Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektryk
  • Kwalifikacja: ELE.02 - Montaż, uruchamianie i konserwacja instalacji, maszyn i urządzeń elektrycznych
  • Data rozpoczęcia: 7 stycznia 2026 08:40
  • Data zakończenia: 7 stycznia 2026 08:53

Egzamin zdany!

Wynik: 28/40 punktów (70,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Jakie z wymienionych usterek w obwodzie odbiorczym instalacji elektrycznej powinno spowodować automatyczne odcięcie napięcia przez wyłącznik różnicowoprądowy?

A. Przeciążenie obwodu
B. Skok napięcia
C. Zwarcie międzyfazowe
D. Upływ prądu
Przepięcie, przeciążenie i zwarcie międzyfazowe to takie awaryjne sytuacje, które się zdarzają w instalacjach elektrycznych, ale RCD wcale się na to nie aktywuje. Przepięcie, to nic innego jak nagły wzrost napięcia, który może złamać urządzenia, ale nie zmienia różnicy prądów, a to jest kluczowe dla działania RCD. RCD nie służy do ochrony przed przepięciami, w takich sytuacjach są ograniczniki przepięć. Przeciążenie natomiast, to co się dzieje, gdy podłączamy zbyt dużo sprzętu do obwodu, co zwiększa prąd powyżej normy, ale RCD nie reaguje, bo nie wykrywa różnicy prądów w takim przypadku. Wtedy na szczęście mamy wyłączniki nadprądowe, które odcinają zasilanie przy za dużym prądzie. A jeśli chodzi o zwarcie międzyfazowe, to jest to, gdy przewody fazowe się stykają i prąd leci jak szalony, ale znów, RCD na to nie działa, bo nie ma żadnej różnicy prądów do wykrycia. Więc ważne jest, by zrozumieć, jak te wszystkie zabezpieczenia w elektryce współpracują, żeby zapewnić bezpieczeństwo, co jest zgodne z najlepszymi praktykami w tej branży.

Pytanie 2

Jakie narzędzia trzeba przygotować do wyznaczenia miejsca na zainstalowanie rozdzielnicy podtynkowej w ścianie murowanej?

A. Sznurek traserski, młotek, punktak
B. Rysik, kątownik, punktak, młotek
C. Przymiar taśmowy, poziomnica, ołówek traserski
D. Przymiar kreskowy, ołówek traserski, rysik
Poprawna odpowiedź to przymiar taśmowy, poziomnica oraz ołówek traserski. Te narzędzia są kluczowe w procesie trasowania, ponieważ zapewniają precyzję oraz dokładność wymagane przy montażu rozdzielnicy podtynkowej. Przymiar taśmowy pozwala na dokładne mierzenie odległości i wyznaczanie miejsca, gdzie rozdzielnica powinna być umiejscowiona. Poziomnica jest niezbędna do sprawdzenia, czy zamontowana rozdzielnica jest w idealnej pozycji, co ma kluczowe znaczenie dla dalszych prac instalacyjnych. Ołówek traserski umożliwia zaznaczenie punktów na ścianie, co ułatwia przeniesienie wymiarów na materiał budowlany. Standardy branżowe podkreślają znaczenie precyzyjnego pomiaru w instalacjach elektrycznych, co bezpośrednio przekłada się na bezpieczeństwo oraz funkcjonalność całego systemu. Użycie tych narzędzi w odpowiednich technikach trasowania, takich jak wyznaczanie pionów i poziomów, zapewnia, że instalacja będzie zgodna z normami budowlanymi i elektrycznymi, co jest kluczowe dla zachowania bezpieczeństwa użytkowania.

Pytanie 3

Jaki stopień ochrony powinno mieć urządzenie, które jest odporne na działanie wody zalewającej obudowę z każdej strony?

