Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektryk
  • Kwalifikacja: ELE.05 - Eksploatacja maszyn, urządzeń i instalacji elektrycznych
  • Data rozpoczęcia: 8 listopada 2025 23:59
  • Data zakończenia: 9 listopada 2025 00:11

Egzamin zdany!

Wynik: 22/40 punktów (55,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Jakie środki ochrony przeciwporażeniowej stosuje się w przypadku uszkodzenia obwodu pojedynczego odbiornika?

A. separację elektryczną
B. wyłącznie specjalne ogrodzenia
C. jedynie obudowy
D. umiejscowienie poza zasięgiem ręki
Separacja elektryczna to metoda ochrony przed porażeniem elektrycznym, która polega na oddzieleniu obwodów elektrycznych od żywych części, co znacząco minimalizuje ryzyko bezpośredniego kontaktu z prądem. W praktyce, separacja elektryczna może być realizowana poprzez zastosowanie transformatorów separacyjnych, które izolują odbiorniki od źródła zasilania, co pozwala na uniknięcie niebezpiecznych sytuacji w przypadku uszkodzenia izolacji. Dobre praktyki w zakresie ochrony elektrycznej zalecają używanie transformatorów o odpowiednich parametrach, które nie tylko spełniają normy bezpieczeństwa, ale także są zgodne z obowiązującymi standardami, takimi jak norma IEC 61140 dotycząca ochrony przeciwporażeniowej. W kontekście instalacji elektrycznych, separacja elektryczna jest szczególnie ważna w obszarach o wysokim ryzyku, jak np. w łazienkach czy na zewnątrz budynków, gdzie ryzyko kontaktu z wodą jest zwiększone. Ponadto, stosowanie separacji elektrycznej w obiektach przemysłowych, gdzie występuje duża liczba maszyn i urządzeń, również przyczynia się do poprawy bezpieczeństwa pracowników i minimalizacji ryzyka wypadków. W związku z tym, separacja elektryczna jest nie tylko skuteczną, ale i rekomendowaną metodą ochrony przed porażeniem elektrycznym.

Pytanie 2

Jakie z wymienionych elementów można wymieniać w instalacjach elektrycznych o napięciu 230 V bez konieczności wyłączania zasilania?

A. Wkładek bezpiecznikowych.
B. Opraw oświetleniowych.
C. Wyłączników różnicowoprądowych.
D. Elementów łącznikowych.
Wkładki bezpiecznikowe są elementami instalacji elektrycznych, które można wymieniać bez konieczności wyłączania zasilania, o ile zastosowane są odpowiednie rozwiązania technologiczne, takie jak wkładki bezpiecznikowe typu 'hot swap'. W praktyce oznacza to, że użytkownicy mogą wymieniać te elementy, aby przywrócić funkcjonalność obwodu, minimalizując ryzyko wystąpienia przerw w zasilaniu. Wkładki bezpiecznikowe mają kluczowe znaczenie dla bezpieczeństwa instalacji, ponieważ zabezpieczają obwody przed przeciążeniem i zwarciem. Prawidłowa wymiana tych wkładek, bez wyłączania zasilania, jest zgodna z normami bezpieczeństwa elektrycznego, takimi jak PN-IEC 60947, które określają wymagania dla urządzeń przeznaczonych do pracy w instalacjach elektrycznych. Przykładowo, w obiektach przemysłowych, gdzie nieprzerwane zasilanie ma kluczowe znaczenie, możliwość wymiany wkładek bezpiecznikowych w czasie pracy instalacji przyczynia się do zwiększenia efektywności operacyjnej.

Pytanie 3

Ruch napędu należy zatrzymać w sytuacji zagrożenia bezpieczeństwa operatora lub otoczenia, jak również w przypadku wykrycia uszkodzeń lub zakłóceń uniemożliwiających jego prawidłowe działanie, a szczególnie gdy występuje

A. nadmierne wibracje
B. znamionowe zużycie prądu
C. spadek napięcia zasilania poniżej 3 %
D. spadek rezystancji izolacji uzwojeń do 5 MΩ
Odpowiedź 3, dotycząca nadmiernych drgań, jest poprawna, ponieważ drgania w urządzeniach napędowych mogą prowadzić do poważnych problemów operacyjnych oraz uszkodzeń. Zgodnie z normami branżowymi, takim jak ISO 10816, nadmierne drgania mogą wskazywać na niewłaściwe osadzenie, zużycie łożysk czy też problemy z wirnikami. Przykładem może być sytuacja, gdy maszyna wibracyjna, taka jak silnik elektryczny, przekroczy dopuszczalne poziomy drgań, co może skutkować nie tylko uszkodzeniem samego urządzenia, ale również stanowić zagrożenie dla operatorów. W praktyce, w przypadku stwierdzenia nadmiernych drgań, należy natychmiast wstrzymać działanie urządzenia, aby przeprowadzić odpowiednią diagnostykę i naprawy, co jest zgodne z zasadą prewencji w zarządzaniu bezpieczeństwem pracy. Takie działania mają na celu minimalizację ryzyka obrażeń oraz zapewnienie ciągłości operacji, co jest kluczowe w przemyśle produkcyjnym.

