Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektryk
  • Kwalifikacja: ELE.05 - Eksploatacja maszyn, urządzeń i instalacji elektrycznych
  • Data rozpoczęcia: 12 listopada 2025 07:21
  • Data zakończenia: 12 listopada 2025 07:40

Egzamin zdany!

Wynik: 28/40 punktów (70,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Jakim rodzajem wyłączników nadprądowych powinien być zabezpieczony obwód zasilania silnika klatkowego trójfazowego, którego parametry znamionowe to: PN = 11 kW, UN = 400 V, cos φ = 0,73, η = 80%?

A. S303 C25
B. S303 C40
C. S303 C32
D. S303 C20
Wybór niewłaściwego wyłącznika nadprądowego dla obwodu zasilania silnika klatkowego może wynikać z niepełnego zrozumienia obliczeń prądowych lub zasad doboru zabezpieczeń. Na przykład, odpowiedź S303 C25 może wydawać się atrakcyjna z uwagi na to, że wartość 25 A jest zbliżona do obliczonego prądu roboczego; jednak to podejście ignoruje istotny aspekt związany z ochroną przed przeciążeniem. W praktyce, wyłącznik nadprądowy powinien mieć wartość znamionową co najmniej 125% prądu roboczego silnika, aby skutecznie zareagować na chwilowe przeciążenia, które są normalne w pracy silników indukcyjnych. Z kolei wybór S303 C20 obniża margines bezpieczeństwa, co może prowadzić do niepożądanych wyłączeń w przypadku większych obciążeń. Odpowiedź S303 C40 jest również niewłaściwa, ponieważ wyłącznik ten ma zbyt dużą wartość znamionową, co może prowadzić do braku ochrony przed przeciążeniem, a także zwiększa ryzyko uszkodzenia silnika w przypadku zwarcia. Kluczowe przy doborze wyłącznika jest więc zrozumienie nie tylko aktualnych parametrów obciążenia, ale także zachowań dynamicznych urządzeń elektrycznych, co składa się na prawidłowe zabezpieczenie instalacji elektrycznej zgodnie z normami i najlepszymi praktykami branżowymi.

Pytanie 2

Jaki jest główny powód stosowania bezpieczników w instalacjach elektrycznych?

A. Ochrona przed przeciążeniem i zwarciem
B. Redukcja hałasu w instalacji
C. Poprawa jakości dostarczanej energii
D. Zmniejszenie wartości napięcia w obwodach
Bezpieczniki to kluczowe elementy ochronne stosowane w instalacjach elektrycznych, mające na celu zapewnienie bezpieczeństwa całego systemu oraz osób z niego korzystających. Głównym powodem stosowania bezpieczników jest ochrona przed przeciążeniem i zwarciem. W przypadku przeciążenia lub zwarcia bezpiecznik przerywa przepływ prądu, co zapobiega uszkodzeniom przewodów, urządzeń i potencjalnie niebezpiecznym sytuacjom, takim jak pożary. Działa to na zasadzie automatycznego wyłączenia obwodu, kiedy przepływ prądu przekracza określoną wartość dopuszczalną. To nie tylko chroni instalację, ale również minimalizuje ryzyko dla użytkowników. Dzięki temu, bezpieczniki stanowią pierwszą linię obrony w systemach elektrycznych. Wiele standardów branżowych, takich jak normy PN-EN, podkreśla konieczność stosowania bezpieczników jako podstawowego elementu ochrony w instalacjach. W praktyce, stosowanie bezpieczników jest nie tylko wymogiem prawnym, ale również dobrą praktyką inżynierską zapewniającą długotrwałą i bezawaryjną pracę urządzeń elektrycznych.

Pytanie 3

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 4

Jaka jest minimalna wymagana wartość natężenia oświetlenia dla powierzchni blatów ławek w klasie?

A. 400 lx
B. 200 lx
C. 500 lx
D. 300 lx
Inne wartości natężenia oświetlenia, takie jak 200 lx, 400 lx czy 500 lx, nie spełniają standardowych wymagań dla sal lekcyjnych. Wybór wartości 200 lx jest zdecydowanie niewystarczający, ponieważ nie zapewnia odpowiedniego oświetlenia do wykonywania zadań szkolnych. Tak niski poziom natężenia może prowadzić do zmęczenia wzroku i obniżenia efektywności nauki. W przypadku wartości 400 lx i 500 lx, chociaż są one teoretycznie wyższe, mogą przyczynić się do problemów związanych z olśnieniem oraz dyskomfortem wizualnym w dłuższej perspektywie. W praktyce, oświetlenie w klasach powinno być dostosowane do potrzeb uczniów oraz rodzaju wykonywanych zadań, co oznacza, że wartość 300 lx jest kompromisem między wystarczającym oświetleniem a komfortem użytkowania. Często zdarza się, że w wyniku błędnej interpretacji standardów, osoby projektujące oświetlenie w szkołach mogą postawić zbyt wysokie wartości, co nie tylko nie przyniesie korzyści, ale wręcz może zaszkodzić zdrowiu uczniów. W związku z tym kluczowe jest, aby projektanci i decyzjonariusze w edukacji stosowali się do uznanych norm, by stworzyć bezpieczne i efektywne środowisko nauki.

