować logikę, która umożliwi bezpieczne wyłączenie systemu bez ryzyka dla ludzi czy sprzętu. Moim zdaniem, jest to niezwykle istotne, zwłaszcza w branżach takich jak produkcja, gdzie zautomatyzowane linie produkcyjne muszą działać w precyzyjny i kontrolowany sposób. Standardy takie jak IEC 61131-3 zalecają projektowanie systemów z myślą o bezpieczeństwie i zrównoważonym zarządzaniu energią, co bezpośrednio łączy się z zasadami przerwy roboczej. Warto również pamiętać, że w sytuacjach kryzysowych łatwość dokonania natychmiastowego zatrzymania systemu może zapobiec poważnym awariom i potencjalnym stratom. Zastosowanie tej zasady w praktyce to dobry przykład na to, jak teoria znajduje odzwierciedlenie w realnych aplikacjach przemysłowych.

Pytanie 18

Aby zapewnić stałą wartość ciśnienia doprowadzanego do układu pneumatycznego, należy zastosować zawór

A. zwrotny.
B. redukcyjny.
C. bezpieczeństwa.
D. dławiący.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Zawór redukcyjny to kluczowy element w układach pneumatycznych, którego głównym zadaniem jest utrzymanie stałej wartości ciśnienia na wyjściu, niezależnie od zmian ciśnienia na wejściu. Działa to na zasadzie mechanizmu równoważenia siły sprężyny z siłą gazu, co pozwala na precyzyjne dostosowanie ciśnienia do wymagań układu. W praktyce takie zawory są niezbędne w systemach, gdzie stabilność i precyzyjne ciśnienie robocze mają krytyczne znaczenie, na przykład w urządzeniach medycznych, gdzie zbyt wysokie ciśnienie mogłoby zaszkodzić pacjentowi, lub w liniach produkcyjnych, gdzie zmiany ciśnienia mogą wpływać na jakość produktu. Z mojego doświadczenia wynika, że prawidłowe dobranie zaworu redukcyjnego jest kluczowe dla efektywności i bezpieczeństwa całego układu. Dobre praktyki branżowe sugerują, aby regularnie kontrolować stan zaworów i kalibrować je, by uniknąć niepotrzebnych awarii. Warto też pamiętać, że zawory te mogą być stosowane w różnorodnych środowiskach pracy, od przemysłowych po laboratoryjne, co pokazuje ich uniwersalność i znaczenie w różnych aplikacjach technicznych.

Pytanie 19

Do wykrycia nieciągłości okablowania w komunikacyjnej sieci przemysłowej stosuje się

A. tester przewodów.
B. wykrywacz przewodów.
C. miernik parametrów instalacji.
D. kamerę termowizyjną.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Tester przewodów to urządzenie, które jest specjalnie zaprojektowane do sprawdzania ciągłości okablowania i wykrywania nieciągłości w sieciach komunikacyjnych. Działa na zasadzie wysyłania sygnału elektrycznego przez przewody i sprawdzania, czy sygnał ten dociera do drugiego końca kabla. Jeśli sygnał zostaje przerwany lub nie dociera, oznacza to, że w kablu występuje nieciągłość, taka jak przerwanie przewodu. Testery przewodów są nieocenione w diagnozowaniu problemów w sieciach przemysłowych, gdzie niezawodność komunikacji jest kluczowa. Korzystanie z testerów przewodów jest zgodne z dobrymi praktykami utrzymania sieci, ponieważ pozwala szybciej zidentyfikować i naprawić problemy, minimalizując przestoje w działaniu systemu. Warto zaznaczyć, że tego typu urządzenia mogą również wykrywać inne problemy, takie jak zwarcia czy błędne połączenia, co czyni je wszechstronnym narzędziem w arsenale technika sieciowego. W wielu branżach tester przewodów to standardowe wyposażenie każdego inżyniera utrzymania ruchu, co pozwala na szybkie lokalizowanie i usuwanie awarii, a tym samym zwiększa efektywność i niezawodność całych systemów komunikacyjnych. Są również urządzeniami stosunkowo prostymi w obsłudze, co oznacza, że nawet osoby z mniejszym doświadczeniem mogą z nich skutecznie korzystać, co dodatkowo podnosi ich użyteczność w codziennej pracy.

