Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektryk
  • Kwalifikacja: ELE.02 - Montaż, uruchamianie i konserwacja instalacji, maszyn i urządzeń elektrycznych
  • Data rozpoczęcia: 4 grudnia 2025 11:15
  • Data zakończenia: 4 grudnia 2025 11:54

Egzamin zdany!

Wynik: 22/40 punktów (55,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Rysunek przedstawia schemat lampy z układem zapłonowym. Jaka to lampa?

Ilustracja do pytania
A. Żarowa.
B. Rtęciowa wysokoprężna.
C. Sodowa niskoprężna.
D. Fluorescencyjna.
Wybierając odpowiedzi takie jak sodowa niskoprężna, fluorescencyjna czy żarowa, mogą pojawić się nieporozumienia dotyczące różnic między różnymi rodzajami lamp. Lampy sodowe niskoprężne są często stosowane w oświetleniu ulicznym, jednak działają na innej zasadzie niż lampy rtęciowe wysokoprężne. Ich układ zapłonowy jest oparty na innym typie technologii, co znacząco wpływa na ich parametry świetlne oraz trwałość. Z kolei lampy fluorescencyjne, które wykorzystują gaz i luminofor do generowania światła, nie wymagają dławika ani wysokiego napięcia do zapłonu, co jest fundamentalne w przypadku lamp rtęciowych. Lampy żarowe, mimo że powszechnie używane, charakteryzują się znacznie niższą wydajnością świetlną oraz krótszą żywotnością, co sprawia, że nie są odpowiednie do zastosowań, które wymagają intensywnego i trwałego oświetlenia. Często błędne odpowiedzi wynikają z niezrozumienia różnic w technologii oraz zastosowania poszczególnych typów lamp. Istotne jest, aby przy wyborze źródła światła brać pod uwagę nie tylko jego właściwości, ale również przeznaczenie, co powinno być oparte na analizie wymagań oświetleniowych w danej lokalizacji.

Pytanie 2

Symbol graficzny urządzenia AGD - suszarki, przedstawiono na rysunku

Ilustracja do pytania
A. B.
B. D.
C. C.
D. A.
Odpowiedzi A, B i C odnoszą się do innych urządzeń AGD, co może prowadzić do nieporozumień przy identyfikacji symboli graficznych. Symbol A, przedstawiający zmywarkę do naczyń, jest często mylony z oznaczeniem suszarki, szczególnie przez osoby, które nie są zaznajomione z różnicami w symbolice. Zmywarka ma charakterystyczny symbol przedstawiający naczynia, co jest istotne w kontekście jej funkcji, ale nie ma nic wspólnego z obróbką tkanin. Symbol B, dotyczący kuchenki elektrycznej, również nie ma związku z suszarką, co może wynikać z niepoprawnego wnioskowania o podobieństwie kształtów czy form. Brak zrozumienia podstawowych różnic między tymi urządzeniami może prowadzić do błędnych wniosków. Przykładem może być mylenie funkcji kuchenki, która jest przeznaczona do gotowania, z suszarką, która służy do suszenia odzieży. Ostatecznie, symbol C przedstawia pralkę elektryczną, co także jest innym rodzajem urządzenia, które choć może mieć podobieństwo do suszarki, pełni zupełnie różne zadania w gospodarstwie domowym. Typowe błędy, które prowadzą do takich niepoprawnych wyborów, to ignorowanie kontekstu funkcjonalnego urządzenia, a także brak znajomości powszechnie stosowanych oznaczeń w branży AGD. Warto zapoznać się z tymi symbolami i ich znaczeniem, aby uniknąć nieporozumień w przyszłości.

Pytanie 3

Jaki rodzaj łącznika zastosowany jest w obwodzie przedstawionym na schemacie?

Ilustracja do pytania
A. Świecznikowy.
B. Schodowy.
C. Żaluzjowy.
D. Dwubiegunowy.
Odpowiedź 'Żaluzjowy' jest poprawna, ponieważ na schemacie widoczny jest łącznik, który kontroluje ruch silnika, co jest charakterystyczne dla systemów sterowania żaluzjami. W przypadku łączników żaluzjowych, zazwyczaj mamy do czynienia z dwoma przyciskami: jeden służy do podnoszenia żaluzji, a drugi do ich opuszczania. Tego rodzaju łączniki są powszechnie stosowane w domach, biurach oraz budynkach użyteczności publicznej, gdzie automatyzacja zasłon i żaluzji może znacząco poprawić komfort użytkowania oraz efektywność energetyczną. Dobrą praktyką w instalacjach elektrycznych jest stosowanie łączników dostosowanych do konkretnego zastosowania, w tym przypadku łączników żaluzjowych, aby zapewnić bezpieczeństwo oraz wygodę. Znajomość tych systemów pozwala również na prawidłowe projektowanie i wdrażanie rozwiązań automatyki budynkowej, co jest coraz bardziej popularne w nowoczesnym budownictwie.

Pytanie 4

Które z poniższych wskazówek nie dotyczy przeprowadzania nowych instalacji elektrycznych w lokalach mieszkalnych?

A. Odbiorniki o dużej mocy należy zasilać z wyodrębnionych obwodów
B. Oddzielić obwody oświetleniowe od obwodów gniazd wtyczkowych
C. Gniazda wtyczkowe w kuchni zasilane muszą być z oddzielnego obwodu
D. Gniazda wtyczkowe w każdym pomieszczeniu powinny być zasilane z osobnego obwodu
Odpowiedź dotycząca zasilania gniazd wtyczkowych każdego pomieszczenia z osobnego obwodu jest prawidłowa, ponieważ takie podejście nie jest zgodne z zaleceniami w zakresie projektowania instalacji elektrycznych w budynkach mieszkalnych. W praktyce, stosowanie osobnych obwodów dla każdego pomieszczenia może prowadzić do nadmiernych kosztów i skomplikowania instalacji. Zgodnie z Polską Normą PN-IEC 60364-1, obwody powinny być projektowane w taki sposób, aby zapewnić bezpieczeństwo i funkcjonalność, a nie każdy obwód powinien być dedykowany dla jednego pomieszczenia. W standardowych rozwiązaniach gniazda wtyczkowe w poszczególnych pomieszczeniach, jak kuchnia czy salon, mogą być podłączane do wspólnych obwodów, co jest bardziej efektywne, a także ułatwia ewentualne naprawy czy modernizacje. Przykładowo, w kuchni, gdzie występuje wiele odbiorników, stosuje się osobny obwód, ale gniazda w innych pomieszczeniach mogą być zasilane z jednego wspólnego obwodu, co zmniejsza ilość potrzebnych przewodów oraz urządzeń zabezpieczających.

Pytanie 5

W przypadku układu elektrycznego, w którym z jednego punktu zasilane są przynajmniej dwie wewnętrzne linie zasilające, konieczne jest zastosowanie

A. złącze
B. instalacje odbiorcze
C. przyłącze
D. rozdzielnicę główną
Przyłącze, choć często mylone z złączem, pełni inną funkcję w systemie elektroenergetycznym. Przyłącze odnosi się do punktu, w którym instalacja elektryczna łączy się z siecią energetyczną. Jest to miejsce, gdzie energia elektryczna dostarczana jest do budynku, a nie element, który zarządza rozdzieleniem energii na kilka obwodów. W konsekwencji, przyłącze nie spełnia roli rozdzielnika dla linii wewnętrznych. Rozdzielnica główna, z kolei, jest odpowiedzialna za dystrybucję energii elektrycznej do różnych obwodów w instalacji, ale nie jest bezpośrednio przeznaczona do łączenia wielu linii zasilających w jednym punkcie, jak ma to miejsce w przypadku złącza. Instalacje odbiorcze również nie są właściwą odpowiedzią, gdyż odnosi się to do urządzeń, które pobierają energię elektryczną z sieci, takich jak oświetlenie czy urządzenia domowe. Błędne zrozumienie funkcji tych elementów może prowadzić do nieefektywnych lub niebezpiecznych rozwiązań w instalacji, dlatego istotne jest zrozumienie różnicy między złączem a innymi komponentami systemu elektroenergetycznego. Właściwe rozpoznanie funkcji złącz i innych elementów jest kluczowe dla bezpieczeństwa oraz efektywności każdej instalacji elektrycznej.

