Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektryk
  • Kwalifikacja: ELE.05 - Eksploatacja maszyn, urządzeń i instalacji elektrycznych
  • Data rozpoczęcia: 12 listopada 2025 00:33
  • Data zakończenia: 12 listopada 2025 00:49

Egzamin niezdany

Wynik: 17/40 punktów (42,5%)

Wymagane minimum: 20 punktów (50%)

Udostępnij swój wynik
Szczegółowe wyniki:
Pytanie 1

Do zabezpieczenia silnika, którego parametry znamionowe zamieszczono w ramce, należy wybrać wyłącznik silnikowy o oznaczeniu fabrycznym

Silnik 3~   Typ MAS063-2BA90-Z

0,25 kW   0,69 A   Izol. F

IP54   2755 obr/min   cosφ 0,81

400 V (Y)   50 Hz

A. MMS-32S – 1,6A
B. PKZM01 – 1
C. MMS-32S – 4A
D. PKZM01 – 0,63
Wybranie wyłącznika silnikowego PKZM01 – 1 jest najlepszym rozwiązaniem do zabezpieczenia silnika o prądzie znamionowym 0,69 A. Wyłącznik ten ma prąd znamionowy 1 A, co zapewnia odpowiednią ochronę przed przeciążeniem silnika. Zgodnie z normą IEC 60947-4-1, wyłączniki silnikowe powinny być dobrane tak, aby ich prąd znamionowy był nieco wyższy od prądu znamionowego chronionego urządzenia, co pozwala na uniknięcie fałszywych wyłączeń przy normalnej pracy. Dodatkowo, wyłącznik PKZM01 – 1 posiada funkcję zabezpieczenia przed zwarciem i przeciążeniem, co jest kluczowe w kontekście długoterminowej niezawodności układów elektrycznych. W praktyce, użycie tego typu wyłącznika pozwala nie tylko na zabezpieczenie silnika, ale także na zwiększenie trwałości instalacji, co jest zgodne z najlepszymi praktykami w dziedzinie automatyki przemysłowej. Warto również dodać, że wybierając odpowiedni wyłącznik, należy wziąć pod uwagę charakterystykę obciążenia, co pozwala na minimalizację ryzyka uszkodzeń w systemie.

Pytanie 2

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 3

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 4

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 5

Jaka jest minimalna wartość natężenia oświetlenia, która powinna być zapewniona w klasie, jeżeli na biurkach uczniów nie są umieszczone monitory ekranowe?

A. 500 lx
B. 400 lx
C. 200 lx
D. 300 lx
Minimalne natężenie światła w klasie, gdzie nie ma monitorów, to 300 lx. Mamy takie przepisy, jak PN-EN 12464-1, które mówią, jakie powinno być oświetlenie w miejscach pracy. W klasach odpowiednie oświetlenie to klucz dla dobrej nauki i komfortu uczniów. 300 lx pomaga skupić się, zmniejsza zmęczenie oczu i sprawia, że łatwiej jest czytać i pisać. W praktyce oznacza to, że w salach powinny być lampy, które równomiernie oświetlają wszystkie miejsca, żeby nie było cieni. Na przykład, można zastosować lampy LED o dobrej mocy. Są one energooszczędne i długotrwałe, a przy tym spełniają normy. Dobre oświetlenie wpływa pozytywnie na przyswajanie wiedzy i ogólne samopoczucie uczniów.

Pytanie 6

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 7

Na wartość impedancji pętli zwarcia w systemie TN-C wpływ mają

A. liczba przewodów umieszczonych w korytkach
B. metoda ułożenia przewodów w instalacji
C. materiał izolacyjny przewodów
D. przekrój żył przewodów
Wartość impedancji pętli zwarcia w sieci TN-C jest kluczowym parametrem, który wpływa na bezpieczeństwo instalacji elektrycznej. Przekrój żył przewodów ma bezpośredni wpływ na oporność elektryczną i tym samym na impedancję pętli zwarcia. Im większy przekrój przewodów, tym mniejsza ich oporność, co prowadzi do niższej wartości impedancji pętli. To z kolei pozytywnie wpływa na czas zadziałania zabezpieczeń nadprądowych, co jest zgodne z wymaganiami normy PN-IEC 60364. W praktyce, odpowiednio dobrany przekrój przewodów zapewnia, że w przypadku zwarcia prąd zwarciowy będzie na tyle wysoki, aby zadziałały zabezpieczenia, minimalizując ryzyko uszkodzeń oraz pożaru. Właściwy dobór przekroju żył jest szczególnie ważny w instalacjach o dużym obciążeniu, gdzie niewłaściwe wartości impedancji mogą prowadzić do awarii systemu.

Pytanie 8

W jakim zakresie powinien znajdować się mierzony rzeczywisty prąd różnicowy IN wyłącznika różnicowoprądowego typu AC w odniesieniu do jego wartości znamionowej, aby był dopuszczony do użytkowania?

