Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektryk
  • Kwalifikacja: ELE.05 - Eksploatacja maszyn, urządzeń i instalacji elektrycznych
  • Data rozpoczęcia: 19 grudnia 2025 05:15
  • Data zakończenia: 19 grudnia 2025 05:22

Egzamin niezdany

Wynik: 10/40 punktów (25,0%)

Wymagane minimum: 20 punktów (50%)

Udostępnij swój wynik
Szczegółowe wyniki:
Pytanie 1

Który z podanych środków można uznać za metodę ochrony przed porażeniem w przypadku uszkodzenia?

A. Obudowa
B. Umieszczenie części czynnych poza zasięgiem ręki
C. Samoczynne wyłączenie zasilania
D. Ogrodzenie
Samoczynne wyłączenie zasilania jest kluczowym środkiem ochrony przeciwporażeniowej, który automatycznie przerywa dopływ energii elektrycznej w przypadku wykrycia nieprawidłowości, takich jak zwarcie czy przeciążenie. To działanie jest zgodne z normami bezpieczeństwa, takimi jak PN-EN 61140, które określają wymagania dotyczące ochrony przed porażeniem prądem elektrycznym. Samoczynne wyłączenie zasilania minimalizuje ryzyko wystąpienia niebezpiecznych sytuacji, a jego zastosowanie jest powszechne w instalacjach elektrycznych, w których występują urządzenia o podwyższonym ryzyku. Przykładem zastosowania może być automatyczny wyłącznik różnicowoprądowy, który nie tylko wyłącza zasilanie, ale także monitoruje różnicę prądów, co jest istotne w ochronie osób pracujących w pobliżu urządzeń elektrycznych. Dzięki takiemu rozwiązaniu, w przypadku wystąpienia niebezpiecznego prądu różnicowego, zasilanie jest natychmiastowo odłączane, co znacznie zwiększa bezpieczeństwo użytkowników.

Pytanie 2

Na rysunku przedstawiono schemat układu pracy grupy silników trójfazowych w zakładzie przemysłowym.
Zmiana wartości pojemności baterii kondensatorów C powoduje zmianę

Ilustracja do pytania
A. mocy biernej pobieranej przez układ.
B. prądu rozruchowego silników.
C. częstotliwości napięcia w układzie.
D. prędkości obrotowej silników.
Zmiana wartości pojemności baterii kondensatorów C w układzie trójfazowym ma istotny wpływ na moc bierną pobieraną przez układ. Kondensatory w tym kontekście są kluczowymi elementami, które służą do kompensacji mocy biernej. W praktyce oznacza to, że ich odpowiednie dobranie pozwala na poprawienie współczynnika mocy, co z kolei przyczynia się do zwiększenia efektywności energetycznej instalacji elektrycznej. Wysoka moc bierna, pobierana przez silniki trójfazowe, może prowadzić do obciążenia transformatorów i linii przesyłowych, a także do zwiększenia kosztów energii elektrycznej. Dobre praktyki inżynieryjne zalecają stosowanie baterii kondensatorów w celu redukcji tej mocy, co przynosi korzyści zarówno ekonomiczne, jak i operacyjne. Na przykład w zakładach przemysłowych, w których eksploatowane są duże silniki, zastosowanie kondensatorów pozwala na zmniejszenie strat energii, co jest zgodne z normami IEC dotyczących efektywności energetycznej.

Pytanie 3

Podczas pracy urządzeń napędowych, oględziny nie obejmują oceny

A. wskazań aparatury kontrolno-pomiarowej
B. stanu szczotek
C. poziomu drgań
D. stanu osłon części wirujących
Odpowiedź "stanu szczotek" jest poprawna, ponieważ podczas oględzin urządzeń napędowych w czasie ich pracy koncentrujemy się na aspektach, które bezpośrednio wpływają na ich funkcjonowanie oraz bezpieczeństwo. Stan szczotek, które są zwykle elementami wykonawczymi w silnikach elektrycznych, nie jest kontrolowany podczas pracy, gdyż ich ocena wymaga zatrzymania urządzenia. Oględziny skupiają się na monitorowaniu parametrów pracy, takich jak poziom drgań, które mogą wskazywać na nieprawidłowości w pracy łożysk lub wirników, oraz na wskazaniach aparatury kontrolno-pomiarowej, które dostarczają kluczowych informacji o stanie technicznym urządzenia. Przykładem praktycznym są procedury dotyczące diagnostyki i konserwacji silników elektrycznych, gdzie regularne sprawdzanie poziomu drgań i temperatury ma na celu zapobieganie awariom oraz optymalizację pracy maszyn. Zgodnie z normami ISO 10816, monitorowanie drgań jest niezbędne dla zapewnienia ciągłości produkcji oraz minimalizacji kosztów związanych z naprawami i przestojami.

Pytanie 4

Piec elektryczny o mocy 12 kW jest zasilany z trójfazowej instalacji 3 x 400 V za pomocą przewodu o długości 20 m i przekroju 4 mm2. Jakie konsekwencje przyniesie wymiana tego przewodu na przewód o tej samej długości, lecz o przekroju 6 mm2?

A. Spadek napięcia na przewodach zasilających zmniejszy się.
B. Moc wydobywana w piecu zmaleje 1,5 raza.
C. Moc wydobywana w piecu wzrośnie 1,5 raza.
D. Spadek napięcia na przewodach zasilających wzrośnie.
Wymiana przewodu o przekroju 4 mm² na 6 mm² w instalacji trójfazowej przynosi ze sobą korzyści związane z obniżeniem spadku napięcia na przewodach zasilających. Spadek napięcia jest wynikiem oporu przewodów, a ten opór maleje wraz ze zwiększeniem przekroju przewodu. W przypadku instalacji elektrycznych, zgodnie z normami IEC 60228, mniejsze spadki napięcia są kluczowe dla efektywności operacyjnej urządzeń elektrycznych. Przy większym przekroju przewodu, przepływ prądu staje się bardziej efektywny, co oznacza mniejsze straty energii w postaci ciepła. Przykładem praktycznym może być zastosowanie takich przewodów w instalacjach przemysłowych, gdzie urządzenia o dużej mocy, jak piec elektryczny, muszą działać optymalnie, aby zminimalizować zużycie energii i zapewnić trwałość systemu. Mniejszy spadek napięcia pozwala na stabilniejsze zasilanie, co jest szczególnie ważne w kontekście ochrony urządzeń elektronicznych i ich długoterminowej wydajności.

Pytanie 5

Która z wymienionych czynności nie jest częścią oceny stanu technicznego podczas przeglądu układu napędowego z wykorzystaniem przekształtnika energoelektronicznego?

A. Kontrola połączeń stykowych
B. Ocena czystości filtrów powietrza chłodzącego
C. Weryfikacja jakości zabezpieczeń nadprądowych oraz zmiennozwarciowych
D. Sprawdzenie natężenia oświetlenia na stanowisku obsługi układu napędowego
Sprawdzanie natężenia oświetlenia na stanowisku obsługi układu napędowego to nie to samo, co przegląd stanu technicznego tego układu. Jak dla mnie, w takim przeglądzie powinniśmy skupić się na kluczowych aspektach, które wpływają na to, czy układ działa wydajnie i bezpiecznie. Na przykład, trzeba by sprawdzić zabezpieczenia nadprądowe i zmiennozwarciowe, bo one chronią urządzenia przed uszkodzeniem, gdy coś idzie nie tak, jak powinno. I nie zapominajmy o połączeniach stykowych, które odpowiadają za przekazywanie sygnałów elektrycznych. Filtry powietrza chłodzącego też mają ogromne znaczenie, bo odpowiednia temperatura pracy układu wpływa na jego długowieczność. Zadbanie o te wszystkie aspekty to klucz do efektywności operacyjnej oraz bezpieczeństwa użycia systemów z przekształtnikami. Przeglądy zgodne z normami, jak IEC 60204, mogą pomóc w uniknięciu awarii i sprawić, że układy napędowe będą działały jak należy.