Pytanie 6

Który z przedstawionych rdzeni stosowany jest do produkcji transformatora toroidalnego?

Ilustracja do pytania
A. C.
B. A.
C. B.
D. D.
Rdzeń toroidalny, oznaczony literą C, jest kluczowy w produkcji transformatorów toroidalnych, które charakteryzują się wysoką efektywnością oraz niskimi stratami energii. Jego kształt pierścienia pozwala na skoncentrowanie strumienia magnetycznego wewnątrz rdzenia, co minimalizuje straty związane z rozproszeniem. Przykładami zastosowania rdzeni toroidalnych są transformatory w urządzeniach audiofilskich, gdzie kluczowa jest jakość dźwięku oraz minimalizacja zniekształceń. W branży elektrycznej i elektronicznej, rdzenie toroidalnych transformatorów znajdują zastosowanie w zasilaczach oraz w systemach zasilania awaryjnego (UPS), gdzie wymagane są niewielkie wymiary oraz wysoka efektywność energetyczna. Warto również podkreślić, że stosowanie rdzeni toroidalnych jest zgodne z najlepszymi praktykami w zakresie projektowania układów elektronicznych, co potwierdzają normy takie jak IEC 60076, dotyczące transformatorów energetycznych.

Pytanie 7

W strefie 0 przedstawionego na rysunku pomieszczenia z wanną można instalować

Ilustracja do pytania
A. urządzenia zasilanie prądem zmiennym do 12 V.
B. przenośne odbiorniki o II klasie ochronności.
C. elektryczne podgrzewacze wody.
D. oprawy oświetleniowe o II klasie ochronności.
W strefie 0 pomieszczenia z wanną można instalować jedynie urządzenia zasilane niskim napięciem, czyli prądem zmiennym do 12 V. Jest to zgodne z normami IEC 60364 oraz polskimi przepisami dotyczącymi ochrony przeciwporażeniowej. Niskie napięcie zapewnia znacznie wyższy poziom bezpieczeństwa w obszarach narażonych na kontakt z wodą, gdzie ryzyko porażenia prądem jest znacząco zwiększone. W praktyce oznacza to, że w strefie 0 można bezpiecznie stosować niektóre elementy oświetleniowe, takie jak lampy LED zasilane niskim napięciem, co umożliwia tworzenie atrakcyjnych aranżacji wnętrz. Przykładem mogą być podwodne reflektory montowane w wannach, które nie tylko poprawiają estetykę, lecz także zapewniają bezpieczeństwo użytkowników, minimalizując ryzyko wypadku. Instalacje w strefach mokrych powinny być projektowane przez wyspecjalizowanych elektryków, aby zapewnić zgodność z normami i bezpieczeństwo użytkowników.

Pytanie 8

Wkładka topikowa bezpiecznika oznaczona symbolem gL służy do ochrony

A. przewodów przed przeciążeniami oraz zwarciami
B. silników przed przeciążeniami oraz zwarciami
C. urządzeń półprzewodnikowych przed przeciążeniami
D. urządzeń półprzewodnikowych przed zwarciami
Przy wyborze wkładki topikowej bezpiecznika ważne jest zrozumienie ich specyfikacji oraz przeznaczenia. Odpowiedzi sugerujące, że wkładka gL zabezpiecza silniki przed przeciążeniem i zwarciami, są mylące, ponieważ silniki wymagają specjalnych wkładek, które mogą radzić sobie z chwilowymi prądami rozruchowymi. Odpowiedzi dotyczące zabezpieczenia urządzeń półprzewodnikowych również są nietrafne. Urządzenia te wymagają wkładek o specyficznych charakterystykach, takich jak gG, które są lepiej dostosowane do ochrony przed impulsywnymi prądami zwarciowymi typowymi dla takich urządzeń. W przypadku przewodów wkładki gL oferują niezawodne zabezpieczenie, jednak proponowanie ich użycia w kontekście silników czy półprzewodników dowodzi braku zrozumienia różnorodności typów bezpieczników oraz ich specyficznych zastosowań. Niezrozumienie tych różnic może prowadzić do zastosowania niewłaściwych zabezpieczeń, co z kolei może skutkować poważnymi uszkodzeniami instalacji elektrycznej oraz zagrażać bezpieczeństwu użytkowników. W przemyśle i instalacjach elektrycznych ważne jest stosowanie odpowiednich elementów zabezpieczających zgodnie z zaleceniami producentów oraz normami, co w praktyce oznacza właściwy dobór bezpieczników do specyfiki chronionych obwodów.

Pytanie 9

Jakie jest główne przeznaczenie przekaźnika w instalacjach elektrycznych?

A. Kontrola temperatury przewodów
B. Zdalne sterowanie obwodami elektrycznymi
C. Ochrona przed przeciążeniami
D. Zmniejszenie zużycia energii
W instalacjach elektrycznych przekaźniki nie służą jako ochrona przed przeciążeniami. Funkcję tę pełnią zabezpieczenia nadprądowe, takie jak wyłączniki nadprądowe czy bezpieczniki, które są specjalnie zaprojektowane do wykrywania przeciążeń i zwarć, odłączając zasilanie, aby zapobiec uszkodzeniom sprzętu i instalacji. Zmniejszenie zużycia energii to również nie jest główna funkcja przekaźników. Choć użycie przekaźników może pośrednio wpływać na efektywność energetyczną poprzez optymalizację pracy urządzeń, ich podstawowa rola związana jest z funkcjami sterowania, a nie z ograniczaniem zużycia energii. Kontrola temperatury przewodów to kolejna niepoprawna odpowiedź. Przekaźniki nie są używane do monitorowania temperatury przewodów – tę funkcję mogą pełnić inne urządzenia, takie jak termostaty czy czujniki temperatury, które bezpośrednio mierzą i reagują na zmiany temperatury. Błędne przypisanie tych funkcji przekaźnikowi może wynikać z niepełnego zrozumienia zasad działania różnych komponentów w instalacjach elektrycznych. Zrozumienie konkretnej roli każdego elementu systemu jest kluczowe dla skutecznego projektowania i eksploatacji instalacji elektrycznych.

Pytanie 10

Na rysunku przedstawiono sposób podłączenia

Ilustracja do pytania
A. trójfazowego transformatora separacyjnego.
B. trójfazowego licznika energii elektrycznej.
C. przekładników prądowych w trzech fazach.
D. dławików w trójfazowej oprawie świetlówkowej.
Trójfazowy licznik energii elektrycznej to urządzenie służące do pomiaru zużycia energii elektrycznej w systemach trójfazowych, które są powszechnie stosowane w przemyśle oraz w dużych obiektach komercyjnych. Na rysunku przedstawiono schemat, gdzie widoczne są trzy linie fazowe L1, L2, L3 oraz przewód neutralny N, co jest zgodne z typową konfiguracją podłączenia do takiego licznika. Liczniki energii elektrycznej muszą spełniać normy takie jak PN-EN 62053, które określają dokładność pomiarów oraz wymagania dotyczące instalacji. Przykładowo, w przypadku monitorowania zużycia energii w zakładzie przemysłowym, zastosowanie trójfazowego licznika pozwala na precyzyjne określenie, ile energii jest konsumowane przez różne maszyny, co z kolei umożliwia optymalizację kosztów operacyjnych oraz efektywności energetycznej. Odpowiednia symbolika graficzna na schemacie, jaką zastosowano w tym przypadku, jednoznacznie wskazuje na licznik, co jest zgodne z normami PN-EN 60617, które dotyczą symboliki w dokumentacji elektrycznej.

