Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektryk
  • Kwalifikacja: ELE.02 - Montaż, uruchamianie i konserwacja instalacji, maszyn i urządzeń elektrycznych
  • Data rozpoczęcia: 17 grudnia 2025 08:47
  • Data zakończenia: 17 grudnia 2025 08:57

Egzamin zdany!

Wynik: 26/40 punktów (65,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Zdjęcie przedstawia

Ilustracja do pytania
A. płytkę zaciskową.
B. szynę łączeniową.
C. listwę montażową.
D. drabinkę kablową.
Szyna łączeniowa to kluczowy element w instalacjach elektrycznych, służący do łączenia przewodów neutralnych w rozdzielnicach. Odpowiedź jest poprawna, ponieważ zdjęcie przedstawia właśnie ten element. Szyny łączeniowe są wykorzystywane w celu zapewnienia efektywności i bezpieczeństwa instalacji, umożliwiając łatwe połączenie wielu przewodów w jednym punkcie. Dzięki nim, instalacje są bardziej uporządkowane, co pozwala na łatwiejszą konserwację i zarządzanie okablowaniem. W praktyce, szyny łączeniowe są projektowane zgodnie z normami IEC oraz PN-EN, co zapewnia ich wysoką jakość i bezpieczeństwo. Zastosowanie szyn łączeniowych jest szczególnie istotne w rozdzielnicach, gdzie konieczne jest zminimalizowanie ryzyka zwarcia i zapewnienie niezawodności działania systemu. Warto również zaznaczyć, że różne typy szyn mogą być dostosowane do specyficznych potrzeb instalacji, co czyni je niezwykle wszechstronnym rozwiązaniem.

Pytanie 2

Który z łączników elektrycznych stosowanych do zarządzania oświetleniem w instalacjach budowlanych dysponuje czterema oddzielnymi zaciskami przyłączeniowymi oraz jednym klawiszem do sterowania?

A. Schodowy
B. Krzyżowy
C. Świecznikowy
D. Jednobiegunowy
Łącznik krzyżowy to całkiem sprytne urządzenie, które używamy w instalacjach elektrycznych do sterowania światłem z różnych miejsc. Ma cztery zaciski, więc można do niego podłączyć dwa łączniki schodowe i klawisz krzyżowy. Dzięki temu można włączać i wyłączać światło aż z trzech miejsc, co jest przydatne w dużych pomieszczeniach czy korytarzach, gdzie czasem ciężko dojść do włącznika. Używanie łączników krzyżowych według norm, takich jak PN-IEC 60669-1, nie tylko sprawia, że wszystko działa jak należy, ale zapewnia też bezpieczeństwo. Lokalne przepisy mówią, żeby stosować takie rozwiązania tam, gdzie potrzebujemy lepszej kontroli nad oświetleniem. Przykładowo, w korytarzu w domu mamy jeden włącznik przy drzwiach, drugi na schodach, a jak potrzeba to można dorzucić jeszcze jeden w innym miejscu, żeby było wygodniej.

Pytanie 3

Symbol graficzny którego przewodu przedstawiono na ilustracji?

Ilustracja do pytania
A. Neutralnego.
B. Ochronnego.
C. Uziemiającego.
D. Fazowego.
Wybór przewodu ochronnego, fazowego lub uziemiającego wskazuje na nieporozumienie dotyczące oznaczeń oraz funkcji przewodów w instalacjach elektrycznych. Przewód ochronny, nazywany również przewodem PE (Protective Earth), ma za zadanie zapewnienie ochrony przed porażeniem prądem elektrycznym. Jego symbol różni się od symbolu przewodu neutralnego, co skutkuje błędnym rozpoznaniem na ilustracji. W przypadku przewodu fazowego, który jest oznaczany symbolem L, jego zadaniem jest dostarczanie prądu do odbiorników, a nie pełnienie roli neutralnej, co jest kluczowe dla poprawnego funkcjonowania instalacji. Przewód uziemiający również pełni funkcję ochronną, jednak jego zastosowanie jest ściśle związane z ochroną przed przepięciami oraz odprowadzeniem nadmiaru energii do ziemi. Oznaczenie przewodu neutralnego jest niezbędne do zrozumienia, że pełni on rolę powrotu prądu, a nie dostarczania go, co jest istotne w kontekście bezpieczeństwa i efektywności instalacji elektrycznych. Typowe błędy to mylenie funkcji poszczególnych przewodów oraz brak znajomości ich oznaczeń w normach branżowych, co może prowadzić do niewłaściwego podłączenia i potencjalnych zagrożeń w użytkowaniu instalacji.

Pytanie 4

Który z wymienionych systemów powinien być zainstalowany w instalacji elektrycznej zasilającej istotne odbiory niskiego napięcia, aby w momencie utraty zasilania nastąpiło automatyczne przełączenie pomiędzy podstawowym źródłem a rezerwowym źródłem zasilania?

A. SZR
B. SCO
C. SPZ
D. SRN
Wybór innych układów, takich jak SRN (System Rozdziału Napięcia), SPZ (System Powiadamiania Zasilania) czy SCO (System Command Output), jest niewłaściwy, ponieważ nie spełniają one wymagań dotyczących automatycznego przełączania źródeł zasilania. SRN koncentruje się na rozdzielaniu napięcia pomiędzy różne obwody i nie jest przeznaczony do monitorowania źródeł zasilania. Nie zapewnia automatyzacji ani rezerwowego zasilania, co jest kluczowe w kontekście zapewnienia ciągłości działania. Z kolei SPZ jest systemem, który głównie informuje o stanie zasilania, ale nie podejmuje działań w celu przełączenia źródła zasilania. Ostatni z wymienionych, SCO, jest systemem komunikacyjnym, który nie ma zastosowania w kontekście zarządzania zasilaniem. Użytkownicy mogą mylić te układy z SZR, sądząc, że ich funkcje obejmują automatyczne zarządzanie zasilaniem. W praktyce, nieprawidłowe zrozumienie funkcji tych systemów może prowadzić do ryzykownych sytuacji w obiektach wymagających stabilnego zasilania. Kluczowe jest, aby przy wyborze odpowiedniego układu kierować się jego specyfiką i przeznaczeniem, a także stosować się do dobrych praktyk oraz standardów branżowych, aby zapewnić niezawodność i bezpieczeństwo w instalacjach elektrycznych.

Pytanie 5

Z instrukcji obsługi przedstawionego na ilustracji miernika wynika, że przed pomiarem rezystancji należy wyzerować omomierz. W tym celu należy przełącznikiem funkcji wybrać pomiar rezystancji i ustawić wskazówkę na 0 Ω przy pomocy pokrętła oznaczonego

Ilustracja do pytania
A. cyfrą 2 przy odłączonych przewodach pomiarowych.
B. cyfrą 2 przy zwartych przewodach pomiarowych.
C. cyfrą 1 przy zwartych przewodach pomiarowych.
D. cyfrą 1 przy odłączonych przewodach pomiarowych.
W przypadku niepoprawnych odpowiedzi ważne jest zrozumienie, dlaczego poszczególne podejścia są błędne, co może wynikać z nieprawidłowego zrozumienia procesu wyzerowania omomierza. Kiedy wybierzesz cyfrę 1 lub 2 przy odłączonych przewodach pomiarowych, nie uwzględniasz faktu, że w takim przypadku nie ma zwarcia, co skutkuje brakiem odniesienia do zero. W konsekwencji nie możesz prawidłowo ustawić miernika, co prowadzi do pomiarów obarczonych błędem. Z kolei wybór cyfr przy odłączonych przewodach jest podstawowym błędem, ponieważ odczytany wynik nie będzie odpowiadał rzeczywistej rezystancji, a jedynie wartości, którą miernik rejestruje w stanie spoczynku, co zmniejsza jego dokładność. Ostatecznie, nie zrozumienie, dlaczego konieczne jest zwarcie przewodów przed wyzerowaniem, może prowadzić do poważnych błędów w analizie wyników pomiarów. Dlatego kluczowe jest, aby każdy użytkownik omomierza rozumiał zasady działania tego narzędzia oraz były świadomy, że wszelkie pomiary należy przeprowadzać zgodnie z procedurami, aby zapewnić maksymalną precyzję i wiarygodność działania. Takie standardy są powszechnie uznawane w branży elektrycznej i pomiarowej.