Pytanie 4

Jaką wielkość należy zmierzyć, aby ocenić skuteczność zabezpieczeń podstawowych w elektrycznej instalacji o napięciu znamionowym do 1 kV?

A. Napięcia krokowego
B. Impedancji zwarciowej
C. Rezystancji izolacji
D. Rezystancji uziomu
Pomiar rezystancji izolacji jest kluczowym elementem oceny skuteczności ochrony podstawowej w instalacjach elektrycznych, szczególnie w tych o napięciu znamionowym do 1 kV. Odpowiedni poziom rezystancji izolacji zapewnia, że nie występują niepożądane przepływy prądu do ziemi, co mogłoby prowadzić do porażenia prądem lub uszkodzenia urządzeń. Zgodnie z normą PN-EN 60364-6, minimalna rezystancja izolacji powinna wynosić co najmniej 1 MΩ dla systemów o napięciu do 1 kV, co gwarantuje odpowiednie bezpieczeństwo. Przykładem zastosowania tego pomiaru jest przeprowadzanie testów przed oddaniem do użytkowania nowej instalacji, a także regularne kontrole w celu wykrycia degradacji izolacji na skutek starzenia się materiałów, wilgoci czy innych czynników zewnętrznych. Dzięki tym pomiarom można zminimalizować ryzyko awarii, co jest szczególnie istotne w obiektach użyteczności publicznej oraz w środowiskach przemysłowych, gdzie bezpieczeństwo użytkowników ma kluczowe znaczenie.

Pytanie 5

Jaką wartość prądu nominalnego powinien mieć wyłącznik instalacyjny nadprądowy typu B, aby zabezpieczyć grzejnik jednofazowy o parametrach UN = 230 V oraz PN = 2,4 kW przed zwarciem?

A. 6 A
B. 20 A
C. 16 A
D. 10 A
Wyłącznik instalacyjny nadprądowy o charakterystyce typu B powinien mieć wartość prądu znamionowego dobraną odpowiednio do obciążenia, które ma zabezpieczać. W przypadku grzejnika jednofazowego o mocy P<sub>N</sub> = 2,4 kW oraz napięciu U<sub>N</sub> = 230 V, obliczamy prąd znamionowy, korzystając z wzoru: I<sub>N</sub> = P<sub>N</sub> / U<sub>N</sub>. Zatem I<sub>N</sub> = 2400 W / 230 V = 10,43 A. Ze względu na to, że wyłączniki nadprądowe są dobierane w standardowych wartościach, w tym przypadku zaleca się wybór wyłącznika o prądzie znamionowym 16 A, który jest wystarczający dla tego obciążenia, a jednocześnie zapewnia odpowiedni margines bezpieczeństwa. W praktyce, wybierając wyłącznik o wyższej wartości prądu, zmniejszamy ryzyko fałszywych wyłączeń, które mogą wystąpić w przypadku krótkotrwałych przeciążeń, a także zwiększamy żywotność urządzenia. Zgodnie z normą PN-EN 60898-1, dobór wyłączników nadprądowych powinien być zgodny z wymaganiami dla ochrony instalacji elektrycznych oraz jego przewodów.

Pytanie 6

Na podstawie zamieszczonych wyników pomiarów rezystancji w przewodzie elektrycznym przedstawionym na ilustracji można stwierdzić, że żyły