A. Od 0,5 IN do 1,0 IN
B. Od 0,5 IN do 1,2 IN
C. Od 0,3 IN do 1,0 IN
D. Od 0,3 IN do 0,8 IN
Analizując inne możliwe odpowiedzi, można zauważyć, że podane zakresy nie spełniają wymogów dotyczących prawidłowej eksploatacji wyłącznika różnicowoprądowego typu AC. Przykładowo, zakres od 0,3 I_N do 0,8 I_N jest niewłaściwy, ponieważ zbyt niski prąd różnicowy może prowadzić do braku reakcji wyłącznika na małe prądy upływowe, co stwarza ryzyko porażenia prądem. Ustalony przez normy poziom 0,5 I_N jako dolna granica jest kluczowy, aby zapewnić reaktywność urządzenia. Z kolei zakres od 0,5 I_N do 1,2 I_N również nie jest akceptowalny, ponieważ 1,2 I_N nie mieści się w standardowych granicach pracy wyłącznika, co może prowadzić do fałszywych alarmów lub nawet uszkodzenia urządzenia. Odpowiedzi te bazują na niepełnym zrozumieniu zasad działania wyłączników różnicowoprądowych, które mają za zadanie wyłączać zasilanie tylko w przypadku wykrycia niebezpiecznego prądu różnicowego. Warto również zauważyć, że pomijanie zasady, iż wyłącznik powinien być w stanie zareagować na prąd różnicowy w odpowiednim czasie, prowadzi do niebezpiecznych sytuacji w instalacjach elektrycznych. Dlatego tak ważne jest, aby stosować się do określonych norm i praktyk, aby zapewnić bezpieczeństwo zarówno użytkowników, jak i całej instalacji.

Pytanie 9

Grzałka jednofazowa o mocy 4 kW jest zasilana przewodem o długości 10 m i przekroju 1,5 mm2. W jaki sposób zmienią się straty mocy w przewodzie zasilającym, jeśli jego przekrój zostanie zwiększony do 2,5 mm2?

A. Wzrosną o 100%
B. Spadną o 100%
C. Spadną o 40%
D. Wzrosną o 40%
Odpowiedź, że straty mocy w przewodzie zmniejszą się o 40%, jest prawidłowa z kilku powodów związanych z zasadami działania prądów elektrycznych i strat energii. Straty mocy w przewodach elektrycznych są związane z oporem przewodnika, który można obliczyć z wykorzystaniem wzoru: P = I²R, gdzie P to moc strat, I to natężenie prądu, a R to opór przewodu. Przy zwiększeniu przekroju przewodu z 1,5 mm2 do 2,5 mm2, opór przewodu maleje, co prowadzi do zmniejszenia strat mocy. W praktyce, stosowanie przewodów o większym przekroju jest zalecane w celu minimalizacji strat energii, co jest zgodne z normami i zasadami efektywności energetycznej. Na przykład, w instalacjach przemysłowych oraz budowlanych, dobór odpowiednich przewodów elektrycznych wpływa na bezpieczeństwo, efektywność operacyjną oraz oszczędności w kosztach energii. To podejście jest zgodne z dobrymi praktykami branżowymi, które promują zwiększenie efektywności energetycznej, a tym samym ograniczenie emisji CO2. Zmniejszenie strat mocy o 40% przy zastosowaniu przewodu o większym przekroju jest wymiernym zyskiem, który powinien być brany pod uwagę na etapie projektowania instalacji. Warto pamiętać, że zastosowanie odpowiednich przekrojów przewodów ma również wpływ na ich temperaturę roboczą, co poprawia bezpieczeństwo całego systemu.

Pytanie 10

Jakie uszkodzenie lub defekt można wykryć podczas przeglądu instalacji elektrycznej w budynku mieszkalnym?

A. Brak ciągłości połączeń
B. Przekroczenie dopuszczalnego czasu zadziałania wyłącznika ochronnego
C. Pogorszenie się stanu mechanicznego złącz i połączeń
D. Pogorszenie się stanu izolacji
Podczas analizy defektów instalacji elektrycznej w budynku mieszkalnym, niektóre odpowiedzi mogą wydawać się na pierwszy rzut oka poprawne, ale w rzeczywistości nie odnoszą się bezpośrednio do kwestii, które można zlokalizować podczas oględzin. Na przykład, pogorszenie stanu izolacji, choć istotne z perspektywy bezpieczeństwa, może być trudne do zidentyfikowania jedynie na podstawie wizualnych oględzin. Izolacja może wykazywać uszkodzenia, które nie są widoczne gołym okiem, co wymagałoby zastosowania specjalistycznych narzędzi pomiarowych, takich jak mierniki rezystancji izolacji. Przekroczenie dopuszczalnego czasu zadziałania wyłącznika ochronnego również nie jest czymś, co można w prosty sposób zlokalizować podczas standardowych oględzin. Wymaga to analizy działania urządzenia pod obciążeniem i oceny czasów reakcji wyłącznika, co przekracza zakres podstawowych oględzin. Brak ciągłości połączeń jest inną kwestią, która wymaga pomiarów technicznych, takich jak testy ciągłości, co również nie jest częścią typowych oględzin. W rzeczywistości, te aspekty wymagają bardziej zaawansowanych metod diagnostycznych, co może prowadzić do mylnych wniosków o ich wykrywalności podczas prostych inspekcji. Dlatego ważne jest, aby zrozumieć, że nie wszystkie problemy instalacji elektrycznej mogą być zidentyfikowane bez odpowiednich narzędzi i metod badawczych, co podkreśla znaczenie zastosowania specjalistycznych norm i procedur w praktyce inżynieryjnej.