Pytanie 6

W jakiej odległości od siebie powinny być umieszczone miejsca montażu dwóch sufitowych lamp w pomieszczeniu o wymiarach 2 m × 4 m, aby uzyskać optymalną równomierność oświetlenia?

A. 1,5 m
B. 2,5 m
C. 1,0 m
D. 2,0 m
Odpowiedź 2,0 m jest prawidłowa, ponieważ w pomieszczeniu o wymiarach 2 m × 4 m, rozmieszczenie sufitowych opraw oświetleniowych w odległości 2,0 m od siebie zapewnia optymalną równomierność natężenia oświetlenia. Przyjmuje się, że dla pomieszczeń o takich wymiarach, każda lampa powinna pokrywać obszar, który nie jest większy niż 2 m, aby zminimalizować cienie i zapewnić jednolite oświetlenie. W praktyce, rozmieszczając oprawy w odległości 2,0 m, uzyskuje się efekt, w którym każdy punkt w pomieszczeniu jest równomiernie oświetlony, co jest szczególnie istotne w kontekście ergonomii i komfortu użytkowników. Dobre praktyki w projektowaniu oświetlenia wskazują, że zachowanie odległości 2,0 m między oprawami pozwala na zminimalizowanie zjawiska nadmiarowego oświetlenia w jednym miejscu, co mogłoby prowadzić do efektu olśnienia. Ponadto, właściwe rozmieszczenie opraw wpływa także na efektywność energetyczną całego systemu oświetleniowego.

Pytanie 7

Ile maksymalnie jednofazowych gniazd wtykowych o napięciu 230 V można zainstalować w pomieszczeniach mieszkalnych zasilanych z jednego obwodu?

A. 6 szt.
B. 10 szt.
C. 3 szt.
D. 13 szt.
Maksymalna zalecana liczba jednofazowych gniazd wtykowych o napięciu 230 V w pomieszczeniach mieszkalnych, zasilanych z jednego obwodu, wynosi 10 sztuk. Jest to zgodne z polskimi normami budowlanymi oraz standardami ochrony przeciwpożarowej. W praktyce oznacza to, że na jednym obwodzie elektrycznym możemy bezpiecznie podłączyć do 10 gniazd, co umożliwia równomierne rozłożenie obciążenia elektrycznego. Przy projektowaniu instalacji elektrycznej konieczne jest uwzględnienie nie tylko liczby gniazd, ale także ich przewidywanego obciążenia. W sytuacji, kiedy przez gniazda będą podłączane urządzenia o dużym poborze mocy, jak np. odkurzacze czy grzejniki, warto ograniczyć liczbę gniazd na obwodzie do mniejszej wartości, aby uniknąć przeciążenia. Dla obwodów o większej liczbie gniazd wtykowych można zastosować dodatkowe zabezpieczenia, takie jak wyłączniki różnicowoprądowe, co zapewnia dodatkową ochronę użytkowników. Dobra praktyka obejmuje również regularne sprawdzanie stanu technicznego instalacji oraz wymianę zużytych komponentów, co zwiększa bezpieczeństwo użytkowania.

Pytanie 8

Podczas wymiany uszkodzonego gniazdka w instalacji powierzchniowej prowadzonej w rurach karbowanych zauważono, że na skutek poluzowania zacisku izolacja jednego z przewodów na odcinku kilku centymetrów straciła elastyczność oraz zmieniła barwę. Jak należy przeprowadzić naprawę tego uszkodzenia?

A. Zaizolować uszkodzoną część izolacji przewodu taśmą
B. Wymienić wszystkie przewody na nowe o większej średnicy
C. Wymienić uszkodzony przewód na nowy o identycznej średnicy
D. Nałożyć koszulkę termokurczliwą na uszkodzoną część izolacji przewodu
Wybór wymiany uszkodzonego przewodu na nowy o takim samym przekroju jest najlepszym rozwiązaniem w tej sytuacji. Uszkodzenia izolacji przewodów mogą prowadzić do poważnych konsekwencji, takich jak zwarcia, przegrzewanie się lub nawet pożary. Przewody elektryczne muszą być w pełni sprawne, aby zapewnić bezpieczeństwo i prawidłowe działanie instalacji. Wymiana na przewód o takim samym przekroju gwarantuje, że nie dojdzie do przeciążenia obwodu, co mogłoby wystąpić w przypadku zastosowania przewodu o większym przekroju. Zgodnie z normami PN-IEC 60364, przewody powinny być dobrane do obciążenia, a ich izolacja musi być nienaruszona. Praktyka wymiany przewodów na nowe jest zgodna z dobrymi praktykami branżowymi, które zalecają stosowanie materiałów wysokiej jakości oraz przestrzeganie zasad BHP podczas pracy z instalacjami elektrycznymi.

Pytanie 9

Który z pomiarów służy do oceny efektywności zabezpieczenia przed dotykiem bezpośrednim w instalacjach do 1 kV?

A. Rezystancji uziemienia
B. Napięcia dotykowego
C. Impedancji zwarciowej
D. Rezystancji izolacji
Pomiar rezystancji izolacji jest kluczowym elementem oceny skuteczności ochrony przed dotykiem bezpośrednim w instalacjach elektrycznych do 1 kV. W przypadku takich systemów, odpowiednia izolacja jest niezbędna do zapewnienia bezpieczeństwa użytkowników oraz niezawodności działania instalacji. Rezystancja izolacji wskazuje na zdolność materiału do odseparowania prądu elektrycznego od części dostępnych dla użytkowników, co jest kluczowe w kontekście ochrony przed porażeniem elektrycznym. Przykładowo, normy IEC 60364 dotyczące instalacji elektrycznych wymagają, aby pomiar rezystancji izolacji wynosił co najmniej 1 MΩ. W praktyce oznacza to, że przed oddaniem do użytku nowej instalacji, a także podczas jej regularnej konserwacji, wykonuje się pomiary rezystancji izolacji, co pozwala na identyfikację potencjalnych uszkodzeń oraz degradacji materiałów izolacyjnych. W przypadku wykrycia niskiej rezystancji należy niezwłocznie podjąć działania naprawcze, aby zapewnić bezpieczeństwo użytkowników oraz zgodność z obowiązującymi normami.

Pytanie 10

W jaki sposób zwarcie międzyzwojowe w uzwojeniu D1 – D2 wpłynie na pracę silnika, którego schemat przedstawiono na ilustracji?

Ilustracja do pytania
A. Zwiększy się wartość prędkości obrotowej wirnika.
B. Zmniejszy się wartość prądu pobieranego przez silnik.
C. Zmniejszy się wartość prędkości obrotowej wirnika.
D. Zwiększy się wartość strumienia magnetycznego wzbudzenia.
Wybór odpowiedzi dotyczących zmniejszenia wartości prądu pobieranego przez silnik lub zwiększenia wartości strumienia magnetycznego wzbudzenia jest błędny, ponieważ nie uwzględnia fundamentalnych zasad działania silników elektrycznych. W przypadku zwarcia międzyzwojowego, rezystancja uzwojenia D1 – D2 maleje, co nie tylko prowadzi do wzrostu prądu, ale także do zmniejszenia strumienia magnetycznego Φ. Wzrost wartości prądu jest spowodowany zmniejszeniem rezystancji, co z kolei może skutkować zwiększeniem prędkości obrotowej wirnika, a nie jej zmniejszeniem. Ponadto, nieprawidłowe jest myślenie, że wzrost strumienia magnetycznego wzbudzenia poprawi wydajność silnika w przypadku zwarcia. W rzeczywistości, zwarcie prowadzi do destabilizacji pracy silnika, a nie do jego poprawy. Wiele osób myli zjawisko zwarcia z poprawną regulacją parametrów silnika, co prowadzi do błędnych wniosków, że zmniejszenie prędkości obrotowej jest korzystne. W praktyce, zbyt niski strumień magnetyczny prowadzi do wzrostu prędkości, co może skutkować uszkodzeniami mechanicznymi i przegrzewaniem się silnika. Zrozumienie tych zależności jest kluczowe dla prawidłowego projektowania i eksploatacji silników elektrycznych.