Pomiar pomiędzy końcami żyłRezystancja
Ω
L1.1 – L1.20
L2.1 – L2.20
L3.1 – L3.20
N.1 – N.20
PE.1 – PE.2
L1.1 – L2.1
L1.1 – L3.1
L1.1 – N.1
L1.1 – PE.1
N.1 – PE.1
N.1 – L2.1
N.1 – L3.10
Ilustracja do pytania
A. L1 i L2 są przerwane.
B. N i PE są zwarte oraz L3 jest przerwana.
C. L1 i L2 są zwarte.
D. N i L3 są zwarte oraz PE jest przerwana.
Prawidłowe zrozumienie połączeń w instalacjach elektrycznych jest kluczowe dla bezpieczeństwa użytkowników i funkcjonowania urządzeń. W przypadku odpowiedzi, które sugerują, że L1 i L2 są przerwane lub zwarte, istnieje ryzyko nieprawidłowego zrozumienia zasad działania obwodów elektrycznych. Przerwanie żył L1 i L2 wskazywałoby na brak zasilania w obwodzie, co jest zrozumiałe, ale nieprawidłowe, ponieważ pomiary nie wskazują na takie zjawisko. Inną błędną koncepcją jest przekonanie, że N i L3 mogą nie być zwarte, kiedy w rzeczywistości wyniki pomiarów to potwierdzają. Ważne jest, aby zrozumieć, że żyła neutralna N i fazowa L3 współpracują w obwodach prądu przemiennego, a ich zwarcie może prowadzić do niebezpiecznych warunków, w tym do zwarć, które mogą uszkodzić urządzenia. Często błędy w analizie wyników pomiarów wynikają z braku zrozumienia podstawowych zasad obwodów elektrycznych, takich jak różnica między przewodami neutralnymi, fazowymi oraz ochronnymi. Dlatego też kluczowe jest systematyczne szkolenie oraz przestrzeganie standardów, takich jak PN-IEC 60364, które regulują instalacje elektryczne i zapewniają ich bezpieczeństwo.

Pytanie 7

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 8

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 9

Jakie numery wskazano na schemacie z dokumentacji techniczno-ruchowej elementów zamiennych, które są częścią silnika szlifierki?

A. Od 19 do 26
B. Od 1 do 6
C. Od 7 do 14
D. Od 47 do 52
Odpowiedź 'Od 7 do 14' jest jak najbardziej trafna. Te numery odnoszą się do konkretnych części zamiennych w silniku szlifierki, które są mega ważne dla jej działania. W dokumentacji techniczno-ruchowej znajdziesz, że przypisane są do takich elementów jak wirnik czy chłodzenie. Bez nich, szlifierka raczej nie zadziała tak, jak powinna. Na przykład, wirnik odpowiada za ruch obrotowy, co bezpośrednio przekłada się na to, jak skutecznie szlifujemy. Wiedza o tych częściach i ich numerach jest kluczowa, bo pozwala szybko znaleźć odpowiednie zamienniki w razie awarii. Takie podejście naprawdę ułatwia życie nie tylko inżynierom, ale i tym, którzy zajmują się konserwacją maszyn. Dobrze jest też pamiętać, że poprawna identyfikacja części wpływa na bezpieczeństwo i sprawność operacyjną szlifierki.

Pytanie 10

Przed dokonaniem pomiarów rezystancji izolacji w elektrycznej instalacji oświetleniowej należy odciąć zasilanie, zdemontować ochronniki przeciwprzepięciowe oraz

A. zamknąć łączniki instalacyjne i wkręcić źródła światła
B. otworzyć łączniki instalacyjne i wykręcić źródła światła
C. otworzyć łączniki instalacyjne i wkręcić źródła światła
D. zamknąć łączniki instalacyjne i wykręcić źródła światła
Zamknięcie łączników instalacyjnych oraz wykręcenie źródeł światła przed przeprowadzeniem pomiarów rezystancji izolacji jest kluczowym krokiem mającym na celu zapewnienie bezpieczeństwa oraz dokładności pomiarów. W przypadku otwartych łączników, istnieje ryzyko, że zwarcie może wystąpić, co może prowadzić do uszkodzeń urządzeń pomiarowych oraz stwarzać niebezpieczeństwo dla osoby wykonującej pomiar. Wykręcenie źródeł światła pozwala na minimalizację ryzyka wprowadzenia dodatkowych elementów do obwodu, które mogłyby zakłócić pomiar. Zgodnie z obowiązującymi normami, takimi jak PN-IEC 60364, zaleca się, aby przed przeprowadzeniem jakichkolwiek pomiarów elektrycznych najpierw odłączyć zasilanie oraz przygotować instalację w sposób gwarantujący bezpieczeństwo. Przykładowo, w przypadku instalacji oświetleniowej, wykręcenie źródeł światła nie tylko redukuje ryzyko, ale również umożliwia dokładniejsze pomiary rezystancji izolacji, co jest kluczowe dla oceny stanu technicznego instalacji i jej zgodności z obowiązującymi przepisami.

Pytanie 11

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 12

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 13

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 14

Jakiej informacji nie jest konieczne zawarcie w instrukcji użytkowania instalacji elektrycznych chronionych wyłącznikami nadmiarowo-prądowymi?