A. IPX2
B. IPX4
C. IPX3
D. IPX5
Wybierając stopień ochrony IPX4, IPX3, lub IPX2, można łatwo wprowadzić się w błąd co do faktycznej odporności urządzenia na działanie wody. IPX4 oznacza, że urządzenie jest odporne na zachlapania wodą z dowolnego kierunku, co jest niewystarczające dla sytuacji, w której woda może być skierowana na urządzenie w postaci strumienia. IPX3 z kolei zapewnia ochronę przed wodą padającą pod kątem do 60 stopni od pionu, co nie gwarantuje bezpieczeństwa, gdy woda jest kierowana bezpośrednio na urządzenie. Z kolei IPX2 oferuje ochronę tylko przed wodą padającą pod kątem do 15 stopni, co jest niewłaściwe dla urządzeń, które mogą być narażone na intensywny deszcz czy inne formy strug wodnych. Typowe błędy w myśleniu prowadzą do wyboru niewłaściwego stopnia ochrony na podstawie niewłaściwych założeń dotyczących warunków eksploatacji. Właściwe zrozumienie norm IP jest kluczowe, aby uniknąć uszkodzeń sprzętu, co może prowadzić do dużych kosztów napraw oraz zagrożeń dla bezpieczeństwa użytkowników. Dlatego zawsze należy dokładnie analizować wymagania środowiskowe przed wyborem sprzętu, a klasyfikacje IP powinny być stosowane jako punkt odniesienia dla projektowania i doboru urządzeń odpornych na działanie wody.

Pytanie 4

Który z podanych odbiorników energii elektrycznej charakteryzuje się najkorzystniejszym współczynnikiem mocy w aspekcie ekonomicznym?

A. Silnik uniwersalny
B. Piec oporowy
C. Silnik asynchroniczny
D. Wzbudnik indukcyjny
Piec oporowy jest odbiornikiem energii elektrycznej, który charakteryzuje się bardzo wysokim współczynnikiem mocy wynoszącym blisko 1. Oznacza to, że prawie cała energia elektryczna jest przekształcana w ciepło, co czyni go bardzo efektywnym urządzeniem w zastosowaniach grzewczych. W praktyce, piece oporowe są powszechnie wykorzystywane w domach i przemysłu do ogrzewania pomieszczeń, wody oraz w procesach technologicznych wymagających precyzyjnego i kontrolowanego źródła ciepła. Dzięki ich wysokiej efektywności energetycznej, użytkownicy mogą znacząco obniżyć koszty eksploatacyjne. Ponadto, ich działanie jest zgodne z normami efektywności energetycznej, co wpływa na zmniejszenie negatywnego wpływu na środowisko. Warto zwrócić uwagę, że stosowanie pieców oporowych powinno być dostosowane do konkretnego zastosowania, co może wymagać analizy kosztów oraz rozwoju systemów automatyzacji, aby maksymalnie wykorzystać ich potencjał.

Pytanie 5

Na której ilustracji przedstawiono kabel typu YAKY?

Ilustracja do pytania
A. Na ilustracji 4.
B. Na ilustracji 2.
C. Na ilustracji 3.
D. Na ilustracji 1.
Kabel typu YAKY jest szczególnym rodzajem kabla elektroenergetycznego, który charakteryzuje się żyłami aluminiowymi oraz izolacją wykonaną z polichlorku winylu (PVC). Na ilustracji 4 widać kabel z żyłami aluminiowymi, co jest kluczową cechą tego typu kabla. Kabel YAKY jest powszechnie stosowany w instalacjach elektrycznych, gdzie wymagane są wysokie parametry przewodzenia prądu oraz odporność na warunki atmosferyczne. Dzięki zastosowaniu żył aluminiowych, kabel ten jest lżejszy i tańszy niż jego miedziane odpowiedniki, co czyni go popularnym wyborem w gospodarce energetycznej. W praktyce, kable YAKY są często używane w rozdzielniach, do zasilania budynków, a także w instalacjach przesyłowych. Warto również podkreślić, że standardy branżowe, takie jak PN-EN 50525, regulują parametry techniczne dla kabli tego typu, zapewniając ich bezpieczeństwo i efektywność w eksploatacji.

Pytanie 6

Urządzenie przedstawione na zdjęciu służy do

Ilustracja do pytania
A. sprawdzania ciągłości przewodów.
B. określania kolejności faz zasilających.
C. pomiaru rezystancji uziemienia urządzenia.
D. kontroli prądu upływu.
Odpowiedzi wskazujące na sprawdzanie ciągłości przewodów, pomiar rezystancji uziemienia urządzenia czy kontrolę prądu upływu są niepoprawne, ponieważ każda z tych funkcji wymaga innych narzędzi oraz metodologii pomiarowej. Sprawdzanie ciągłości przewodów za pomocą multimetru lub testera ciągłości ma na celu zapewnienie, że przewody nie są uszkodzone i zapewniają nieprzerwaną drogę elektryczną. Natomiast pomiar rezystancji uziemienia wiąże się z użyciem specjalistycznych mierników, które są w stanie zmierzyć opór ziemi, co jest kluczowe dla bezpieczeństwa instalacji elektrycznych. Kontrola prądu upływu natomiast z reguły przeprowadzana jest za pomocą wyłączników różnicowoprądowych, które wykrywają różnice w prądzie wpływającym i wypływającym z obwodu, co jest niezbędne do ochrony przed porażeniem prądem elektrycznym. Warto zauważyć, że wszystkie te procesy, chociaż istotne, są odrębne od kwestii kolejności faz, która jest kluczowa dla prawidłowego funkcjonowania systemów zasilających. Prawidłowe zrozumienie funkcji testerów i ich zastosowania w różnych kontekstach jest kluczowe dla prawidłowego wykonywania prac elektrycznych oraz zapewnienia bezpieczeństwa użytkowników.