Pytanie 6

Obniżenie częstotliwości napięcia zasilającego w trakcie działania silnika indukcyjnego trójfazowego spowoduje

A. unieruchomienie silnika
B. wzrost prędkości obrotowej silnika
C. spadek prędkości obrotowej silnika
D. utrzymanie prędkości obrotowej silnika na niezmienionym poziomie
Zadanie dotyczy trójfazowego silnika indukcyjnego, którego prędkość obrotowa jest ściśle związana z częstotliwością napięcia zasilającego. Zgodnie z zasadą działania silników indukcyjnych, prędkość obrotowa (n) jest proporcjonalna do częstotliwości zasilania (f) i liczby par biegunów (p), co można zapisać równaniem: n = (120 * f) / p. Zmniejszenie częstotliwości prowadzi do proporcjonalnego zmniejszenia prędkości obrotowej silnika. W praktycznych zastosowaniach, takich jak regulacja prędkości obrotowej w napędach, zmieniając częstotliwość napięcia, możemy w kontrolowany sposób dostosować prędkość silnika do wymagań procesu technologicznego, co pozwala na optymalizację zużycia energii oraz poprawę wydajności systemu. Warto również wspomnieć o zastosowaniu falowników, które umożliwiają precyzyjne sterowanie częstotliwością zasilania, co jest standardem w nowoczesnych instalacjach przemysłowych, aby dostosować prędkość do zmieniających się warunków pracy.

Pytanie 7

Które z wymienionych urządzeń służy do ochrony przewodów w systemach elektrycznych przed skutkami zwarć?

A. Przekaźnik termiczny
B. Odłącznik
C. Wyłącznik różnicowoprądowy
D. Bezpiecznik
Bezpiecznik to kluczowe urządzenie w instalacjach elektrycznych, które chroni obwody przed skutkami zwarć oraz przepięć. Jego główną funkcją jest przerwanie obwodu w momencie, gdy natężenie prądu przekroczy ustaloną wartość, co zapobiega uszkodzeniu urządzeń oraz minimalizuje ryzyko pożaru. W praktyce, bezpieczniki są szeroko stosowane w domowych i przemysłowych instalacjach elektrycznych oraz są zgodne z normami, takimi jak PN-EN 60947-2. Standardowe zastosowanie bezpiecznika polega na jego instalacji w rozdzielniach elektrycznych, gdzie zapewnia on ochronę dla poszczególnych obwodów. Warto również zwrócić uwagę na różne typy bezpieczników, w tym bezpieczniki topikowe i automatyczne, które mają różne zastosowania w zależności od charakterystyki obciążenia. Dobre praktyki obejmują regularne kontrole i wymianę bezpieczników, aby zagwarantować ich skuteczność oraz niezawodność działania w sytuacjach awaryjnych.

Pytanie 8

Który z poniższych wyłączników nadprądowych powinien być zastosowany do zabezpieczenia obwodu zasilającego trójfazowy silnik klatkowy o następujących parametrach znamionowych: P = 11 kW, U = 400 V, cos φ = 0,73, η = 80%?

A. S303 C40
B. S303 C32
C. S303 C25
D. S303 C20
Odpowiedź S303 C32 jest poprawna, ponieważ przy wyborze wyłącznika nadprądowego dla trójfazowego silnika klatkowego o mocy znamionowej 11 kW, napięciu 400 V oraz współczynniku mocy cos φ = 0,73, istotne jest obliczenie prądu znamionowego silnika. Prąd ten można wyznaczyć z wzoru: I = P / (√3 * U * cos φ). Po podaniu wartości (P = 11 kW, U = 400 V, cos φ = 0,73), uzyskujemy prąd około 18,5 A. Wyłącznik C32 ma prąd znamionowy 32 A, co zapewnia odpowiedni margines ochrony w przypadku przeciążenia oraz pozwala na bezpieczną i niezawodną pracę silnika. Wybór wyłącznika z niższą wartością prądową, jak C25 czy C20, mógłby prowadzić do zbyt częstych wyłączeń w przypadku normalnych warunków pracy silnika. Praktyczne zastosowanie wyłącznika C32 w obwodach zasilających silniki trójfazowe jest zgodne z normami IEC 60947-2, które zalecają odpowiednie marginesy dla wyłączników chroniących silniki. Dodatkowo, zastosowanie tego wyłącznika zmniejsza ryzyko uszkodzenia silnika oraz zapewnia bezpieczeństwo całego systemu zasilania.

Pytanie 9

Jaki typ przewodów jest zalecany do stosowania w instalacjach na zewnątrz budynków?

A. Przewody o podwyższonej odporności na UV
B. Przewody z miedzi beztlenowej
C. Przewody do instalacji wewnętrznych
D. Przewody aluminiowe
Przewody o podwyższonej odporności na UV są zalecane do stosowania w instalacjach na zewnątrz budynków ze względu na ich zdolność do wytrzymywania promieniowania ultrafioletowego. UV może powodować degradację materiałów, co w przypadku przewodów może prowadzić do ich mechanicznego uszkodzenia i utraty izolacyjności. Tego typu przewody są zaprojektowane tak, aby wytrzymać trudne warunki atmosferyczne, w tym intensywne nasłonecznienie, deszcz czy zmienne temperatury. Wybór przewodów odpornych na UV zwiększa niezawodność instalacji i zmniejsza ryzyko awarii. Z mojego doświadczenia wynika, że odpowiednie zaplanowanie instalacji z użyciem takich przewodów jest kluczowe dla jej długowieczności. W praktyce, przewody odporne na UV są często stosowane w instalacjach fotowoltaicznych, oświetleniowych na zewnątrz budynków oraz wszędzie tam, gdzie przewody są narażone na bezpośrednie działanie promieni słonecznych. Warto zawsze zwracać uwagę na oznaczenia producenta, które potwierdzają odporność na UV, co jest zgodne z normami branżowymi i dobrymi praktykami eksploatacyjnymi.

Pytanie 10

W głównych rozdzielnicach instalacji w budynkach mieszkalnych powinny być montowane urządzenia do ochrony przed przepięciami klasy

A. C+D
B. A
C. B+C
D. D
Odpowiedź B+C jest prawidłowa, ponieważ w rozdzielnicach głównych instalacji budynków mieszkalnych wymagane jest zastosowanie urządzeń ochrony przepięciowej klasy II oraz III. Klasa II to urządzenia o podwyższonej odporności na przepięcia, które są stosowane w miejscach narażonych na wyładowania atmosferyczne i inne zjawiska powodujące nagłe skoki napięcia. Przykładem są warystory oraz urządzenia typu SPD (Surge Protective Device), które skutecznie ograniczają przepięcia do poziomu bezpiecznego dla urządzeń elektrycznych. Klasa III natomiast dotyczy urządzeń, które chronią obwody końcowe, stosowane w każdym pomieszczeniu budynku. Zastosowanie obu klas urządzeń ochrony przepięciowej w rozdzielnicach głównych zapewnia kompleksową ochronę instalacji i podłączonych do niej urządzeń, co jest zgodne z normami PN-EN 61643-11 oraz PN-EN 62305, które wyznaczają wymagania dotyczące ochrony przed przepięciami. Stosowanie odpowiednich klas ochrony redukuje ryzyko uszkodzeń spowodowanych przepięciami oraz zwiększa bezpieczeństwo użytkowników budynku.