Pytanie 5

Jak często powinny być przeprowadzane okresowe kontrole użytkowe instalacji elektrycznej w budynku jednorodzinnym, minimalnie raz w czasie?

A. 4 lata
B. 5 lat
C. 8 lat
D. 6 lat
Okresowe badania eksploatacyjne sieci elektrycznej w domach jednorodzinnych są kluczowym elementem zapewnienia ich bezpieczeństwa i sprawności. Zgodnie z obowiązującymi normami, szczególnie z rozporządzeniem Ministra Infrastruktury oraz normami PN-IEC 60364 i PN-EN 61010, przeglądy te powinny być przeprowadzane co 5 lat. W praktyce, regularne kontrole umożliwiają wczesne wykrywanie potencjalnych usterek, takich jak uszkodzenia izolacji, niewłaściwe połączenia czy degradacja elementów systemu elektrycznego. Na przykład, w przypadku starych instalacji, działanie na granicy normy może prowadzić do przegrzewania się przewodów, co stwarza ryzyko pożaru. Dlatego ważne jest, aby użytkownicy domów jednorodzinnych byli świadomi tego obowiązku i zapewniali odpowiednie przeglądy w ustalonych interwałach. Dodatkowo, w miarę starzejących się instalacji, może być konieczne zwiększenie częstotliwości badań, co podkreśla znaczenie odpowiedzialnego zarządzania systemem elektrycznym w domu.

Pytanie 6

Dokumentacja użytkowania instalacji elektrycznych chronionych wyłącznikami nadmiarowoprądowymi nie jest zobowiązana do zawierania

A. spisu terminów oraz zakresów testów i pomiarów kontrolnych
B. opisu doboru urządzeń zabezpieczających
C. zasad bezpieczeństwa dotyczących wykonywania prac eksploatacyjnych
D. charakterystyki technicznej instalacji
Odpowiedzi, które wskazują na wykaz terminów oraz zakresów prób i pomiarów kontrolnych, zasady bezpieczeństwa przy wykonywaniu prac oraz charakterystykę instalacji, są błędne. Wydaje mi się, że wszystkie te elementy są super ważne w instrukcjach eksploatacji instalacji elektrycznych. Wykaz terminów i prób mówi nam, jakie testy zrobić i jak często – to kluczowe dla bezpieczeństwa instalacji. Zasady bezpieczeństwa przy pracach eksploatacyjnych to coś, co wszyscy powinni znać, żeby unikać wypadków. A charakterystyka techniczna daje szczegóły na temat tego, jak działają używane urządzenia, bez tego trudno zrozumieć, jak instalacja ma działać. Z perspektywy przepisów, każdy z tych elementów jest mega ważny - wpływa to nie tylko na bezpieczeństwo, ale i na to, jak sprawnie działa cała instalacja. Nie doceniając ich znaczenia, ryzykujemy, że będziemy źle zarządzać instalacjami elektrycznymi, a to po prostu mija się z praktykami w branży.

Pytanie 7

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 8

Jakie z wymienionych uszkodzeń można zidentyfikować podczas przeglądów instalacji?

A. Brak ciągłości przewodu neutralnego
B. Zbyt wysoka rezystancja przewodu uziemiającego
C. Brak ciągłości przewodu ochronnego
D. Pogorszenie stanu mechanicznego złącz przewodów
Prawidłowa odpowiedź to pogorszenie się stanu mechanicznego połączeń przewodów, ponieważ jest to problem, który można łatwo zauważyć podczas oględzin instalacji. Oględziny polegają na wizualnej inspekcji elementów instalacji, co pozwala na identyfikację widocznych uszkodzeń, takich jak korozja, luzne złącza czy pęknięcia. Te defekty mogą prowadzić do zwiększonego oporu elektrycznego, co z kolei wpływa na wydajność i bezpieczeństwo całego systemu. Zgodnie z normą PN-IEC 60364, regularne przeglądy instalacji elektrycznych są kluczowe dla zapewnienia ich bezpieczeństwa i sprawności. Przykładem praktycznym może być inspekcja połączeń w rozdzielnicach, gdzie luźne przewody mogą powodować przegrzewanie się i ryzyko pożaru. Dlatego identyfikacja pogorszenia stanu mechanicznego połączeń jest niezbędna w celu zapobiegania awariom i zapewnienia ciągłości działania instalacji.