Pytanie 7

Który element przedstawiono na ilustracji?

Ilustracja do pytania
A. Bezpiecznik aparatowy.
B. Wkładkę topikową bezpiecznika mocy.
C. Izolator przepustowy wysokiego napięcia.
D. Izolator wsporczy.
Wybór innych odpowiedzi może wynikać z nieporozumień dotyczących funkcji i budowy różnych elementów zabezpieczeń elektrycznych. Izolator przepustowy wysokiego napięcia to komponent stosowany do przeprowadzania przewodów przez przegrody, takie jak ściany czy dachy, i nie ma żadnego zastosowania w kontekście zabezpieczeń przed przeciążeniami. Jego konstrukcja różni się znacznie od wkładki topikowej, która jest przeznaczona do ochrony obwodów. Bezpiecznik aparatowy, chociaż również ma na celu ochronę obwodów, jest innego typu urządzeniem – ma zazwyczaj bardziej złożoną budowę i może obejmować mechanizmy ręcznego resetowania, co czyni go odmiennego od prostoty budowy wkładki topikowej. Izolator wsporczy, będący elementem wspierającym przewody w stacjach elektroenergetycznych, również nie ma żadnego związku z funkcją zabezpieczającą obwody przed przeciążeniem. Te różnice w przeznaczeniu i konstrukcji mogą prowadzić do błędnych wniosków i wyboru niewłaściwych odpowiedzi, co podkreśla znaczenie znajomości właściwości oraz zastosowań poszczególnych komponentów w systemach elektrycznych. Warto zauważyć, że gruntowna wiedza na temat elementów zabezpieczających jest kluczowa dla zapewnienia bezpieczeństwa i efektywności w pracy z instalacjami elektrycznymi.

Pytanie 8

Jakie działania oraz w jakiej sekwencji powinny zostać przeprowadzone przy wymianie uszkodzonego fragmentu przewodu w instalacji umieszczonej w rurach peszla?

A. Odłączenie zasilania, rozkuwanie tynku w miejscu uszkodzenia, wymiana rury peszla z przewodami, włączenie napięcia, sprawdzenie funkcjonowania instalacji
B. Odłączenie zasilania, otwarcie puszek instalacyjnych, odkręcenie końców uszkodzonego przewodu, wymiana uszkodzonego odcinka przewodu, połączenie wymienionego przewodu w puszkach, zamknięcie puszek, włączenie zasilania, sprawdzenie poprawności działania instalacji
C. Odłączenie napięcia, rozkuwanie tynku, poprowadzenie nowej rury peszla z przewodami, uzupełnienie tynku, włączenie napięcia
D. Pomiar rezystancji przewodu, odłączenie napięcia, wymiana uszkodzonego przewodu, włączenie zasilania, sprawdzenie działania instalacji
Wymiana uszkodzonego odcinka przewodu w instalacji elektrycznej to poważna sprawa, więc trzeba to robić według ustalonej procedury, żeby wszystko działało jak należy i było bezpiecznie. Na początek odłączamy napięcie, bo to kluczowe, żeby nie dostać porażenia. Potem otwieramy puszki instalacyjne, żeby dostać się do przewodów. Kolejno odkręcamy końcówki uszkodzonego przewodu, a następnie zakładamy nowy. Ważne, żeby dobrze połączyć ten nowy przewód z innymi, które są w puszkach, żeby obwód działał bez problemu. Na koniec zamykamy puszki, żeby chronić przewody przed uszkodzeniami. Po wszystkim, włączamy napięcie i robimy test, żeby sprawdzić, czy wszystko działa. Taka procedura to co najmniej standard w branży, a jak wiadomo, bezpieczeństwo i efektywność to podstawa.