Pytanie 11

Po połączeniu układu sterowania oświetlenia przekaźnikiem bistabilnym przeprowadzono kilkukrotnie próbę działania. Na podstawie diagramu działania przekaźnika i powtarzającej się tabeli działania układu można stwierdzić, że

Ilustracja do pytania
A. uszkodzona jest jedna z żarówek.
B. nieprawidłowo działa użyty przekaźnik.
C. występuje błąd w podłączeniu przekaźnika.
D. układ działa prawidłowo.
Wybór odpowiedzi dotyczącej błędów w podłączeniu przekaźnika, uszkodzenia żarówek lub prawidłowego działania układu, wskazuje na zrozumienie problematyki, jednak nie na właściwe rozpoznanie sytuacji. W pierwszym przypadku, błędne podłączenie przekaźnika mogłoby prowadzić do braku reakcji całego układu, co nie jest potwierdzone przez przedstawione dane. Jeśli diagram i tabela działania układu są zgodne, to nieprawidłowe podłączenie w tym scenariuszu wydaje się mało prawdopodobne. Kolejną możliwą mylną koncepcją jest przypisanie winy uszkodzonym żarówkom. W rzeczywistości, gdy przekaźnik działa nieprawidłowo, jego potencjalny wpływ na zasilanie żarówek może maskować problemy z ich funkcjonowaniem. Prawidłowe działanie żarówek można ocenić niezależnie, ale wiedząc, że przekaźnik jest kluczowym elementem w cyklu włączania i wyłączania, to on powinien być priorytetem w diagnostyce. Ostatnia myśl o tym, że układ działa prawidłowo, pomija fundamentalne informacje z diagramu i tabeli, które jasno wskazują na rozbieżności. Uznawanie układu za sprawny bez dokładnej analizy wszystkich komponentów, szczególnie przekaźnika, może prowadzić do fałszywych wniosków i pomijać istotną diagnostykę. Rozpoznawanie problemów w takich systemach wymaga zastosowania metodyki analizy przyczyn źródłowych, aby skutecznie zidentyfikować problem i uniknąć błędnych interpretacji wyników.

Pytanie 12

Na schematach instalacji elektrycznych symbolem przedstawionym na ilustracji oznacza się przewód prowadzony

Ilustracja do pytania
A. pod tynkiem.
B. nad sufitem podwieszanym.
C. w korytku instalacyjnym.
D. w tynku.
Odpowiedź "w tynku" jest poprawna, ponieważ symbol przedstawiony na ilustracji jest standardowym oznaczeniem przewodu prowadzonego w tynku. W instalacjach elektrycznych przewody często prowadzi się w ścianach, aby zapewnić estetykę i ochronę przed uszkodzeniami mechanicznymi. Zgodnie z normą PN-IEC 60364, przewody układane w tynku muszą być odpowiednio zabezpieczone, aby zminimalizować ryzyko uszkodzeń. W praktyce, implementacja takiego rozwiązania wymaga staranności w wykonaniu bruzd, gdzie przewody powinny być umieszczane w odpowiednich korytkach lub rurkach osłonowych, co zapobiega ich bezpośredniemu kontaktowi z tynkiem, a tym samym przedłuża ich żywotność. Przykładem mogą być instalacje oświetleniowe, w których przewody są prowadzone w tynku, co pozwala na ich łatwe ukrycie i dostępność podczas ewentualnych napraw. Dodatkowo, stosowanie przewodów w tynku jest zgodne z przyjętymi praktykami branżowymi, co podkreśla istotność znajomości symboliki elektrycznej w projektowaniu instalacji.

Pytanie 13

W jakim z podanych układów sieciowych pojawia się przewód PEN?

A. TT
B. IT
C. TN-S
D. TN-C
Układ TT, w przeciwieństwie do TN-C, charakteryzuje się oddzielnym przewodem neutralnym (N) oraz przewodem ochronnym (PE), co oznacza, że nie występuje w nim przewód PEN. W tym przypadku, przewód PE jest uziemiony w punkcie rozdziału, co zwiększa bezpieczeństwo, ponieważ w przypadku zwarcia prąd ochronny może natychmiast popłynąć do ziemi. W układzie IT natomiast brak jest bezpośredniego uziemienia neutralnego, co zwiększa odporność na zwarcia, ale wymaga zastosowania bardziej skomplikowanych systemów monitorowania. Z kolei w układzie TN-S przewody N i PE są oddzielne, co również eliminuje przewód PEN i pozwala na większą elastyczność w projektowaniu instalacji. Powszechnym błędem jest mylenie tych systemów, co wynika z niepełnego zrozumienia ich struktury i zastosowania. W praktyce, znajomość różnic między tymi układami jest kluczowa dla zapewnienia właściwego poziomu bezpieczeństwa oraz efektywności energetycznej instalacji elektrycznych. Zastosowanie niewłaściwego układu może prowadzić do niebezpiecznych sytuacji, takich jak porażenie prądem lub uszkodzenia sprzętu elektrycznego. Dlatego tak ważne jest, aby projektanci i instalatorzy elektryczni rozumieli te różnice i wybierali odpowiednie systemy w zależności od specyficznych wymagań danego środowiska.

Pytanie 14

Na tynku wykonanym na ścianie działowej z cegły pełnej wytyczono miejsce dla rurek PVC. Jakie narzędzia należy zgromadzić, aby zapewnić szybki i precyzyjny montaż rurek?

A. Wiertarkę, punktak, zestaw wkrętaków
B. Punktak, młotek, wiertarka udarowa, wiertło widiowe dostosowane do średnicy kołka rozporowego, piła do metalu, zestaw wkrętaków
C. Taśmę mierniczą, młotek, wiertarkę udarową, wiertło widiowe dostosowane do średnicy kołka rozporowego, poziomicę, zestaw wkrętaków
D. Taśmę mierniczą, wiertarkę, piłę do metalu, młotek
Wybór punktaka, młotka, wiertarki udarowej, wiertła widiowego dopasowanego do rozmiarów kołka rozporowego, piły do metalu oraz kompletu wkrętaków jest odpowiedni do montażu rurek PVC na ścianie działowej z cegły pełnej. Punktak i młotek są niezbędne do precyzyjnego wyznaczania miejsc, w których będą wiercone otwory, co pozwala na uniknięcie uszkodzeń materiału oraz zachowanie dokładności w montażu. Wiertarka udarowa, w połączeniu z wiertłem widiowym, zapewnia skuteczne wiercenie w twardym materiale, jakim jest cegła pełna, a odpowiednie dopasowanie wiertła do rozmiaru kołka gwarantuje stabilne mocowanie rurek. Piła do metalu umożliwia precyzyjne przycinanie elementów instalacji, a komplet wkrętaków jest niezbędny do montażu uchwytów mocujących. Taki zestaw narzędzi wpisuje się w dobre praktyki branżowe, gdzie kluczową rolę odgrywa precyzja i odpowiednie przygotowanie do wykonania zadania, co przekłada się na trwałość i bezpieczeństwo instalacji. Przykładem może być sytuacja, w której nieodpowiednie narzędzia mogą prowadzić do uszkodzenia materiałów lub nietrwałego montażu, co w efekcie wiąże się z dodatkowymi kosztami i czasem potrzebnym na poprawki.

Pytanie 15

Podczas inspekcji świeżo zrealizowanej instalacji elektrycznej nie ma potrzeby weryfikacji

A. rozmieszczenia tablic informacyjnych i ostrzegawczych
B. wyboru zabezpieczeń oraz urządzeń
C. wyboru i oznakowania przewodów
D. wartości natężenia oświetlenia na stanowiskach pracy
Podczas inspekcji nowo wykonanej instalacji elektrycznej, sprawdzenie rozmieszczenia tablic ostrzegawczych i informacyjnych, doboru zabezpieczeń i aparatury oraz doboru i oznaczenia przewodów jest kluczowe. Te elementy są fundamentalne dla zapewnienia bezpieczeństwa użytkowników oraz prawidłowego funkcjonowania instalacji. Tablice ostrzegawcze i informacyjne stanowią istotny element systemu bezpieczeństwa, informując pracowników o potencjalnych zagrożeniach. Odpowiedni dobór zabezpieczeń, takich jak wyłączniki nadprądowe czy różnicowoprądowe, ma na celu ochronę przed skutkami zwarć oraz przeciążeń, co jest wymagane przez normy elektryczne, jak PN-IEC 60364. Oznaczenie przewodów pozwala uniknąć pomyłek w podłączeniach, co może prowadzić do poważnych awarii lub zagrożeń. Istotne jest zrozumienie, że każde z tych działań jest ściśle związane z bezpieczeństwem i funkcjonalnością instalacji. Wiele osób może nie doceniać roli tych detali, skupiając się jedynie na wydajności energetycznej czy estetyce, co może prowadzić do krytycznych błędów w ocenie gotowości instalacji do eksploatacji. W rzeczywistości, zaniedbanie któregokolwiek z wymienionych aspektów może skutkować poważnymi konsekwencjami zarówno w kontekście bezpieczeństwa, jak i przepisów prawa budowlanego oraz norm branżowych.