A. Zasad bezpieczeństwa przy realizacji prac eksploatacyjnych
B. Wybory i konfiguracji urządzeń zabezpieczających
C. Danych technicznych instalacji
D. Terminów dotyczących prób oraz kontrolnych pomiarów
W dokumentacji eksploatacyjnej musisz mieć charakterystykę techniczną instalacji, bo to pozwala zrozumieć, jak działa system i co trzeba robić, aby działał dobrze. Generalnie, znajomość parametrów technicznych instalacji, takich jak napięcie robocze czy rodzaj urządzeń plus ich maksymalne obciążenie, jest mega ważna, jeśli chcesz dobrze ocenić ryzyko i zaplanować konserwację. Z drugiej strony, masz terminy i zakresy prób oraz pomiarów kontrolnych, które są potrzebne, żeby wszystko działało jak należy i było bezpieczne. Regularne pomiary i kontrole pomogą ci zauważyć problemy zanim się powiększą, a ich zakres powinien być zgodny z normami, jak na przykład PN-IEC 61557-1. Musisz też zwracać uwagę na zasady bezpieczeństwa podczas prac eksploatacyjnych, bo to dotyczy ochrony ludzi i zmniejszenia ryzyka wypadków. Dobre przestrzeganie zasad BHP to podstawa w każdej pracy z instalacjami elektrycznymi. Jak lekceważysz te sprawy, to możesz podjąć złe decyzje, a to prowadzi do poważnych problemów, zarówno dla ludzi, jak i dla sprzętu.

Pytanie 15

Jakie znaczenie ma klasa izolacji (np. kl. B) na tabliczce znamionowej silnika elektrycznego?

A. Maksymalną temperaturę pracy uzwojeń
B. Minimalne napięcie zasilania
C. Maksymalne napięcie zasilania
D. Minimalną temperaturę pracy uzwojeń
Odpowiedzi dotyczące minimalnego i maksymalnego napięcia zasilania są nieprawidłowe, ponieważ klasa izolacji nie odnosi się do parametrów napięcia, a wyłącznie do temperatury pracy uzwojeń. Minimalne napięcie zasilania jest określane przez specyfikację techniczną silnika i nie jest związane z temperaturami, które osiągają jego uzwojenia. Z kolei maksymalne napięcie zasilania to granica, powyżej której silnik może ulec uszkodzeniu, ale również nie odnosi się bezpośrednio do klasy izolacji. Ponadto, odpowiedź sugerująca minimalną temperaturę pracy uzwojeń jest myląca. W rzeczywistości klasa izolacji nie definiuje minimalnej temperatury, a jedynie maksymalną, co jest kluczowe dla zapewnienia bezpieczeństwa i efektywności pracy silników. Zrozumienie klasy izolacji jest istotne w kontekście projektowania i eksploatacji silników elektrycznych, ponieważ niewłaściwe dobranie klasy izolacji do warunków pracy może prowadzić do przedwczesnego zużycia materiałów izolacyjnych oraz awarii. W praktyce, przy wyborze silnika elektrycznego, należy uwzględniać zarówno klasę izolacji, jak i warunki, w jakich urządzenie będzie pracować, aby zapewnić optymalne działanie i uniknąć kosztownych napraw.

Pytanie 16

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 17

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 18

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 19

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 20

Przy badaniu uszkodzonego silnika trójfazowego połączonego w gwiazdę zmierzono rezystancje uzwojeń i rezystancje izolacji. Zamieszczone w tabeli wyniki pomiarów pozwalają stwierdzić, że możliwe jest

Wielkość mierzonaWartość, Ω
Rezystancja uzwojeń między zaciskami silnika:
U1 – V110,0
V1 – W1
W1 – U1
Rezystancja izolacji między zaciskami a obudową silnika:Wartość, MΩ
U1 – PE15,5
V1 – PE15,5
W1 – PE0
Ilustracja do pytania
A. odkręcenie się i dotknięcie obudowy przez przewód spod zacisku V1
B. odkręcenie się i dotknięcie obudowy przez przewód spod zacisku Wl
C. przerwanie uzwojenia V1 - V2
D. przerwanie uzwojenia Ul - U2
Analizując pozostałe odpowiedzi, można zauważyć, że każda z nich opiera się na błędnych założeniach dotyczących stanu uzwojeń i ich izolacji. Przerwanie uzwojenia V1 - V2 nie mogłoby być przyczyną niskiej rezystancji izolacji, która została zmierzona dla zacisku W1. Przede wszystkim, przerwanie obwodu mechanicznymi uszkodzeniami uzwojenia skutkowałoby innym rezultatem pomiaru rezystancji, a nie bezpośrednim zwarciem do obudowy, jak to ma miejsce w sytuacji, gdy przewód odkręca się i dotyka obudowy. Podobnie, stwierdzenie dotyczące przerwania uzwojenia Ul - U2 również opiera się na mylnych przesłankach, ponieważ pomiary pokazują, że pozostałe uzwojenia mają normatywną rezystancję izolacyjną, co nie sugeruje ich uszkodzeń. Niekiedy osoby analizujące takie wyniki mogą błędnie interpretować wysokie wartości rezystancji jako oznakę problemu, podczas gdy w rzeczywistości są to zdrowe, działające uzwojenia. Kluczowe jest zrozumienie, że w kontekście bezpieczeństwa elektrycznego oraz wydajności urządzeń, analiza wyników pomiarów wymaga dokładności oraz znajomości zasad działania silników elektrycznych, co może zapobiegać nieporozumieniom i niewłaściwym diagnozom. W branży elektrycznej nieprzestrzeganie standardów pomiarów i analiz może prowadzić do poważnych konsekwencji, w tym uszkodzenia sprzętu oraz zagrożenia dla zdrowia użytkowników.