Pytanie 20

W celu zmierzenia mocy czynnej pobieranej z sieci elektrycznej przez klimatyzator, należy użyć

A. woltomierza i amperomierza.
B. termometru i miernika natężenia przepływu powietrza.
C. termometru i woltomierza.
D. woltomierza i miernika natężenia przepływu powietrza.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Moc czynna, zwana też mocą rzeczywistą, jest kluczowa w określaniu, ile energii elektrycznej urządzenie zużywa do wykonywania rzeczywistej pracy, w tym przypadku chłodzenia powietrza przez klimatyzator. Aby ją zmierzyć, niezbędne są dwa podstawowe przyrządy: woltomierz i amperomierz. Woltomierz mierzy napięcie elektryczne, które jest potencjałem, jaki napędza prąd przez urządzenie. Amperomierz z kolei mierzy natężenie prądu, które jest ilością przepływających ładunków elektrycznych. Moc czynna to iloczyn napięcia, natężenia oraz współczynnika mocy. Z tego wynika, że sama znajomość napięcia i natężenia nie wystarcza do pełnego zrozumienia zużycia energii przez urządzenie, ale są to kluczowe składniki. W praktyce, mierząc moc czynną, możemy efektywnie zarządzać zużyciem energii, optymalizować koszty i unikać przeciążeń w instalacji domowej. Standardy międzynarodowe, takie jak te opracowane przez IEC, zalecają regularne monitorowanie mocy czynnej w urządzeniach elektrycznych dla ich bezpiecznej i efektywnej pracy. Klimatyzatory, szczególnie w dużych budynkach, są znaczącymi odbiorcami energii i ich efektywne monitorowanie może przełożyć się na znaczne oszczędności energetyczne. Dlatego znajomość i umiejętność stosowania tych przyrządów pomiarowych to podstawa w zawodzie elektryka.

Pytanie 21

Który z czujników należy zamontować w układzie sterowania wyłączarką, jeśli wymagany jest zasięg działania 0,8 ÷ 0,9 mm oraz odporność na wibracje i zmiany temperatury 0 ÷ 90°C?

Ilustracja do pytania
A. HPD1202-NK
B. HPD1204-PK
C. HPD1406-NK
D. HPD1408-PK

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wybór czujnika HPD1202-NK jest trafny, ponieważ spełnia on wymagania dotyczące zasięgu oraz odporności na zmiany temperatury. Czujnik ten działa w zakresie od 0 do 1,6 mm, co pokrywa się z wymaganiem 0,8 ÷ 0,9 mm. Jest to istotne, gdyż precyzyjne określenie zasięgu czujnika ma kluczowe znaczenie w precyzyjnych aplikacjach jak np. sterowanie wyłączarką. Dodatkowo, HPD1202-NK może pracować w temperaturach od -20 do 110°C, co daje duży margines bezpieczeństwa i pozwala na pracę w trudnych warunkach środowiskowych. Warto też zwrócić uwagę na klasę ochrony IP67, która zabezpiecza czujnik przed pyłem i krótkotrwałym zanurzeniem w wodzie, co jest często niezbędne w aplikacjach przemysłowych. Z doświadczenia wiem, że wybór odpowiedniego czujnika to nie tylko kwestia parametrów, ale też niezawodności i odporności na warunki pracy. W praktyce, taki czujnik sprawdzi się w aplikacjach, gdzie wymagana jest nie tylko precyzja, ale i wytrzymałość.

Pytanie 22

Element zaznaczony na ilustracji strzałką, posiadający jedno uzwojenie, umożliwiający w zależności od konstrukcji obniżanie lub podwyższanie wartości napięcia przemiennego, to

Ilustracja do pytania
A. autotransformator.
B. silnik prądu stałego.
C. multimetr cyfrowy.
D. opornik dekadowy.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Autotransformator to bardzo ciekawe urządzenie, które często znajduje zastosowanie w laboratoriach i różnych systemach elektrycznych. Ma jedno uzwojenie, które pełni zarówno funkcję pierwotną, jak i wtórną. Dzięki temu jest bardziej kompaktowy i efektywny kosztowo niż standardowy transformator dwuuzwojeniowy. Często używa się go do regulacji napięcia przemiennego w sposób płynny. To znaczy, że możesz precyzyjnie dostosować napięcie wyjściowe do swoich potrzeb, co jest niezwykle przydatne w sytuacjach, gdy wymagana jest zmienna wartość napięcia, np. w testach laboratoryjnych czy w zasilaniu urządzeń elektrycznych o różnych wymaganiach. W praktyce autotransformatory są używane w przemyśle do zasilania maszyn o różnych standardach napięcia oraz w systemach przesyłowych do regulacji poziomów napięcia. Co ciekawe, pomimo swojej prostoty, autotransformatory muszą być używane z odpowiednią ostrożnością. Dobry projekt i odpowiednie zabezpieczenia to klucz do ich bezpiecznego użycia. Warto też pamiętać, że zgodnie z normami, ich stosowanie powinno uwzględniać specyficzne wymagania systemów elektrycznych, aby uniknąć przeciążeń i uszkodzeń.