Pytanie 16

Jakie elementy nie są kontrolowane podczas oględzin urządzeń napędowych w czasie ich postoju?

A. stanu pierścieni ślizgowych oraz komutatorów
B. poziomu drgań i skuteczności układu chłodzenia
C. stanu przewodów ochronnych oraz ich połączeń
D. ustawienia zabezpieczeń i stanu osłon części wirujących
W kontekście oględzin urządzeń napędowych w czasie postoju, istotne jest zrozumienie zakresu przeglądów i ich celów. Sprawdzanie stanu przewodów ochronnych i ich podłączenia to kluczowy aspekt zapewnienia bezpieczeństwa. Przewody te pełnią istotną rolę w ochronie operatorów przed porażeniem prądem elektrycznym oraz awariami urządzeń. Oprócz tego, poziom drgań jest ważnym wskaźnikiem stanu mechanicznego urządzeń; nadmierne drgania mogą wskazywać na niewłaściwe wyważenie, zużycie łożysk lub inne problemy, które mogą prowadzić do krytycznych awarii. Układ chłodzenia także zasługuje na szczególną uwagę, ponieważ jego nieprawidłowe działanie może prowadzić do przegrzewania się maszyn i ich uszkodzeń, co wymagałoby kosztownych napraw. Z kolei kontrola ustawienia zabezpieczeń oraz stanu osłon części wirujących jest kluczowa dla ochrony personelu i zapobiegania wypadkom. Często pomija się te aspekty, co prowadzi do niebezpiecznych sytuacji. Prawidłowe podejście do oględzin urządzeń napędowych wymaga zatem kompleksowej analizy wszystkich wymienionych elementów, aby zapewnić nieprzerwaną operacyjność i bezpieczeństwo. Zatem zrozumienie, które elementy wymagają regularnych kontroli, a które są mniej krytyczne, jest niezbędne dla efektywnego zarządzania bezpieczeństwem i wydajnością urządzeń.

Pytanie 17

Które z przedstawionych narzędzi przeznaczone jest do zdejmowania izolacji z żył przewodów elektrycznych?

Ilustracja do pytania
A. Narzędzie 2.
B. Narzędzie 4.
C. Narzędzie 1.
D. Narzędzie 3.
Narzedzie 1 to kluczowy instrument w pracy z przewodami elektrycznymi, zwłaszcza w kontekście przygotowania ich do połączeń. Szczypce do ściągania izolacji, których użycie zaleca się w branży elektrycznej, są zaprojektowane tak, aby umożliwić precyzyjne usunięcie izolacji z żył bez ryzyka uszkodzenia samego przewodu. Dobrej jakości szczypce posiadają mechanizm regulacji głębokości ściągania, co pozwala na dostosowanie siły do rodzaju przewodu. W praktyce, zastosowanie tych narzędzi sprawia, że prace instalacyjne są nie tylko szybsze, ale także bezpieczniejsze, co jest zgodne z normami bezpieczeństwa elektrycznego. Używając szczypiec, można łatwo przygotować przewody do podłączenia terminali, co jest niezbędne w każdym projekcie elektrycznym. Ponadto, w kontekście dobrych praktyk, zaleca się regularne sprawdzanie stanu narzędzi, aby zapewnić ich efektywność i bezpieczeństwo użytkowania.

Pytanie 18

Jakie napięcie należy stosować podczas określania rezystancji izolacji w obwodach SELV lub PELV?

A. 750 V
B. 1000 V
C. 500 V
D. 250 V
Wybór wyższych wartości napięcia pomiarowego, takich jak 1000 V, 500 V czy 750 V, jest niewłaściwy w kontekście obwodów SELV i PELV. Te obwody, które są projektowane z myślą o bezpieczeństwie, nie powinny być testowane przy użyciu napięć, które mogą prowadzić do sytuacji niebezpiecznych dla użytkowników. Przy pomiarze rezystancji izolacji w instalacjach niskonapięciowych, takich jak SELV i PELV, zastosowanie wyższego napięcia pomiarowego może nie tylko prowadzić do uszkodzeń izolacji, ale także stwarzać ryzyko porażenia prądem elektrycznym. W rzeczywistości, zastosowanie napięć wyższych niż 250 V w takich instalacjach nie jest zgodne z normami bezpieczeństwa. Często błędnie przyjmuje się, że wyższe napięcie pomiarowe pozwala na dokładniejszą ocenę stanu izolacji, co jest mylnym przekonaniem. W rzeczywistości, pomiary w wyższych zakresach napięć mogą dawać fałszywe wyniki, ponieważ mogą powodować uszkodzenia materiałów izolacyjnych, które w normalnych warunkach pracy nie występują. Stąd też kluczowe jest przestrzeganie standardów oraz dobrych praktyk, aby zapewnić bezpieczeństwo i niezawodność instalacji elektrycznych.

Pytanie 19

Wskaż symbol graficzny przycisku zwiernego.

Ilustracja do pytania
A. Symbol 4.
B. Symbol 2.
C. Symbol 3.
D. Symbol 1.
Symbol 1 jest prawidłowym przedstawieniem graficznego symbolu przycisku zwiernego. Graficzne oznaczenie to jest zgodne z międzynarodowymi standardami, takimi jak IEC 60417, które definiują symbole dla urządzeń elektrycznych. Przyciski zwierne są powszechnie stosowane w różnych aplikacjach, takich jak systemy alarmowe, automatyka budynkowa i interfejsy użytkownika w urządzeniach elektronicznych. Ich funkcjonowanie polega na zamykaniu obwodu elektrycznego po naciśnięciu przycisku, co powoduje rozpoczęcie określonego działania, na przykład włączenie światła lub aktywację alarmu. W praktycznej aplikacji, przyciski zwierne mogą być używane w różnych konfiguracjach, takich jak przyciski chwilowe, które wracają do stanu początkowego po zwolnieniu, lub przyciski z latarką, które mogą być używane do aktywacji procedur awaryjnych. Zrozumienie tego symbolu jest więc kluczowe dla projektantów systemów elektrycznych i automatyki, ponieważ umożliwia im prawidłowe dobieranie elementów w projekcie oraz zapewnienie zgodności z wiodącymi normami branżowymi.

Pytanie 20

Którym symbolem graficznym oznacza się instalację prowadzoną na drabinkach kablowych?

Ilustracja do pytania
A. C.
B. A.
C. D.
D. B.
Symbol B, który wskazujesz jako poprawny, jest zgodny z powszechnie akceptowanymi oznaczeniami w dokumentacji elektrycznej. Oznaczenie to jest używane do wskazywania instalacji prowadzonych na drabinkach kablowych, co jest niezwykle istotne w kontekście organizacji i zarządzania systemami kablowymi. Drabinki kablowe są kluczowym elementem w infrastrukturze elektroenergetycznej, ponieważ umożliwiają bezpieczne i uporządkowane prowadzenie kabli, co z kolei wpływa na efektywność oraz bezpieczeństwo instalacji. W praktyce, poprawne oznaczenie instalacji pozwala na łatwiejsze lokalizowanie i utrzymanie systemu, co jest zgodne z zasadami projektowania zgodnymi z normami IEC i PN-EN. Dodatkowo, stosowanie właściwych symboli w dokumentacji technicznej wspiera procesy inspekcyjne oraz ułatwia zrozumienie schematów przez różne zespoły pracowników. Warto także zaznaczyć, że niepoprawne oznaczenia mogą prowadzić do poważnych błędów w instalacji, co podkreśla znaczenie precyzyjnego stosowania symboliki w projektowaniu systemów elektrycznych.