Pytanie 11

Inspekcje instalacji u odbiorców energii elektrycznej powinny być realizowane nie rzadziej niż co

A. rok
B. miesiąc
C. 5 lat
D. 3 lata

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź "5 lat" jest zgodna z wymaganiami określonymi w polskich przepisach dotyczących eksploatacji i utrzymania instalacji elektrycznych. Zgodnie z normą PN-IEC 60364 oraz wytycznymi URE (Urząd Regulacji Energetyki), okresowe oględziny instalacji u odbiorców mocy powinny być przeprowadzane nie rzadziej niż co pięć lat. Taki cykl przeglądów ma na celu zapewnienie bezpieczeństwa użytkowników, identyfikację potencjalnych usterek oraz utrzymanie instalacji w odpowiednim stanie technicznym. Przykładowo, regularne przeglądy mogą pomóc w wykryciu uszkodzeń izolacji kabli czy awarii zabezpieczeń, co w dłuższej perspektywie może zapobiec poważniejszym awariom oraz obniżyć ryzyko pożarów. W praktyce, wiele firm stosuje systemy zarządzania utrzymaniem ruchu, w których terminy przeglądów są udokumentowane i monitorowane, co sprzyja lepszemu zarządzaniu bezpieczeństwem energetycznym. Ostatnie badania pokazują, że zaniechanie regularnych przeglądów może prowadzić do wzrostu liczby awarii oraz zwiększenia kosztów napraw, dlatego przestrzeganie pięcioletniego cyklu przeglądów jest kluczowe.

Pytanie 12

W którym z wymienionych pomieszczeń zaleca się ze względów bezpieczeństwa zamontowanie lampy przedstawionej na rysunku?

Ilustracja do pytania
A. Piwnicy bloku mieszkalnego.
B. Warsztacie ślusarskim.
C. Magazynie spożywczym.
D. Pralni chemicznej.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Lampa przedstawiona na zdjęciu to lampa przemysłowa zaprojektowana z myślą o warunkach występujących w pralniach chemicznych. Jej konstrukcja zapewnia odporność na działanie chemikaliów oraz wilgoci, co czyni ją idealnym wyborem dla środowisk, gdzie takie czynniki są powszechne. W pralniach chemicznych często wykorzystuje się agresywne detergenty oraz inne substancje chemiczne, które mogą uszkodzić tradycyjne źródła światła. Zastosowanie lamp przemysłowych w tych obiektach nie tylko zwiększa bezpieczeństwo, ale również zapewnia odpowiednie oświetlenie, które jest kluczowe dla wydajności pracowników. Dobre praktyki w branży zalecają stosowanie oświetlenia, które spełnia normy EN 12464-1, co gwarantuje odpowiednią jakość światła w miejscach pracy. Przykładowo, lampa powinna być odporna na wysoką temperaturę i mieć stopień ochrony IP 65 lub wyższy, aby zapewnić długotrwałą eksploatację w trudnych warunkach.

Pytanie 13

Co oznacza symbol IP44 w kontekście ochrony urządzeń elektrycznych?

A. Ochronę przed pełnym zanurzeniem w wodzie
B. Ochronę przed ciałami stałymi większymi niż 1 mm oraz przed bryzgami wody z dowolnego kierunku
C. Ochronę przed bezpośrednim działaniem promieni słonecznych
D. Ochronę przed pyłem oraz działaniem pary wodnej

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Symbol IP44 w kontekście ochrony urządzeń elektrycznych oznacza, że urządzenie jest zabezpieczone przed ciałami stałymi o średnicy większej niż 1 mm oraz przed bryzgami wody z dowolnego kierunku. Jest to standardowy sposób klasyfikacji stopnia ochrony zapewnianej przez obudowy urządzeń elektrycznych, określany przez normę IEC 60529. Pierwsza cyfra '4' oznacza, że urządzenie jest chronione przed cząstkami stałymi większymi niż 1 mm, co jest istotne w kontekście ochrony przed kurzem, pyłem czy nawet niewielkimi owadami. Druga cyfra '4' wskazuje na ochronę przed wodą bryzgającą z dowolnego kierunku, co jest istotne w środowiskach, gdzie urządzenie może być narażone na deszcz lub inne źródła wilgoci, ale nie jest przewidziane do zanurzenia. Tego rodzaju ochrona jest szczególnie ważna w przypadku instalacji zewnętrznych lub w miejscach o podwyższonej wilgotności, gdzie niezawodność sprzętu elektrycznego jest kluczowa dla bezpieczeństwa i ciągłości pracy. W praktyce, wybór odpowiedniej klasy IP pozwala na dostosowanie urządzenia do specyficznych warunków pracy, zapewniając jego długowieczność i niezawodność, co jest zgodne z dobrymi praktykami branżowymi.

Pytanie 14

Podaj, jaką wartość nie może przewyższać spodziewane napięcie dotykowe na dostępnej części przewodzącej urządzenia działającego w normalnych warunkach środowiskowych, podczas samoczynnego wyłączenia wynoszącego 5 s, przy prawidłowo dobranych przewodach oraz zabezpieczeniach w elektrycznej instalacji do 1 kV.

A. 110 V
B. 50 V
C. 220 V
D. 70 V

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź 50 V jest prawidłowa, ponieważ jest to wartość maksymalna dopuszczalnego napięcia dotykowego na częściach dostępnych przewodzących zgodnie z normą PN-IEC 61140. W przypadku instalacji elektrycznych o napięciu do 1 kV, w warunkach normalnych, napięcie dotykowe nie może przekraczać tej wartości, aby zapewnić bezpieczeństwo użytkowników. W instytucjach i obiektach, w których używa się urządzeń elektrycznych, kluczowe jest stosowanie odpowiednich zabezpieczeń, takich jak wyłączniki różnicowoprądowe, które w przypadku wykrycia upływu prądu mogą zadziałać w czasie poniżej 30 ms. Przykładem zastosowania tej zasady mogą być instalacje w budynkach mieszkalnych, gdzie konieczne jest zapewnienie bezpieczeństwa osób korzystających z urządzeń elektrycznych. Obowiązujące normy, takie jak PN-EN 60038, wskazują na znaczenie odpowiedniego doboru zabezpieczeń, aby w sytuacji zwarcia lub uszkodzenia izolacji nie doszło do niebezpiecznego wzrostu napięcia dotykowego. W ten sposób, przy właściwej ochronie, można skutecznie zminimalizować ryzyko porażenia prądem elektrycznym.

Pytanie 15

W którym z poniższych miejsc podczas pracy z urządzeniami elektrycznymi nie wolno stosować izolacji stanowiska jako zabezpieczenia przed dotykiem pośrednim?

A. Laboratorium
B. Warsztat sprzętu RTV
C. Plac budowy
D. Pracownia szkolna

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Plac budowy to miejsce, gdzie występują szczególne warunki pracy, które wymagają szczegółowych zasad bezpieczeństwa. Izolowanie stanowiska jako ochrona przed dotykiem pośrednim, choć teoretycznie może być stosowane, w praktyce nie jest wystarczające ze względu na dynamiczny charakter tego środowiska. Na placu budowy często występują zagrożenia związane z wilgocią, zmiennymi warunkami atmosferycznymi oraz możliwością uszkodzenia izolacji przez inne urządzenia lub materiały budowlane. Dlatego w takich miejscach kluczowe jest stosowanie bardziej zaawansowanych systemów ochronnych, takich jak urządzenia różnicowoprądowe oraz odpowiednie uziemienie, które zapewniają znacznie większą ochronę przed porażeniem prądem elektrycznym. Dodatkowo, zgodnie z normami PN-IEC 60364, na placach budowy należy stosować zabezpieczenia, które są dostosowane do specyfiki tego typu pracy, co podkreśla istotność stosowania wielowarstwowych metod ochrony, a nie tylko polegania na izolacji.

Pytanie 16

Jak często, według podanych w tabeli i zalecanych przez Prawo Budowlane czasookresów, należy wykonywać pomiary okresowe skuteczności ochrony przeciwporażeniowej i rezystancji izolacji instalacji elektrycznych w szkołach?