Pytanie 23

W systemie automatyki wszystkie połączenia wykonano przewodem oznaczonym jako 15G0,75. Oznacza to, że jest to przewód

Ilustracja do pytania
A. 15 żyłowy, z żyłą ochronną, przekrój 0,5 mm²
B. 15 żyłowy, bez żyły ochronnej, przekrój 0,5 mm²
C. 15 żyłowy, z żyłą ochronną, przekrój 0,75 mm²
D. 15 żyłowy, bez żyły ochronnej, przekrój 0,75 mm²

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Oznaczenie 15G0,75 w przewodach jasno wskazuje na kilka istotnych cech tego przewodu. Przede wszystkim liczba 15 oznacza, że przewód posiada 15 żył. Jest to ważne, gdyż wielożyłowe przewody są często używane w systemach automatyki do przesyłania sygnałów sterujących. Litera 'G' w oznaczeniu informuje nas, że przewód posiada żyłę ochronną, co jest kluczowe dla bezpieczeństwa instalacji. Żyła ochronna zapewnia, że w przypadku awarii elektrycznej nadmiarowe napięcie zostanie odprowadzone, minimalizując ryzyko uszkodzenia urządzeń lub porażenia prądem. Z kolei wartość 0,75 mm² określa przekrój pojedynczej żyły, co ma wpływ na jej zdolność do przewodzenia prądu. W praktyce przewody o mniejszych przekrojach stosuje się do przesyłania sygnałów o niskim natężeniu. Przewody takie są zgodne z normami określającymi minimalne wymagania dla zabezpieczenia elektrycznego, co ma krytyczne znaczenie w instalacjach przemysłowych. Wiedza ta pozwala na odpowiedni dobór przewodów w zależności od potrzeb instalacji, co ma bezpośredni wpływ na jej efektywność i bezpieczeństwo.

Pytanie 24

Na rysunku przedstawiono

Ilustracja do pytania
A. ramię robota.
B. przegub robota.
C. podstawę robota.
D. chwytak robota.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
To, co widzisz na obrazku, to rzeczywiście chwytak robota. Chwytaki są niezwykle istotne w automatyzacji procesów, bo to one pozwalają na manipulację obiektami. W praktyce, chwytaki mogą być pneumatyczne, elektryczne lub hydrauliczne, w zależności od zastosowania. Wielu producentów stawia na precyzję i delikatność, zwłaszcza w branży elektronicznej, gdzie chwytak musi bardzo ostrożnie obchodzić się z drobnymi komponentami. Standardy przemysłowe, takie jak ISO 10218 dotyczące bezpieczeństwa robotów, podkreślają znaczenie zastosowania odpowiednich chwytaków w zależności od zadania. Kolejną rzeczą do rozważenia jest materiał, z jakiego wykonany jest chwytak – zazwyczaj używa się aluminium ze względu na jego lekkość i wytrzymałość. Warto również pamiętać, że chwytaki są często zintegrowane z systemami wizyjnymi, co zwiększa ich precyzję i efektywność. Moim zdaniem, jest to jeden z najważniejszych elementów robota, bo to dzięki niemu robot może naprawdę wpływać na otoczenie.

Pytanie 25

Rysunek poglądowy przedstawia budowę przekaźnika. Strzałka wskazuje

Ilustracja do pytania
A. zworę.
B. rdzeń.
C. styki.
D. cewkę.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Zwróć uwagę na wskazanie strzałki w rysunku – jest to kluczowy element rozpoznawania zwory w przekaźniku. Zwora to ruchoma część przekaźnika, która pełni rolę mostka zamykającego lub otwierającego obwód w momencie przyciągnięcia przez elektromagnes. To właśnie dzięki zworze możemy kontrolować przepływ prądu w obwodach za pomocą sygnałów sterujących. Dzięki temu przekaźniki znajdują zastosowanie w wielu dziedzinach, od prostych układów automatyki po złożone systemy sterowania. Pamiętaj, że zwora działa skutecznie tylko wtedy, gdy jest dobrze zintegrowana z resztą elementów przekaźnika - cewką, rdzeniem i stykami. W praktyce kluczowe jest zapewnienie, że mechanizm zwory nie ulega zacięciom i jest dobrze skalibrowany. Warto również pamiętać o standardach, takich jak IEC 61810, które definiują wymagania dotyczące przekaźników. Zwory muszą działać precyzyjnie, co jest szczególnie ważne w środowiskach przemysłowych, gdzie niezawodność jest kluczowa.