Pytanie 21

Narzędzie przestawione na ilustracji przeznaczone jest do

Ilustracja do pytania
A. profilowania przewodów.
B. wciskania łożysk.
C. zaciskania złączek Wago.
D. zdejmowania pierścieni Segera.
Analiza pozostałych odpowiedzi ujawnia powszechne nieporozumienia dotyczące zastosowań narzędzi mechanicznych. Na przykład, wykorzystanie narzędzia do profilowania przewodów sugeruje, że szczypce te mogą służyć do kształtowania lub przystosowywania przewodów elektrycznych. W rzeczywistości, profilowanie przewodów wymaga narzędzi bardziej precyzyjnych, jak np. szczypce do zaciskania, które są dostosowane do pracy z izolacją i przewodami, a nie z pierścieniami. Z kolei wciskanie łożysk to proces, który wymaga zastosowania narzędzi takich jak ściągacze lub prasy, które są zaprojektowane do wywierania odpowiedniego nacisku na elementy, a nie do manipulacji pierścieniami zabezpieczającymi. Ponadto, zaciskanie złączek Wago wymaga narzędzi do zaciskania, które zapewniają odpowiednią siłę i precyzję, a ich zastosowanie nie ma żadnego związku z narzędziem używanym do pierścieni Segera. Błędem jest również przyjmowanie, iż jedno narzędzie może spełniać wiele funkcji, co w praktyce prowadzi do nieefektywności i ryzyka uszkodzenia elementów. Dlatego kluczowe jest dobranie odpowiednich narzędzi do specyficznych zadań, co jest zgodne z zasadami ergonomii i efektywności w pracy z mechaniką.

Pytanie 22

Na rysunku przedstawiono stosowaną w instalacjach elektrycznych złączkę

Ilustracja do pytania
A. samozaciskową.
B. skrętną.
C. śrubową.
D. gwintową.
Złączka skrętna, przedstawiona na rysunku, jest jednym z najczęściej stosowanych elementów w instalacjach elektrycznych, szczególnie w celu łączenia przewodów. Jej główną zaletą jest prostota użycia, ponieważ do jej montażu nie są wymagane żadne narzędzia, co znacząco przyspiesza proces instalacji. Skręcenie przewodów w złączce skrętnej umożliwia stabilne i trwałe połączenie, które jest w stanie wytrzymać znaczne obciążenia elektryczne. Dodatkowo, zastosowanie metalowego sprężynującego elementu, który dysponuje odpowiednim naciskiem, zapewnia doskonały kontakt elektryczny oraz minimalizuje ryzyko przegrzania się połączenia. W praktyce złączki skrętne znajdują zastosowanie nie tylko w instalacjach domowych, ale także w przemyśle, gdzie niezawodność połączeń jest kluczowa. Standardy branżowe, takie jak IEC 60947-1, podkreślają znaczenie stosowania odpowiednich złączek w zależności od zastosowania i wymagań technicznych, co czyni złączkę skrętną rozwiązaniem, które spełnia te normy.

Pytanie 23

Na fotografii przedstawiono kabel

Ilustracja do pytania
A. kontrolny z żyłami wielodrutowymi na napięcie 300/500 V w izolacji z tworzywa bezhalogenowego, ekranowany.
B. sygnalizacyjny z żyłami wielodrutowymi o wiązkach parowych na napięcie 300/500 V w izolacji gumowej.
C. sygnalizacyjny z żyłami jednodrutowymi na napięcie 0,6/1 kV w izolacji gumowej.
D. elektroenergetyczny z żyłami miedzianymi o izolacji polwinitowej, na napięcie 0,6/1 kV.
Poprawna odpowiedź dotyczy kabla kontrolnego z żyłami wielodrutowymi na napięcie 300/500 V z izolacją z tworzywa bezhalogenowego. Kable kontrolne są używane w różnych systemach automatyki i zabezpieczeń, gdzie istotne jest monitorowanie i zarządzanie sygnałami. Ekranowanie jest kluczowe, ponieważ pozwala na redukcję zakłóceń elektromagnetycznych, co zapewnia prawidłowe działanie systemów. Izolacja z tworzywa bezhalogenowego jest korzystna z punktu widzenia bezpieczeństwa pożarowego, ponieważ nie emituje toksycznych gazów w przypadku kontaktu z ogniem. Kable te są powszechnie stosowane w aplikacjach przemysłowych, w których występują trudne warunki środowiskowe. Zgodność z normami takimi jak PN-EN 50525 jest niezbędna, aby zapewnić wysoką jakość i niezawodność dostarczanych produktów. Zastosowanie kabli kontrolnych w obszarze monitorowania i kontroli procesów przemysłowych jest szerokie, a ich wybór powinien być przemyślany zgodnie z wymaganiami projektowymi oraz normami branżowymi.

Pytanie 24

Jaka jest minimalna wartość napięcia probierczego, która jest wymagana podczas pomiarów rezystancji izolacji przewodów w obwodach SELV oraz PELV?

A. 1000 V
B. 500 V
C. 100 V
D. 250 V
Wybór niewłaściwego napięcia probierczego przy pomiarach rezystancji izolacji może wynikać z niepełnego zrozumienia zasad bezpieczeństwa oraz specyfiki obwodów SELV i PELV. Użycie napięcia 100 V, na przykład, może być niewystarczające do skutecznego zdiagnozowania stanu izolacji. Praktyka pokazuje, że takie niskie napięcie nie jest w stanie ujawnić potencjalnych usterek, które są krytyczne dla bezpieczeństwa. W przypadku obwodów o napięciu roboczym, które wymagają wyższego poziomu izolacji, napięcie probiercze powinno być dostosowane do tych wymagań, co w przypadku SELV i PELV oznacza wartość nie mniejszą niż 250 V. Użycie napięcia 500 V lub 1000 V, z kolei, może prowadzić do uszkodzenia bardzo wrażliwych podzespołów w niektórych zastosowaniach, co jest szczególnie ważne w obwodach niskonapięciowych. Właściwe dobieranie napięcia probierczego to kluczowy element w zapewnieniu bezpieczeństwa systemów elektrycznych, a nieprzestrzeganie tych zasad może prowadzić do poważnych konsekwencji. Wiele osób błędnie zakłada, że wyższe napięcia są zawsze lepsze, jednak w rzeczywistości należy kierować się normami oraz zaleceniami producentów, aby zminimalizować ryzyko uszkodzeń oraz zapewnić bezpieczeństwo eksploatacyjne obwodów elektrycznych.

Pytanie 25

Który element oznacza się na schematach elektrycznych symbolem graficznym przedstawionym na rysunku?

Ilustracja do pytania
A. Autotransformator.
B. Gniazdo z transformatorem separacyjnym.
C. Łącznik krańcowy.
D. Dławik.
Gniazdo z transformatorem separacyjnym, oznaczone na schematach elektrycznych odpowiednim symbolem graficznym, pełni kluczową rolę w instalacjach elektrycznych, szczególnie w kontekście zapewnienia bezpieczeństwa użytkowników. Transformator separacyjny oddziela obwody niskonapięciowe od wysokiego napięcia, co minimalizuje ryzyko porażenia prądem. Zgodnie z normą PN-EN 60617, symbol graficzny dla gniazda z transformatorem separacyjnym jest jasno określony, co pozwala na łatwe rozpoznanie tego elementu na schematach. Przykładowo, w zastosowaniach medycznych, takie gniazda są często używane w aparaturze, gdzie kluczowe jest oddzielenie obwodów dla bezpieczeństwa pacjentów. Dzięki zastosowaniu transformatora separacyjnego, użytkownicy mogą być pewni, że ich sprzęt działa w bezpieczny sposób, a także spełnia wymogi dotyczące ochrony przed porażeniem elektrycznym. W praktyce, instalacja gniazd z transformatorem separacyjnym jest istotnym elementem ochrony w wielu branżach, co podkreśla znaczenie poprawnego rozpoznawania symboli graficznych na schematach.

Pytanie 26

Który z wymienionych parametrów elementów instalacji elektrycznej można zmierzyć przyrządem, którego fragment pokazano na rysunku?