Pytanie 21

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 22

Przedstawione w tabeli wyniki pomiarów rezystancji uzwojeń i izolacji silnika trójfazowego wskazują na

Pomiar między zaciskami silnikaRezystancja
U1 – U232 Ω
V1 – V232 Ω
W1 – W232 Ω
U1 – V10
V1 – W15 MΩ
U1 – W15 MΩ
U1 – PE0
V1 – PE0
W1 – PE5 MΩ
A. zwarcie międzyzwojowe w uzwojeniu W1 – W2
B. uszkodzoną izolację w uzwojeniach U1 – U2 oraz V1 – V2
C. zwarcie między uzwojeniami U1 – U2 oraz W1 – W2
D. przerwę w uzwojeniu U1 – U2
Wybór odpowiedzi dotyczącej przerwy w uzwojeniu U1 – U2 może wynikać z błędnego zrozumienia pomiarów rezystancji. W sytuacji, gdy rezystancja między poszczególnymi uzwojeniami jest mierzona i nie wykazuje oznak przerwy (czyli nie pokazuje nieskończoności), można stwierdzić, że uzwojenia są ze sobą połączone. Kluczowym błędem w tej interpretacji jest ignorowanie wartości rezystancji izolacji, które powinny wynosić co najmniej kilka megaomów. Takie pomiary sugerują, że jeśli nie ma przerwy, to uzwojenie jest w stanie sprawnym. Z kolei odpowiedzi odnoszące się do zwarcia międzyzwojowego w uzwojeniu W1 – W2 są również niepoprawne, ponieważ wymagają one obecności niskiej rezystancji pomiędzy zwojami, co nie miało miejsca według przedstawionych danych. Typową pomyłką w takich kwestiach jest mylenie zwarcia z uszkodzeniem izolacji. Zwarcie wymagałoby bezpośredniego połączenia zwojów, co nie jest potwierdzone w wynikach. Ostatnia z opcji, dotycząca zwarcia między uzwojeniami U1 – U2 oraz W1 – W2, również jest błędna, gdyż podobnie jak w poprzednich przypadkach, wymagałoby to niskiej rezystancji, co w tej sytuacji nie występuje. Dokładne analizy oraz pomiary są niezbędne do zrozumienia, co się dzieje z urządzeniem, a pomyłki w interpretacji często prowadzą do niepotrzebnych kosztów i przestojów w produkcji.

Pytanie 23

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 24

Jaki sprzęt gaśniczy powinien zostać użyty do gaszenia pożaru w rozdzielnicy elektrycznej, której nie można odłączyć od zasilania?

A. Gaśnicę proszkową
B. Hydronetkę
C. Tłumicę
D. Gaśnicę płynową
Hydronetka, będąca urządzeniem gaśniczym używającym wody, jest zupełnie niewłaściwym wyborem w przypadku pożaru rozdzielnicy elektrycznej, zwłaszcza gdy nie można jej wyłączyć. Woda jest doskonałym przewodnikiem elektryczności, co stwarza ogromne ryzyko porażenia prądem dla osoby gaszącej pożar. W przypadku zastosowania hydronetki, istnieje niebezpieczeństwo nie tylko uszkodzenia urządzeń elektrycznych, ale również poważnych obrażeń ciała. W kontekście tłumic, które są używane do ograniczania rozprzestrzeniania się ognia, również nie nadają się one do gaszenia pożarów elektrycznych. Tłumice nie mają właściwości gaśniczych i są stosowane głównie do gaszenia pożarów stałych, co w przypadku pożaru rozdzielnicy elektrycznej nie ma zastosowania. Gaśnice płynowe, z kolei, są przeznaczone do gaszenia pożarów cieczy łatwopalnych i także nie powinny być wykorzystywane w obszarach, gdzie może występować napięcie elektryczne. Użytkownicy często popełniają błąd, myśląc, że jakiekolwiek środki gaśnicze mogą być stosowane w sytuacjach awaryjnych, bez uwzględnienia rodzaju pożaru oraz jego specyfiki. Kluczowe jest, aby przed podjęciem działań gaśniczych zrozumieć klasyfikację pożarów oraz odpowiednie środki gaśnicze, co pozwoli uniknąć niebezpiecznych sytuacji i skutków ubocznych.