Pytanie 26

Urządzenie połączone ze sterownikiem PLC, oznaczone ADMC-1801, pełni w układzie przedstawionym na rysunku funkcję

Ilustracja do pytania
A. zasilacza sterownika PLC.
B. modułu wejściowego.
C. modułu wyjściowego.
D. interfejsu komunikacyjnego.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Urządzenie oznaczone jako ADMC-1801 działa jako moduł wejściowy w systemie PLC. W kontekście automatyki przemysłowej, moduły wejściowe mają kluczowe znaczenie, ponieważ umożliwiają sterownikowi PLC odbieranie sygnałów z otoczenia, takich jak temperatury, ciśnienia lub stanów przełączników. W tym przypadku, ADMC-1801 jest połączony z czujnikiem PT100, co wskazuje na pomiar temperatury. Moduły wejściowe przetwarzają sygnały analogowe lub cyfrowe na format, który może być zrozumiany przez PLC. To zgodne z dobrymi praktykami branżowymi, które zalecają użycie dedykowanych modułów do konkretnych typów sygnałów, co optymalizuje dokładność i niezawodność systemu. W praktyce, umiejętne korzystanie z modułów wejściowych pozwala na precyzyjne sterowanie procesami technologicznymi, co z kolei przekłada się na zwiększoną efektywność produkcji i minimalizację błędów. Moim zdaniem, zrozumienie roli takich modułów to podstawa w automatyce, bo pozwala na lepsze projektowanie i implementowanie systemów automatyki, zgodnie z normami takimi jak IEC 61131.

Pytanie 27

Urządzenie połączone ze sterownikiem PLC, oznaczone ADMC-1801, pełni w układzie przedstawionym na ilustracji funkcję

Ilustracja do pytania
A. modułu wyjściowego.
B. zasilacza sterownika PLC.
C. interfejsu komunikacyjnego.
D. modułu wejściowego.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Świetnie, zrozumiałeś funkcję tego urządzenia! ADMC-1801 działa jako moduł wejściowy w systemie sterowania PLC. Moduły wejściowe są kluczowe w zbieraniu danych z różnych czujników i urządzeń w celu monitorowania stanu systemu. W tym przypadku ADMC-1801 jest połączony z czujnikiem PT100, który mierzy temperaturę. Moduły wejściowe przetwarzają sygnały z czujników na sygnały cyfrowe, które PLC może analizować. Dzięki temu można efektywnie kontrolować procesy przemysłowe. Dobre praktyki w branży wskazują na używanie odpowiednich modułów wejściowych, aby zapewnić dokładność i niezawodność danych. Praktyczne zastosowanie takich modułów jest szerokie, od automatyki budynkowej po zaawansowane systemy produkcyjne. Upewnienie się, że moduł wejściowy jest poprawnie skonfigurowany i skalibrowany, jest kluczowe dla prawidłowego działania całego systemu. Moim zdaniem, zrozumienie roli modułów wejściowych jest fundamentem w nauce o systemach PLC.

Pytanie 28

Który z czujników należy zastosować przy wytłaczarce, jeśli wymagany jest zasięg działania 0,8 ÷ 0,9 mm oraz zmiana temperatury od 0 do +90 °C?

TypHPD1204-PKHPD1202-NKHPD1406-NKHPD1408-PK
Zasięg (mm)0,8 do 1,40 do 1,60,5 do 1,80,8 do 2,4
Temperatura pracy
(°C)
+20 do +130-20 do +110-20 do +80+10 do +130
ObudowaIP68IP67IP54IP65
Czujnik 1.Czujnik 2.Czujnik 3.Czujnik 4.
A. Czujnik 4.
B. Czujnik 3.
C. Czujnik 1.
D. Czujnik 2.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wybór czujnika do wytłaczarki to kluczowe zadanie, które musi uwzględniać specyfikacje techniczne oraz warunki pracy urządzenia. Czujnik 2, czyli HPD1202-NK, spełnia wymagania dotyczące zasięgu działania oraz zakresu temperatury. W przypadku wytłaczarek, gdzie precyzja jest kluczowa, zasięg 0 do 1,6 mm zapewnia wystarczającą dokładność, a temperatura pracy od -20 do +110 °C pozwala na pracę w zróżnicowanych warunkach. Ponadto, HPD1202-NK ma obudowę IP67, co oznacza, że jest dobrze chroniony przed pyłem oraz krótkotrwałym zanurzeniem w wodzie. Standardy IP są powszechnie uznawane w przemyśle i określają stopień ochrony przed ciałami stałymi i cieczami. W praktyce czujniki o takich parametrach są stosowane w przemyśle tworzyw sztucznych, gdzie często zmieniające się temperatury i wymagania dotyczące precyzji są na porządku dziennym. Dobrze dobrany czujnik wpływa na efektywność i niezawodność procesu produkcyjnego, minimalizując ryzyko awarii oraz zapewniając stabilną jakość produktów. To podejście zgodne z najlepszymi praktykami inżynierskimi, które kładą nacisk na zrozumienie specyfiki i wymagań procesu technologicznego przed wyborem odpowiedniego sprzętu.