Ilustracja do pytania
A. Rezystancję izolacji.
B. Rezystancję uziemienia.
C. Impedancję pętli zwarcia.
D. Czas wyłączenia wyłącznika nadprądowego.
Odpowiedź "Impedancja pętli zwarcia" jest jak najbardziej na miejscu. Miernik z zdjęcia jest zaprojektowany właśnie do takich pomiarów w instalacjach elektrycznych. Ten miernik wielofunkcyjny, oznaczony jako "ZL-PE", wskazuje na to, że można nim zmierzyć impedancję pętli zwarcia, co jest mega ważne dla bezpieczeństwa systemów elektrycznych. Wartość impedancji wpływa na to, jak szybko i skutecznie działają zabezpieczenia, na przykład wyłączniki nadprądowe. Jak dojdzie do zwarcia, niska impedancja sprawia, że zabezpieczenie zadziała szybko, co zmniejsza ryzyko uszkodzenia instalacji. Zgodnie z normami PN-IEC 60364, regularne pomiary impedancji pętli zwarcia to standard w utrzymaniu i audytach instalacji elektrycznych, co naprawdę chroni ludzi i mienie. Osobiście uważam, że znajomość przeszłych pomiarów i umiejętność ich interpretacji to klucz do optymalizacji zabezpieczeń.

Pytanie 27

Obwód oświetleniowy zasilany z rozdzielnicy przedstawionej na rysunku może pobierać długotrwale prąd nieprzekraczający

Ilustracja do pytania
A. 16 A
B. 20 A
C. 6 A
D. 32 A
Wybierając odpowiedzi inne niż 20 A, można łatwo popaść w pułapkę błędnego myślenia dotyczącego doboru prądów znamionowych w obwodach elektrycznych. Odpowiedzi takie jak 6 A lub 16 A są nieodpowiednie, ponieważ nie uwzględniają rzeczywistych parametrów stycznika SM-320, który jest kluczowym elementem w tym obwodzie. Osoby mogące wybrać 6 A mogą nie rozumieć, że wartość ta odnosi się do prądu znamionowego wyłącznika nadprądowego B6, który jednak nie powinien być brany pod uwagę jako decydujący przy określaniu maksymalnego obciążenia obwodu oświetleniowego. W rzeczywistości wyłącznik nadprądowy jest urządzeniem zabezpieczającym, którego zadaniem jest ochrona obwodu przed przeciążeniem, ale to stycznik określa, jakie obciążenie można podłączyć w sposób ciągły. Wybór 32 A jest również błędny, jako że sugeruje znacznie wyższe obciążenie, które może prowadzić do niewłaściwego doboru pozostałych komponentów instalacji elektrycznej, co w efekcie stwarza ryzyko przegrzania i uszkodzenia instalacji. Zrozumienie różnicy między wartościami nominalnymi różnych elementów jest kluczowe dla zapewnienia bezpieczeństwa i efektywności obwodu elektrycznego. Właściwe podejście do doboru prądów znamionowych w instalacjach elektrycznych nie tylko chroni urządzenia, ale także zapobiega sytuacjom awaryjnym, które mogą być wynikiem nieodpowiednich ustawień prądowych.

Pytanie 28

Jakie uszkodzenie mogło wystąpić w instalacji elektrycznej, dla której wyniki pomiarów rezystancji izolacji przedstawiono w tabeli?

Rezystancja izolacji, MΩ
Zmierzona międzyWymagana
L1–L2L2–L3L1–L3L1–PENL2–PENL3–PEN
2,101,051,101,401,300,991,00
A. Jednofazowe zwarcie doziemne.
B. Zawilgocenie izolacji jednej z faz.
C. Zwarcie międzyfazowe.
D. Przeciążenie jednej z faz.
Zawilgocenie izolacji jednej z faz jest kluczowym problemem, który może prowadzić do poważnych awarii w instalacji elektrycznej. Wartości rezystancji izolacji w podanej tabeli wskazują, że rezystancja między L3 a przewodem ochronno-neutralnym (PEN) wynosi 0,99 MΩ, co jest zaledwie poniżej wymaganej wartości 1 MΩ. Taki wynik sugeruje, że izolacja L3 może być narażona na działanie wilgoci, co zmniejsza jej zdolność do skutecznego izolowania przewodów elektrycznych. W praktyce, jeżeli wilgoć dostaje się do izolacji, może to prowadzić do korozji, uszkodzeń mechanicznych oraz zwiększonego ryzyka porażenia prądem. Dlatego niezwykle istotne jest regularne monitorowanie stanu izolacji przy użyciu odpowiednich narzędzi pomiarowych, takich jak megger, oraz przestrzeganie standardów, takich jak normy IEC 60364 i PN-EN 60204-1, które zalecają minimalne rezystancje dla bezpieczeństwa instalacji. W przypadku wykrycia zawilgocenia, należy przeprowadzić dokładną inspekcję i, jeżeli to konieczne, wymienić uszkodzone fragmenty układu. Zrozumienie tych zjawisk jest kluczowe dla zachowania bezpieczeństwa i niezawodności instalacji elektrycznej.

Pytanie 29

Jakie oznaczenie, zgodnie z Europejskim Komitetem Normalizacyjnym Elektrotechniki CENELEC posiada przewód przedstawiony na rysunku?

Ilustracja do pytania
A. H07V-U
B. NAYY-O
C. H03VV-F
D. NYM-J
Przewody 'NAYY-O' i 'H07V-U' niestety nie spełniają wymagań do tej instalacji, co można zauważyć na rysunku. 'NAYY-O' to przewody aluminiowe, które zazwyczaj wykorzystuje się w instalacjach na zewnątrz. Mają inną konstrukcję izolacyjną, więc nie nadają się do stałych instalacji w budynkach. Natomiast 'H07V-U' to przewód jednożyłowy, który również nie pasuje do wielożyłowych przewodów, jakie były potrzebne, by zapewnić prawidłowe zasilanie. Użycie takich przewodów może prowadzić do różnych błędów, bo jak źle dobierzesz przewód, to wpływa na bezpieczeństwo i funkcjonowanie całego systemu elektrycznego. Oznaczenie 'H03VV-F' odnosi się do przewodów elastycznych, używanych głównie w urządzeniach przenośnych, a nie w stałych instalacjach. Wybór niewłaściwego typu przewodu to nie tylko obniżona efektywność, ale też większe ryzyko awarii systemu, co jest wbrew normom CENELEC, które sugerują dobór przewodów odpowiednich do danej instalacji. Warto pamiętać, żeby wybierając przewody, kierować się ich przeznaczeniem oraz obowiązującymi normami, by zapewnić bezpieczeństwo i niezawodność instalacji elektrycznych.

Pytanie 30

Która z poniższych działań ocenia efektywność ochrony podstawowej przed porażeniem prądem elektrycznym?

A. Pomiar rezystancji izolacji przewodów
B. Pomiar impedancji w pętli zwarciowej
C. Sprawdzanie wyłącznika różnicowoprądowego
D. Weryfikacja stanu izolacji podłóg
Zrozumienie różnych metod oceny ochrony przed porażeniem prądem elektrycznym jest kluczowe dla zapewnienia bezpieczeństwa użytkowników instalacji elektrycznych. Badanie wyłącznika różnicowoprądowego polega na ocenie jego zdolności do wykrywania i odłączania prądu w przypadku wystąpienia różnicy między prądem wpływającym a wypływającym. Choć jest to istotne dla funkcjonowania ochrony, nie mierzy bezpośrednio skuteczności izolacji przewodów. Pomiar impedancji pętli zwarciowej koncentruje się na ocenieniu, jak szybko prąd zwarciowy może przepłynąć przez instalację w razie awarii, co z kolei dotyczy głównie ochrony przed zwarciami, a nie izolacji. Badanie stanu izolacji podłóg, mimo że ważne, odnosi się do aspektów związanych z bezpieczeństwem użytkowników, ale nie odnosi się do oceny izolacji przewodów elektrycznych bezpośrednio. Z tych powodów, odpowiedzi te nie mogą być uznane za prawidłowe w kontekście pytania, które dotyczy skuteczności ochrony przed porażeniem prądem elektrycznym w instalacjach elektrycznych. Dobrze zrozumiane zasady dotyczące tych metod mogą pomóc w uniknięciu niebezpiecznych sytuacji związanych z elektrycznością. Kluczowe jest, aby technicy i inżynierowie elektrycy stosowali właściwe metody pomiarowe, zgodne z aktualnymi standardami, by zapewnić kompleksowe bezpieczeństwo w każdej instalacji.