Pytanie 25

Wybierz najmniejszy przekrój głównego przewodu wyrównawczego, który jest wykonany z miedzi, mając na uwadze, że maksymalny wymagany przekrój przewodu ochronnego w całej instalacji wynosi S = 16 mm2.

A. 16 mm2
B. 6 mm2
C. 4 mm2
D. 10 mm2
Wybór przewodu wyrównawczego głównego o przekroju 10 mm² jest uzasadniony normami oraz praktycznymi wymaganiami w zakresie ochrony przed porażeniem prądem elektrycznym. Zgodnie z normą PN-IEC 60364-5-54, minimalny przekrój przewodu wyrównawczego głównego powinien być dostosowany do największego przekroju przewodu ochronnego w instalacji, co w tym przypadku wynosi 16 mm². Przewód wyrównawczy ma kluczowe znaczenie w zapewnieniu efektywnej ochrony przed różnymi rodzajami awarii, w tym zwarciami, co może prowadzić do niebezpiecznych sytuacji. Przekrój 10 mm² jest odpowiedni, gdyż umożliwia efektywne prowadzenie prądów zwarciowych, a jednocześnie jest wystarczająco elastyczny do zastosowań w praktyce, gdzie przewody muszą być dostosowane do warunków montażowych. Zastosowanie tego przekroju zapewnia także odpowiednią odporność na przegrzewanie, co jest kluczowe w kontekście bezpieczeństwa instalacji elektrycznych. W przypadku większych instalacji lub w miejscach o zwiększonym ryzyku, dodatkowe czynniki, takie jak temperatura otoczenia i sposób prowadzenia przewodów, powinny być brane pod uwagę przy dalszym doborze przekroju.

Pytanie 26

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 27

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 28

Który z poniższych środków ostrożności nie jest wymagany dla zapewnienia bezpieczeństwa podczas realizacji prac przy linii napowietrznej, która została odłączona od zasilania?

A. Przyłączenie wyłączonej linii do uziemienia
B. Ogrodzenie terenu, na którym prowadzone są prace
C. Realizowanie pracy w zespole
D. Używanie sprzętu izolacyjnego
Wykonywanie prac zespołowo, ogrodzenie miejsca wykonywania pracy oraz uziemienie wyłączonej linii to kluczowe środki ostrożności, które są istotne w kontekście bezpieczeństwa przy pracach przy linii napowietrznej. Pracowanie w zespole pozwala na lepszą koordynację działań oraz szybszą reakcję w sytuacjach awaryjnych, co jest niezbędne w okolicznościach, gdzie ryzyko wypadku jest wyższe. Ogrodzenie miejsca pracy jest podstawowym działaniem w celu zabezpieczenia obszaru, co zapobiega nieautoryzowanemu dostępowi osób trzecich oraz minimalizuje ryzyko przypadkowych incydentów. Uziemienie wyłączonej linii jest fundamentalną praktyką, gdyż pozwala na odprowadzenie wszelkich ładunków elektrycznych, które mogą występować na linii, co znacząco zwiększa bezpieczeństwo pracowników. Ignorowanie tych praktyk może prowadzić do tragicznych konsekwencji, dlatego też każdy pracownik powinien być odpowiednio przeszkolony w zakresie zastosowania tych środków. W branży energetycznej nieprzestrzeganie zasad BHP i standardów, takich jak normy IEC, może skutkować poważnymi wypadkami, dlatego tak istotne jest, aby każdy pracownik był świadomy i przestrzegał ustalonych procedur.

Pytanie 29

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 30

Aby zapewnić ochronę przeciwporażeniową uzupełniającą do podstawowej, obwody zasilające gniazda wtyczkowe z prądem do 32 A powinny być chronione wyłącznikiem RCD o znamionowym prądzie różnicowym