Pytanie 9

Jakie urządzenie powinno zostać użyte do zasilenia obwodu SELV z sieci 230 V, 50 Hz?

A. Przekładnik
B. Dzielnik napięcia
C. Autotransformator
D. Transformator bezpieczeństwa
Wybór niewłaściwego urządzenia do zasilania obwodu SELV z sieci 230 V, 50 Hz może prowadzić do poważnych konsekwencji w zakresie bezpieczeństwa. Dzielnik napięcia, choć teoretycznie mógłby obniżyć napięcie, nie zapewnia wymaganej izolacji galwanicznej, co czyni go nieodpowiednim dla aplikacji SELV. Tego rodzaju układ jest bardziej narażony na błędy w obliczeniach lub zmiany parametrów, co może prowadzić do przekroczenia bezpiecznego poziomu napięcia. Przekładnik, z kolei, jest urządzeniem służącym głównie do pomiarów prądu lub napięcia i również nie jest przeznaczony do zasilania obwodów niskonapięciowych. Użycie autotransformatora, który nie zapewnia pełnej izolacji, również stanowi zagrożenie, ponieważ w przypadku awarii może doprowadzić do porażenia prądem. Wszystkie te urządzenia mają swoje zastosowanie w różnych dziedzinach, ale żadne z nich nie spełniają kryteriów wymaganych dla obwodów SELV. W kontekście bezpieczeństwa elektrycznego kluczowe jest stosowanie odpowiednich rozwiązań, które nie tylko spełniają normy, ale również chronią użytkowników przed ryzykiem, co czyni transformator bezpieczeństwa jedynym słusznym wyborem.

Pytanie 10

Dodatkowy przewód ochronny w instalacji wykonanej przewodem LYd 750 4x2,5 zamocowanej na uchwytach na ścianie piwnicy powinien być oznaczony symbolem

A. YDY 450/750 1x2,5
B. Dyd 750 1x4
C. LYc 300/500 1x6
D. ADY 750 1x2,5
Odpowiedź Dyd 750 1x4 jest poprawna, ponieważ oznaczenie to odnosi się do przewodu ochronnego, który jest zgodny z wymaganiami instalacji elektrycznych w budynkach. Zastosowanie przewodu Dyd 750 1x4 w instalacji LYd 750 4x2,5 na uchwytach na powierzchni ściany piwnicy zapewnia odpowiednią ochronę przed zagrożeniami elektrycznymi, takimi jak zwarcia czy przepięcia. Przewody ochronne muszą być odpowiednio dobrane do warunków pracy oraz obciążenia, a Dyd 750 1x4 spełnia te normy, zapewniając odporność na wysokie napięcia do 750V. W praktyce, stosowanie przewodów z oznaczeniem Dyd w instalacjach podnosi poziom bezpieczeństwa, ponieważ są one często używane do uziemienia oraz ochrony przed porażeniem elektrycznym. Dodatkowo, zgodnie z normami PN-IEC 60364, właściwy dobór przewodów w instalacjach elektrycznych jest kluczowy dla ich prawidłowego funkcjonowania i bezpieczeństwa użytkowników.

Pytanie 11

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 12

Symbol S1 na etykiecie znamionowej silnika trójfazowego wskazuje na typ pracy tego silnika

A. nieokresowej
B. ciągłej
C. przerywanej
D. dorywczej
Oznaczenie S1 na tabliczce znamionowej silnika trójfazowego mówi nam, że ten silnik jest stworzony do pracy ciągłej. To znaczy, że powinien działać bez przerwy i w pełnym obciążeniu przez dłuższy czas. Takie silniki są projektowane według normy IEC 60034-1, która określa różne klasy i tryby pracy silników elektrycznych. Silniki oznaczone jako S1 są często używane w różnych branżach przemysłowych, jak pompy, wentylatory czy kompresory. Tutaj stała, niezawodna praca jest bardzo ważna. Na przykład, w systemach HVAC wentylatory muszą działać non-stop, żeby utrzymać dobrą cyrkulację powietrza. Silniki S1 to także gwarancja dłuższej żywotności i lepszej efektywności energetycznej, co jak najbardziej wpisuje się w dobre praktyki inżynieryjne i normy ochrony środowiska. Co więcej, zazwyczaj są objęte gwarancją, co jeszcze bardziej podkreśla ich niezawodność w zastosowaniach wymagających ciągłej pracy.

Pytanie 13

Jednofazowa grzałka o mocy 4 kW jest zasilana przewodem o długości 10 m i przekroju 1,5 mm2. W jaki sposób zmienią się straty mocy w przewodzie zasilającym, gdy jego przekrój wyniesie 2,5 mm2?