Pytanie 9

Jakie zakresy powinien mieć multimetr woltomierza, wykorzystywanego do konserwacji systemu sterującego bramą garażową, jeśli brama jest napędzana silnikami prądu stałego, zasilanymi napięciem 24 V, a system sterujący otrzymuje zasilanie z sieci 230 V?

A. DC 500 V i AC 50 V
B. AC 500 V i DC 50 V
C. DC 500 V i AC 100 V
D. AC 500 V i DC 10 V
Wybór zakresów AC 500 V i DC 50 V dla multimetru używanego do prac konserwacyjnych w systemie sterowania bramą garażową jest uzasadniony ze względu na specyfikę zasilania urządzeń. Zasilanie silników prądu stałego o napięciu 24 V wymaga, by woltomierz mierzył napięcia stałe w zakresie do 50 V, co jest wystarczające dla takich zastosowań. Z kolei, zasilanie układu sterowania z sieci 230 V wymaga pomiaru napięcia zmiennego, dlatego górny zakres 500 V w AC jest konieczny dla zapewnienia bezpieczeństwa i dokładności pomiarów. W praktyce, tego typu pomiar może być użyty do diagnozowania i konserwacji obwodów sterujących, co jest kluczowe w zapewnieniu ich prawidłowej pracy. Używając multimetru o odpowiednich zakresach, technicy mogą swobodnie sprawdzać zarówno napięcia niskie, jak i wysokie bez ryzyka uszkodzenia urządzenia, co jest zgodne z zasadami dobrych praktyk branżowych oraz normami bezpieczeństwa.

Pytanie 10

Czy na obudowie urządzenia elektrycznego oznaczenie IP00 wskazuje na

A. zerową klasę ochrony przed porażeniem
B. brak zabezpieczenia przed kurzem i wilgocią
C. stosowanie separacji ochronnej
D. najwyższy poziom ochronności
Oznaczenie IP00 zgodnie z normą IEC 60529 wskazuje na brak ochrony przed pyłem oraz wilgocią. Pierwsza cyfra '0' oznacza, że urządzenie nie oferuje żadnej ochrony przed wnikaniem ciał stałych, co może prowadzić do uszkodzeń mechanicznych lub zanieczyszczenia wewnętrznych komponentów. Druga cyfra również '0' informuje użytkownika, że urządzenie nie jest odporne na działanie cieczy. W praktyce oznacza to, że takie urządzenia powinny być używane wyłącznie w suchych i czystych środowiskach, gdzie nie ma ryzyka kontaktu z wodą lub pyłem. Przykładem mogą być niektóre urządzenia biurowe, które są projektowane do pracy w kontrolowanych warunkach. Zastosowanie tych informacji w praktyce jest kluczowe dla zapewnienia długowieczności i bezpieczeństwa użytkowania urządzeń elektrycznych, dlatego zaleca się, aby przed zakupem sprawdzić stopień ochrony IP urządzenia, aby dobrać je odpowiednio do warunków pracy.

Pytanie 11

W celu naprawy kabla przyłączeniowego, który został uszkodzony podczas prac ziemnych i został ułożony bez zapasu, potrzebne są

A. mufa rozgałęźna oraz odcinek kabla
B. dwie mufy kablowe i odcinek kabla
C. odcinek kabla zakończony głowicami
D. odcinek kabla oraz zgrzewarka
Odpowiedź, która wskazuje na użycie dwóch muf kablowych i odcinka kabla, jest prawidłowa, ponieważ podczas naprawy uszkodzonego kabla przyłączeniowego, kluczowe jest zapewnienie odpowiedniego połączenia i izolacji. Mufy kablowe pozwalają na skuteczne połączenie dwóch odcinków kabla, co jest szczególnie istotne w przypadku, gdy uszkodzenie występuje w obrębie zasięgu istniejącego kabla. Dwie mufy są potrzebne, aby połączyć nowy odcinek kabla z istniejącymi końcami kabla, co zapewnia, że cała instalacja będzie pracować prawidłowo. Praktycznym przykładem zastosowania tego rozwiązania może być sytuacja, w której kabel został uszkodzony przez maszynę budowlaną. W takim przypadku profesjonalne podejście obejmuje nie tylko wymianę uszkodzonego odcinka, ale również użycie muf w celu zapewnienia wodoodporności i ochrony przed uszkodzeniami mechanicznymi. Zgodnie z normami IEC 60502 oraz PN-EN 50393, stosowanie muf kablowych w połączeniach kablowych jest standardową praktyką, co dodatkowo potwierdza słuszność tego rozwiązania.