Pytanie 11

Którą czynność przedstawiono na rysunku?

Ilustracja do pytania
A. Zaciskanie opaski kablowej.
B. Klejenie na gorąco przewodu kabelkowego.
C. Zaciskanie końcówki tulejkowej.
D. Ściąganie izolacji z przewodu.
Odpowiedź "Zaciskanie opaski kablowej" jest prawidłowa, ponieważ na zdjęciu przedstawiono narzędzie służące do zaciskania opasek kablowych. Opaski kablowe są powszechnie stosowane w instalacjach elektrycznych oraz w organizacji kabli w różnych aplikacjach, takich jak urządzenia komputerowe, automatyka przemysłowa czy instalacje domowe. Zaciskanie opaski kablowej pozwala na skuteczne zabezpieczenie wiązek przewodów, co zwiększa bezpieczeństwo instalacji oraz zapobiega przypadkowemu uszkodzeniu kabli. Stosując opaski kablowe, należy zwrócić uwagę na ich odpowiednią szerokość oraz materiał, z którego są wykonane, aby były zgodne z obowiązującymi standardami. Dobrą praktyką jest również stosowanie narzędzi mechanicznych, co pozwala uniknąć nadmiernego nacisku na przewody i ich uszkodzenia. Właściwe użycie opasek kablowych wpływa nie tylko na estetykę instalacji, ale także na jej funkcjonalność i trwałość.

Pytanie 12

Jakie pomiary są wykonywane przy sprawdzaniu wyłącznika różnicowoprądowego?

A. napięcia sieciowego oraz prądu różnicowego
B. prądu różnicowego oraz czasu jego działania
C. prądu obciążenia oraz czasu jego działania
D. napięcia sieciowego oraz prądu obciążenia
Działanie instalacji elektrycznej ma kluczowe znaczenie dla naszego bezpieczeństwa, więc musimy wiedzieć, jakie pomiary są ważne do sprawdzenia wyłącznika różnicowoprądowego. Odpowiedzi, które mówią o pomiarze prądu obciążenia i czasu zadziałania, są nieco wprowadzone w błąd. Prąd obciążenia to ten, który zjadają nasze urządzenia, więc nie ma to bezpośredniego związku z działaniem RCD, które ma być ochroną przed prądem różnicowym. Podobnie, pomiar napięcia sieci nie jest bezpośrednio związany z RCD, bo to urządzenie działa na innej zasadzie. Tak naprawdę pomiar napięcia i prądu obciążenia nie uwzględnia scenariuszy, w których może pojawić się niebezpieczny prąd różnicowy. Dlatego pamiętajmy, że RCD działa na zasadzie wykrywania prądu różnicowego, a nie na podstawie innych parametrów, co czyni te podejścia nieodpowiednimi w kontekście ochrony.

Pytanie 13

Na podstawie przedstawionego schematu połączeń określ, kiedy nastąpi zadziałanie wyłącznika różnicowoprądowego?

Ilustracja do pytania
A. Po załączeniu wyłącznika w obwodzie łazienki.
B. Po załączeniu wyłącznika w obwodzie łazienki i podłączeniu odbiornika.
C. Po załączeniu wyłącznika w obwodzie gniazd pokoi.
D. Po załączeniu wyłącznika w obwodzie gniazd pokoi i podłączeniu odbiornika.
Zrozumienie zasad działania wyłączników różnicowoprądowych jest kluczowe dla bezpieczeństwa użytkowników instalacji elektrycznych. Odpowiedzi, które nie uwzględniają podłączenia odbiornika lub odnoszą się tylko do samego załączenia wyłącznika, nie uwzględniają rzeczywistych warunków, w jakich wyłącznik różnicowoprądowy zadziała. Wyłącznik różnicowoprądowy jest zaprojektowany do wykrywania różnicy prądów między przewodami fazowym a neutralnym. Kiedy obwód jest załączony, ale nie ma podłączonego odbiornika, nie występuje żaden przepływ prądu przez urządzenie, co oznacza, że nie ma też ryzyka upływu prądu. Ta sytuacja prowadzi do błędnych wniosków, sugerujących, że sama aktywacja wyłącznika w obwodzie gniazd pokoi wystarczy do zadziałania RCD. W rzeczywistości, by wyłącznik mógł zadziałać, muszą być spełnione określone warunki, w tym obecność odbiornika, który może generować upływ prądu. Innym częstym błędem myślowym jest mylenie działania RCD z innymi zabezpieczeniami, takimi jak bezpieczniki, które działają na zasadzie przeciążenia prądowego. Zrozumienie tych różnic jest kluczowe dla bezpiecznego korzystania z instalacji elektrycznych, zgodnie z normami, takimi jak PN-EN 61008, które szczegółowo opisują wymagania dla wyłączników różnicowoprądowych. W związku z tym, odpowiedzi, które ignorują te fundamentalne zasady, mogą prowadzić do niebezpiecznych sytuacji w rzeczywistych instalacjach elektrycznych.

Pytanie 14

Którym symbolem graficznym oznacza się w dokumentacji sposób prowadzenia przewodów instalacji elektrycznej w listwach przypodłogowych?

Ilustracja do pytania
A. Symbolem 2.
B. Symbolem 3.
C. Symbolem 4.
D. Symbolem 1.
Wybór błędnych symboli graficznych w dokumentacji instalacji elektrycznych może prowadzić do poważnych nieporozumień i problemów w realizacji projektów. Symbole 1, 2 oraz 4 nie są zgodne z normą PN-IEC 60617 odnoszącą się do oznaczeń w dokumentacji elektrycznej. Wybór symbolu 1 może sugerować zupełnie inną metodę prowadzenia przewodów, co nie odpowiada rzeczywistości w kontekście instalacji w listwach przypodłogowych. Z kolei symbole 2 i 4 mogą być używane w innych kontekstach, jednak nie mają zastosowania w sytuacji, gdy przewody muszą być zabezpieczone oraz estetycznie zamaskowane wzdłuż ścian. Takie błędne wybory mogą wynikać z pomyłek w zapamiętywaniu symboli, co podkreśla znaczenie znajomości standardów oraz umiejętności ich prawidłowej interpretacji. Ważne jest, aby projektanci instalacji elektrycznych oraz ich wykonawcy przestrzegali ustalonych norm i wytycznych w celu zapewnienia nie tylko funkcjonalności, ale również bezpieczeństwa instalacji. Prawidłowe oznaczenie przewodów jest niezbędne dla późniejszej konserwacji oraz diagnozowania ewentualnych usterek. Właściwe symbole graficzne powinny być integralną częścią każdej dokumentacji technicznej, aby zapewnić prawidłowe zrozumienie i wykonanie instalacji zgodnie z najlepszymi praktykami branżowymi.

Pytanie 15

Która z poniższych działań ocenia efektywność ochrony podstawowej przed porażeniem prądem elektrycznym?

A. Sprawdzanie wyłącznika różnicowoprądowego
B. Pomiar rezystancji izolacji przewodów
C. Weryfikacja stanu izolacji podłóg
D. Pomiar impedancji w pętli zwarciowej
Pomiar rezystancji izolacji przewodów jest kluczowym elementem oceny skuteczności ochrony przed porażeniem prądem elektrycznym. Działanie to polega na sprawdzeniu, czy izolacja przewodów jest wystarczająco skuteczna, aby zapobiec niezamierzonym przepływom prądu do ziemi lub na obudowy urządzeń. Wysoka rezystancja izolacji oznacza, że przewody są dobrze izolowane i minimalizują ryzyko porażenia. W praktyce, w budynkach mieszkalnych oraz przemysłowych, pomiar ten powinien być przeprowadzany regularnie, zwłaszcza w przypadku instalacji, które są narażone na uszkodzenia mechaniczne lub działanie czynników zewnętrznych. Zgodnie z normami PN-IEC 60364, przynajmniej raz na pięć lat należy przeprowadzać taki pomiar. Uzyskane wyniki powinny być porównywane z wartościami odniesienia, które zależą od rodzaju instalacji. Odpowiednie procedury zapewniają, że nie tylko urządzenia, ale i całe instalacje elektryczne są bezpieczne dla użytkowników, co jest fundamentalne dla ochrony życia i zdrowia człowieka. Dbanie o odpowiednią rezystancję izolacji to kluczowy krok w zarządzaniu ryzykiem związanym z porażeniem prądem elektrycznym.