A. Zmniejszą się o 100%
B. Zwiększą się o 40%
C. Zmniejszą się o 40%
D. Zwiększą się o 100%
Przy zwiększeniu przekroju przewodu z 1,5 mm² do 2,5 mm² straty mocy w przewodzie ulegają redukcji o 40%. Straty mocy w przewodach elektrycznych są funkcją oporu, który z kolei zależy od przekroju przewodu, długości oraz materiału, z którego jest wykonany. Opór przewodu można obliczyć ze wzoru: R = ρ * (L / A), gdzie ρ to oporność właściwa materiału, L to długość przewodu, a A to jego przekrój. Zwiększenie powierzchni przekroju przewodu zmniejsza opór, co prowadzi do mniejszych strat mocy na skutek efektu Joule'a, gdzie moc stratna P = I² * R. Przykładowo, w instalacjach przemysłowych, gdzie wykorzystywane są długie przewody zasilające, zastosowanie większego przekroju przewodu nie tylko poprawia efektywność energetyczną, ale także zmniejsza ryzyko przegrzewania się przewodów oraz awarii. Standardy takie jak PN-IEC 60364 zalecają stosowanie odpowiednich przekrojów przewodów, aby zminimalizować straty energii oraz zwiększyć bezpieczeństwo instalacji elektrycznych.

Pytanie 14

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 15

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 16

Który z poniższych elementów nie jest częścią transformatora energetycznego?

A. Silnik synchroniczny
B. Uchwyty do podłączenia przewodów
C. Izolatory ceramiczne
D. Rdzeń magnetyczny
Transformator energetyczny jest urządzeniem, które służy do zamiany napięcia elektrycznego przy pomocy zjawiska indukcji elektromagnetycznej. Kluczowymi częściami transformatora są rdzeń magnetyczny, uzwojenia oraz izolacja. Rdzeń magnetyczny wykonany z cienkich blach stalowych umożliwia efektywne przenoszenie strumienia magnetycznego. Uzwojenia, które są nawinięte na rdzeń, są wykonane z przewodników miedzianych lub aluminiowych i służą do przenoszenia prądu. Izolacja natomiast zabezpiecza przed zwarciami i przepięciami. Silnik synchroniczny, który jest urządzeniem przetwarzającym energię elektryczną na mechaniczną, nie jest częścią transformatora. Transformator nie posiada elementów ruchomych ani nie generuje momentu obrotowego, co jest charakterystyczne dla silników. Wiedza o różnicach między tymi urządzeniami jest kluczowa dla zrozumienia ich działania i zastosowania w przemyśle energetycznym. Transformator jako urządzenie statyczne jest bardziej efektywny w aplikacjach wymagających zmiany napięcia, podczas gdy silniki synchroniczne są używane do napędzania maszyn.

Pytanie 17

Jaki przyrząd jest wykorzystywany do pomiarów rezystancji izolacyjnej kabli elektrycznych?

A. Megaomomierz
B. Waromierz
C. Pirometr
D. Anemometr
Megaomomierz to naprawdę ważne urządzenie, które pomaga mierzyć rezystancję izolacji, zwłaszcza w elektryce. Jego głównym zadaniem jest sprawdzanie, w jakim stanie są przewody, co jest mega istotne dla bezpieczeństwa naszych instalacji. Zazwyczaj działa przy napięciach od 250 do 5000 V, co daje nam pewność, że jakość izolacji jest na odpowiednim poziomie. Z mojego doświadczenia, regularne pomiary rezystancji izolacji są kluczowe. Powinno się to robić według norm, jak PN-EN 61557, bo to może pomóc w wykryciu problemów, takich jak zwarcia czy upływy prądu. Przecież nikt nie chce mieć nieprzyjemności związanych z awariami czy zagrożeniem dla bezpieczeństwa. Dobrze jest więc pamiętać o konserwacji i systematycznych kontrolach, bo to pozwala uniknąć drogich napraw i utrzymać instalację elektryczną w dobrym stanie.

Pytanie 18

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 19

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 20

Jakie z wymienionych uszkodzeń można zidentyfikować podczas inspekcji instalacji elektrycznej?