Pytanie 12

Ile wynosi skuteczność świetlna źródła światła o etykiecie przedstawionej na ilustracji?

Ilustracja do pytania
A. 14,5 lm/W
B. 206,9 lm/W
C. 1 180,0 lm/W
D. 81,4 lm/W
Skuteczność świetlna to mega ważny parametr. Mówi nam, jak dobrze żarówka zamienia energię elektryczną na światło. W tym przypadku widzimy, że strumień świetlny to 1180 lumenów, a moc to 14,5 W. Więc żeby obliczyć skuteczność świetlną, dzielimy strumień przez moc, co daje nam 81,4 lm/W. To pokazuje, że ta żarówka jest całkiem oszczędna, co świetnie wpisuje się w to, co teraz modne w branży oświetleniowej - chodzi o oszczędzanie energii! Generalnie skuteczność świetlna powyżej 80 lm/W to bardzo dobry wynik, zwłaszcza dla LEDów i świetlówek. Fajnie jest to wiedzieć, bo to pomaga nie tylko projektantom, ale też nam, zwykłym ludziom, w wyborze lepszych, bardziej ekologicznych produktów.

Pytanie 13

Przyporządkuj rodzaje trzonków świetlówek kompaktowych, w kolejności jak na rysunku.

Ilustracja do pytania
A. B.
B. C.
C. D.
D. A.
Odpowiedź B. jest poprawna, ponieważ zgodnie z przedstawionym rysunkiem, trzonki świetlówek kompaktowych są uporządkowane w oparciu o ich standardy montażowe. Trzonek B22d, który znajduje się w świetlówce nr 2, jest powszechnie stosowany w oświetleniu domowym, ze względu na łatwość w instalacji i szeroką dostępność. Użytkownicy często spotykają się z tym rodzajem trzonka w żarówkach przeznaczonych do lamp sufitowych oraz lamp stołowych. W praktyce, znajomość typów trzonków świetlówek jest kluczowa podczas zakupu nowych źródeł światła, ponieważ błędny wybór może prowadzić do problemów z kompatybilnością. Warto zaznaczyć, że różne trzonki mają różne zastosowania, co wpływa na efektywność i bezpieczeństwo użycia. Trzonek E14, E27 oraz GU10 również mają swoje specyficzne przeznaczenie i zastosowania, dlatego ważne jest, aby zrozumieć ich różnice oraz odpowiednio je dobierać, aby zapewnić optymalne warunki oświetleniowe w różnych przestrzeniach.

Pytanie 14

Który z przedstawionych na rysunkach przewodów należy użyć do montażu obwodów zasilających jednofazowej instalacji elektrycznej w układzie TN-S?

Ilustracja do pytania
A. D.
B. B.
C. C.
D. A.
Odpowiedź C jest poprawna, ponieważ przewód, który przedstawia, spełnia wymogi dotyczące kolorów przewodów w instalacjach elektrycznych w układzie TN-S. Zgodnie z normą PN-HD 308 S2:2009, kolor brązowy jest przeznaczony dla przewodów fazowych (L), kolor niebieski dla przewodów neutralnych (N), a kolor żółto-zielony dla przewodów ochronnych (PE). Przewody te są stosowane w systemach zasilania jednofazowego, co jest istotne dla zapewnienia bezpieczeństwa użytkowania i poprawności działania instalacji. W kontekście praktycznym, użycie przewodu zgodnego z tymi normami pozwala na uniknięcie błędów przy podłączaniu urządzeń elektrycznych, co może prowadzić do uszkodzeń sprzętu lub zagrożenia dla życia i zdrowia użytkowników. W przemyśle elektrycznym znajomość i stosowanie tych standardów jest kluczowe dla zapewnienia zgodności z przepisami oraz dla bezpieczeństwa instalacji.

Pytanie 15

Jaką liczbę klawiszy oraz zacisków ma typowy pojedynczy łącznik schodowy?