Pytanie 16

Na którym rysunku przedstawiono przewód instalacyjny wtynkowy typu YDYt?

Ilustracja do pytania
A. A.
B. C.
C. D.
D. B.
Poprawna odpowiedź to B, ponieważ przewód instalacyjny wtynkowy typu YDYt jest miedzianym przewodem jednodrutowym, który ma charakterystyczną izolację z PVC. Takie przewody są projektowane do stosowania w instalacjach elektrycznych, w miejscach, gdzie można je przybijać do ścian bez ryzyka uszkodzenia izolacji. Na zdjęciu B widzimy przewód, w którym żyły są oddzielone, co rzeczywiście odpowiada normom dla przewodów tego typu. Przewody YDYt są często wykorzystywane w instalacjach wewnętrznych, gdzie ich układ nie wymaga dodatkowej ochrony mechanicznej. Dzięki swojej konstrukcji, przewody te pozwalają na łatwy montaż i estetyczne wykończenie, co jest szczególnie ważne w budynkach mieszkalnych i biurowych. W praktyce oznacza to, że instalatorzy mogą je stosować w różnych konfiguracjach, co wpływa na elastyczność projektowania instalacji elektrycznych. Zgodność z normami PN-EN 60228 oraz PN-EN 50525-2-21 potwierdza ich jakość oraz bezpieczeństwo użytkowania.

Pytanie 17

Źródło światła pokazane na zdjęciu to lampa

Ilustracja do pytania
A. rtęciowa.
B. rtęci owo-żarowa.
C. halogenowa.
D. sodowa.
Lampy rtęciowe, sodowe i rtęciowo-żarowe różnią się istotnie od lamp halogenowych, co może prowadzić do mylnych wniosków. Lampy rtęciowe, na przykład, wykorzystują pary rtęci do emisji światła i charakteryzują się specyficznym, niebieskawym odcieniem, co sprawia, że ich zastosowanie jest bardziej ograniczone do oświetlenia ulicznego oraz przemysłowego. Kształt lampy rtęciowej jest przeważnie bardziej masywny niż lamp halogenowych, co także wpływa na ich aplikację. Z kolei lampy sodowe, które emitują ciepłe, żółte światło, są powszechnie używane w oświetleniu zewnętrznym, ale ich wydajność w zakresie odwzorowania barw jest znacznie gorsza niż w przypadku lamp halogenowych. Lampy sodowe mają również dłuższy czas nagrzewania się, co czyni je mniej praktycznymi w zastosowaniach wymagających natychmiastowego oświetlenia. Natomiast lampy rtęciowo-żarowe łączące elementy obu tych technologii, także nie są porównywalne z lampami halogenowymi, gdyż opierają się na klasycznym, żarowym źródle światła i nie oferują równie wysokiej efektywności energetycznej. Mylne uchwycenie konstrukcji i funkcji lamp prowadzi do wyboru niewłaściwego rozwiązania, co może skutkować nieefektywnym oświetleniem oraz wyższymi kosztami eksploatacji.

Pytanie 18

Wybierz z tabeli numer katalogowy wtyczki, która wraz przewodem wystarczy do zasilenia betoniarki z silnikiem trójfazowym pobierającym w warunkach pracy znamionowej moc 12 kVA. Maszyna sterowana jest stycznikiem z cewką na napięcie 230 V i zasilana z sieci TN-S o napięciu 230/400 V.

Ilustracja do pytania
A. 025-6
B. 024-6
C. 014-6
D. 015-6
Wybór wtyczki 025-6 jest poprawny, ponieważ zapewnia ona odpowiednią wydajność prądową dla betoniarki o mocy 12 kVA przy zasilaniu 400V. Przy tej mocy, wartość prądu oblicza się ze wzoru: I = P / (√3 * U), co daje około 17,32 A. Wtyczka 025-6 jest przystosowana do obciążeń do 32 A, co oznacza, że bezproblemowo obsłuży podłączone urządzenie. Dodatkowo, istotne jest, aby wtyczki i gniazda były zgodne z obowiązującymi normami, takimi jak IEC 60309, które określają wymagania dla wtyczek do urządzeń o dużym poborze mocy. W praktyce, wybór odpowiedniej wtyczki ma kluczowe znaczenie dla bezpieczeństwa i efektywności zasilania sprzętu elektrycznego, zwłaszcza w warunkach budowlanych, gdzie obciążenia mogą się zmieniać. Użycie wtyczki o niewłaściwej wydajności prądowej może prowadzić do przegrzewania, uszkodzeń sprzętu, a w najgorszym przypadku do zagrożeń pożarowych.

Pytanie 19

W systemie sieciowym typu TT wyłączenie zasilania przeprowadzane jest przy pomocy urządzenia ochronnego różnicowoprądowego. Aby ochrona była skuteczna, konieczne jest spełnienie następującej zależności

A. RA ∙ IΔn ≥ UL
B. RA ∙ IΔn < UL
C. RA ∙ IΔn > UL
D. RA ∙ IΔn ≤ UL
Odpowiedź RA ∙ IΔn ≤ UL jest prawidłowa, ponieważ odnosi się do zasad ochrony przeciwporażeniowej w instalacjach elektrycznych typu TT. W tym typie sieci, urządzenia ochronne różnicowoprądowe (RCD) mają kluczowe znaczenie dla zapewnienia bezpieczeństwa użytkowników. Zależność RA ∙ IΔn ≤ UL oznacza, że rezystancja uziemienia (RA) pomnożona przez wartość prądu różnicowego, przy którym urządzenie zaczyna działać (IΔn), musi być mniejsza lub równa poziomowi napięcia dotykowego (UL). W praktyce oznacza to, że w momencie, gdy dojdzie do uszkodzenia izolacji, a prąd różnicowy przekroczy wartość IΔn, urządzenie RCD zadziała, odcinając zasilanie i minimalizując ryzyko porażenia prądem. Standardy, takie jak PN-EN 61008, podkreślają znaczenie prawidłowego doboru wartości IΔn oraz zapewnienia odpowiedniej rezystancji uziemienia, co jest kluczowe dla bezpieczeństwa instalacji elektrycznych. Przykładem zastosowania tej zasady może być instalacja w budynku mieszkalnym, gdzie odpowiedni dobór RCD chroni domowników przed skutkami ewentualnych awarii elektrycznych.

Pytanie 20

Brodzik zostanie osłonięty kabiną prysznicową. W której strefie można zainstalować gniazda z kołkiem ochronnym w łazience, aby było to zgodne z przepisami bezpieczeństwa i higieny pracy oraz przepisami przeciwporażeniowymi?

Ilustracja do pytania
A. W l i 3.
B. W 1 i 2.
C. Tylko w 2.
D. Tylko w 3.
Odpowiedź "Tylko w 3" jest poprawna, ponieważ zgodnie z polskimi normami dotyczącymi bezpieczeństwa instalacji elektrycznych w pomieszczeniach narażonych na wilgoć, gniazda z kołkiem ochronnym mogą być instalowane tylko w strefie 3. Strefa ta jest usytuowana najdalej od wszelkich źródeł wody, co minimalizuje ryzyko porażenia prądem. Strefa 3 zaczyna się od 2,4 metra od krawędzi brodzika czy wanny, co oznacza, że w tym obszarze ryzyko kontaktu z wodą jest zdecydowanie mniejsze. W praktyce oznacza to, że gniazda elektryczne powinny być umiejscowione w taki sposób, aby użytkownik mógł z nich korzystać bez obaw o bezpieczeństwo, np. do podłączenia suszarki do włosów. Stosując się do tych zasad, można zapewnić bezpieczeństwo użytkowników łazienek, co jest kluczowe w kontekście ochrony przed porażeniem elektrycznym i zgodności z przepisami przeciwporażeniowymi. Warto również zapoznać się z odpowiednimi normami, takimi jak PN-IEC 60364, które szczegółowo opisują wymagania dotyczące instalacji elektrycznych w strefach zagrożonych wilgocią.