A. Przerwanie pionowego uziomu w ziemi
B. Zbyt długi czas reakcji wyłącznika różnicowoprądowego
C. Pogorszenie stanu mechanicznego połączeń przewodów
D. Obniżenie rezystancji izolacji przewodów
W kontekście oględzin instalacji elektrycznej, zmniejszenie rezystancji izolacji przewodów, zbyt długi czas działania wyłącznika różnicowoprądowego oraz przerwanie uziomu pionowego w ziemi stanowią koncepcje, które mogą być mylące w kontekście ich lokalizacji podczas inspekcji. Zmniejszenie rezystancji izolacji przewodów jest krytycznym parametrem w ocenie stanu technicznego instalacji, jednak podczas wizualnej weryfikacji nie jest możliwe bezpośrednie zidentyfikowanie tego problemu. Wymaga to odpowiednich pomiarów przy użyciu specjalistycznych narzędzi, takich jak megger. Z kolei zbyt długi czas działania wyłącznika różnicowoprądowego może świadczyć o nieprawidłowościach w instalacji, ale również wymaga szczegółowych testów diagnostycznych, aby określić przyczynę opóźnienia. Ostatecznie przerwanie uziomu pionowego w ziemi, mimo że istotne dla bezpieczeństwa, również nie jest bezpośrednio zauważalne podczas podstawowej wizualizacji. Podczas inspekcji należy kierować się zasadą, że wiele ukrytych usterek wymaga użycia specjalistycznych narzędzi i technik, co wzmacnia potrzebę kompetentnych przeglądów i pomiarów, aby właściwie ocenić stan instalacji elektrycznej oraz zapewnić jej bezpieczeństwo i funkcjonalność.

Pytanie 21

Jaka jest wartość skuteczna napięcia przemiennego dotykowego, która może być utrzymywana w standardowych warunkach otoczenia, przy rezystancji ciała ludzkiego wynoszącej około 1 kΩ?

A. 25 V
B. 12 V
C. 50 V
D. 60 V
Wartość skuteczna przemiennego napięcia dotykowego, dopuszczalnego długotrwale w warunkach środowiskowych normalnych, wynosi 50 V. Ta wartość została określona w normach międzynarodowych, takich jak IEC 60479, które badają wpływ prądu elektrycznego na organizm ludzki. W przypadku, gdy rezystancja ciała ludzkiego wynosi około 1 kΩ, napięcie 50 V może prowadzić do wyczuwalnego, ale niegroźnego odczucia dla większości ludzi. W praktyce oznacza to, że w instalacjach elektrycznych, które mogą być narażone na przypadkowy kontakt z człowiekiem, stosowane są zabezpieczenia, aby nie przekraczać tej wartości napięcia, co ma kluczowe znaczenie dla bezpieczeństwa. W zastosowaniach takich jak instalacje elektryczne w miejscach publicznych oraz w obiektach przemysłowych, zachowanie limitu 50 V jest fundamentalnym aspektem projektowania systemów ochrony przeciwporażeniowej. Warto również zauważyć, że różne środowiska mogą wpływać na rezystancję ciała ludzkiego, dlatego projektanci systemów elektrycznych muszą uwzględniać takie czynniki jak wilgotność czy kontakt z różnymi materiałami, aby zawsze stosować się do obowiązujących norm i najlepszych praktyk.

Pytanie 22

Podczas wymiany gniazda wtyczkowego w instalacji domowej wykonanej w rurkach pod tynkiem złamał się jeden z przewodów aluminiowych, przez co stał się za krótki. Jak powinno się postąpić w tej sytuacji przy wymianie gniazda?

A. Przed zamontowaniem gniazda usunąć uszkodzony przewód i wciągnąć nowy miedziany
B. Skręcić złamany przewód z kawałkiem przewodu miedzianego i zamontować gniazdo
C. Przed zamontowaniem gniazda wymienić przewody na miedziane, wciągając nowe razem z usuwaniem starych
D. Przylutować brakującą część przewodu aluminiowego i zamontować gniazdo
Wymiana uszkodzonych przewodów na miedziane przed założeniem gniazda jest najlepszym rozwiązaniem ze względu na właściwości miedzi, takie jak lepsza przewodność elektryczna, odporność na korozję oraz trwałość. Miedź jest materiałem o znacznie wyższej jakości w porównaniu do aluminium, co wpływa na bezpieczeństwo i efektywność instalacji elektrycznej. W przypadku uszkodzenia przewodu aluminiowego, jego wymiana na miedziany jest kluczowa, aby uniknąć problemów z połączeniami oraz ryzyka awarii. Przykładem praktycznym jest sytuacja, kiedy podczas remontu mieszkania stwierdzono, że instalacja elektryczna była przestarzała. Wymiana przewodów na miedziane, zgodnie z normą PN-IEC 60364, zapewniła nie tylko lepsze parametry użytkowe, ale również zgodność z aktualnymi przepisami bezpieczeństwa. Dobrą praktyką jest również stosowanie odpowiednich złączek i akcesoriów, które są przystosowane do miedzi, co dodatkowo zwiększa bezpieczeństwo oraz trwałość całej instalacji. Ważne jest, aby każda wymiana była przeprowadzana przez wykwalifikowanego elektryka, który zna lokalne przepisy oraz standardy wykonania instalacji.