A. Jeden klawisz i cztery zaciski
B. Dwa klawisze i trzy zaciski
C. Jeden klawisz i trzy zaciski
D. Dwa klawisze i cztery zaciski
Klasyczny pojedynczy łącznik schodowy to urządzenie elektryczne, które służy do włączania i wyłączania oświetlenia w pomieszczeniach. Posiada jeden klawisz, który umożliwia obsługę światła oraz trzy zaciski. Zaciski te są niezbędne do prawidłowego podłączenia łącznika w obwodzie elektrycznym. W typowej konfiguracji, jeden z zacisków jest podłączony do źródła zasilania, a dwa pozostałe do obwodów oświetleniowych, co umożliwia kontrolę oświetlenia z jednego miejsca. Przykładowe zastosowanie to montaż łącznika w korytarzu, gdzie można włączać i wyłączać światło centralne. Zgodnie z normą PN-IEC 60669, stosowanie łączników schodowych powinno zapewniać bezpieczeństwo oraz wygodę użytkowania. Właściwe zrozumienie budowy łącznika pozwala na jego efektywne wykorzystanie w instalacjach elektrycznych, co jest kluczowe dla zapewnienia prawidłowego działania systemów oświetleniowych.

Pytanie 16

Który typ łącznika instalacyjnego przedstawiony jest na schemacie?

Ilustracja do pytania
A. Dwubiegunowy.
B. Schodowy.
C. Krzyżowy.
D. Świecznikowy.
Wybrana odpowiedź nie jest poprawna, ponieważ prezentowany schemat dotyczy łącznika świecznikowego, a nie innych typów łączników instalacyjnych. W przypadku łącznika dwubiegunowego, jego podstawowym zadaniem jest włączanie i wyłączanie jednego obwodu, a nie dwóch niezależnych jak w przypadku łącznika świecznikowego. Często mylone z łącznikiem świecznikowym są łączniki schodowe, które również nie pełnią tej samej funkcji, ponieważ ich zadaniem jest umożliwienie włączania i wyłączania jednego źródła światła z dwóch różnych miejsc. Istnieje również łącznik krzyżowy, który używany jest w skomplikowanych układach oświetleniowych, gdzie wymagana jest kontrola z trzech lub więcej miejsc, jednak nie spełnia on funkcji łącznika świecznikowego. Typowe błędy w rozumieniu tych urządzeń wynikają najczęściej z braku znajomości ich zastosowania i funkcji w praktyce. Kluczowe jest rozróżnienie, że łączniki świecznikowe umożliwiają niezależne sterowanie dwoma obwodami, co jest nieosiągalne dla pozostałych typów łączników. Ważne jest także, aby w przyszłości zwracać uwagę na szczegóły schematów, które mogą wskazywać na ich rzeczywistą funkcję, co pomoże uniknąć takich pomyłek.

Pytanie 17

Wskaż symbol graficzny monostabilnego łącznika przyciskowego z zestykiem NO.

Ilustracja do pytania
A. Symbol 2.
B. Symbol 4.
C. Symbol 3.
D. Symbol 1.
Monostabilny łącznik przyciskowy z zestykiem NO (normalnie otwartym) jest kluczowym elementem w wielu systemach elektrycznych i automatyce. Symbol 1 przedstawia ten łącznik, ilustrując otwarty styk, który zamyka się po naciśnięciu przycisku, co jest zgodne z zasadami oznaczania w normach IEC 60617. W praktyce, tego rodzaju łączniki są powszechnie używane w urządzeniach, które wymagają chwilowego włączenia obwodu, jak na przykład w urządzeniach sterujących, alarmach czy systemach oświetleniowych. Dzięki swojej konstrukcji, monostabilne przyciski są bardziej energooszczędne, ponieważ nie wymagają stałego zasilania do utrzymania stanu włączenia. Zrozumienie tego symbolu i funkcji jest kluczowe dla właściwego projektowania i implementacji systemów elektrycznych. Używanie poprawnych symboli graficznych w dokumentacji technicznej jest istotne dla komunikacji między inżynierami i technikami, co wpływa na jakość i bezpieczeństwo instalacji elektrycznych.

Pytanie 18

Oprawa oświetleniowa przedstawiona na zdjęciu ma być zamontowana za pomocą wkrętów i dybli, pokazanych na zdjęciu. Jakich narzędzi należy użyć do tego montażu?