Pytanie 21

W celu wyrównania potencjałów na elementach metalowych, występujących w budynku, które w normalnych warunkach nie są częścią obwodu elektrycznego, należy zainstalować element oznaczony cyfrą

Ilustracja do pytania
A. 3
B. 5
C. 1
D. 7
Podejście do wyboru odpowiedzi wskazanych w pozostałych opcjach, takich jak 3, 5 czy 7, jest mylące, ponieważ nie uwzględnia kluczowego aspektu wyrównania potencjałów w kontekście bezpieczeństwa elektrycznego. W praktyce, wiele osób może mylnie sądzić, że wystarczy zastosować jakiekolwiek połączenia metalowe, aby osiągnąć wyrównanie potencjałów, co jest nieprawidłowe. Połączenie wyrównawcze nie tylko musi być wykonane, ale także powinno być odpowiednio zaprojektowane. Wybór niewłaściwego elementu, jak wskazano w innych odpowiedziach, może prowadzić do sytuacji, w których nie zostaną spełnione normy bezpieczeństwa. Przykładowo, elementy takie jak rury czy obudowy urządzeń powinny być połączone w sposób zapewniający jednorodność potencjału, co jest osiągane właśnie przez szynę wyrównawczą. Inne opcje mogą sugerować, że wystarczyłoby używać istniejących elementów instalacji, co w rzeczywistości może zwiększyć ryzyko powstania niebezpiecznych różnic potencjałów. Wybór niewłaściwego podejścia, jak stosowanie izolowanych połączeń czy brak odpowiednich połączeń do uziemienia, może prowadzić do niebezpiecznych sytuacji, które są niezgodne z dobrą praktyką branżową oraz normami, takimi jak PN-IEC 60364 dotyczące instalacji elektrycznych w budynkach. Dlatego kluczowe jest zrozumienie, że tylko odpowiednio zaprojektowana i zainstalowana szyna wyrównawcza zapewnia bezpieczeństwo oraz minimalizuje ryzyko porażeń elektrycznych.

Pytanie 22

Która z poniższych czynności nie jest częścią badań wyłączników różnicowoprądowych w układzie trójfazowym?

A. Weryfikacja poprawności podłączenia do sieci
B. Weryfikacja działania przycisku testowego
C. Pomiar czasu oraz prądu różnicowego, przy którym wyłącznik zadziała
D. Sprawdzenie kolejności faz sieci zasilającej
Wybór odpowiedzi "Sprawdzenie kolejności faz sieci zasilającej" jest prawidłowy, ponieważ ta czynność nie jest częścią badań trójfazowych wyłączników różnicowoprądowych. Trójfazowe wyłączniki różnicowoprądowe są urządzeniami zabezpieczającymi, które mają na celu ochronę ludzi przed porażeniem prądem elektrycznym oraz zapobieganie pożarom spowodowanym zwarciami. W ramach standardowych badań tych wyłączników koncentrujemy się na ich działaniu w odpowiedzi na upływności prądów do ziemi oraz testowaniu ich funkcji detekcji. Przykładowo, badania obejmują sprawdzenie zadziałania przycisku testującego, co pozwala zweryfikować, czy wyłącznik działa poprawnie w warunkach awaryjnych. Ponadto, pomiar czasu i różnicowego prądu zadziałania wyłącznika jest kluczowy dla oceny jego efektywności. Zgodnie z normą PN-EN 61008-1, zachowanie wyłączników różnicowoprądowych w odpowiedzi na różne poziomy prądów upływowych jest istotne w kontekście ich działania, dlatego czynności te są niezbędne w procesie testowym. Kolejność faz w sieci zasilającej nie wpływa na działanie wyłącznika różnicowoprądowego, dlatego nie jest brana pod uwagę w tych badaniach.

Pytanie 23

Którego klucza należy użyć do przymocowania urządzenia elektrycznego do podłoża przy użyciu wkrętów, jak przedstawiony na ilustracji?

Ilustracja do pytania
A. Płaskiego.
B. Oczkowego.
C. Ampulowego.
D. Nasadowego.
Odpowiedź "Ampulowego" jest prawidłowa, ponieważ klucz ampulowy (inaczej klucz imbusowy) jest specjalnie zaprojektowany do pracy z wkrętami, które posiadają gniazdo sześciokątne wewnętrzne. Tego rodzaju wkręty są powszechnie stosowane w urządzeniach elektrycznych, co czyni klucz ampulowy niezwykle przydatnym narzędziem w wielu zastosowaniach. Dzięki konstrukcji klucza, który idealnie pasuje do gniazda wkrętu, można osiągnąć wysoki moment dokręcenia, co jest kluczowe dla zapewnienia stabilności zamocowanego urządzenia. W praktyce, użycie klucza ampulowego przy dokręcaniu wkrętów w urządzeniach elektrycznych zmniejsza ryzyko uszkodzenia elementów, ponieważ klucz nie zsuwa się z gniazda, co jest częstym problemem przy użyciu kluczy nasadowych czy oczkowych. Warto pamiętać, że nieodpowiednie narzędzie może prowadzić do uszkodzeń wkrętów oraz szkodliwych dla struktury zamocowanego urządzenia. Dlatego, wybierając odpowiedni klucz, należy kierować się jego specyfiką oraz standardami branżowymi dotyczącymi montażu i konserwacji urządzeń elektrycznych.

Pytanie 24

Przedstawiona na ilustracji oprawka jest przeznaczona do źródeł światła z trzonkiem

Ilustracja do pytania
A. MR11
B. G9
C. GU10
D. E14
Odpowiedzi G9, MR11 oraz E14 są nieprawidłowe, gdyż nie odpowiadają specyfikacji oprawki widocznej na ilustracji. Trzonek G9, mimo że również jest popularny w zastosowaniach oświetleniowych, charakteryzuje się inną konstrukcją, zwykle ze złączem typu wtykowego, które nie posiada bocznych wypustek. To prowadzi do błędnego wnioskowania, ponieważ G9 często bywa mylony z GU10, ale nie można ich zamieniać, ze względu na różnice w montażu i wymiarach. Z kolei MR11 to rodzaj trzonka, który jest mniejszy i stosowany w lampach o niskim napięciu, w tym w halogenowych reflektorach, co także nie ma zastosowania w przypadku oprawki przedstawionej na zdjęciu. Odpowiedź E14 wskazuje na trzonek o średnicy 14 mm, który jest szeroko stosowany w lampach i żarówkach, jednak jego konstrukcja nie pasuje do obiektu widocznego na ilustracji. Użytkownicy często popełniają błąd przy wyborze odpowiedzi, myśląc, że wszystkie trzonki są wymienne, co jest nieprawdziwe. Istnieją specyficzne normy dotyczące różnych typów trzonków, które są kluczowe dla zapewnienia poprawnego działania systemów oświetleniowych, dlatego ważne jest, aby znać różnice między tymi typami, aby skutecznie dobierać komponenty oświetleniowe.

Pytanie 25

Co może być przyczyną usterki na przedstawionym schemacie, jeżeli: żarówka E2 świeci się, a żarówka E1 nie świeci się, obie żarówki są sprawne, zmierzone napięcie U12 = 228 V, oprawy E1 i E2 są sprawne?