Pytanie 29

Którym kodem oznaczony będzie przekaźnik programowalny dobrany do układu automatycznego sterowania, jeżeli zasilanie układu będzie wynosiło 24 V DC, a maksymalne wartości prądów obciążenia nie będą przekraczały 8 A przy napięciu nie przekraczającym wartości 250 V AC.

Kod przekaźnikaNapięcie zasilaniaWyjściaZnamionowe obciążenie wyjścia
001230 V AC4 wyjścia przekaźnikowe10 A/ 250 V AC
00224 V DC4 wyjścia przekaźnikowe10 A/ 250 V AC
00324 V DC4 wyjścia tranzystorowe0,5 A/ 24 V DC
00412 V DC4 wyjścia przekaźnikowe10 A/ 250 V AC
005220 V DC4 wyjścia przekaźnikowe10 A/ 250 V AC
A. 004
B. 002
C. 003
D. 005

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wybór przekaźnika oznaczonego kodem 002 jest poprawny, ponieważ spełnia on zarówno wymagania dotyczące napięcia zasilania, jak i obciążenia wyjść. Przekaźnik ten pracuje przy zasilaniu 24 V DC, co jest zgodne z wymaganiem dla układu. Ponadto, znamionowe obciążenie wyjścia wynosi 10 A przy napięciu 250 V AC, co bez problemu pokrywa wymagane 8 A przy takim samym napięciu. W praktyce, wybór odpowiedniego przekaźnika programowalnego jest kluczowy, aby zapewnić niezawodność i bezpieczeństwo systemu automatyki. Należy zawsze uwzględniać nie tylko napięcie zasilania, ale także typ i wartość obciążenia. Przekaźniki programowalne są szeroko stosowane w przemyśle, zwłaszcza w aplikacjach wymagających elastycznego sterowania procesami. Dobór odpowiednich parametrów technicznych jest zgodny z dobrymi praktykami projektowania systemów automatyki, które zakładają nie tylko spełnienie minimalnych wymagań, ale również uwzględnienie pewnego zapasu bezpieczeństwa. Warto również pamiętać, że przekaźniki programowalne, dzięki swojej elastyczności, mogą być konfigurowane do różnych zadań, co czyni je uniwersalnym narzędziem w wielu zastosowaniach przemysłowych.

Pytanie 30

Do pomiaru ciśnienia cieczy w układach hydraulicznych stosuje się

A. manometry.
B. higrometry.
C. areometry.
D. barometry.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Manometry to podstawowe narzędzia stosowane w hydraulice do pomiaru ciśnienia cieczy. Działają na zasadzie równowagi sił w układzie zamkniętym, co pozwala na dokładne określenie wartości ciśnienia. Są niezwykle powszechne w wielu branżach, od przemysłu petrochemicznego po produkcję maszyn. Praktyczne zastosowania manometrów obejmują monitorowanie ciśnienia w układach chłodniczych, instalacjach wodociągowych czy systemach pneumatycznych. Warto wiedzieć, że manometry są kluczowym elementem bezpieczeństwa w zakładach przemysłowych, ponieważ pozwalają na szybkie wykrycie nieprawidłowości, które mogą prowadzić do awarii lub wypadków. Standardowe praktyki branżowe zalecają regularną kalibrację manometrów, aby zapewnić ich dokładność i niezawodność. Istnieją różne rodzaje manometrów, takie jak manometry mechaniczne czy cyfrowe, które mogą być stosowane w zależności od specyfiki aplikacji. Ważne jest, by wybierać odpowiednie manometry zgodnie z zakresem ciśnienia i medium, z którym będą pracować. Stosowanie manometrów to nie tylko kwestia pomiaru, ale również dbałości o bezpieczeństwo i efektywność procesów.

Pytanie 31

Który język programowania sterowników PLC wykorzystano w projekcie przedstawionym na rysunku

Ilustracja do pytania
A. FBD
B. LD
C. IL
D. SFC

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Język LD, czyli Ladder Diagram, jest jednym z najpopularniejszych sposobów programowania sterowników PLC. Jego struktura przypomina schemat drabinkowy, co ułatwia zrozumienie logiki działania programu. Na przedstawionym rysunku widać poziome linie z elementami przypominającymi styki oraz cewki – to charakterystyczne dla LD. Ten język bazuje na zasadach działania tradycyjnych układów przekaźnikowych, co sprawia, że jest intuicyjny dla elektryków i automatyków. W praktyce LD jest używany do sterowania procesami przemysłowymi, gdzie kluczowa jest logika sekwencyjna. Standardy takie jak IEC 61131-3 zalecają stosowanie LD, co podkreśla jego znaczenie w branży. LD pozwala na łatwe implementowanie funkcji takich jak blokady czy logika czasowa, co jest nieocenione w złożonych systemach sterowania. Dzięki prostocie i czytelności LD ułatwia diagnostykę i konserwację systemów w terenie, co z mojego doświadczenia jest dużym plusem w codziennej pracy inżyniera.