Ilustracja do pytania
A. Wiertarki, wkrętaka płaskiego, klucza nasadowego, noża monterskiego, ściągacza izolacji.
B. Wiertarki, wkrętaka płaskiego, klucza płaskiego, noża monterskiego, ściągacza izolacji.
C. Wkrętaka płaskiego, wkrętaka PH, klucza nasadowego, wiertarki, noża monterskiego.
D. Wkrętaka płaskiego, wkrętaka PH, wkrętaka bit M10, ściągacza izolacji.
No, wybrałeś dobrą odpowiedź! Do montażu oprawy oświetleniowej potrzebujesz paru specjalnych narzędzi. Wiertarka jest mega ważna, bo to ona pozwala nawiercić otwory w ścianie, żeby wsadzić dyble. Klucz nasadowy przyda się do wkręcania śrub, a to ważne, żeby oprawa była stabilna. Wkrętak płaski może być użyty do drobnych poprawek, żeby wszystko ładnie pasowało. Nóż monterski z kolei dobrze posłuży do przygotowania przewodów, a ściągacz izolacji to konieczność, by pozbyć się izolacji z końców, bo musimy je dobrze podłączyć. Jak znasz te narzędzia i wiesz, do czego służą, to już jesteś na dobrej drodze w elektrotechnice, a to zwiększa bezpieczeństwo i jakość naszej pracy.

Pytanie 19

Widoczny zanik w obwodzie instalacji elektrycznej może zapewnić

A. wyłącznik instalacyjny płaski
B. ochronnik przeciwprzepięciowy
C. bezpiecznik instalacyjny
D. wyłącznik różnicowoprądowy
Wyłącznik instalacyjny płaski, choć pełni ważną funkcję w instalacji elektrycznej, nie zapewnia widocznej przerwy w obwodzie. Jego zadaniem jest włączanie oraz wyłączanie obwodu, ale nie zabezpiecza go przed przeciążeniem ani zwarciem. Ochronnik przeciwprzepięciowy, z drugiej strony, ma na celu ochronę urządzeń przed nagłymi wzrostami napięcia, ale również nie przerywa obwodu w przypadku zagrożenia. Natomiast wyłącznik różnicowoprądowy służy do ochrony przed porażeniem prądem elektrycznym poprzez wykrywanie różnic w prądzie płynącym do i od urządzenia, lecz także nie oferuje funkcji widocznej przerwy w obwodzie w kontekście zabezpieczeń przed przeciążeniem. Użytkownicy często mylą te elementy, ponieważ nie dostrzegają różnicy między ich funkcjami. Kluczowe jest zrozumienie, że tylko bezpiecznik instalacyjny, działając na zasadzie przerwania obwodu w momencie wystąpienia anomalii w przepływie prądu, gwarantuje bezpieczeństwo w przypadku awarii. W niektórych sytuacjach, wybór niewłaściwego urządzenia zabezpieczającego może prowadzić do poważnych konsekwencji, dlatego znajomość ról poszczególnych elementów instalacji elektrycznych jest niezbędna dla zapewnienia ich prawidłowego funkcjonowania.

Pytanie 20

Który z urządzeń umożliwia bezpośredni pomiar cos 9?

A. Omomierz
B. Fazomierz
C. Watomierz
D. Waromierz
Watomierz, omomierz i waromierz to przyrządy, które pełnią różne funkcje, ale nie są odpowiednie do bezpośredniego pomiaru cos φ. Watomierz mierzy moc elektryczną, co jest istotne w kontekście zużycia energii, ale nie informuje nas o kącie fazowym. Zrozumienie tego narzędzia jest kluczowe, jednak nie można go używać do oceny współczynnika mocy, ponieważ wymaga to pomiaru zarówno prądu, jak i napięcia, a także ich faz. Omomierz, z kolei, służy do pomiaru oporu, co w przypadku prądów zmiennych jest niewłaściwe, ponieważ nie uwzględnia on aspektu fazowego. Użycie omomierza w kontekście pomiaru cos φ może prowadzić do mylnych wniosków i błędów w ocenie stanu obwodu. Waromierz, który jest narzędziem do pomiaru energii w obwodach prądu zmiennego, także nie dostarcza informacji o fazie, co czyni go nieprzydatnym w tym kontekście. Wielu użytkowników może myśleć, że wystarcza pomiar mocy lub oporu, jednak te podejścia pomijają kluczowy aspekt, jakim jest kąt fazowy, co jest fundamentalne dla zrozumienia efektywności energetycznej. W praktyce, nieznajomość różnicy między tymi przyrządami a fazomierzem może prowadzić do poważnych problemów w diagnostyce i zarządzaniu systemami elektrycznymi.

Pytanie 21

Na którym rysunku przedstawiono źródło światła z trzonkiem typu B?