Ilustracja do pytania
A. Uszkodzone przewody pomiędzy W1 a W2
B. Uszkodzone przewody pomiędzy W2 a W3
C. Uszkodzony przewód pomiędzy W3 a E1
D. Uszkodzony przewód pomiędzy W1 a S191B10
Nieprawidłowe odpowiedzi wskazują na różne nieporozumienia dotyczące działania obwodów elektrycznych. Wybór uszkodzonego przewodu pomiędzy W1 a S191B10 sugeruje, że uczestnik testu nie zrozumiał, jak obwody szeregowe działają w kontekście świecenia żarówek. W przypadku uszkodzenia przewodu w tej lokalizacji, obie żarówki E1 i E2 nie mogłyby świecić, ponieważ brakowałoby pełnego obwodu. Kolejny błąd dotyczy wskazania uszkodzonych przewodów pomiędzy W1 a W2. Gdyby ten przewód był uszkodzony, żarówka E2 również nie mogłaby świecić, co jest sprzeczne z danymi. Również wybór uszkodzenia przewodów pomiędzy W2 a W3 jest mylny, ponieważ zgodnie z pomiarem napięcia U12 na poziomie 228 V, nie ma tam przerwy. To wskazuje na sprawność tej sekcji obwodu. Kluczowe jest zrozumienie, że w obwodach elektrycznych prąd płynie w zamkniętej pętli, a każde uszkodzenie w dowolnym miejscu wyłącza cały obwód. W praktyce, aby uniknąć takich błędów, zaleca się dokładne badanie schematów oraz logiczne rozumowanie związane z kierunkiem przepływu prądu i funkcjonowaniem poszczególnych komponentów. Warto pamiętać, że analiza problemów elektrycznych wymaga nie tylko wiedzy teoretycznej, ale także umiejętności praktycznych w diagnostyce i naprawie instalacji.

Pytanie 26

Jakie napięcie należy stosować podczas określania rezystancji izolacji w obwodach SELV lub PELV?

A. 750 V
B. 250 V
C. 1000 V
D. 500 V
Odpowiedź 250 V jest prawidłowa, ponieważ w obwodach SELV (Safety Extra Low Voltage) i PELV (Protected Extra Low Voltage) stosuje się ograniczone napięcia, które nie mogą przekraczać wartości 250 V przy pomiarze rezystancji izolacji. Te standardy są zgodne z międzynarodowymi zasadami bezpieczeństwa, takimi jak normy IEC 60364. W praktyce, pomiar rezystancji izolacji w obwodach SELV i PELV przy napięciu 250 V pozwala na zapewnienie bezpieczeństwa użytkowników i minimalizowanie ryzyka porażenia prądem. Przykładem zastosowania tego typu pomiarów jest inspekcja instalacji elektrycznych w obiektach użyteczności publicznej, gdzie kluczowe jest utrzymanie wysokiego poziomu ochrony. Dodatkowo, w obwodach SELV i PELV, które są zazwyczaj używane w aplikacjach niskonapięciowych, zaleca się regularne kontrole rezystancji izolacji, aby wykryć ewentualne uszkodzenia oraz degradację izolacji, co jest niezbędne dla zapewnienia długoterminowej niezawodności i bezpieczeństwa systemów elektrycznych.

Pytanie 27

Jakie z podanych powodów wpływa na wzrost iskrzenia na komutatorze w trakcie działania sprawnego silnika bocznikowego prądu stałego po wymianie szczotek?

A. Zbyt małe wzbudzenie silnika
B. Zbyt mała powierzchnia styku szczotek z komutatorem
C. Zbyt duże wzbudzenie silnika
D. Zbyt duży nacisk szczotek na komutator
Wybór odpowiedzi związanej z zbyt dużym wzbudzeniem silnika opiera się na błędnym wrażeniu, że większa moc wzbudzenia prowadzi do zmniejszenia iskrzenia na komutatorze. W rzeczywistości, nadmierne wzbudzenie może skutkować zwiększeniem prędkości obrotowej silnika, co pogarsza warunki pracy szczotek. Wzrost obrotów prowadzi do intensywniejszego kontaktu szczotek z komutatorem, co w połączeniu z niewłaściwą powierzchnią styku może zaostrzyć problem iskrzenia. Kolejne nieporozumienie dotyczy zbyt małego wzbudzenia, które często jest mylone z zaniżonym napięciem czy słabą mocą, co może prowadzić do niestabilności pracy silnika, ale nie jest bezpośrednim czynnikiem powodującym iskrzenie. Z kolei odpowiedź sugerująca zbyt duży nacisk szczotek na komutator, mimo że może prowadzić do ich szybszego zużycia, nie wyjaśnia przyczyny iskrzenia. Zbyt duży nacisk powoduje, że szczotki zużywają się szybciej, ale to nie jest głównym czynnikiem iskrzenia, które, jak pokazuje praktyka, jest w głównej mierze związane z samą powierzchnią styku. Aby unikać problemów z iskrzeniem, kluczowe jest zrozumienie wpływu właściwego wzbudzenia i siły nacisku na wydajność szczotek oraz regularne monitorowanie ich stanu, co powinno stać się standardową praktyką w każdej aplikacji silników prądu stałego.

Pytanie 28

Jak długo maksymalnie może trwać samoczynne wyłączenie zasilania w obwodzie odbiorczym z napięciem przemiennym 230 V i prądem obciążenia do 32 A, w sieci TN, spełniający wymagania dotyczące ochrony przed dotykiem pośrednim?

A. 5 sekund
B. 0,2 sekundy
C. 1 sekundę
D. 0,4 sekundy
Maksymalny czas samoczynnego wyłączenia zasilania w obwodzie odbiorczym o napięciu 230 V i prądzie obciążenia do 32 A w sieci TN wynoszący 0,4 sekundy jest zgodny z normami obowiązującymi w dziedzinie bezpieczeństwa elektrycznego, takimi jak norma PN-EN 61140. Czas ten określa, jak szybko system ochronny powinien zareagować w przypadku wystąpienia zwarcia lub awarii, aby zminimalizować ryzyko porażenia prądem. W praktyce oznacza to, że urządzenia zabezpieczające, takie jak wyłączniki różnicowoprądowe, muszą być zdolne do zadziałania w tym krótkim czasie. Takie szybkie reakcje są kluczowe w warunkach użytkowania, zwłaszcza w środowisku domowym i komercyjnym, gdzie obecność ludzi jest stała. Przykładem zastosowania tej zasady mogą być obwody zasilające w łazienkach oraz innych pomieszczeniach narażonych na kontakt z wodą, gdzie ryzyko porażenia prądem jest znacznie wyższe. Odpowiednie zabezpieczenia w postaci wyłączników, które działają w ciągu 0,4 sekundy, mogą uratować życie, eliminując zasilanie w przypadku niebezpiecznych sytuacji.

Pytanie 29

Z którym zaciskiem będzie połączony zacisk 23 stycznika K2, jeżeli układ elektryczny zostanie zmontowany zgodnie z przedstawionym schematem montażowym?

Ilustracja do pytania
A. Z zaciskiem X1 lampki kontrolnej H1
B. Z zaciskiem 21 przycisku S1
C. Z zaciskiem 2 listwy zaciskowej X1
D. Z zaciskiem 1 listwy zaciskowej X1
Poprawna odpowiedź to połączenie zacisku 23 stycznika K2 z zaciskiem 2 listwy zaciskowej X1. Analizując schemat montażowy, możemy dostrzec, że linia łącząca te dwa elementy jest wyraźnie zaznaczona, co jednoznacznie wskazuje na to połączenie. W kontekście praktycznym, takie połączenie jest kluczowe dla prawidłowego działania układów sterujących. Zachowanie zgodności z schematem montażowym jest istotne, aby zapewnić bezpieczeństwo i niezawodność instalacji. W branży elektrycznej przestrzeganie schematów oraz standardów, takich jak normy IEC czy PN-EN, jest fundamentem dobrych praktyk. Na przykład, błędne połączenie mogłoby prowadzić do uszkodzenia urządzeń lub stanowić zagrożenie dla użytkowników. Dlatego ważne jest, aby zawsze dokonywać dokładnych analiz i weryfikacji schematów przed przystąpieniem do montażu, co nie tylko zwiększa efektywność, ale także minimalizuje ryzyko awarii.