Pytanie 11

Kontrole okresowe instalacji elektrycznych niskiego napięcia powinny być realizowane co najmniej raz na

A. 1 rok
B. 3 lata
C. 5 lat
D. 4 lata
Zgodnie z obowiązującymi normami oraz przepisami prawa, badania okresowe instalacji elektrycznej niskiego napięcia powinny być przeprowadzane nie rzadziej niż co 5 lat. Takie podejście ma na celu zapewnienie bezpieczeństwa użytkowników oraz prawidłowego funkcjonowania instalacji. W Polsce regulacje te są zawarte w normie PN-IEC 60364-6 oraz w Rozporządzeniu Ministra Infrastruktury w sprawie warunków technicznych, jakim powinny odpowiadać budynki i ich usytuowanie. Przeprowadzanie badań co 5 lat pozwala na wczesne wykrywanie potencjalnych usterek, które mogą prowadzić do poważnych awarii lub zagrożeń pożarowych. W praktyce, jeśli instalacja jest intensywnie eksploatowana, zaleca się częstsze kontrole, na przykład co 3 lata, ale minimum to właśnie 5 lat. Regularne audyty instalacji mogą obejmować testy wytrzymałości izolacji, pomiary rezystancji uziemienia czy sprawdzanie zabezpieczeń, co jest kluczowe dla ochrony ludzi i mienia.

Pytanie 12

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 13

Jakie są dopuszczalne maksymalne terminy między kolejnymi kontrolami instalacji elektrycznych w pomieszczeniach z wyziewami żrącymi?

A. 1 rok dla weryfikacji skuteczności ochrony przeciwporażeniowej oraz 1 rok dla weryfikacji rezystancji izolacji
B. 5 lat dla weryfikacji skuteczności ochrony przeciwporażeniowej oraz 1 rok dla weryfikacji rezystancji izolacji
C. 1 rok dla weryfikacji skuteczności ochrony przeciwporażeniowej oraz 5 lat dla weryfikacji rezystancji izolacji
D. 5 lat dla weryfikacji skuteczności ochrony przeciwporażeniowej oraz 5 lat dla weryfikacji rezystancji izolacji
Wybór odpowiedzi, że maksymalne okresy między sprawdzeniami instalacji elektrycznych w pomieszczeniach z wyziewami żrącymi wynoszą 1 rok dla ochrony przeciwporażeniowej i 1 rok dla rezystancji izolacji, są naprawdę zgodne z tym, co mówi prawo i normy. W takich miejscach jak laboratoria chemiczne czy fabryki ryzyko uszkodzenia izolacji jest wyższe, dlatego kontrole powinny być częstsze. Trzeba regularnie sprawdzać, czy wyłączniki różnicowo-prądowe działają, bo to kluczowe dla bezpieczeństwa. A jeśli chodzi o rezystancję izolacji, to wczesne wykrycie problemów może zapobiec poważnym awariom. W praktyce, dobrze zorganizowane harmonogramy przeglądów w zakładach pomagają się dostosować do wymogów prawnych i standardów bezpieczeństwa, takich jak norma PN-EN 60079 dla atmosfer wybuchowych czy PN-IEC 60364 dla instalacji elektrycznych. Przestrzeganie tych zasad jest bardzo ważne, aby zminimalizować ryzyko wypadków i chronić ludzi oraz mienie.

Pytanie 14

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 15

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 16

Jakie oznaczenia powinien mieć wyłącznik różnicowoprądowy zaprojektowany do ochrony przed porażeniem, przeciążeniem oraz zwarciem w obwodzie gniazd wtyczkowych uniwersalnych w instalacji jednofazowej 230 V/50 Hz?