Pytanie 32

Przedstawiony na zdjęciu czujnik jest przeznaczony do detekcji

Ilustracja do pytania
A. temperatury.
B. pola magnetycznego.
C. naprężeń.
D. ciśnienia.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
To, co widzisz na zdjęciu, to typowy czujnik pola magnetycznego zwany kontaktronem. Kontaktrony są szeroko stosowane w systemach alarmowych i detekcji otwarcia drzwi czy okien. Działa to na zasadzie zamykania lub otwierania obwodu elektrycznego w obecności pola magnetycznego. W momencie, gdy magnes zbliża się do kontaktronu, jego wewnętrzne styki zbliżają się do siebie, co pozwala na przepływ prądu. To niesamowicie proste, ale skuteczne rozwiązanie. W branży standardem jest stosowanie takich czujników w miejscach, gdzie wymagana jest niezawodność i niskie koszty utrzymania. Kontaktrony są też często stosowane w licznikach energii elektrycznej, gdzie wykrywają nielegalne interwencje z zewnątrz. Moim zdaniem, to genialne, jak coś tak prostego może mieć tak szerokie zastosowanie w technologii i życiu codziennym. Warto też dodać, że kontaktrony są odporne na większość zakłóceń elektromagnetycznych, co czyni je idealnym wyborem w trudnych warunkach przemysłowych.

Pytanie 33

Program sterowniczy przedstawiony na rysunku realizuje funkcję

Ilustracja do pytania
A. NOR
B. OR
C. Ex-OR
D. Ex-NOR

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Funkcja Ex-OR, czyli exclusive OR, jest jedną z podstawowych funkcji logicznych używanych w automatyce i elektronice. To, co jest charakterystyczne dla Ex-OR, to jej zdolność do wykrywania różnic między dwoma sygnałami wejściowymi. W praktyce oznacza to, że wyjście będzie aktywne (czyli w stanie wysokim) tylko wtedy, gdy jeden z sygnałów wejściowych jest w stanie wysokim, a drugi w niskim. Taki mechanizm znajduje szerokie zastosowanie w systemach cyfrowych, gdzie konieczne jest porównywanie dwóch sygnałów lub wartości binarnych. W programowalnych sterownikach logicznych (PLC) Ex-OR używa się często do celów diagnostycznych, np. do wykrywania błędów w przesyłanych danych. W standardach przemysłowych, takich jak IEC 61131-3, Ex-OR jest jedną z kluczowych funkcji logicznych, które programiści muszą znać. Z mojego doświadczenia wynika, że opanowanie tej funkcji otwiera drogę do bardziej skomplikowanych aplikacji, gdzie liczy się precyzyjne sterowanie i analiza danych. To właśnie dzięki Ex-OR można tworzyć systemy, które reagują na konkretne różnice między stanami wejściowymi, co jest często wykorzystywane w systemach zabezpieczeń i kontroli jakości.

Pytanie 34

Do montażu czujnika przedstawionego na ilustracji niezbędne jest użycie

Ilustracja do pytania
A. szczypiec uniwersalnych.
B. kluczy płaskich.
C. wkrętaków płaskich.
D. szczypiec seger.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Do montażu czujnika niezbędne są klucze płaskie, ponieważ umożliwiają one precyzyjne dokręcenie nakrętek na gwintowanym elemencie czujnika. Klucze płaskie są narzędziem idealnym do takich zastosowań, ponieważ zapewniają równomierne rozłożenie siły, co minimalizuje ryzyko uszkodzenia gwintu czy samego czujnika. W branży mechanicznej i elektrycznej standardem jest używanie kluczy płaskich do elementów gwintowanych, aby zapewnić stabilność i bezpieczeństwo połączenia. Praktyczne zastosowanie to montaż wszelkiego rodzaju czujników w automatyce przemysłowej, gdzie niezwykle ważne jest, aby wszystko było odpowiednio dokręcone. Dobre praktyki wskazują, że użycie właściwego klucza znacznie przedłuża trwałość zarówno narzędzi, jak i montowanych elementów. Klucze płaskie są również niezastąpione przy pracach, gdzie przestrzeń jest ograniczona, a dostęp do nakrętek wymaga precyzji. Warto też dodać, że klucze te są często stosowane w serwisach samochodowych do montażu różnych komponentów w pojazdach.