Pytanie 23

Obniżenie częstotliwości napięcia zasilającego w trakcie działania silnika indukcyjnego trójfazowego spowoduje

A. wzrost prędkości obrotowej silnika
B. spadek prędkości obrotowej silnika
C. unieruchomienie silnika
D. utrzymanie prędkości obrotowej silnika na niezmienionym poziomie
Zadanie dotyczy trójfazowego silnika indukcyjnego, którego prędkość obrotowa jest ściśle związana z częstotliwością napięcia zasilającego. Zgodnie z zasadą działania silników indukcyjnych, prędkość obrotowa (n) jest proporcjonalna do częstotliwości zasilania (f) i liczby par biegunów (p), co można zapisać równaniem: n = (120 * f) / p. Zmniejszenie częstotliwości prowadzi do proporcjonalnego zmniejszenia prędkości obrotowej silnika. W praktycznych zastosowaniach, takich jak regulacja prędkości obrotowej w napędach, zmieniając częstotliwość napięcia, możemy w kontrolowany sposób dostosować prędkość silnika do wymagań procesu technologicznego, co pozwala na optymalizację zużycia energii oraz poprawę wydajności systemu. Warto również wspomnieć o zastosowaniu falowników, które umożliwiają precyzyjne sterowanie częstotliwością zasilania, co jest standardem w nowoczesnych instalacjach przemysłowych, aby dostosować prędkość do zmieniających się warunków pracy.

Pytanie 24

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 25

Jak często należy przeprowadzać oględziny domowej instalacji elektrycznej?

A. 24 miesiące
B. 12 miesięcy
C. 35 miesięcy
D. 60 miesięcy
Oględziny domowej instalacji elektrycznej powinno się robić co 60 miesięcy. To, co mówią polskie normy, jak PN-IEC 60364, jest dość jasne. Regularne przeglądy są mega ważne, bo zapewniają bezpieczeństwo użytkowników i sprawiają, że instalacja działa bez problemów. W ciągu tych pięciu lat warto, żeby właściciele domów robili dokładne inspekcje. To znaczy, że powinno się nie tylko patrzeć na to, jak wygląda instalacja, ale też zmierzyć najważniejsze parametry elektryczne. Można na przykład sprawdzić przewody, gniazdka, wyłączniki, a także zobaczyć, czy zabezpieczenia działają, jak powinny. Z własnego doświadczenia wiem, że regularne przeglądy mogą zapobiegają awariom i pomagają zaoszczędzić na rachunkach za prąd, co w obecnych czasach ma znaczenie. Ciekawe, że przepisy mogą się różnić, zwłaszcza w budynkach publicznych, gdzie te zasady są często bardziej restrykcyjne.

Pytanie 26

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 27

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 28

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 29

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 30

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 31

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 32

Jaką wkładkę topikową należy zastosować zamiast przepalonej wkładki oznaczonej WTS 10A, aby nie zagrażać działaniu ochrony przeciwporażeniowej w przypadku uszkodzenia?

A. WTZ o prądzie 10 A
B. WTS o wyższym prądzie znamionowym
C. WTS o prądzie 10 A
D. WTZ o wyższym prądzie znamionowym
Wybór wkładki WTZ o prądzie 10 A, wkładki WTS o większym prądzie znamionowym lub WTZ o większym prądzie znamionowym wprowadza ryzyko nieprawidłowego działania układów elektrycznych oraz naruszenia zasad bezpieczeństwa. Wkładki WTZ to wkładki zwłoczne, które mają na celu ochronę przed przeciążeniem, ale ich zastosowanie w miejsce wkładki szybkie WTS w obwodach zabezpieczających różnicowo jest niewłaściwe. Użycie wkładki zwłocznej w obwodzie, który wymaga natychmiastowej reakcji w przypadku zwarcia, może prowadzić do opóźnienia w działaniu zabezpieczeń, co naraża użytkowników na ryzyko porażenia prądem. W przypadku wyboru wkładki o większym prądzie znamionowym, może dojść do sytuacji, w której obwód nie zostanie odpowiednio zabezpieczony przed przeciążeniem, co może prowadzić do uszkodzenia instalacji, a nawet do pożaru. Wyższy prąd znamionowy nie zapewnia większego bezpieczeństwa; wręcz przeciwnie, stwarza zagrożenie, ponieważ może prowadzić do zbyt późnej reakcji zabezpieczeń na zwarcie. Dlatego niezwykle ważne jest przestrzeganie standardów projektowania instalacji elektrycznych, takich jak PN-EN 60947-3, które jasno określają wymagania dotyczące doboru wkładek zabezpieczających w zależności od rodzaju zastosowania oraz obciążenia. Niezrozumienie tych zasad może prowadzić do poważnych konsekwencji zarówno w aspekcie bezpieczeństwa, jak i funkcjonalności instalacji elektrycznych.