A. 1 000 mA
B. 100 mA
C. 500 mA
D. 30 mA
Wybór wyłączników różnicowoprądowych o wyższych wartościach znamionowego prądu różnicowego, takich jak 1 000 mA, 500 mA czy 100 mA, nie jest odpowiedni dla ochrony przed porażeniem prądem w instalacjach zasilających gniazda wtyczkowe do 32 A. Wyłączniki o tych wartościach są zaprojektowane głównie do ochrony przed pożarami, a nie bezpośrednio przed porażeniem elektrycznym. W przypadku wyłącznika 1 000 mA, jego czas reakcji na różnice prądowe jest zbyt długi, aby skutecznie chronić ludzi przed porażeniem. Nawet 500 mA czy 100 mA są niewystarczające w kontekście ochrony osób, ponieważ mogą nie zareagować na niewielkie różnice prądowe, które są wystarczające, aby wywołać poważne zagrożenie dla zdrowia. Powszechny błąd to mylenie celów ochrony przed porażeniem z ochroną przed pożarem, co prowadzi do nieodpowiednich wyborów urządzeń zabezpieczających. Zastosowanie wyłącznika o prądzie różnicowym 30 mA jest standardem branżowym, który wynika z konieczności zapewnienia maksymalnego poziomu bezpieczeństwa w codziennym użytkowaniu urządzeń elektrycznych. Warto również pamiętać, że normy bezpieczeństwa, takie jak PN-EN 61008, wyraźnie wskazują na konieczność stosowania mniejszych wartości RCD w miejscach narażonych na kontakt z wodą i wilgocią, co jest kluczowe dla zapobiegania wypadkom.

Pytanie 31

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 32

Dokumentacja użytkowania instalacji elektrycznych, które są chronione wyłącznikami nadmiarowo-prądowymi, nie musi zawierać

A. spisu terminów oraz zakresów prób i pomiarów kontrolnych
B. specyfikacji technicznej instalacji
C. zasad bezpieczeństwa przy realizacji prac eksploatacyjnych
D. opisu doboru urządzeń zabezpieczających
Wszystkie pozostałe odpowiedzi odnoszą się do kluczowych aspektów, które powinny być uwzględnione w instrukcji eksploatacji instalacji elektrycznych. Wykaz terminów oraz zakresów prób i pomiarów kontrolnych jest niezbędny, ponieważ regularne kontrole są podstawą utrzymania bezpieczeństwa i niezawodności instalacji. Dzięki nim można monitorować stan techniczny systemów i wykrywać potencjalne usterki. Charakterystyka techniczna instalacji również ma kluczowe znaczenie; zawiera informacje o parametrach pracy oraz specyfikacji zastosowanych elementów, co jest istotne dla personelu wykonującego prace eksploatacyjne. Zasady bezpieczeństwa przy wykonywaniu prac eksploatacyjnych są fundamentalne dla ochrony osób pracujących z instalacjami elektrycznymi. Zawierają one informacje o środkach ochrony osobistej oraz procedurach, które mają na celu zminimalizowanie ryzyka wystąpienia wypadków. Ignorowanie tych elementów w instrukcji eksploatacji może prowadzić do poważnych konsekwencji, w tym wypadków przy pracy. Warto podkreślić, że każdy z tych elementów jest zgodny z normami branżowymi, które nakładają obowiązek zapewnienia odpowiednich zabezpieczeń i procedur operacyjnych. Niezrozumienie ich znaczenia może prowadzić do błędnych wniosków oraz niedopatrzeń w procesie eksploatacji instalacji elektrycznych.

Pytanie 33

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 34

Która z poniższych czynności nie jest częścią badań eksploatacyjnych silnika elektrycznego?

A. Weryfikacja stanu ochrony przeciwporażeniowej
B. Pomiar napięcia zasilającego
C. Pomiar rezystancji uzwojeń stojana
D. Przeprowadzenie próbnego rozruchu urządzenia
Pomiar napięcia zasilania nie należy do badań eksploatacyjnych silnika elektrycznego, ponieważ jest to czynność raczej związana z kontrolą źródła zasilania, a nie diagnostyką samego silnika. W kontekście eksploatacji silników elektrycznych, kluczowe jest zrozumienie, że badania eksploatacyjne koncentrują się na ocenie stanu technicznego komponentów silnika, takich jak uzwojenia, izolacja czy mechanika. Pomiar rezystancji uzwojeń stojana oraz sprawdzenie stanu ochrony przeciwporażeniowej są kluczowe dla bezpieczeństwa i efektywności pracy silnika. Rozruch próbny urządzenia jest niezbędny do oceny jego działania w rzeczywistych warunkach. Przykładowo, w przemyśle, regularne badania eksploatacyjne pozwalają na wczesne wykrycie potencjalnych awarii, co zmniejsza ryzyko przestojów i zwiększa efektywność operacyjną.

Pytanie 35

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 36

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 37

Które z poniższych wymagań nie jest konieczne do spełnienia przy wprowadzaniu do użytku po remoncie urządzenia napędowego z silnikiem trójfazowym Pn = 15 kW, Un = 400 V (Δ), fn = 50 Hz?