Pytanie 35

Na schemacie układu sterowania wskaż, dla którego odcinka przewodu została błędnie wpisana wartość rezystancji.

Ilustracja do pytania
A. S0:2/WE1 0,1
B. V0:A2/V1:A2 0,1
C. S1:4/WE2 ∞
D. WY1/V0:A1 0,1

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wartość rezystancji dla odcinka S1:4/WE2 została wpisana jako nieskończoność (∞), co oznacza, że obwód jest otwarty. W praktyce, taka wartość wskazuje na brak połączenia elektrycznego, czyli że przewód nie przewodzi prądu. W układzie sterowania, szczególnie w przypadku przewodów łączących elementy takie jak przełączniki czy sterowniki PLC, poprawna rezystancja powinna być bardzo niska, zbliżona do zera, aby zapewnić prawidłowe działanie systemu. Otwarty obwód uniemożliwi działanie komponentów, które powinny być zasilane lub kontrolowane przez ten przewód. W praktyce, jeśli napotkasz nieskończoną rezystancję, powinieneś sprawdzić, czy przewód jest poprawnie podłączony lub czy nie został przerwany. Standardy branżowe wymagają od techników, aby regularnie sprawdzali rezystancję w przewodach jako część konserwacji prewencyjnej, co pozwala uniknąć przestojów wynikających z niewłaściwego działania systemu.

Pytanie 36

Przed montażem sprawdzono parametry elektryczne przewodu. Z jednej strony został on podłączony jak na przedstawionym rysunku, a z drugiej żyły pozostały niepodłączone. Wykonywany w ten sposób pomiar dotyczy

Ilustracja do pytania
A. rezystancji izolacji między żyłami L1, L2, L3 a żyłą PEN.
B. sumy rezystancji izolacji żył L1, L2, L3
C. sumy rezystancji żył L1, L2, L3, PEN
D. rezystancji żył L1, L2, L3, PEN

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Pomiar rezystancji izolacji między żyłami L1, L2, L3 a żyłą PEN jest kluczowy dla zapewnienia bezpieczeństwa instalacji elektrycznych. Izolacja ma za zadanie zapobiegać niepożądanym przepływom prądu między przewodami, które mogą prowadzić do zwarć lub porażenia prądem. Normy takie jak PN-EN 61557 określają minimalne wartości rezystancji izolacji, które powinny być zachowane w instalacjach elektrycznych. W praktyce, wysoka rezystancja izolacji, na poziomie kilku megaomów, świadczy o dobrej jakości izolacji i bezpieczeństwie użytkowania. Regularne pomiary pozwalają na wczesne wykrycie uszkodzeń mechanicznych lub starzenia się materiału izolacyjnego, co jest szczególnie istotne w środowiskach o wysokiej wilgotności lub narażonych na wpływy chemiczne. Przykład z życia: w przemyśle ciężkim, gdzie maszyny są narażone na działanie olejów i smarów, takie pomiary są standardową praktyką, aby zapobiec awariom i kosztownym przestojom produkcyjnym.

Pytanie 37

Element zaznaczony na rysunku strzałką, posiadający jedno uzwojenie, umożliwiający w zależności od konstrukcji obniżanie lub podwyższanie wartości napięcia przemiennego, to

Ilustracja do pytania
A. opornik dekadowy.
B. multimetr cyfrowy.
C. autotransformator.
D. silnik prądu stałego.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Autotransformator to urządzenie elektryczne, które mimo swojej prostoty, odgrywa kluczową rolę w wielu aplikacjach. Jego główną funkcją jest zmiana poziomu napięcia przemiennego, co jest niezwykle przydatne w różnych systemach elektroenergetycznych. W przeciwieństwie do klasycznych transformatorów, autotransformator ma tylko jedno uzwojenie, co czyni go bardziej kompaktowym i efektywnym pod względem materiałowym. Z mojego doświadczenia, autotransformatory są nie tylko tańsze, ale także bardziej energooszczędne, co jest zgodne z trendami oszczędzania energii. Jest to szczególnie ważne w czasach, gdy optymalizacja zużycia energii staje się priorytetem. Autotransformatory znalazły zastosowanie nie tylko w dużych systemach elektroenergetycznych, ale także w codziennych urządzeniach, takich jak regulatory napięcia czy zasilacze laboratoryjne. Dzięki możliwości płynnej regulacji napięcia są one niezastąpione w miejscach, gdzie precyzyjne ustawienie napięcia jest kluczowe. Warto też zauważyć, że autotransformatory mogą pracować zarówno jako transformatory obniżające, jak i podwyższające napięcie, co czyni je niezwykle wszechstronnymi. Dobre praktyki branżowe zalecają stosowanie autotransformatorów w miejscach, gdzie wymagana jest stabilizacja napięcia przy jednoczesnym zachowaniu wysokiej efektywności energetycznej.