Pytanie 33

Inspekcje instalacji u odbiorców energii elektrycznej powinny być realizowane nie rzadziej niż co

A. miesiąc
B. rok
C. 3 lata
D. 5 lat
Odpowiedź "5 lat" jest zgodna z wymaganiami określonymi w polskich przepisach dotyczących eksploatacji i utrzymania instalacji elektrycznych. Zgodnie z normą PN-IEC 60364 oraz wytycznymi URE (Urząd Regulacji Energetyki), okresowe oględziny instalacji u odbiorców mocy powinny być przeprowadzane nie rzadziej niż co pięć lat. Taki cykl przeglądów ma na celu zapewnienie bezpieczeństwa użytkowników, identyfikację potencjalnych usterek oraz utrzymanie instalacji w odpowiednim stanie technicznym. Przykładowo, regularne przeglądy mogą pomóc w wykryciu uszkodzeń izolacji kabli czy awarii zabezpieczeń, co w dłuższej perspektywie może zapobiec poważniejszym awariom oraz obniżyć ryzyko pożarów. W praktyce, wiele firm stosuje systemy zarządzania utrzymaniem ruchu, w których terminy przeglądów są udokumentowane i monitorowane, co sprzyja lepszemu zarządzaniu bezpieczeństwem energetycznym. Ostatnie badania pokazują, że zaniechanie regularnych przeglądów może prowadzić do wzrostu liczby awarii oraz zwiększenia kosztów napraw, dlatego przestrzeganie pięcioletniego cyklu przeglądów jest kluczowe.

Pytanie 34

Jakie będą konsekwencje uszkodzenia izolacji podstawowej silnika indukcyjnego, gdy przewód PE zostanie odłączony od jego obudowy?

A. wzrost prędkości obrotowej wirnika
B. obniżenie prędkości obrotowej wirnika
C. pojawienie się napięcia na obudowie silnika
D. uruchomienie ochronnika przeciwprzepięciowego
Pojawienie się napięcia na obudowie silnika indukcyjnego w przypadku uszkodzenia izolacji podstawowej, zwłaszcza po odłączeniu przewodu PE, jest zjawiskiem niezwykle niebezpiecznym i stanowi poważne zagrożenie dla bezpieczeństwa ludzi oraz sprzętu. Izolacja podstawowa ma za zadanie oddzielić elementy energii elektrycznej od obudowy, aby zapobiec porażeniom prądem. W momencie, gdy izolacja zostaje uszkodzona, a przewód PE, który pełni rolę ochronną, zostaje odłączony, obudowa silnika może stać się naładowana elektrycznie, co może prowadzić do porażenia prądem osoby znajdującej się blisko urządzenia. Przykładem zastosowania wiedzy w tej kwestii jest konieczność regularnego przeglądania i testowania urządzeń elektrycznych w celu zapewnienia, że wszystkie elementy ochronne, w tym przewód PE, są w dobrym stanie i działają prawidłowo, co jest zgodne z normami takimi jak PN-EN 60204-1. Dobre praktyki branżowe obejmują również stosowanie odpowiednich zabezpieczeń, takich jak wyłączniki różnicowoprądowe, które mogą wykryć nieprawidłowości w obwodzie i automatycznie odłączyć zasilanie.

Pytanie 35

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 36

Jakie zjawisko można zaobserwować przy cewce indukcyjnej w przypadku zwarcia międzyzwojowego?

A. zmniejszenia natężenia prądu płynącego przez cewkę
B. wzrostu rezystancji cewki
C. wzrostu reaktancji cewki
D. spadku indukcyjności cewki
Wybór odpowiedzi związanej ze zwiększeniem rezystancji cewki może wydawać się logiczny w kontekście zwarcia, jednak nie jest to właściwe podejście do analizy tego zjawiska. W przypadku zwarcia międzyzwojowego, rzeczywisty przepływ prądu przez cewkę może obniżyć jej indukcyjność, ale niekoniecznie prowadzi to do wzrostu rezystancji. W rzeczywistości, w momencie zwarcia, można zaobserwować zmniejszenie impedancji, co skutkuje większym natężeniem prądu, a nie jego spadkiem. Ponadto, zmniejszenie prądu pobieranego przez cewkę jest z kolei związane z jej działaniem w obwodzie, a nie bezpośrednio z zwarciem. Warto zauważyć, że w niektórych warunkach zwarcie może prowadzić do zwiększenia prądu, co jest sprzeczne z koncepcją jego zmniejszenia. Zwiększenie reaktancji cewki również nie jest odpowiednie, ponieważ w przypadku zwarcia reaktancja (zależna od indukcyjności) maleje. Typowe błędy myślowe polegają na myleniu pojęć związanych z rezystancją i reaktancją, co prowadzi do niepoprawnych wniosków o wpływie zwarcia na parametry cewki. W praktyce, kluczowym jest zrozumienie, że zwarcie prowadzi do zmiany w strukturze magnetycznej i elektrycznej cewki, co wyraźnie wpływa na jej wydajność i parametry operacyjne.