A. P 344 C-20-30-AC
B. P 304 25-30-AC
C. P 312 B-16-30-AC
D. P 302 25-30-AC
Wybór wyłączników różnicowoprądowych wymaga zrozumienia oznaczeń oraz ich funkcji. Odpowiedzi, które nie odzwierciedlają prawidłowego oznaczenia, mogą wynikać z niepełnego zrozumienia klasyfikacji urządzeń. Oznaczenia wyłączników różnicowoprądowych są kluczowe dla ich zastosowań: na przykład, jeśli wybierzemy wyłącznik z literą 'C', jak w odpowiedzi P 344 C-20-30-AC, będzie on odpowiedni do obwodów z dużymi prądami rozruchowymi, co czyni go stosunkowo mało użytecznym w kontekście gniazd wtyczkowych ogólnego przeznaczenia, które rzadko mają takie obciążenia. Natomiast wyłącznik P 304 25-30-AC, mimo że zawiera odpowiedni prąd różnicowy, nie spełnia wymagań dotyczących ochrony przed przeciążeniem i zwarciem, co jest kluczowe w codziennym użytkowaniu. Podobnie odpowiedź P 302 25-30-AC, mimo że ma właściwy prąd różnicowy, nie jest klasyfikowana jako odpowiednia do różnych rodzajów obciążeń, co ogranicza jej zastosowanie w standardowych instalacjach. Błędem może być mylenie oznaczeń oraz ich funkcji, co prowadzi do wyboru nieodpowiednich urządzeń do ochrony obwodów. Właściwy wybór wyłącznika różnicowoprądowego jest kluczowy, by zapewnić bezpieczeństwo użytkowników oraz zgodność z obowiązującymi normami elektrycznymi, co powinno być priorytetem w każdej instalacji elektrycznej.

Pytanie 17

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 18

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 19

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 20

Jak wpłynie na wartość mocy generowanej przez elektryczny grzejnik, jeśli długość jego spirali grzejnej zostanie skrócona o 50%, a napięcie zasilające pozostanie niezmienne?

A. Zmniejszy się dwukrotnie
B. Zwiększy się dwukrotnie
C. Zmniejszy się czterokrotnie
D. Zwiększy się czterokrotnie
Myśląc o tym, co się dzieje, gdy długość spirali grzejnej się zmniejsza, niektórzy mogą pomyśleć, że moc grzejnika maleje. To jednak nie jest prawda, bo opór elektryczny elementu grzewczego zmienia się bezpośrednio w zależności od długości spirali. Kiedy skracasz spiralę, opór również spada, a to prowadzi do wzrostu mocy grzejnika, a nie do jej zmniejszenia. Niektóre błędne odpowiedzi sugerują, że zmiana długości spirali może negatywnie wpływać na efektywność urządzenia, a to nie ma sensu w świetle praw fizyki. W rzeczywistości, wzór P = U²/R wyraźnie pokazuje, że moc rośnie, skoro opór spada. Takie nieporozumienia mogą brać się z tego, że nie każdy do końca rozumie, jak opór, moc i napięcie się łączą, co jest kluczowe przy projektowaniu i używaniu grzejników. Fajnie by było, żeby przy analizowaniu takich zmian brać pod uwagę wszystkie zmienne, żeby uniknąć nieporozumień.

Pytanie 21

Podczas wymiany uzwojeń w transformatorze jednofazowym o parametrach: SN = 200 VA, U1N = 230 V, U2N = 14,6 V, uzwojenie pierwotne powinno być wykonane z drutu nawojowego

A. o mniejszej średnicy i mniejszej liczbie zwojów niż uzwojenie wtórne
B. o większej średnicy i większej liczbie zwojów niż uzwojenie wtórne
C. o większej średnicy i mniejszej ilości zwojów niż uzwojenie wtórne
D. o mniejszej średnicy i większej liczbie zwojów niż uzwojenie wtórne
Odpowiedź wskazująca, że uzwojenie pierwotne powinno być wykonane z drutu o mniejszej średnicy i większej liczbie zwojów niż uzwojenie wtórne jest poprawna. W transformatorze jednofazowym, stosunek napięć uzwojeń związany jest z relacją liczby zwojów w każdym uzwojeniu. Zależność ta wyraża się wzorem: U1/U2 = N1/N2, gdzie U1 i U2 to napięcia na uzwojeniach pierwotnym i wtórnym odpowiednio, a N1 i N2 to liczby zwojów. Wymiana uzwojeń pierwotnych i wtórnych wiąże się z doborem odpowiedniej średnicy drutu. Mniejsze napięcie na uzwojeniu wtórnym wymaga większej liczby zwojów, co z kolei oznacza, że uzwojenie pierwotne musi być wykonane z cieńszego drutu, aby pomieścić więcej zwojów na danej długości. Przykładowo, w transformatorach stosuje się standardy dotyczące przekrojów drutów, aby zapewnić odpowiednią wydajność prądową i minimalizować straty w cieple. Zastosowanie tej zasady w praktyce prowadzi do efektywniejszego projektu transformatora, co jest kluczowe w wielu aplikacjach elektrycznych, od zasilania urządzeń domowych po zastosowania w przemyśle. Właściwe dobranie wymagań dla uzwojeń jest istotnym elementem inżynieryjnym, który warunkuje trwałość i efektywność transformatora.