Pytanie 31

Urządzenie pokazane na zdjęciu to

Ilustracja do pytania
A. programowalny przełącznik czasowy.
B. łącznik zmierzchowy.
C. regulator natężenia oświetlenia.
D. regulator fotokomórki.
Łącznik zmierzchowy to urządzenie, które automatycznie aktywuje oświetlenie, gdy poziom naturalnego światła spada poniżej określonego progu. Urządzenie, które widzimy na zdjęciu, ma charakterystyczne oznaczenie "AZH-S" oraz pokrętło z symbolami słońca i księżyca. Te elementy wskazują na jego funkcję detekcji zmierzchu. W praktyce, łącznik zmierzchowy jest powszechnie stosowany w systemach oświetleniowych w budynkach mieszkalnych oraz komercyjnych, umożliwiając automatyczne włączanie lamp w godzinach wieczornych. Dzięki zastosowaniu tego typu urządzenia, można znacznie zwiększyć efektywność energetyczną, ograniczając zużycie energii i jednocześnie poprawiając komfort użytkowników. Dodatkowo, zgodnie z aktualnymi standardami budowlanymi, wprowadzenie automatyzacji w systemach oświetleniowych staje się coraz bardziej popularną praktyką, co wpisuje się w globalne trendy oszczędności energii i zrównoważonego rozwoju.

Pytanie 32

Jakim z podanych rodzajów przewodów powinno się zasilić jednofazowy ruchomy odbiornik?

A. YDY 3×1,5 mm2
B. LGu 3×1,5 mm2
C. YDYt 3×1,5 mm2
D. OMYp 3×1,5 mm2
OMYp 3×1,5 mm2 to odpowiedni typ przewodu do zasilania jednofazowego odbiornika ruchomego, ponieważ charakteryzuje się on wysoką elastycznością oraz odpornością na uszkodzenia mechaniczne. Przewód OMYp jest stosowany głównie w instalacjach tymczasowych oraz w miejscach, gdzie przewody mogą być narażone na różne warunki atmosferyczne i mechaniczne. Zastosowanie przewodu z gumowym izolowaniem sprawia, że jest on odporny na działanie olejów, smarów oraz substancji chemicznych, co czyni go idealnym rozwiązaniem w przemyśle oraz w różnych aplikacjach budowlanych. W praktyce, przewody OMYp są stosowane w zasilaniu maszyn, urządzeń elektrycznych oraz narzędzi, które są używane w ruchu. Dodatkowo, zgodnie z normą PN-EN 50525-2-21, przewody te muszą spełniać określone wymagania dotyczące bezpieczeństwa i funkcjonalności, co podkreśla ich niezawodność w zastosowaniach wymagających mobilności.

Pytanie 33

Jaką wielkość przekroju powinien mieć przewód ochronny PE, który stanowi żyłę w wielożyłowym przewodzie, jeżeli przewody fazowe mają przekrój 16 mm2?

A. 16 mm2
B. 4,0 mm2
C. 25 mm2
D. 10 mm2
Odpowiedź 16 mm² jest poprawna, ponieważ zgodnie z normami dotyczącymi instalacji elektrycznych, zwłaszcza z normą PN-IEC 60364, przekrój przewodu ochronnego PE (przewód uziemiający) powinien być równy przekrojowi przewodów fazowych w przypadku ich równego przekroju. W tym wypadku, gdzie przewody fazowe mają przekrój 16 mm², przewód PE powinien mieć identyczny przekrój, aby zapewnić odpowiednią ochronę i minimalizować ryzyko uszkodzeń oraz zagrożeń elektrycznych. W praktyce oznacza to, że w przypadku wystąpienia zwarcia, przewód ochronny w stanie przeciążenia jest w stanie przewodzić prąd, który jest równy prądowi fazowemu, co zapewnia skuteczne zabezpieczenie przed porażeniem prądem. Stosując się do tych zasad, można też zminimalizować straty energii oraz poprawić niezawodność całego systemu elektroenergetycznego, co jest kluczowe w projektowaniu instalacji przemysłowych oraz budynków użyteczności publicznej.

Pytanie 34

Na rysunku przedstawiono oprawę oświetleniową

Ilustracja do pytania
A. lampy biurowej z odbłyśnikiem.
B. wewnętrzną do lampy sodowej.
C. lampy przenośnej warsztatowej.
D. wewnętrzną do lampy punktowej.
Oprawa oświetleniowa, która została przedstawiona na rysunku, charakteryzuje się cechami typowymi dla lamp przenośnych warsztatowych. Takie lampy są projektowane w sposób zapewniający odporność na uszkodzenia mechaniczne, co jest kluczowe w środowisku roboczym, gdzie mogą być narażone na upadki lub uderzenia. Dodatkowo, zastosowanie materiałów odpornych na wilgoć jest istotnym aspektem, który pozwala na używanie tych lamp w trudniejszych warunkach, na przykład w warsztatach lub podczas prac na zewnątrz. Kabel zasilający w tego typu lampach jest zazwyczaj wydłużony, co umożliwia elastyczne ustawienie lampy w różnych lokalizacjach. Warto zwrócić uwagę na standardy bezpieczeństwa, takie jak IP (Ingress Protection), które definiują poziom ochrony przed ciałami stałymi oraz cieczy. Dobre praktyki w zakresie użytkowania lamp przenośnych obejmują również regularne sprawdzanie stanu technicznego, co zapewnia ich długotrwałość i bezpieczeństwo użytkowania.

Pytanie 35

Który sposób połączenia zacisków gniazda wtyczkowego jednofazowegow instalacji mieszkaniowejpracującej w sieci TN-S jest prawidłowy?

Ilustracja do pytania
A. B.
B. A.
C. D.
D. C.
Odpowiedź A jest prawidłowa, ponieważ zgodnie z obowiązującymi normami, w instalacjach elektrycznych jednofazowych w systemie TN-S, układ podłączenia przewodów w gniazdach wtyczkowych jest szczegółowo określony. Przewód fazowy oznaczany jako L powinien być zawsze podłączony po lewej stronie, co zapewnia odpowiednią orientację dla użytkowników. Przewód neutralny N powinien znajdować się po prawej stronie, natomiast przewód ochronny PE umieszczany jest na górze. Taki układ minimalizuje ryzyko pomylenia przewodów i zwiększa bezpieczeństwo użytkowania urządzeń elektrycznych. W przypadku zastosowania niepoprawnego połączenia istnieje ryzyko zwarcia elektrycznego lub porażenia prądem. Dobrze zaprojektowana instalacja zgodna z normami nie tylko zapewnia bezpieczeństwo, ale także ułatwia konserwację i naprawy, ponieważ technicy mają jasność co do orientacji przewodów. Zastosowanie tych standardów jest kluczowe dla zachowania wysokiego poziomu bezpieczeństwa w instalacjach elektrycznych.

Pytanie 36

W obiekcie zasilanym napięciem 400 V (3/N/PE 50Hz) zainstalowano następujące urządzenia:
1. przepływowy podgrzewacz wody - 12 kW - obwód trójfazowy
2. zmywarka - 3,5 kW - obwód jednofazowy
3. kuchenka elektryczna - 9,5 kW - obwód trójfazowy
4. pralka automatyczna - 4,5 kW - obwód jednofazowy

Każde z urządzeń stanowi odrębny obwód w tablicy rozdzielczej. Jakie wyłączniki instalacyjne należy zastosować z odpowiednimi wartościami prądu znamionowego, według kolejności dla każdego urządzenia (w kolejności 1,2,3,4)?

A. 16 A, 20 A, 20 A, 16 A
B. 20 A, 16 A, 16 A, 20 A
C. 20 A, 16 A, 20 A, 16 A
D. 16 A, 20 A, 20 A, 16 A
Odpowiedź 20 A, 16 A, 16 A, 20 A jest poprawna, ponieważ wartości prądów znamionowych wyłączników instalacyjnych dobierane są na podstawie mocy znamionowej odbiorników oraz zastosowanej metody ochrony. Przepływowy podgrzewacz wody o mocy 12 kW w obwodzie 3-fazowym wymaga prądu wynoszącego około 20 A (12 kW / (sqrt(3) * 400 V) ≈ 17,3 A, zaokrąglając do standardowej wartości 20 A). Zmywarka o mocy 3,5 kW w obwodzie jednofazowym wymaga 16 A, co jest standardową wartością dla tego typu urządzeń. Kuchenka elektryczna o mocy 9,5 kW w obwodzie 3-fazowym również powinna być zabezpieczona wyłącznikiem o prądzie 20 A, ponieważ 9,5 kW / (sqrt(3) * 400 V) ≈ 13,7 A. Pralka automatyczna o mocy 4,5 kW w obwodzie jednofazowym również wymaga wyłącznika o prądzie 16 A, co odpowiada normom dla urządzeń AGD. Takie dobory zabezpieczeń są zgodne z praktykami określonymi w normie PN-IEC 60364, co zapewnia zarówno bezpieczeństwo, jak i odpowiednią ochronę urządzeń. Wartości te są również zgodne z typowymi zabezpieczeniami dostępnymi na rynku.