Zalecana częstotliwość wykonywania okresowych badań sprawności technicznej instalacji elektrycznych
w zależności od warunków środowiskowych
Lp.Rodzaj pomieszczeniaPomiar skuteczności ochrony
przeciwporażeniowej
(nie rzadziej niż):
Pomiar rezystancji izolacji
(nie rzadziej niż):
1O wyziewach żrących1 rok1 rok
2Zagrożonych wybuchem1 rok1 rok
3Otwarta przestrzeń1 rok5 lat
4Wilgotne i bardzo wilgotne
(o wilgotności względnej 75-100%)
1 rok5 lat
5Gorące (temperatura powyżej 35 °C)1 rok5 lat
6Zagrożone pożarem5 lat1 rok
7Stwarzające zagrożenie dla ludzi
(ZL I, ZL II, ZL III)
5 lat1 rok
8Zapylone5 lat5 lat


Pomiar skuteczności ochrony
przeciwporażeniowej
(nie rzadziej niż):
Pomiar rezystancji izolacji
(nie rzadziej niż):
A1 rok1 rok
B1 rok5 lat
C5 lat1 rok
D5 lat5 lat
A. C.
B. A.
C. B.
D. D.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź C jest prawidłowa, ponieważ zgodnie z obowiązującymi przepisami prawa budowlanego oraz standardami technicznymi, pomiary skuteczności ochrony przeciwporażeniowej w szkołach powinny być przeprowadzane co 5 lat, natomiast pomiary rezystancji izolacji wymagają okresowego sprawdzania co rok. Takie podejście ma na celu zapewnienie bezpieczeństwa użytkowników obiektów edukacyjnych, gdzie prawidłowa ochrona przed porażeniem prądem elektrycznym jest kluczowa. Przykładowo, w przypadku awarii systemów ochronnych, konsekwencje mogą być nie tylko materialne, ale przede wszystkim zdrowotne, zagrażające życiu uczniów i personelu. Regularne kontrole pozwalają na wczesne wykrycie potencjalnych usterek, co z kolei przyczynia się do zmniejszenia ryzyka wypadków. Warto zwrócić uwagę na standardy, takie jak PN-IEC 60364, które szczegółowo regulują wymagania dotyczące instalacji elektrycznych oraz ich okresowej konserwacji. Przestrzeganie tych zasad jest nie tylko obowiązkiem, ale również najlepszą praktyką w zarządzaniu bezpieczeństwem elektrycznym w obiektach edukacyjnych.

Pytanie 17

W jaki sposób zmieni się prędkość obrotowa silnika synchronicznego, gdy liczba par biegunów w jego tworniku zostanie zmieniona z 2 na 1?

A. Dwukrotnie zmniejszy się
B. Czterokrotnie wzrośnie
C. Czterokrotnie zmniejszy się
D. Dwukrotnie wzrośnie

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Prędkość obrotowa silnika synchronicznego jest ściśle związana z częstotliwością prądu zasilającego oraz liczbą par biegunów w uzwojeniach silnika. Zgodnie z zasadą synchronizacji, prędkość obrotowa silnika synchronicznego (n) oblicza się za pomocą wzoru: n = (120 * f) / p, gdzie f to częstotliwość prądu w hercach, a p to liczba par biegunów. W przypadku zmiany liczby par biegunów z 2 na 1, mamy do czynienia ze zmniejszeniem liczby par biegunów o połowę, co skutkuje podwojeniem prędkości obrotowej. W praktyce oznacza to, że silnik będzie pracować z wyższą prędkością, co jest istotne w aplikacjach wymagających zwiększenia efektywności operacyjnej, takich jak napędy wentylatorów czy pomp. W przemyśle zastosowanie silników synchronicznych z mniejszą liczbą par biegunów może umożliwić osiągnięcie wyższej wydajności energetycznej, co jest zgodne z aktualnymi trendami dążącymi do optymalizacji procesów produkcyjnych oraz redukcji kosztów eksploatacyjnych.

Pytanie 18

Jakie oznaczenie będzie miał przewód – alternatywa dla przewodu OW 4×2,5 mm2 zasilającego przenośny trójfazowy silnik indukcyjny używany w warsztacie ślusarskim?

A. H07RR-F 4G2,5
B. H03V2V2H2-F 3X2,5
C. H03V2V2-F 3X2,5
D. H07VV-U 4G2,5

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź H07RR-F 4G2,5 jest poprawna, ponieważ to oznaczenie odnosi się do elastycznego przewodu gumowego, który jest szczególnie przystosowany do zasilania urządzeń elektrycznych w warunkach przemysłowych, takich jak przenośne silniki indukcyjne. Przewód ten charakteryzuje się wysoką odpornością na działanie olejów, chemikaliów oraz mechanicznych uszkodzeń, co czyni go idealnym wyborem do użycia w warsztatach, gdzie występuje ryzyko uszkodzeń. Oznaczenie 4G2,5 wskazuje na to, że przewód składa się z czterech żył, z czego trzy mają przekrój 2,5 mm², co zapewnia odpowiednią wydajność prądową dla silników o mocy do około 7,5 kW w układzie trójfazowym. Ponadto, zgodnie ze standardami IEC, przewody takie jak H07RR-F spełniają wymagania dotyczące bezpieczeństwa i niezawodności, co jest niezbędne w środowisku pracy. W praktyce używając tego przewodu, można mieć pewność, że zapewnia on właściwe parametry zasilania oraz bezpieczeństwo użytkowania urządzeń elektrycznych.

Pytanie 19

Która z wymienionych przyczyn może powodować przegrzewanie się uzwojenia stojana w trakcie działania trójfazowego silnika indukcyjnego?

A. Zmiana kolejności faz zasilających
B. Nierównomierna szczelina powietrzna
C. Nieprawidłowe połączenie grup zezwojów
D. Zbyt niska częstotliwość napięcia zasilającego

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Błędne połączenie grup zezwojów w trójfazowym silniku indukcyjnym może prowadzić do przegrzewania się uzwojenia stojana z kilku powodów. Połączenia te są kluczowe dla prawidłowego działania silnika, ponieważ decydują o fazowej synchronizacji przepływu prądu w uzwojeniach. Nieprawidłowe połączenia mogą prowadzić do nierównomiernego obciążenia faz, co z kolei skutkuje nadmiernym nagrzewaniem się niektórych uzwojeń. W praktyce, aby uniknąć takich problemów, należy stosować się do norm, takich jak IEC 60034 dotyczących maszyn elektrycznych, które zalecają odpowiednie procedury montażu i testowania silników. W przypadku wykrycia przegrzewania się silnika, kluczowe jest przeprowadzenie analizy połączeń oraz wykonanie badań termograficznych w celu zidentyfikowania miejsc o podwyższonej temperaturze. Prawidłowe połączenie grup zezwojów zapewnia równomierne rozkładanie obciążenia, co jest kluczowe dla wydajności oraz trwałości silnika.

Pytanie 20

Podczas wymiany uzwojeń w transformatorze jednofazowym o parametrach: SN = 200 VA, U1N = 230 V, U2N = 14,6 V, uzwojenie pierwotne powinno być wykonane z drutu nawojowego

A. o mniejszej średnicy i mniejszej liczbie zwojów niż uzwojenie wtórne
B. o większej średnicy i większej liczbie zwojów niż uzwojenie wtórne
C. o większej średnicy i mniejszej ilości zwojów niż uzwojenie wtórne
D. o mniejszej średnicy i większej liczbie zwojów niż uzwojenie wtórne

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź wskazująca, że uzwojenie pierwotne powinno być wykonane z drutu o mniejszej średnicy i większej liczbie zwojów niż uzwojenie wtórne jest poprawna. W transformatorze jednofazowym, stosunek napięć uzwojeń związany jest z relacją liczby zwojów w każdym uzwojeniu. Zależność ta wyraża się wzorem: U1/U2 = N1/N2, gdzie U1 i U2 to napięcia na uzwojeniach pierwotnym i wtórnym odpowiednio, a N1 i N2 to liczby zwojów. Wymiana uzwojeń pierwotnych i wtórnych wiąże się z doborem odpowiedniej średnicy drutu. Mniejsze napięcie na uzwojeniu wtórnym wymaga większej liczby zwojów, co z kolei oznacza, że uzwojenie pierwotne musi być wykonane z cieńszego drutu, aby pomieścić więcej zwojów na danej długości. Przykładowo, w transformatorach stosuje się standardy dotyczące przekrojów drutów, aby zapewnić odpowiednią wydajność prądową i minimalizować straty w cieple. Zastosowanie tej zasady w praktyce prowadzi do efektywniejszego projektu transformatora, co jest kluczowe w wielu aplikacjach elektrycznych, od zasilania urządzeń domowych po zastosowania w przemyśle. Właściwe dobranie wymagań dla uzwojeń jest istotnym elementem inżynieryjnym, który warunkuje trwałość i efektywność transformatora.