Pytanie 22

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 23

Która z poniższych czynnościnie jest częścią prób odbiorczych w instalacjach elektrycznych?

A. Pomiar rezystancji ścian i podłóg
B. Pomiar mocy, którą pobiera obwód odbiorczy
C. Weryfikacja kolejności faz
D. Weryfikacja ochrony uzupełniającej
Pomiar mocy pobieranej przez obwód odbiorczy nie wchodzi w zakres prób odbiorczych, ponieważ odnosi się on do rzeczywistego zużycia energii, a nie do analizy parametrów technicznych instalacji elektrycznej. Odbiór instalacji elektrycznych koncentruje się na weryfikacji bezpieczeństwa i zgodności z normami. Pomiar rezystancji podłóg i ścian, sprawdzenie ochrony uzupełniającej oraz kontrola kolejności faz są kluczowymi elementami oceny instalacji elektrycznych. Pomiar rezystancji podłóg i ścian pozwala upewnić się, że instalacja spełnia wymagania dotyczące ochrony przed porażeniem elektrycznym, co jest zgodne z normami PN-EN 61140. Weryfikacja ochrony uzupełniającej zapewnia, że systemy bezpieczeństwa są skuteczne, a sprawdzenie kolejności faz jest istotne dla prawidłowego działania silników elektrycznych. Te działania mają na celu zabezpieczenie użytkowników przed ryzykiem, a także zapewnienie stabilnego funkcjonowania instalacji.

Pytanie 24

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 25

Aby zabezpieczyć silnik o parametrach znamionowych podanych poniżej, należy dobrać wyłącznik silnikowy według oznaczenia producenta

Silnik 3~ Typ MAS063-2BA90-Z
0,25 kW 0,69 A Izol. F
IP 54 2755 obr/min cosφ 0,81
400 V (Y) 50 Hz

A. PKZM01 – 1
B. MMS-32S – 1,6A
C. MMS-32S – 4A
D. PKZM01 – 0,63
Wybór niewłaściwych wyłączników silnikowych często wynika z niepełnego zrozumienia zasad doboru urządzeń zabezpieczających dla silników elektrycznych. Na przykład, MMS-32S – 4A oferuje zbyt wysoki prąd znamionowy, co może prowadzić do braku skutecznej ochrony silnika. Taki wyłącznik nie zadziała w przypadku przeciążenia, co naraża silnik na uszkodzenia. Z kolei PKZM01 – 0,63, mimo że jest bliższy wymaganiom silnika, także nie spełnia norm, ponieważ jego maksymalny prąd jest zbyt niski w stosunku do prądu znamionowego silnika. Wybierając wyłączniki, należy pamiętać o odpowiednich marginesach prądowych, co oznacza, że wyłącznik powinien mieć wartość znamionową prądu większą niż prąd roboczy silnika, ale nie przeładowaną, aby nie doszło do fałszywych zadziałań. Niewłaściwy dobór wyłączników może prowadzić do poważnych konsekwencji, takich jak uszkodzenie silnika, a także potencjalne ryzyko pożaru z powodu przeciążeń. W związku z tym, kluczowe jest przestrzeganie norm dotyczących instalacji elektrycznych i zabezpieczeń, takich jak IEC 60947, które dostarczają wytycznych na temat bezpiecznego doboru urządzeń ochronnych dla silników. Zrozumienie tych zasad jest fundamentalne dla właściwego funkcjonowania systemów elektrycznych i ochrony sprzętu.

Pytanie 26

W jakim zakresie powinien znajdować się zmierzony rzeczywisty prąd różnicowy IΔN wyłącznika różnicowoprądowego typu AC w odniesieniu do jego wartości znamionowej, aby mógł być dopuszczony do użytkowania?

A. Od 0,5 IΔN do 1,2 IΔN
B. Od 0,3 IΔN do 1,0 IΔN
C. Od 0,3 IΔN do 0,8 IΔN
D. Od 0,5 IΔN do 1,0 IΔN
Zakresy prądów różnicowych, które są w niepoprawnych odpowiedziach, mogą powodować złe wnioski o tym, jak działają wyłączniki różnicowoprądowe. Odpowiedzi, które mówią o zakresach poniżej 0,5 IΔN, nie są dobre, bo mogą wywoływać fałszywe wyłączenia i stanowią zagrożenie dla ludzi. Wyłączniki są projektowane do działania w określonych warunkach, więc ich czułość musi być dopasowana do tego, co się dzieje w rzeczywistości. Na przykład, ustawienie na 0,3 IΔN może sprawić, że wyłącznik wyłączy się z powodu normalnych wahań prądu, a nie rzeczywistego zagrożenia. Z drugiej strony, za wysoki zakres, jak 1,2 IΔN, może stwarzać niebezpieczeństwo, bo nie uwzględnia, że ​​ochrona różnicowoprądowa ma za zadanie wykrywać małe prądy upływowe. Ważne, żeby użytkownicy wiedzieli, że wybór odpowiedniego wyłącznika różnicowoprądowego oraz zrozumienie jego parametrów jest kluczowe dla bezpieczeństwa, czy to w domach, czy w przemyśle.