Pytanie 37

Jakiego składnika nie może mieć kabel zasilający do rozdzielnicy głównej w pomieszczeniu przemysłowym uznawanym za niebezpieczne pod kątem pożaru?

A. Pancerza stalowego
B. Żył aluminiowych
C. Powłoki polietylenowej
D. Zewnętrznego oplotu włóknistego
Zewnętrzny oplot włóknisty w kablach zasilających nie jest zalecany w pomieszczeniach przemysłowych, które są klasyfikowane jako niebezpieczne pod względem pożarowym, ponieważ może on stanowić dodatkowe źródło łatwopalne. W takich środowiskach ważne jest, aby stosować zabezpieczenia, które minimalizują ryzyko pożaru. Zamiast oplotu włóknistego, lepszym rozwiązaniem są materiały odporniejsze na działanie wysokich temperatur oraz ognia, takie jak pancerz stalowy lub powłoka polietylenowa, które zapewniają lepszą ochronę mechaniczną oraz zabezpieczenie przed uszkodzeniami. Przykładem zastosowania mogą być różnego rodzaju zakłady przemysłowe, w których występują substancje łatwopalne, takie jak chemikalia, co wymusza na projektantach instalacji elektrycznych przestrzeganie standardów, takich jak norma IEC 60079 dotycząca urządzeń elektrycznych przeznaczonych do pracy w atmosferze wybuchowej. Wybór odpowiednich kabli zasilających jest kluczowy dla zapewnienia bezpieczeństwa pracy i ochrony mienia.

Pytanie 38

Określ prawidłową sekwencję działań przy wymianie uszkodzonego łącznika świecznikowego w instalacji elektrycznej.
włączenie napięcia, sprawdzenie prawidłowości działania.

A. Wyłączenie napięcia, demontaż łącznika, montaż łącznika, sprawdzenie prawidłowości działania, stwierdzenie braku napięcia, włączenie napięcia
B. Stwierdzenie braku napięcia, wyłączenie napięcia, demontaż łącznika, montaż łącznika, sprawdzenie
C. Wyłączenie napięcia, stwierdzenie braku napięcia, demontaż łącznika, montaż łącznika, włączenie napięcia, sprawdzenie prawidłowości działania
D. Sprawdzenie prawidłowości działania, włączenie napięcia, stwierdzenie braku napięcia, demontaż łącznika, montaż łącznika, wyłączenie napięcia
Kiedy zabierasz się za wymianę uszkodzonego łącznika świecznikowego, najważniejsze to zacząć od wyłączenia napięcia. Bez tego krok nie tylko porażka może się wydarzyć, ale coś gorszego. Potem, zanim zaczniesz grzebać w instalacji, dobrze jest upewnić się, że naprawdę nie ma napięcia w obwodzie. To trochę jak dobre nawyki, które mogą uratować życie. Jak już to masz za sobą, możesz zająć się demontażem starego łącznika, ale pamiętaj, żeby być ostrożnym – nigdy nie wiadomo, co może się zdarzyć. Po włożeniu nowego łącznika, dopiero wtedy możesz włączyć napięcie i sprawdzić, czy wszystko działa. Taka kolejność jest super ważna i zgadza się z normami bezpieczeństwa, jak PN-IEC 60364, które mówią, jak robić to bezpiecznie. W sumie, w domowym warsztacie to przydatna wiedza, bo często coś się psuje i warto wiedzieć, jak to zrobić porządnie i bezpiecznie.

Pytanie 39

Jakim skrótem określa się w obowiązujących normach odnoszących się do instalacji elektrycznych systemy ochrony od piorunów?

A. LPL
B. SPZ
C. SPD
D. LPS
Odpowiedź 'LPS' oznacza 'Lightning Protection System', co w języku polskim można przetłumaczyć jako 'system ochrony odgromowej'. Jest to termin określający zestaw rozwiązań technicznych mających na celu zabezpieczenie obiektów przed skutkami wyładowań atmosferycznych. W kontekście aktualnych norm, takich jak norma PN-EN 62305, systemy LPS są projektowane i instalowane w celu minimalizacji ryzyka uszkodzeń strukturalnych oraz zapewnienia bezpieczeństwa ludzi i mienia. Przykładem zastosowania LPS może być budynek użyteczności publicznej, gdzie zainstalowane są przewody odgromowe, złącza uziemiające oraz elementy ochrony wewnętrznej, które współpracują w celu skutecznego odprowadzania energii odgromowej w sposób kontrolowany. Dodatkowo, zgodność z normami międzynarodowymi, takimi jak IEC 62305, zapewnia, że systemy te wykonane są zgodnie z najlepszymi praktykami inżynieryjnymi, co zwiększa ich efektywność oraz bezpieczeństwo eksploatacji.

Pytanie 40

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.