Pytanie 30

Minimalny czas działania oświetlenia ewakuacyjnego powinien wynosić przynajmniej

A. 4 godziny
B. 1 godzinę
C. 3 godziny
D. 2 godziny
Czas, przez jaki działa oświetlenie ewakuacyjne, powinien wynosić co najmniej 2 godziny. To ważne, żeby ludzie w budynku mogli bezpiecznie się ewakuować, gdy coś się dzieje, na przykład, gdy zasilanie przestaje działać. Są różne normy, takie jak EN 1838 czy PN-EN 50172, które określają te kwestie. W praktyce to oznacza, że światło ewakuacyjne musi świecić przez wystarczająco długi czas, żeby każdy mógł dotrzeć do wyjścia, zwłaszcza w dużych budynkach, gdzie można sporo przejść. Przykładem może być biurowiec, w którym regularnie sprawdzają oświetlenie ewakuacyjne, by mieć pewność, że wszystko działa jak trzeba. Regularna konserwacja tych systemów jest naprawdę ważna dla bezpieczeństwa całego budynku.

Pytanie 31

Jakie mogą być przyczyny nadmiernego przegrzewania się wyłącznika nadmiarowo-prądowego podczas długotrwałego zasilania sprawnego odbiornika?

A. Zbyt wysoka moc zasilanego odbiornika
B. Słabo dokręcone złącza wyłącznika
C. Zbyt niski prąd znamionowy wyłącznika
D. Niewłaściwe napięcie zasilania
Słabo dokręcone zaciski wyłącznika nadmiarowo-prądowego mogą prowadzić do nadmiernego nagrzewania się tego urządzenia z kilku powodów. Gdy zaciski są niedostatecznie dokręcone, opór elektryczny w miejscach połączeń wzrasta, co skutkuje generowaniem dodatkowego ciepła. Zjawisko to jest zgodne z prawem Joule'a, które mówi, że moc wydzielana w postaci ciepła jest proporcjonalna do kwadratu prądu przepływającego przez opór. W praktyce, niedostateczne dokręcenie zacisków może również prowadzić do niestabilności połączenia, co zwiększa ryzyko wystąpienia łuków elektrycznych, które mogą znacznie podnieść temperaturę wyłącznika. Aby temu zapobiec, zaleca się regularne kontrolowanie stanu zacisków oraz korzystanie z narzędzi pomiarowych, takich jak kamery termograficzne, w celu identyfikacji miejsc o podwyższonej temperaturze. Właściwe dokręcenie elementów montażowych powinno być zgodne z normami IEC 60947 oraz ogólnymi zasadami instalacji elektrycznych, co zapewnia bezpieczne i efektywne działanie wyłącznika nadmiarowo-prądowego.

Pytanie 32

Jakiego urządzenia dotyczy przedstawiony opis przeglądu?
Podczas rutynowej inspekcji stanu technicznego systemu elektrycznego przeprowadzono przegląd z uwzględnieniem:
1. oceny stanu ochrony przed porażeniem prądem,
2. kontrolnego sprawdzenia funkcjonowania wyłącznika za pomocą przycisku testowego,
3. pomiaru rzeczywistej wartości prądu różnicowego, który wyzwala,
4. pomiaru czasu wyłączenia,
5. weryfikacji napięcia dotykowego dla wartości prądu wyzwalającego.

A. Elektronicznego przekaźnika czasowego
B. Wyłącznika nadprądowego
C. Wyłącznika różnicowoprądowego
D. Ochronnika przepięć
Wyłącznik różnicowoprądowy jest urządzeniem zabezpieczającym, które ma na celu ochronę ludzi przed porażeniem prądem elektrycznym oraz zabezpieczenie instalacji elektrycznej przed skutkami zwarć. Opisane w pytaniu działania, takie jak badanie stanu ochrony przeciwporażeniowej, kontrolne sprawdzenie działania wyłącznika oraz pomiar czasu wyłączania, to podstawowe procedury diagnostyczne dla tego typu urządzeń. Standardy, takie jak IEC 61008 oraz IEC 61009, definiują wymogi dotyczące wyłączników różnicowoprądowych, w tym jak powinny być testowane i monitorowane. Przykładowo, regularne pomiary wartości prądu zadziałania oraz sprawdzanie napięcia dotykowego przy prądzie wyzwalającym są niezbędne, aby upewnić się, że wyłącznik działa prawidłowo w sytuacji awaryjnej. Dbanie o sprawność wyłączników różnicowoprądowych jest kluczowe dla zapewnienia bezpieczeństwa w obiektach użyteczności publicznej i mieszkalnych, gdzie występuje ryzyko porażenia prądem. W praktyce każdy wyłącznik różnicowoprądowy powinien być testowany przynajmniej raz na pół roku, co jest zgodne z wytycznymi zawartymi w normach branżowych.

Pytanie 33

Który z wymienionych typów instalacji elektrycznych jest używany w lokalach mieszkalnych?

A. Wykonana przewodami szynowymi
B. W kanałach podłogowych
C. W listwach przypodłogowych
D. Prowadzona na drabinkach
Wybór listw przypodłogowych jako rodzaju instalacji elektrycznej stosowanej w pomieszczeniach mieszkalnych jest jak najbardziej trafny. Listwy przypodłogowe są popularnym rozwiązaniem, ponieważ łączą w sobie funkcje estetyczne i użytkowe. Umożliwiają one ukrycie przewodów elektrycznych, co przyczynia się do uporządkowanego wyglądu wnętrza. W praktyce, listwy te mogą być wyposażone w gniazda zasilające, co zwiększa ich funkcjonalność, a także zapewnia łatwy dostęp do energii elektrycznej w pobliżu ścian, gdzie najczęściej znajdują się urządzenia elektryczne. Zgodnie z normami, instalacje elektryczne w pomieszczeniach mieszkalnych powinny być wykonywane z zachowaniem odpowiednich środków bezpieczeństwa oraz zgodnie z lokalnymi przepisami budowlanymi. Użycie listw przypodłogowych w tym kontekście jest zgodne z zasadami ergonomii i praktyczności. Dodatkowo, wykorzystanie tego rozwiązania pozwala na łatwiejszą konserwację i ewentualne modyfikacje instalacji bez konieczności przeprowadzania skomplikowanych prac budowlanych.

Pytanie 34

Podczas korzystania z sprawnie działającego piekarnika elektrycznego z termostatem, żarówka oświetleniowa w pokoju często nieznacznie przygasa. Jakie mogą być przyczyny tego zjawiska?

A. Uszkodzony obwód zasilający piekarnik
B. Zbyt mały przekrój przewodów zasilających pomieszczenie
C. Słaby styk w lampie
D. Nadpalony styk wyłącznika światła
Odpowiedź wskazująca na za mały przekrój przewodów zasilających pomieszczenie jest poprawna, ponieważ zbyt mały przekrój może prowadzić do nadmiernego spadku napięcia w instalacji elektrycznej. W momencie, gdy piekarnik elektryczny, który pobiera znaczne ilości prądu, jest włączony, powoduje to wzrost obciążenia na obwodzie zasilającym. Jeśli przewody zasilające są niewłaściwie dobrane do obciążenia, mogą nie być w stanie dostarczyć wystarczającej ilości energii, co skutkuje chwilowym spadkiem napięcia i przygasaniem żarówek oświetleniowych. Praktycznym przykładem może być sytuacja, gdy piekarnik i inne urządzenia są podłączone do jednego obwodu, co zwiększa obciążenie. Zgodnie z normami PN-IEC 60364, projektując instalacje elektryczne, należy dobierać przekroje przewodów na podstawie przewidywanego obciążenia, co pozwala uniknąć takich problemów. W przypadku zauważenia takich objawów, warto skonsultować się z elektrykiem, który oceni sytuację i doradzi ewentualne zmiany w instalacji.

Pytanie 35

Który z podanych materiałów charakteryzuje się najwyższą właściwą przewodnością elektryczną?

A. Aluminium
B. Stal
C. Brąz
D. Miedź
Miedź to w zasadzie najlepszy wybór, jeśli chodzi o przewodność elektryczną wśród tych materiałów. Ma około 58 MS/m przewodności, a to naprawdę dużo! Dla porównania, aluminium ma tylko około 37 MS/m, więc wiadomo, dlaczego miedź jest tak powszechnie stosowana w elektryce i elektronice. W praktyce wykorzystuje się ją do robienia przewodów i różnych elementów elektronicznych, jak złącza czy obwody drukowane. Dzięki wysokiej przewodności miedzi, straty energii przy przesyle prądu są minimalne, co jest mega ważne w elektroenergetyce. Oprócz tego, miedź jest odporna na korozję i ma sporą wytrzymałość mechaniczną, dlatego sprawdza się w wielu zastosowaniach, od domów po przemysł. W branży, mówi się, że miedź to standardowy materiał do przewodów, więc to tylko potwierdza, jak ważna jest w inżynierii elektrycznej.