Pytanie 27

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 28

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 29

Podczas przeglądu silnika elektrycznego stwierdzono nieprawidłowe działanie łożysk. Jakie mogą być tego skutki?

A. Zwiększenie poziomu hałasu
B. Zmniejszenie napięcia zasilania
C. Zmniejszenie momentu obrotowego
D. Zmniejszenie częstotliwości prądu
Zmniejszenie momentu obrotowego w silniku elektrycznym jest zjawiskiem, które może wystąpić z różnych powodów, jednak nie jest bezpośrednim skutkiem nieprawidłowego działania łożysk. Choć uszkodzone łożyska mogą wpływać na zwiększenie oporów ruchu, co teoretycznie mogłoby przełożyć się na obniżenie efektywności silnika, to jednak zmniejszenie momentu obrotowego jest bardziej związane z problemami w układzie napędowym, takimi jak niewłaściwe napięcie zasilania czy problemy z wirnikiem. Zmniejszenie napięcia zasilania także nie jest bezpośrednio związane z uszkodzeniami łożysk. Źródłem takiego zjawiska mogą być problemy w sieci elektrycznej, takie jak spadki napięcia, przeciążenia czy błędy w układach kontrolnych. Napięcie zasilania jest parametrem niezależnym od stanu mechanicznego silnika i jego elementów, takich jak łożyska. Podobnie zmniejszenie częstotliwości prądu zasilającego jest związane z problemami w sieci energetycznej, a nie z uszkodzeniami mechanicznymi silnika, takimi jak wadliwe łożyska. Częstotliwość prądu zależy od sieci zasilającej i nie jest bezpośrednio powiązana ze stanem technicznym samego silnika. W praktyce, problemy z częstotliwością mogą wynikać z awarii w elektrowniach, transformatorach czy liniach przesyłowych, a nie z mechanicznych uszkodzeń w samym silniku.

Pytanie 30

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 31

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 32

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 33

Jakie numery wskazano na schemacie z dokumentacji techniczno-ruchowej elementów zamiennych, które są częścią silnika szlifierki?

A. Od 19 do 26
B. Od 7 do 14
C. Od 1 do 6
D. Od 47 do 52
Wybór odpowiedzi związanej z innymi zakresami (np. od 47 do 52, od 1 do 6 czy od 19 do 26) świadczy o małym nieporozumieniu z identyfikacją komponentów silnika szlifierki. Te numery dotyczą różnych części, które nie są kluczowe dla samego działania silnika, co może sprawić, że serwisowanie stanie się mniej efektywne. Na przykład, numery od 1 do 6 mogą obejmować części, które tak naprawdę nie wpłyną na wydajność silnika. Jak się pomylisz z ich identyfikacją, to naprawa może się wydłużyć. Numery od 47 do 52 to z kolei mogą być jakieś osłony, które też nie są bezpośrednio związane z napędem. Takie błędy najczęściej wynikają z braku znajomości dokumentacji oraz braku zrozumienia, jak różne elementy działają razem. Dobrze jest posiedzieć nad dokumentacją i ogarnąć, jak poszczególne części wpływają na całość maszyny, bo to przekłada się na lepszą obsługę i konserwację. Im lepsza znajomość identyfikacji części, tym szybciej uda się naprawić sprzęt, a dla operatorów będzie to też bezpieczniejsze.

Pytanie 34

Aby zapewnić ochronę przed porażeniem elektrycznym przy awarii użytkowników silnika elektrycznego klasy ochronności I, jego obudowa w układzie sieci TT powinna być