Pytanie 21

Istotnym czynnikiem wpływającym na skuteczność chłodzenia indukcyjnego silnika elektrycznego jest

A. wlot powietrza
B. czujnik temperatury
C. klatka wirnika
D. koło pasowe

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wlot powietrza odgrywa kluczową rolę w efektywności chłodzenia indukcyjnego silnika elektrycznego. Odpowiednia wentylacja jest niezbędna do odprowadzania ciepła generowanego podczas pracy silnika, co wpływa na jego wydajność i żywotność. Wlot powietrza umożliwia cyrkulację chłodnego powietrza do wnętrza silnika, co przyczynia się do obniżenia temperatury komponentów, takich jak stator i wirnik. Zastosowanie odpowiednio zaprojektowanych kanałów wentylacyjnych, zgodnych z normami IEC 60034, pozwala na optymalne chłodzenie silnika, minimalizując ryzyko przegrzania. W praktyce, wloty powietrza powinny być regularnie kontrolowane oraz wentylowane, aby zapewnić właściwe odprowadzanie ciepła. Przykładem skutecznego zastosowania jest użycie wentylatorów chłodzących, które wspomagają naturalną cyrkulację powietrza w silnikach o dużej mocy, co znacząco poprawia ich efektywność energetyczną i wydajność operacyjną.

Pytanie 22

Które z poniższych stwierdzeńnie jest rezultatem przeglądu instalacji elektrycznej?

A. Na podstawie danych dostarczonych przez producenta, oznaczeń oraz certyfikatów, elementy instalacji są zgodne z normami bezpieczeństwa
B. Elementy instalacji zostały odpowiednio dobrane i poprawnie zainstalowane
C. Zachowana jest ciągłość przewodów ochronnych oraz połączeń wyrównawczych
D. W instalacji nie stwierdzono widocznych uszkodzeń, które mogłyby deteriorować bezpieczeństwo

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Zachowanie ciągłości przewodów ochronnych oraz połączeń wyrównawczych jest kluczowym elementem zapewnienia bezpieczeństwa w instalacjach elektrycznych. Dobrze zaprojektowane i wykonane połączenia ochronne są niezbędne do skutecznego odprowadzenia prądów zwarciowych do ziemi, co minimalizuje ryzyko porażenia elektrycznego oraz pożaru. W praktyce, ciągłość tych połączeń można zweryfikować za pomocą pomiarów rezystancji, które powinny wykazywać wartości zgodne z normami, np. PN-EN 61557-4. W przypadku ich braku, nawet jeśli inne elementy instalacji wydają się być w dobrym stanie, istnieje realne niebezpieczeństwo wystąpienia awarii, co podkreśla znaczenie regularnych inspekcji i pomiarów. Działania te są zgodne z najlepszymi praktykami zawartymi w dokumentach normatywnych, co pozwala na prewencję oraz zapewnienie wysokiego poziomu bezpieczeństwa użytkowników instalacji elektrycznej.

Pytanie 23

Aby uzyskać widoczną przerwę w obwodzie elektrycznym, należy użyć

A. przekaźnika
B. wyłącznika
C. odłącznika
D. stycznika

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odłącznik to urządzenie wykorzystywane do zapewnienia widocznej przerwy w obwodzie elektrycznym, co jest kluczowe z punktu widzenia bezpieczeństwa. Jego głównym zadaniem jest umożliwienie całkowitego odłączenia obwodu od źródła zasilania, co pozwala na bezpieczne przeprowadzanie prac konserwacyjnych lub naprawczych. W odróżnieniu od innych urządzeń, takich jak wyłącznik czy stycznik, odłącznik oferuje mechaniczną przerwę w obwodzie, która jest wizualnie dostępna, co pozwala operatorowi na jednoznaczne stwierdzenie, że dany układ jest odłączony od zasilania. Stosowanie odłączników jest zgodne z normami, takimi jak IEC 60947, które określają wymagania dotyczące urządzeń rozdzielczych. Przykładowe zastosowania odłączników to instalacje przemysłowe oraz systemy energetyczne, gdzie nieodzowne jest zapewnienie bezpieczeństwa pracowników podczas interwencji w obwodach elektrycznych.

Pytanie 24

Aby naprawić uszkodzenie przerwanego przewodu pomiędzy sąsiednimi puszkami łączeniowymi w instalacji elektrycznej podtynkowej, która znajduje się w rurce, konieczne jest

A. odkręcić w puszkach uszkodzony przewód, wymienić go na nowy i połączyć
B. odkręcić w puszkach uszkodzony przewód, zlutować, zaizolować i połączyć
C. wykuć bruzdę i wymienić rurkę instalacyjną z przewodami na przewód podtynkowy
D. pozostawić uszkodzony przewód, a puszki połączyć przewodem natynkowym

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź polegająca na odkręceniu przerwanego przewodu w puszkach i zastąpieniu go nowym jest prawidłowa, ponieważ zapewnia trwałe i bezpieczne rozwiązanie problemu uszkodzonej instalacji elektrycznej. Zgodnie z zasadami dobrej praktyki, usunięcie uszkodzonego przewodu i zastąpienie go nowym jest kluczowe dla zapewnienia ciągłości obwodu oraz minimalizacji ryzyka wystąpienia zwarcia czy pożaru. W przypadku przerwania przewodu, jego naprawa poprzez zlutowanie może być nietrwała i narażać na ryzyko, zwłaszcza w instalacjach podtynkowych, gdzie dostęp do uszkodzeń jest ograniczony. Wymiana przewodu jest standardem w branży i pozwala na zachowanie pełnej funkcjonalności instalacji. Dodatkowo, przy wykonywaniu takiej naprawy należy stosować odpowiednie materiały, które przeznaczone są do instalacji elektrycznych, a także przestrzegać norm PN-IEC 60364, które regulują zasady bezpieczeństwa w instalacjach elektrycznych. Przykładowo, przy wyborze nowego przewodu warto kierować się jego parametrami elektrycznymi oraz odpowiednią izolacją, co zwiększy efektywność i bezpieczeństwo całej instalacji.

Pytanie 25

Trójfazowy silnik indukcyjny jest przystosowany do uruchamiania z wykorzystaniem przełącznika gwiazda-trójkąt. Jaką mocą, w porównaniu do mocy znamionowej, można go obciążyć przy połączeniu uzwojeń w konfiguracji gwiazdy?

A. Dwukrotnie większą
B. Trzykrotnie większą
C. Dwukrotnie mniejszą
D. Trzykrotnie mniejszą

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź, że silnik indukcyjny trójfazowy można obciążyć trzykrotnie mniejszą mocą przy połączeniu uzwojeń w gwiazdę, jest poprawna z technicznego punktu widzenia. W układzie gwiazda napięcie zasilające na każdym uzwojeniu wynosi 1/√3 napięcia fazowego, co wpływa na moc, jaką silnik może wygenerować. W momencie rozruchu w trybie gwiazdy, silnik może dostarczyć jedynie 1/3 mocy znamionowej, co jest kluczowe, aby uniknąć przeciążenia uzwojeń i nadmiernych prądów rozruchowych, które mogłyby prowadzić do uszkodzenia silnika. W praktyce, stosowanie przełącznika gwiazda-trójkąt w dużych silnikach indukcyjnych pozwala na zredukowanie prądów rozruchowych, co jest zgodne z dobrymi praktykami w inżynierii elektrycznej. Przykładem zastosowania tej metody są silniki napędzające duże wentylatory, pompy czy sprężarki, w których istotne jest kontrolowanie momentu rozruchowego oraz ograniczenie obciążeń mechanicznych w początkowej fazie pracy.