Pytanie 37

W jaki sposób zwarcie międzyzwojowe w uzwojeniu D1 – D2 wpłynie na pracę silnika, którego schemat przedstawiono na ilustracji?

Ilustracja do pytania
A. Zmniejszy się wartość prędkości obrotowej wirnika.
B. Zwiększy się wartość strumienia magnetycznego wzbudzenia.
C. Zwiększy się wartość prędkości obrotowej wirnika.
D. Zmniejszy się wartość prądu pobieranego przez silnik.
Wybór odpowiedzi dotyczących zmniejszenia wartości prądu pobieranego przez silnik lub zwiększenia wartości strumienia magnetycznego wzbudzenia jest błędny, ponieważ nie uwzględnia fundamentalnych zasad działania silników elektrycznych. W przypadku zwarcia międzyzwojowego, rezystancja uzwojenia D1 – D2 maleje, co nie tylko prowadzi do wzrostu prądu, ale także do zmniejszenia strumienia magnetycznego Φ. Wzrost wartości prądu jest spowodowany zmniejszeniem rezystancji, co z kolei może skutkować zwiększeniem prędkości obrotowej wirnika, a nie jej zmniejszeniem. Ponadto, nieprawidłowe jest myślenie, że wzrost strumienia magnetycznego wzbudzenia poprawi wydajność silnika w przypadku zwarcia. W rzeczywistości, zwarcie prowadzi do destabilizacji pracy silnika, a nie do jego poprawy. Wiele osób myli zjawisko zwarcia z poprawną regulacją parametrów silnika, co prowadzi do błędnych wniosków, że zmniejszenie prędkości obrotowej jest korzystne. W praktyce, zbyt niski strumień magnetyczny prowadzi do wzrostu prędkości, co może skutkować uszkodzeniami mechanicznymi i przegrzewaniem się silnika. Zrozumienie tych zależności jest kluczowe dla prawidłowego projektowania i eksploatacji silników elektrycznych.

Pytanie 38

Jakie narzędzia powinny być zastosowane przy trasowaniu instalacji elektrycznej w ścianach w pomieszczeniach mieszkalnych?

A. Ołówek, poziomnica, miarka taśmowa, sznurek traserski
B. Ołówek, miarka taśmowa, kleszcze monterskie, młotek
C. Poziomnica, kleszcze monterskie, zestaw wkrętaków, młotek
D. Zestaw wkrętaków, kleszcze monterskie, sznurek traserski, młotek
Każda z alternatywnych odpowiedzi zawiera narzędzia, które w pewnym zakresie mogą być pomocne w pracach budowlanych, jednak nie są one odpowiednimi wyborami do trasowania instalacji elektrycznej podtynkowej. Poziomnica i przymiar taśmowy to narzędzia, które umożliwiają precyzyjne pomiary i kontrolę poziomu, jednak w zestawie, który nie zawiera ołówka i sznurka traserskiego, brakuje kluczowych narzędzi do efektywnego trasowania. Użycie kleszczy monterskich oraz młotka, choć istotnych w innych aspektach montażu, nie jest przydatne w procesie trasowania, gdzie wymagana jest precyzja i dokładność. Wybierając zestaw narzędzi, ważne jest, aby unikać narzędzi, które nie wpisują się w specyfikę danego zadania, na przykład młotek, który w kontekście trasowania może prowadzić do uszkodzeń ścian i nieprecyzyjnych oznaczeń. Często pojawia się mylne przekonanie, że bardziej złożony zestaw narzędzi z większą ilością funkcji będzie lepszy, podczas gdy kluczem do sukcesu w trasowaniu jest prostota i precyzja. Wybierając odpowiednie narzędzia, należy kierować się ich funkcją i zastosowaniem w konkretnych zadaniach, aby zapewnić efektywność i bezpieczeństwo wykonywanych prac.

Pytanie 39

Jakie może być najczęstsze uzasadnienie nadpalenia izolacji jednego z przewodów neutralnych w listwie N rozdzielnicy w mieszkaniu?

A. Błędnie dobrana wartość nominalna wyłącznika nadprądowego
B. Zbyt duża moc urządzenia
C. Zbyt duży przekrój uszkodzonego przewodu
D. Luźne połączenie w listwie neutralnej
Poluzowane połączenie w listwie neutralnej jest najczęstszą przyczyną nadpalenia izolacji przewodów. Gdy połączenie nie jest wystarczająco mocne, pojawia się opór, co prowadzi do powstawania ciepła. Z czasem, to ciepło może spalić izolację przewodu, co jest szczególnie niebezpieczne, ponieważ może prowadzić do zwarcia lub pożaru. W praktyce, regularne sprawdzanie i dokręcanie połączeń elektrycznych jest kluczowe dla zapewnienia bezpieczeństwa instalacji. Zgodnie z wytycznymi normy PN-IEC 60364, należy zwracać szczególną uwagę na jakości wykonania połączeń, aby zminimalizować ryzyko awarii. W przypadku stwierdzenia poluzowanych połączeń, zaleca się ich niezwłoczne naprawienie oraz przegląd całej instalacji elektrycznej, aby upewnić się, że wszystkie połączenia są prawidłowo wykonane. Przykładowo, w instalacjach przemysłowych stosowanie odpowiednich narzędzi do dokręcania oraz regularne przeglądy mogą znacznie zredukować ryzyko wystąpienia problemów związanych z poluzowanymi połączeniami.

Pytanie 40

W jaki sposób i przewodem o jakim przekroju ma być wykonana trójfazowa wewnętrzna linia zasilająca (WLZ), której obciążalność prądowa wynosi 220 A?

Obciążalność prądowa długotrwała w A przewodów
o żyłach Cu w izolacji PVC ułożonych w różny sposób
Przekrój
znamionowy żył
w mm²
Instalacja wykonana
sposobami
CE
70211216
95225238
gdzie:
C – przewody układane po wierzchu, na ścianie lub suficie drewnianym
E – przewody wielożyłowe ułożone swobodnie w powietrzu lub korytku kablowym
A. Sposób E i 70 mm2
B. Sposób E i 95 mm2
C. Sposób C i 70 mm2
D. Sposób C i 95 mm2
W przypadku niepoprawnych odpowiedzi można zauważyć kilka kluczowych błędów logicznych, które mogą prowadzić do niewłaściwych wniosków. Na przykład, wybór metody C z przekrojem 95 mm², mimo że przekrój przewodu spełnia wymogi obciążalności, nie uwzględnia faktu, że sposób ułożenia ma zasadnicze znaczenie dla bezpieczeństwa i wydajności. Sposób C to układ przewodów w rurkach instalacyjnych, co ogranicza ich zdolność do odprowadzania ciepła. W rezultacie może to prowadzić do przegrzania i potencjalnych uszkodzeń instalacji. Również wybór sposobu E z mniejszym przekrojem 70 mm² jest nieadekwatny, ponieważ obciążalność tego przewodu wynosi jedynie 200 A, co nie wystarcza do obsługi wymaganej wartości 220 A. W takich przypadkach warto zwrócić uwagę na obliczenia dotyczące obciążalności prądowej przewodów, które są podstawą do projektowania prawidłowych instalacji elektrycznych. Niezastosowanie się do standardów, takich jak PN-IEC 60364, w kontekście doboru zarówno metody ułożenia, jak i przekroju przewodu, może prowadzić do awarii systemów zasilających oraz zagrożeń dla bezpieczeństwa użytkowników. Dlatego tak ważne jest, aby przed podjęciem decyzji o wyborze odpowiednich komponentów instalacji elektrycznej, dokładnie analizować wymagania oraz standardy branżowe.