A. połączona z uziomem
B. podłączona do przewodu neutralnego
C. elektrycznie odizolowana od uziomu za pomocą iskiernika
D. elektrycznie odizolowana od gruntu oraz przewodzącego podłoża
Odpowiedzi, które sugerują inne podejścia do ochrony przeciwporażeniowej, jak odizolowanie silnika elektrycznego od uziomu iskiernikiem, przyłączenie do przewodu neutralnego czy odizolowanie od ziemi i przewodzącego podłoża, są nieprawidłowe z kilku powodów. Przede wszystkim, odizolowanie silnika od uziomu iskiernikiem wprowadza ryzyko, ponieważ iskiernik w przypadku wysokiego napięcia może stać się przewodnikiem, co nie zapewnia rzeczywistej ochrony. Ta metoda nie tylko nie usuwa potencjalnego zagrożenia związanego z porażeniem, ale może również prowadzić do dodatkowych komplikacji w przypadku awarii. Przyłączenie do przewodu neutralnego nie jest zalecane, ponieważ w systemach TT przewód neutralny nie jest uziemiony, co może prowadzić do niebezpiecznych sytuacji, jeśli wystąpi awaria. Wreszcie, odizolowanie od ziemi i przewodzącego podłoża całkowicie eliminuje korzyści wynikające z uziemienia, co w praktyce zwiększa ryzyko porażenia. W instalacjach elektrycznych kluczowe jest zapewnienie odpowiednich ścieżek uziemiających, które umożliwiają bezpieczne odprowadzenie prądu w przypadku awarii, co jest fundamentem ochrony przed porażeniem elektrycznym. Ignorowanie tych zasad prowadzi do niebezpiecznych sytuacji, które mogą zagrażać zdrowiu i życiu użytkowników.

Pytanie 35

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 36

Podczas badania transformatora średniej mocy stwierdzono, że jego temperatura wzrosła ponad normę. Co może być tego przyczyną?

A. Przerwa w uzwojeniu
B. Zwarcie międzyzwojowe
C. Uszkodzenie rdzenia
D. Przeciążenie transformatora
Uszkodzenie rdzenia transformatora może wprawdzie prowadzić do problemów z przenoszeniem mocy, ale nie jest bezpośrednią przyczyną wzrostu temperatury ponad normę. Rdzeń, zbudowany z cienkich, izolowanych blach, jest zaprojektowany tak, aby minimalizować straty mocy i uniknąć przegrzewania. Jeśli jednak rdzeń jest uszkodzony, np. przez mechaniczne zniekształcenia lub korozję, może to wpływać na sprawność transformatora, ale zwykle nie powoduje natychmiastowego wzrostu temperatury. Przerwa w uzwojeniu z kolei skutkuje całkowitym brakiem przepływu prądu przez uszkodzone uzwojenie, co zazwyczaj prowadzi do wyłączenia transformatora. W takim przypadku transformator nie będzie pracował prawidłowo, ale samo uszkodzenie nie podnosi jego temperatury. Zwarcie międzyzwojowe w uzwojeniach transformatora jest poważnym problemem, który może prowadzić do lokalnego wzrostu temperatury. Jednakże, w porównaniu do przeciążenia całego transformatora, zwarcie międzyzwojowe zwykle prowadzi do szybkiego uszkodzenia i wyłączenia się transformatora z eksploatacji. Jest to bardziej katastrofalne uszkodzenie wymagające natychmiastowej naprawy. Warto pamiętać, że wszystkie te problemy wymagają regularnych przeglądów technicznych, aby w porę wykrywać potencjalne usterki i zapobiegać poważnym awariom.

Pytanie 37

Który z jednofazowych wyłączników nadprądowych zapewnia odpowiednią ochronę przed porażeniem przy impedancji pętli zwarcia Z = 4,2 Ω?

A. B16
B. C16
C. C10
D. B10
Odpowiedź B10 jest prawidłowa, ponieważ wyłącznik nadprądowy typu B charakteryzuje się zdolnością do wykrywania przeciążeń oraz zwarć w instalacjach elektrycznych. Przy impedancji pętli zwarcia Z = 4,2 Ω, wyłącznik B10 zapewnia odpowiednią ochronę przeciwporażeniową, gdyż jego prąd znamionowy wynosi 10 A. W sytuacji zwarcia, czas reakcji wyłącznika jest kluczowy dla bezpieczeństwa, a wyłącznik typu B zadziała przy prądzie zwarciowym w granicach 3 do 5 krotności prądu znamionowego. Przykładowo, dla prądu zwarciowego rzędu 30 A, wyłącznik ten zadziała w czasie wystarczającym, by zminimalizować ryzyko uszkodzenia instalacji oraz zapobiec porażeniom. Zgodnie z normami, takimi jak PN-EN 60898, dobór wyłącznika powinien być dostosowany do warunków pracy oraz charakterystyki obciążenia, co potwierdza wybór B10 jako właściwy. Dodatkowo, stosowanie wyłączników nadprądowych zgodnych z obowiązującymi regulacjami sprzyja utrzymaniu wysokiego poziomu bezpieczeństwa w instalacjach elektrycznych.

Pytanie 38

Co należy zrobić w przypadku przeciążenia silnika elektrycznego podczas pracy?