A. Urządzenie spełnia kryteria efektywnego zużycia energii
B. Silnik jest wyposażony w przełącznik gwiazda-trójkąt
C. Moc silnika jest odpowiednia do wymagań napędzanego sprzętu
D. Wyniki testów technicznych urządzenia są zadowalające
Analizując pozostałe odpowiedzi, można zauważyć, że spełnienie warunku dotyczącego racjonalnego zużycia energii jest kluczowe w kontekście nowoczesnych standardów eksploatacji urządzeń elektrycznych. Wymóg ten odnosi się do efektywności energetycznej i ma na celu nie tylko oszczędność kosztów, ale także minimalizację wpływu na środowisko. W związku z tym, każda instalacja powinna być zaprojektowana w taki sposób, aby zużycie energii było jak najniższe, co ma istotne znaczenie w czasach rosnącej świadomości ekologicznej. Wyniki badań technicznych urządzenia, które powinny być zadowalające, są kolejnym istotnym elementem procedury przyjmowania urządzenia do eksploatacji. Regularne badania techniczne składają się na proces zapewnienia bezpieczeństwa operacyjnego i wydajności urządzenia, co jest kluczowe dla zminimalizowania ryzyka awarii oraz zapewnienia ciągłości produkcji. Ostatni warunek, czyli dopasowanie mocy silnika do potrzeb napędzanego urządzenia, jest kluczowy dla jego efektywności. Niedopasowanie może prowadzić do nieefektywnego działania, co skutkuje nadmiernym zużyciem energii, a także może przyspieszyć zużycie silnika, co w dłuższym czasie wymagać będzie kosztownych napraw lub wymian. Wszystkie te elementy są integralne przy przyjmowaniu urządzeń do eksploatacji, dlatego ich spełnienie jest niezwykle istotne dla zapewnienia prawidłowego funkcjonowania oraz długowieczności urządzeń.

Pytanie 38

Jakie zadania przy aktywnych urządzeniach elektrycznych można zrealizować bez zlecenia?

A. Dotyczące ratowania życia lub zdrowia osób
B. Dotyczące konserwacji bądź napraw urządzeń, które są całkowicie lub częściowo pod napięciem
C. Realizowane w sytuacjach stwarzających szczególne niebezpieczeństwo dla życia lub zdrowia osób
D. Przeprowadzane przy użyciu spawania oraz wymagające pracy z otwartym źródłem ognia
Odpowiedź związana z ratowaniem zdrowia lub życia ludzkiego jest poprawna, ponieważ w sytuacjach nagłych, takich jak wypadki czy inne niebezpieczeństwa, działania podejmowane w celu ochrony życia i zdrowia osób są priorytetowe. Zgodnie z przepisami prawa pracy oraz normami BHP, w przypadkach zagrożenia zdrowia lub życia ludzkiego, pracownicy mają prawo i obowiązek podejmować natychmiastowe działania ratunkowe, nawet jeśli wiąże się to z pracami przy czynnych urządzeniach elektrycznych. Na przykład, gdy osoba zostaje porażona prądem, każdy świadek zdarzenia powinien jak najszybciej odciąć zasilanie i udzielić pierwszej pomocy. Takie podejście jest zgodne z wytycznymi dotyczącymi bezpieczeństwa pracy, które nakładają na pracowników obowiązek reagowania na sytuacje kryzysowe bez czekania na formalne instrukcje. W praktyce, to może oznaczać konieczność szybkiego działania, co jest kluczowe dla zapobiegania poważnym obrażeniom lub śmierci.

Pytanie 39

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 40

Który z poniższych środków zabezpieczających przed porażeniem prądem elektrycznym nie jest właściwy do użycia w pomieszczeniach z zamontowaną wanną lub prysznicem?

A. Separacja elektryczna
B. Obwody SELV
C. Izolowanie stanowiska
D. Obwody PELV
Izolowanie stanowiska jako środek ochrony przed porażeniem prądem elektrycznym nie jest zalecane w pomieszczeniach z zainstalowaną wanną lub prysznicem, ponieważ takie miejsca są szczególnie narażone na kontakt z wodą, a tym samym zwiększone ryzyko porażenia. Praktyka izolowania stanowiska polega na tworzeniu fizycznych barier, które mają na celu zminimalizowanie ryzyka kontaktu z żywymi częściami. W kontekście pomieszczeń mokrych, jednak, kluczowe jest stosowanie bardziej zaawansowanych środków ochrony, które są zgodne z przepisami zawartymi w normach IEC 60364 oraz PN-EN 61140. Przykładem zabezpieczenia, które może być stosowane w takich warunkach, są obwody SELV, które zapewniają niskie napięcie bezpieczeństwa. W takich miejscach, gdzie ryzyko kontaktu z wodą jest wysokie, istotne jest również, aby instalacje były odpowiednio zabezpieczone i aby stosować osprzęt o podwyższonym stopniu ochrony, na przykład z klasą IP44 lub wyższą.