Pytanie 36

W jaki sposób realizowana jest ochrona przed porażeniem elektrycznym poprzez dotyk pośredni w oprawie oświetleniowej drugiej klasy ochronności działającej w sieci TN-S?

A. Połączenie obudowy z przewodem ochronnym sieci
B. Zastosowanie podwójnej warstwy izolacji
C. Zasilanie z transformatora izolacyjnego
D. Użycie napięcia zasilania o zmniejszonej wartości
Zastosowanie podwójnej warstwy izolacji jest kluczowym elementem ochrony przeciwporażeniowej w oprawach oświetleniowych klasy II, które nie wymagają przewodu ochronnego. W tego typu rozwiązaniach, sprzęt jest projektowany w taki sposób, aby minimalizować ryzyko porażenia prądem elektrycznym, poprzez wprowadzenie dodatkowej warstwy izolacyjnej, która skutecznie odseparowuje części przewodzące od części, które mogą być dotykane przez użytkowników. Przykładem może być wykorzystanie materiałów izolacyjnych o wysokiej wytrzymałości, które są odporne na działanie wysokiej temperatury oraz wilgoci, co jest istotne w kontekście opraw oświetleniowych stosowanych w różnych warunkach atmosferycznych. W praktyce, urządzenia spełniające normy IEC 61140 oraz IEC 60598-1, których celem jest zapewnienie bezpieczeństwa użytkowników, korzystają z tej technologii, a jej zastosowanie jest powszechnie zalecane w branży elektrycznej, co przekłada się na redukcję ryzyka wypadków związanych z porażeniem prądem.

Pytanie 37

Jakie urządzenie powinno zostać zainstalowane w pośrednim układzie pomiarowym mocy czynnej w zakładzie przemysłowym?

A. Przekładnik prądowy
B. Przetwornicę napięcia
C. Transformator separacyjny
D. Transformator bezpieczeństwa
Przetwornica napięcia, transformator bezpieczeństwa oraz transformator separacyjny to urządzenia, które mają swoje specyficzne zastosowania, jednak nie są one odpowiednie do pomiaru mocy czynnej w pośrednich układach pomiarowych. Przetwornice napięcia służą do zmiany poziomu napięcia w instalacjach elektrycznych, co jest istotne w kontekście zasilania różnorodnych urządzeń, ale nie pełnią roli w bezpośrednim pomiarze mocy. Z kolei transformatory bezpieczeństwa, które mają na celu zabezpieczenie osób przed porażeniem prądem, również nie są odpowiednie do zastosowań pomiarowych, ponieważ ich główną funkcją jest izolacja oraz obniżanie napięcia do bezpiecznego poziomu. Transformator separacyjny, używany w systemach elektronicznych dla ochrony przed zakłóceniami oraz dla zapewnienia bezpieczeństwa, nie dostarcza odpowiednich danych pomiarowych niezbędnych do analizy mocy czynnej. Typowym błędem myślowym jest utożsamianie tych urządzeń z funkcją pomiarową, podczas gdy ich zastosowania są zupełnie inne i nie spełniają wymaganych standardów pomiarowych, takich jak precyzja oraz odpowiednie przekształcenie sygnałów pomiarowych. W kontekście norm, ważne jest przestrzeganie standardów dotyczących pomiarów elektrycznych, aby zapewnić rzetelne i dokładne wyniki analizy energetycznej.

Pytanie 38

Na rysunku przedstawiono

Ilustracja do pytania
A. badanie skuteczności ochrony podstawowej.
B. pomiar rezystancji izolacji przewodów ochronnych.
C. sprawdzanie ciągłości przewodów ochronnych.
D. pomiar impedancji pętli zwarcia.
Chociaż odpowiedzi dotyczące badania skuteczności ochrony podstawowej, pomiaru rezystancji izolacji przewodów ochronnych czy pomiaru impedancji pętli zwarcia są związane z instalacjami elektrycznymi, nie odnoszą się bezpośrednio do opisanej sytuacji. Badanie skuteczności ochrony podstawowej dotyczy oceny, czy system ochrony przed porażeniem prądem elektrycznym spełnia swoje funkcje, co jest analizowane w kontekście całej instalacji, a nie tylko pojedynczych przewodów. Z kolei pomiar rezystancji izolacji jest procedurą, która ma na celu wykrycie uszkodzeń izolacji, co również nie odnosi się do sprawdzania ciągłości przewodów ochronnych. Pomiar impedancji pętli zwarcia jest natomiast techniką służącą do oceny skuteczności zabezpieczeń przeciwzwarciowych i nie ma związku ze sprawdzaniem ciągłości przewodów. Często pojawiające się błędne rozumienie zasadności tych pomiarów wynika z mylnego utożsamiania różnych procedur kontrolnych. Należy pamiętać, że każda z tych metod ma swoje specyficzne zastosowanie i w kontekście przedstawionego rysunku, tylko sprawdzanie ciągłości przewodów ochronnych jest w pełni adekwatne. Przez nieprecyzyjne odpowiedzi możemy nieświadomie zignorować kluczowe aspekty bezpieczeństwa elektrycznego, co może prowadzić do poważnych konsekwencji.

Pytanie 39

Którą puszkę należy zastosować podczas wymiany instalacji, wykonanej na tynku w pomieszczeniu suchym?

Ilustracja do pytania
A. C.
B. A.
C. B.
D. D.
Odpowiedź B jest poprawna, ponieważ w pomieszczeniach suchych, zgodnie z obowiązującymi normami instalacyjnymi, należy stosować puszki instalacyjne podtynkowe, które są przeznaczone do montażu w takich warunkach. Puszka wskazana jako B spełnia te wymagania, ponieważ jest zaprojektowana do pracy w suchych pomieszczeniach, co minimalizuje ryzyko uszkodzenia instalacji elektrycznej oraz zapewnia optymalne warunki dla podłączeń elektrycznych. W praktyce, puszki podtynkowe pozwalają na estetyczne i bezpieczne ukrycie przewodów oraz dostosowanie ich do wykończenia ścian. Ważne jest, aby podczas montażu stosować się do zasad prawidłowego podłączenia oraz instrukcji producenta, aby uniknąć problemów z dostępem do instalacji w przyszłości, a także zapewnić zgodność z normami bezpieczeństwa elektrycznego. Do puszek tej klasy często przynależą również akcesoria, które ułatwiają ich montaż i zapewniają dodatkową ochronę przed uszkodzeniami mechanicznymi.

Pytanie 40

Który z przedstawionych wyłączników różnicowoprądowych umożliwia monitorowanie prądu upływu w instalacji elektrycznej?

Ilustracja do pytania
A. B.
B. A.
C. D.
D. C.
Wyłącznik różnicowoprądowy przedstawiony na zdjęciu D jest właściwym rozwiązaniem do monitorowania prądu upływu w instalacji elektrycznej. Posiada on wskaźnik prądu upływu, który jest kluczowy dla bezpiecznej eksploatacji systemów elektrycznych. W praktyce, posiadając wyłącznik z takim wskaźnikiem, użytkownik jest w stanie na bieżąco śledzić ewentualne nieprawidłowości w działaniu instalacji, co może zapobiec poważnym uszkodzeniom sprzętu lub zagrożeniu dla życia. Standardy, takie jak PN-EN 61008, podkreślają konieczność stosowania wyłączników różnicowoprądowych dla zwiększenia bezpieczeństwa instalacji elektrycznych. Przykładem zastosowania może być system monitorowania w budynkach mieszkalnych, gdzie wyłącznik D informuje o wszelkich problemach związanych z prądem upływu, co pozwala na szybsze reakcje i zminimalizowanie ryzyka. Posiadanie takiego wskaźnika jest zgodne z najlepszymi praktykami w zakresie ochrony przeciwnapięciowej i bezpieczeństwa elektrycznego.