A. Zredukować obciążenie lub sprawdzić wyłączniki termiczne
B. Zastosować dodatkowy filtr harmonicznych
C. Zwiększyć długość przewodów zasilających
D. Zwiększyć napięcie zasilające
Zwiększenie napięcia zasilającego w przypadku przeciążenia silnika jest błędnym podejściem, ponieważ może prowadzić do jeszcze większego obciążenia i potencjalnie uszkodzić silnik. Zbyt wysokie napięcie może spowodować przegrzanie uzwojeń, co w konsekwencji skraca żywotność silnika. W praktyce, dostosowanie napięcia powinno być przeprowadzane zgodnie z zaleceniami producenta i tylko w specyficznych warunkach. Zwiększenie długości przewodów zasilających również nie jest właściwym rozwiązaniem. Dłuższe przewody mogą powodować zwiększenie rezystancji i spadek napięcia, co negatywnie wpływa na wydajność silnika. W praktyce, długość przewodów powinna być minimalna i dostosowana do specyfikacji technicznych, aby zapewnić optymalną pracę maszyn. Zastosowanie dodatkowego filtra harmonicznych nie pomoże w przypadku przeciążenia silnika. Filtry harmonicznych są używane do redukcji zakłóceń elektrycznych w sieci zasilającej, co jest istotne w innych kontekstach, ale nie w przypadku przeciążenia. Zakłócenia harmoniczne mogą wpływać na jakość zasilania, ale nie są bezpośrednią przyczyną przeciążenia silnika. Typowe błędy myślowe polegają na myleniu przyczyn problemów z ich skutkami, dlatego zawsze należy dokładnie diagnozować sytuację przed podjęciem działań.

Pytanie 39

Jakie skutki przyniesie zmiana przewodów ADG 1,5 mm2 na przewody DY 1,5 mm2 w instalacji elektrycznej podtynkowej w budynku mieszkalnym?

A. Obniżenie napięcia roboczego
B. Wzrost rezystancji pętli zwarcia
C. Obniżenie wytrzymałości mechanicznej przewodów
D. Wzrost obciążalności prądowej instalacji
Wymiana przewodów ADG na przewody DY w instalacji elektrycznej przynosi szereg korzyści, w tym zwiększenie obciążalności prądowej. Przewody DY, zgodne z normą PN-IEC 60227, charakteryzują się lepszymi właściwościami przewodzenia prądu elektrycznego, co jest kluczowe w kontekście bezpieczeństwa i efektywności energetycznej. Ich konstrukcja wykonana z materiałów o lepszej przewodności, takich jak miedź, pozwala na większe prądy robocze bez ryzyka przegrzania. Dla przykładu, w instalacjach o dużym zapotrzebowaniu na energię elektryczną, jak kuchnie elektryczne czy systemy grzewcze, wyższa obciążalność prądowa jest niezbędna do zapewnienia stabilności działania urządzeń. W praktyce oznacza to, że instalacje z przewodami DY mogą skuteczniej obsługiwać większe obciążenia, co jest zgodne z zasadą projektowania instalacji elektrycznych, by nie przekraczać maksymalnych obciążeń przewodów. Wybór odpowiednich przewodów jest kluczowy również dla zapewnienia długotrwałej i bezawaryjnej pracy całego systemu elektrycznego, co jest zgodne z dobrymi praktykami inżynieryjnymi.

Pytanie 40

Podczas wykonywania pomiarów okresowych na kablowej linii zasilającej 110 kV będzie mierzona rezystancja izolacji jednego z żył kabla w stosunku do pozostałych uziemionych żył. Jaki zakres pomiarowy powinien być ustawiony na urządzeniu pomiarowym, aby dokonany pomiar był poprawny?

A. 2000 MΩ, 1000 V
B. 200 MΩ, 2500 V
C. 200 MΩ, 1000 V
D. 2000 MΩ, 2500 V
Wybór zakresu 200 MΩ oraz 1000 V nie jest odpowiedni do pomiaru rezystancji izolacji wysokiego napięcia, jak w przypadku kabli 110 kV. Ustawienie na 200 MΩ ogranicza maksymalną rezystancję, jaką można zmierzyć, co może prowadzić do niedoszacowania stanu izolacji, szczególnie w przypadku kabli o wysokiej rezystancji, które mogą osiągać wartości znacznie przekraczające ten próg. Z kolei, wybór 1000 V jako napięcia pomiarowego nie jest wystarczający do przeprowadzenia wiarygodnych testów na kablach 110 kV. Przemysł elektroenergetyczny zaleca stosowanie wyższych napięć, takich jak 2500 V, aby uzyskać adekwatne wyniki, które odzwierciedlają rzeczywistą jakość izolacji. Przy pomiarach rezystancji izolacji istotna jest nie tylko sama wartość rezystancji, ale również odpowiednie napięcie, które pozwala na zdiagnozowanie potencjalnych defektów, takich jak mikropęknięcia czy degradacja materiałów izolacyjnych. Zbyt niskie napięcie i zakres mogą prowadzić do błędnych wniosków, co w dłuższej perspektywie może skutkować poważnymi awariami, zagrażającymi bezpieczeństwu instalacji oraz osób z nią związanych.