Pytanie 26

Jakie stopnie ochrony są wymagane dla oprawy, którą należy zastąpić uszkodzoną oprawę w instalacji oświetlenia, zamontowaną w chodniku przed werandą budynku jednorodzinnego?

Ilustracja do pytania
A. IP 67; IK 02
B. IP 67; IK 09
C. IP 23; IK 10
D. IP23; IK03

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź IP 67; IK 09 jest poprawna, ponieważ zapewnia odpowiednie stopnie ochrony dla oprawy zamontowanej w chodniku przed werandą budynku jednorodzinnego. Stopień ochrony IP 67 oznacza, że oprawa jest całkowicie pyłoszczelna (pierwsza cyfra 6) oraz odporna na zanurzenie w wodzie do głębokości 1 metra przez maksymalnie 30 minut (druga cyfra 7). Taki poziom ochrony jest kluczowy w obszarach narażonych na kontakt z wodą, zwłaszcza w strefach zewnętrznych, gdzie zmiany pogodowe mogą prowadzić do zalania. Stopień ochrony IK 09 wskazuje na odporność na uderzenia mechaniczne o energii do 10J, co jest istotne dla opraw oświetleniowych instalowanych w miejscach o dużym natężeniu ruchu, takich jak chodniki. W praktyce, zastosowanie opraw z tymi parametrami zwiększa bezpieczeństwo i trwałość instalacji oświetleniowej, minimalizując ryzyko awarii spowodowane zarówno uszkodzeniami mechanicznymi, jak i wpływem warunków atmosferycznych. Warto również zaznaczyć, że zgodnie z normą IEC 60529, odpowiednie zabezpieczenie urządzeń oświetleniowych w strefach zewnętrznych jest kluczowe dla zapewnienia ich długotrwałego i bezpiecznego funkcjonowania.

Pytanie 27

Aby zapewnić ochronę przed porażeniem elektrycznym przy awarii użytkowników silnika elektrycznego klasy ochronności I, jego obudowa w układzie sieci TT powinna być

A. elektrycznie odizolowana od gruntu oraz przewodzącego podłoża
B. elektrycznie odizolowana od uziomu za pomocą iskiernika
C. połączona z uziomem
D. podłączona do przewodu neutralnego

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź 'przyłączyć do uziomu' jest prawidłowa, ponieważ w systemie TT, który jest jedną z metod ochrony przeciwporażeniowej, uziemienie urządzenia elektrycznego ma kluczowe znaczenie dla bezpieczeństwa. W przypadku uszkodzenia izolacji silnika elektrycznego I klasy ochronności, potencjalne napięcie na obudowie może wzrosnąć, co stanowi zagrożenie dla użytkowników. Przyłączenie korpusu silnika do uziomu zapewnia, że wszelkie niebezpieczne napięcia zostaną odprowadzone do ziemi, minimalizując ryzyko porażenia. W praktyce, takie rozwiązanie jest zgodne z normami międzynarodowymi, jak np. IEC 60364, które określają zasady instalacji elektrycznych oraz środki ochrony przeciwporażeniowej. Uziemienie także pozwala na szybkie zadziałanie zabezpieczeń, takich jak wyłączniki różnicowoprądowe, co jest istotne w przypadku awarii. Dodatkowo, instalacje z poprawnie wykonanym uziemieniem mogą przyczynić się do zmniejszenia zakłóceń elektromagnetycznych, co jest istotne w kontekście wydajności urządzeń elektrycznych.

Pytanie 28

Jakie warunki muszą zostać spełnione podczas pomiaru rezystancji izolacji w instalacji elektrycznej po wcześniejszym odłączeniu napięcia zasilającego?

A. Włączone odbiorniki do gniazd wtyczkowych, włączone przełączniki oświetleniowe, zamontowane źródła światła
B. Odłączone odbiorniki od gniazd wtyczkowych, włączone przełączniki oświetleniowe, zamontowane źródła światła
C. Włączone odbiorniki do gniazd wtyczkowych, włączone przełączniki oświetleniowe, wymontowane źródła światła
D. Odłączone odbiorniki od gniazd wtyczkowych, włączone przełączniki oświetleniowe, wymontowane źródła światła

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Przy wykonywaniu pomiaru rezystancji izolacji w instalacji elektrycznej, kluczowe jest zapewnienie kompletnego bezpieczeństwa oraz dokładności uzyskiwanych wyników. Wyłączenie odbiorników z gniazd wtyczkowych eliminuje ryzyko przypadkowego załączenia obwodu, co mogłoby zafałszować wyniki pomiarów lub spowodować niebezpieczne sytuacje. Włączone łączniki oświetleniowe pozwalają na uzyskanie pełnej charakterystyki instalacji, ponieważ pomiar dotyczy także przewodów i elementów, które są podłączone do tych łączników. Wymontowanie źródeł światła jest istotne, ponieważ ich obecność może wprowadzać dodatkowe oporności i niepożądane elementy do obwodu, co może również wpłynąć na wynik pomiaru. Zgodnie z normami, takimi jak PN-EN 61557-2, poprawne wykonanie pomiarów rezystancji izolacji jest podstawą do oceny stanu technicznego instalacji oraz zapewnienia jej bezpieczeństwa użytkowania. W praktyce, przestrzeganie tych zasad jest kluczowe dla administratorów budynków, elektryków oraz firm zajmujących się konserwacją i modernizacją instalacji elektrycznych.

Pytanie 29

Jakie urządzenie powinno zostać użyte do zasilenia obwodu SELV z sieci 230 V, 50 Hz?

A. Przekładnik
B. Dzielnik napięcia
C. Transformator bezpieczeństwa
D. Autotransformator

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Transformator bezpieczeństwa jest kluczowym urządzeniem stosowanym do zasilania obwodów SELV (Safety Extra Low Voltage) z sieci 230 V, 50 Hz. Jego główną funkcją jest zapewnienie izolacji galwanicznej pomiędzy wysokim napięciem a niskim napięciem, co znacząco minimalizuje ryzyko porażenia prądem elektrycznym. Transformator bezpieczeństwa działa na zasadzie obniżania napięcia do poziomu, który jest bezpieczny dla użytkowników. Przykładem zastosowania transformatora bezpieczeństwa może być oświetlenie w obiektach, gdzie wymagana jest szczególna ochrona przed porażeniem, takie jak baseny, łazienki czy miejsca z dużą wilgotnością. Zgodnie z normą IEC 61140, urządzenia te muszą spełniać określone wymagania dotyczące bezpieczeństwa, co czyni je niezastąpionymi w instalacjach niskonapięciowych. Transformator bezpieczeństwa, w przeciwieństwie do innych urządzeń, zapewnia nie tylko redukcję napięcia, ale i odpowiednie zabezpieczenie przed skutkami awarii, co czyni go odpowiednim wyborem w kontekście bezpieczeństwa użytkowników.

Pytanie 30

W instalacji elektrycznej w celu stwierdzenia skuteczności ochrony przeciwporażeniowej dokonano pomiarów i otrzymano wartości napięcia fazowego oraz impedancji pętli zwarcia wskazywane przez zamieszczony na rysunku miernik MZC-304. Które z zabezpieczeń nadprądowych przy tym stanie technicznym instalacji spełni warunek samoczynnego wyłączenia zasilania?

Ilustracja do pytania
A. C25
B. D32
C. D25
D. C32

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Zabezpieczenie nadprądowe C25 jest w porządku w tej sytuacji, bo jego maksymalny prąd wyzwalania to 250A. Jakby doszło do zwarcia w instalacji, to prąd zwarcia wynosi około 315A, a to już więcej niż C25 może znieść. To zabezpieczenie działa tak, że automatycznie odłącza zasilanie, a to jest naprawdę ważne dla bezpieczeństwa, żeby uniknąć porażenia. W praktyce, takie zabezpieczenia z charakterystyką C są często stosowane tam, gdzie mamy duże obciążenia, które przy zwarciu mogą dawać spore prądy. Różne normy, jak PN-IEC 60364-4-41, mówią o tym, jak ważne jest dobranie odpowiednich zabezpieczeń. Dlatego użycie C25 w tym przypadku jest zgodne z tym, co mówią te normy i daje większą pewność, jeśli chodzi o bezpieczeństwo użytkowników instalacji.