Pytanie 38

Na rysunku przedstawiono schemat blokowy regulatora

Ilustracja do pytania
A. P
B. PI
C. PD
D. PID

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Regulator PID, czyli Proporcjonalno-Całkująco-Różniczkujący, to jeden z najczęściej stosowanych regulatorów w przemyśle. Schemat, który właśnie widzisz, przedstawia wszystkie trzy elementy składowe tego regulatora: składową proporcjonalną, całkującą i różniczkującą. K_p odpowiada za reakcję proporcjonalną, która jest proporcjonalna do bieżącego błędu. Element 1/T_i s to część całkująca, która sumuje błędy w czasie, co pomaga zredukować błąd ustalony. T_d s to składowa różniczkująca, która przewiduje przyszłe błędy na podstawie tempa zmian. W praktyce PID jest niezastąpiony tam, gdzie wymagana jest precyzyjna kontrola – w systemach HVAC, w automatyce przemysłowej, a nawet w robotyce. Dobór właściwych parametrów K_p, T_i, T_d jest kluczowy i często wymaga tuningu metodą Zieglera-Nicholsa lub metodą prób i błędów. Moim zdaniem, każda osoba zajmująca się automatyką powinna dobrze znać zastosowanie i działanie regulatorów PID.

Pytanie 39

Przetwornik przedstawiony na rysunkach to

Ilustracja do pytania
A. zadajnik cyfrowo-analogowy.
B. analogowo-cyfrowy konwerter USB.
C. przetwornica napięcia.
D. przetwornik PWM.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź jest prawidłowa, ponieważ pokazany na rysunku układ to faktycznie analogowo-cyfrowy konwerter USB. To urządzenie działa jako pomost między sygnałami analogowymi a cyfrowymi, co jest kluczowe w wielu zastosowaniach przemysłowych i naukowych. W praktyce, takie konwertery są używane do przetwarzania sygnałów z czujników analogowych, takich jak termometry czy czujniki ciśnienia, na dane cyfrowe, które mogą być analizowane przez komputer. Standard USB zapewnia łatwość integracji z systemami komputerowymi oraz szeroką kompatybilność. Moim zdaniem, to niezbędne narzędzie w laboratoriach i przemyśle, gdzie precyzyjne pomiary są kluczowe. Dodatkowo, izolacja galwaniczna widoczna na schemacie chroni sprzęt przed różnicami potencjałów, co jest zgodne z dobrymi praktykami inżynierskimi. Dzięki temu, urządzenie można bezpiecznie używać w trudnych warunkach przemysłowych, gdzie mogą wystąpić zakłócenia elektromagnetyczne. Warto też wspomnieć, że taki konwerter umożliwia jednoczesne monitorowanie wielu kanałów pomiarowych, co znacząco zwiększa jego funkcjonalność.

Pytanie 40

Na schemacie przedstawiono

Ilustracja do pytania
A. przetwornik pomiarowy prądu lub napięcia AC.
B. konwerter łącza szeregowego na łącze światłowodowe.
C. regulowany wzmacniacz napięć lub prądów zmiennych.
D. przetwornik napięcia AC na prąd AC.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Na schemacie widzimy konwerter, który zamienia klasyczne łącze szeregowe RS-232 na łącze światłowodowe. Po lewej stronie oznaczenia TxD i RxD wskazują na typowy interfejs komunikacji szeregowej, natomiast po prawej znajdują się symbole nadajnika i odbiornika światłowodowego (FO – Fiber Optic). Urządzenie to umożliwia przesyłanie danych w formie impulsów świetlnych, co pozwala na transmisję na duże odległości bez zakłóceń elektromagnetycznych i bez konieczności galwanicznego połączenia między urządzeniami. Zasilanie w szerokim zakresie (24–240 V AC/DC) sugeruje zastosowanie przemysłowe – typowe dla automatyki, sterowników PLC i systemów monitoringu. Moim zdaniem to przykład nowoczesnego podejścia do komunikacji, które łączy prostotę RS-232 z niezawodnością światłowodu. W praktyce takie konwertery montuje się w szafach sterowniczych, by połączyć odległe stanowiska pomiarowe lub serwery. Dzięki nim można znacznie wydłużyć zasięg transmisji (nawet do kilku kilometrów) i uniezależnić się od szumów elektrycznych obecnych w fabrykach.