Pytanie 31

Jakie będą konsekwencje podniesienia częstotliwości napięcia zasilającego stojan w trakcie działania trójfazowego silnika indukcyjnego?

A. Wzrost prędkości obrotowej wirnika silnika
B. Całkowite zniszczenie wirnika silnika
C. Spadek prędkości obrotowej wirnika silnika
D. Nawrót wirnika silnika

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Zwiększenie częstotliwości napięcia zasilania stojana trójfazowego silnika indukcyjnego prowadzi do podwyższenia prędkości obrotowej wirnika zgodnie z zasadą synchronizacji. W silnikach indukcyjnych prędkość obrotowa wirnika jest ściśle związana z częstotliwością zasilania, co wynika z relacji: n = 120 * f / p, gdzie n to prędkość obrotowa w obr/min, f to częstotliwość w Hz, a p to liczba par biegunów. Zwiększenie częstotliwości powoduje, że wirnik osiąga wyższą prędkość, co ma zastosowanie w różnych procesach przemysłowych, gdzie wymagana jest regulacja prędkości napędu, na przykład w systemach transportowych czy w automatyce przemysłowej. W praktyce możemy wykorzystać falowniki, które umożliwiają precyzyjne sterowanie częstotliwością, a tym samym prędkością obrotową silnika, co optymalizuje zużycie energii i zwiększa efektywność procesów. Warto również zauważyć, że zgodnie z normami IEC 60034, projektowanie systemów napędowych powinno uwzględniać odpowiednie parametry zasilania, co wpływa na trwałość i wydajność silników."

Pytanie 32

Silnik prądu stałego w układzie szeregowym intensywnie iskrzy na segmentach komutatora. Najbardziej prawdopodobnym powodem uszkodzenia jest

A. zwarcie międzyzwojowe w obwodzie stojana
B. zwarcie międzyzwojowe w obwodzie wirnika
C. przerwa w obwodzie wirnika
D. przerwa w obwodzie stojana

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Zwarcie międzyzwojowe w obwodzie wirnika jest najczęstszą przyczyną nadmiernego iskrzenia na komutatorze silnika szeregowego prądu stałego. Tego typu zwarcia powodują nieprawidłowy przepływ prądu w uzwojeniach wirnika, co skutkuje dużymi prądami roboczymi, a w konsekwencji prowadzi do powstania intensywnych łuków elektrycznych na komutatorze. Iskrzenie to nie tylko obniża efektywność pracy silnika, ale także może prowadzić do szybszego zużycia elementów komutatora oraz wirnika. Przykładowo, w silnikach stosowanych w aplikacjach przemysłowych, takich jak napędy trakcyjne czy maszyny robocze, kluczowe jest monitorowanie stanu uzwojeń, aby zminimalizować ryzyko zwarć. Regularne inspekcje oraz stosowanie systemów diagnostycznych, takich jak termowizja czy analiza drgań, mogą pomóc w wczesnym wykryciu problemów z uzwojeniami, co jest zgodne z najlepszymi praktykami w zarządzaniu utrzymaniem ruchu. Ponadto, zrozumienie efektów zwarć międzyzwojowych jest kluczowe dla inżynierów projektujących układy napędowe, aby mogli tworzyć bardziej niezawodne i trwałe systemy.

Pytanie 33

Która z poniższych okoliczności wymaga przeprowadzenia pomiarów kontrolnych w instalacji elektrycznej niskiego napięcia?

A. Zadziałanie zabezpieczenia przedlicznikowego
B. Rozbudowanie instalacji
C. Zadziałanie wyłącznika różnicowoprądowego
D. Zmiana rodzaju źródeł światła w oprawach oświetleniowych

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Rozbudowa instalacji elektrycznej niskiego napięcia wiąże się z koniecznością przeprowadzenia pomiarów kontrolnych, aby zapewnić zgodność z obowiązującymi normami oraz bezpieczeństwo użytkowników. Zgodnie z normą PN-IEC 60364, każde zmiany w instalacji, takie jak jej rozbudowa, wymagają weryfikacji parametrów technicznych, jak rezystancja izolacji, ciągłość przewodów ochronnych oraz sprawność urządzeń zabezpieczających. Przykładowo, dodanie nowych obwodów może wpływać na działanie istniejących zabezpieczeń, co w konsekwencji może prowadzić do ich nieprawidłowego funkcjonowania. Dlatego przed oddaniem rozbudowanej instalacji do eksploatacji, konieczne jest przeprowadzenie pomiarów kontrolnych, aby potwierdzić, że instalacja spełnia wymogi bezpieczeństwa i użytkowania. Dodatkowo, takie pomiary mogą pomóc w identyfikacji potencjalnych problemów, które mogą wystąpić w przyszłości, co jest kluczowe dla utrzymania wysokiego standardu bezpieczeństwa.

Pytanie 34

Jakie skutki dla instalacji mieszkalnej przyniesie zamiana przewodu YDY 3x1,5 mm2 na YADY 3 x 1,5 mm2?

A. Rezystancja przewodów ulegnie zmniejszeniu
B. Przewodność elektryczna przewodów ulegnie zwiększeniu
C. Wytrzymałość elektryczna izolacji wzrośnie
D. Obciążalność długotrwała instalacji zostanie zmniejszona

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wybór przewodu YADY 3x1,5 mm2 zamiast YDY 3x1,5 mm2 to nie byle co. Wiesz, te przewody mają różne właściwości, zwłaszcza jeśli chodzi o to, jak długo mogą wytrzymać przy dużym obciążeniu. Przewód YADY ma inną izolację, która po prostu nie znosi wysokich temperatur i uszkodzeń mechanicznych tak dobrze, jak YDY. Jak przewód YADY się nagrzeje, to może mieć problem z przenoszeniem prądu bezpiecznie. Takie sprawy reguluje norma PN-IEC 60364 i dobrze mieć to na uwadze przy projektowaniu. Inżynierowie i wykonawcy muszą więc dobrze przemyśleć, co wybierają, bo niewłaściwy przewód to ryzyko przegrzania i awarii, a to przecież może być niebezpieczne. Warto zainwestować w dobry wybór, żeby uniknąć kłopotów.

Pytanie 35

Podczas wymiany uszkodzonego przewodu PEN w instalacji o napięciu do 1 kV, która jest trwale zamontowana, należy pamiętać, aby nowy przewód miał przekrój co najmniej

A. 10 mm2 Cu lub 16 mm2 Al
B. 16 mm2 Cu lub 16 mm2 Al
C. 16 mm2 Cu lub 10 mm2 Al
D. 10 mm2 Cu lub 10 mm2 Al

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wybór odpowiedzi 10 mm2 Cu lub 16 mm2 Al jako minimalnego przekroju przewodu PEN w instalacji do 1 kV jest zgodny z obowiązującymi standardami oraz najlepszymi praktykami w zakresie instalacji elektrycznych. Przewód PEN, który łączy funkcje przewodu neutralnego i ochronnego, odgrywa kluczową rolę w zapewnieniu bezpieczeństwa instalacji. W przypadku zastosowania przewodów miedzianych, minimalny przekrój 10 mm2 jest zgodny z normą PN-IEC 60364, która określa wymagania dla instalacji elektrycznych. Przewody aluminiowe muszą mieć większy przekrój, 16 mm2, ze względu na niższą przewodność elektryczną w porównaniu do miedzi. W praktyce, zastosowanie przewodu o odpowiednim przekroju zapewnia właściwe odprowadzanie prądu oraz minimalizuje ryzyko przegrzewania się przewodów, co z kolei zmniejsza ryzyko wystąpienia awarii instalacji. Dodatkowo, dobranie odpowiedniego przekroju przewodów wpływa na efektywność energetyczną instalacji oraz na jej długowieczność.

Pytanie 36

Zmierzone parametry rezystancji cewki stycznika umiejscowionej w obwodzie sterującym silnikiem wynoszą 0 Ω. Na tej podstawie można wnioskować, że

A. cewka stycznika działa prawidłowo
B. przewód fazowy jest odłączony
C. przewód neutralny jest odłączony
D. cewka stycznika jest uszkodzona

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Pomiar rezystancji cewki stycznika wynoszący 0 Ω wskazuje na zwarcie w obwodzie, co sugeruje, że cewka stycznika jest uszkodzona. W normalnych warunkach cewka powinna mieć określoną rezystancję, zazwyczaj w zakresie od kilku omów do kilkuset omów, w zależności od specyfikacji. Cewki styczników są projektowane tak, aby w momencie włączenia generować pole magnetyczne, które uruchamia mechanizm zamykający styki. Zwarcie może być skutkiem zniszczenia izolacji lub uszkodzenia uzwojenia. Przykładem zastosowania tej wiedzy jest diagnostyka w układach sterowania silnikami, gdzie uszkodzone cewki mogą prowadzić do awarii całego systemu. W takich sytuacjach zgodnie z najlepszymi praktykami należy wymieniać uszkodzone komponenty, aby zapewnić niezawodność i bezpieczeństwo operacji, a także unikać potencjalnych zagrożeń elektrycznych. Zrozumienie tego zjawiska jest kluczowe dla techników i inżynierów pracujących w dziedzinie automatyki i elektrotechniki.

Pytanie 37

Jakie grupy połączeń transformatorów trójfazowych działających w konfiguracji trójkąt-gwiazda są rekomendowane przez PN do zastosowań praktycznych?

A. Dy5 i Dy11
B. Dy7 i Dy11
C. Dy3 i Dy9
D. Dy1 i Dy5

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź Dy5 i Dy11 jest prawidłowa, ponieważ te konfiguracje transformatorów trójfazowych są rekomendowane w Polskich Normach (PN) ze względu na swoje korzystne właściwości eksploatacyjne. Konfiguracja Dy5, czyli połączenie w gwiazdę z przesunięciem fazowym o 180°, jest często stosowana w systemach zasilających, ponieważ minimalizuje straty mocy i pozwala na stabilne zasilanie odbiorników w układzie nieuzwojonym. Z kolei Dy11, czyli połączenie w trójkąt z przesunięciem fazowym o 30°, jest powszechnie wykorzystywane w aplikacjach wymagających dużych wydajności oraz dobrej jakości energii. Oba połączenia zapewniają optymalne parametry pracy transformatorów, co przekłada się na ich długowieczność i niezawodność. Zastosowanie tych konfiguracji jest szczególnie ważne w przemysłowych systemach zasilających oraz w energetyce, gdzie skutkuje to obniżeniem harmonik prądu i poprawą jakości energii. Dlatego ich wybór jest zgodny z najlepszymi praktykami branżowymi oraz normami, co czyni je zalecanymi w projektach elektrycznych.

Pytanie 38

Do zabezpieczenia nadprądowego których z wymienionych urządzeń przeznaczony jest element przedstawiony na ilustracji?

Ilustracja do pytania
A. Prostowników półprzewodnikowych.
B. Zasilaczy komputerowych.
C. Multimetrów przenośnych.
D. Paneli fotowoltaicznych.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź jest poprawna, ponieważ element przedstawiony na ilustracji to bezpiecznik przeznaczony do stosowania w systemach zasilania z napięciem stałym (DC) oraz prądem do 350A. Bezpieczniki tego typu są kluczowym komponentem w instalacjach fotowoltaicznych, gdzie wymagane są zabezpieczenia zdolne do pracy z wysokimi napięciami stałymi, często sięgającymi 1500V. W systemach fotowoltaicznych, ochrona przed przeciążeniem i zwarciami jest niezbędna, aby zapewnić bezpieczeństwo zarówno sprzętu, jak i użytkowników. Stosowanie odpowiednich zabezpieczeń nadprądowych jest zgodne z normami branżowymi, takimi jak IEC 60947-3, które regulują kwestie dotyczące urządzeń rozdzielczych. W praktyce, zastosowanie bezpieczników w systemach PV pozwala na minimalizację ryzyka uszkodzeń, co jest niezwykle ważne w kontekście inwestycji w odnawialne źródła energii. Dobrą praktyką jest regularne sprawdzanie i konserwacja zabezpieczeń, co przyczynia się do długowieczności systemu.

Pytanie 39

Który z podanych łączników chroni przewody w systemach elektrycznych przed skutkami zwarć?

A. Stycznik
B. Przekaźnik termiczny
C. Wyłącznik nadprądowy
D. Odłącznik

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wyłącznik nadprądowy jest kluczowym elementem zabezpieczeń w instalacjach elektrycznych, którego głównym zadaniem jest ochrona przewodów przed skutkami zwarć oraz przeciążeń. Działa na zasadzie automatycznego przerwania obwodu, gdy prąd przekroczy określoną wartość nominalną. Dzięki temu minimalizuje ryzyko uszkodzenia instalacji oraz pożaru. W praktyce, wyłączniki nadprądowe są stosowane w różnych typach instalacji, od domowych po przemysłowe. Przykładem mogą być obwody zasilające urządzenia, które mogą generować nagłe skoki prądu, takie jak silniki elektryczne. Zgodnie z normą PN-EN 60898-1, wyłączniki nadprądowe powinny być dobierane w zależności od charakterystyki obciążenia oraz rodzaju zabezpieczanego obwodu, co zapewnia ich skuteczność i niezawodność w działaniu. Warto również wspomnieć, że stosowanie wyłączników nadprądowych jest częścią dobrych praktyk w zakresie projektowania instalacji elektrycznych, co znacząco przyczynia się do bezpieczeństwa użytkowania.

Pytanie 40

Na podstawie wyników pomiarów zamieszczonych w przedstawionej tabeli określ uszkodzenie występujące w instalacji.

Pomiar napięcia między przewodem PE i drugim punktem instalacji
Drugi punkt pomiaru:Przewód fazowy LPrzewód neutralny NMetalowa rura COMetalowa rura gazowaMetalowa wanna łazienkowa
232 V0 V51 V49 V0 V
Wynik:232 V0 V51 V49 V0 V
A. Przebicie izolacji przewodu fazowego do metalowych rur.
B. Uszkodzone połączenia wyrównawcze miejscowe.
C. Uszkodzona izolacja przewodu neutralnego w pobliżu wanny.
D. Zwarcie między przewodem neutralnym i fazowym.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Poprawna odpowiedź wskazuje na uszkodzone połączenia wyrównawcze miejscowe, co jest zgodne z wynikami pomiarów. W przypadku, gdy napięcie na metalowych elementach instalacji, takich jak rury, wynosi 51 V i 49 V w stosunku do przewodu ochronnego PE, sugeruje to, że połączenia wyrównawcze nie funkcjonują prawidłowo. W dobrze zaprojektowanej instalacji elektrycznej, wszystkie metalowe elementy powinny być podłączone do systemu uziemiającego, co pozwala na równomierne rozłożenie potencjału elektrycznego. Uszkodzenie połączeń wyrównawczych może prowadzić do niebezpiecznych sytuacji, takich jak porażenie prądem elektrycznym, a także stanowi naruszenie norm bezpieczeństwa określonych w Polskich Normach (PN) oraz Dyrektywie Niskonapięciowej. W praktyce, regularne kontrole i pomiary instalacji elektrycznych są kluczowe, aby zapewnić bezpieczeństwo użytkowników oraz zgodność z obowiązującymi normami. Wykonana analiza wskazuje na konieczność przeprowadzania napraw w celu przywrócenia prawidłowego działania systemu ochrony przeciwporażeniowej.