Ilustracja do pytania
A. C.
B. D.
C. B.
D. A.
Trzonek typu B, znany również jako trzonek baionetowy, jest istotnym elementem w branży oświetleniowej, szczególnie w kontekście lamp i żarówek. Wybór źródła światła z trzonkiem baionetowym, tak jak żarówka przedstawiona na zdjęciu oznaczonym literą A, jest uzasadniony jego zastosowaniem w różnych systemach oświetleniowych, które wymagają stabilnego i pewnego połączenia. Dwa równoległe styki na trzonku B są kluczowe dla efektywnego i bezpiecznego działania żarówki w oprawach oświetleniowych. Trzonek typu B jest często stosowany w zastosowaniach profesjonalnych, takich jak oświetlenie sceniczne, gdzie niezawodność i łatwość wymiany źródła światła są kluczowe. Dodatkowo, zgodność z międzynarodowymi standardami, takimi jak IEC (Międzynarodowa Komisja Elektrotechniczna), zapewnia, że użytkownicy mogą korzystać z tych produktów w sposób bezpieczny i efektywny. Zrozumienie różnic między różnymi typami trzonków pomaga nie tylko w wyborze odpowiednich źródeł światła, ale również w zapewnieniu ich prawidłowego działania i bezpieczeństwa w codziennym użytkowaniu.

Pytanie 22

Na którym rysunku przedstawiono prawidłowy, zgodny z zasadami BHP sposób wykonania połączenia przewodu z żyłą w postaci drutu w zacisku śrubowym?

Ilustracja do pytania
A. A.
B. D.
C. C.
D. B.
Prawidłowe wykonanie połączenia przewodu z żyłą w postaci drutu w zacisku śrubowym jest kluczowe dla zapewnienia bezpieczeństwa i niezawodności instalacji elektrycznych. Na rysunku B, drut jest odpowiednio zagięty i umieszczony pod główką śruby, co pozwala na skuteczne zaciskanie i zapobiega jego wypadnięciu. W praktyce, ważne jest, aby drut był zagięty w odpowiedni sposób, co zapewnia pełne przyleganie do powierzchni styku, co z kolei minimalizuje ryzyko powstawania iskrzenia oraz przegrzewania połączenia. Zgodnie z normami PN-IEC 60947-7-1, zaleca się, aby połączenia były wykonywane w sposób, który zapewnia ich trwałość oraz odporność na wibracje. Dobrze wykonane połączenie zwiększa efektywność przesyłania energii elektrycznej oraz zmniejsza ryzyko awarii, co jest kluczowe w kontekście użytkowania złożonych systemów elektrycznych.

Pytanie 23

Zgodnie z aktualnymi przepisami prawa budowlanego, w nowych budynkach konieczne jest montowanie gniazdek z zabezpieczeniami.

A. w sypialniach.
B. we wszystkich pomieszczeniach.
C. w łazienkach.
D. w holach.
Odpowiedź 'w łazienkach' jest poprawna, ponieważ zgodnie z obowiązującymi przepisami prawa budowlanego oraz normami bezpieczeństwa, w łazienkach powinny być instalowane gniazda z kołkami ochronnymi. Gniazda te mają na celu zwiększenie bezpieczeństwa użytkowników poprzez minimalizację ryzyka porażenia prądem elektrycznym, co jest szczególnie istotne w pomieszczeniach narażonych na wilgoć. Właściwe zastosowanie takich gniazd w łazienkach jest zgodne z normą PN-IEC 60364-7-701, która reguluje wymagania dotyczące instalacji elektrycznych w pomieszczeniach mokrych. Praktycznie oznacza to, że wszelkie urządzenia elektryczne, które mogą być używane w łazienkach, powinny być podłączone do gniazd z zabezpieczeniem przeciwporażeniowym, co znacznie podnosi poziom bezpieczeństwa użytkowników. Na przykład, podłączenie pralki czy suszarki do gniazd z kołkami ochronnymi jest kluczowe, aby zapewnić pełne bezpieczeństwo w codziennym użytkowaniu. W związku z tym, projektując nowe budynki, warto stosować się do tych wymogów, aby chronić użytkowników przed potencjalnymi zagrożeniami elektrycznymi.

Pytanie 24

Którą klasę ochronności posiada oprawa oświetleniowa opatrzona przedstawionym symbolem graficznym?

Ilustracja do pytania
A. 0
B. III
C. I
D. II
Oprawa oświetleniowa oznaczona symbolem klasy ochronności I zapewnia wysoki poziom bezpieczeństwa w użytkowaniu. Klasa ta charakteryzuje się posiadaniem podstawowej izolacji oraz dodatkowym przewodem ochronnym, co pozwala na skuteczne odprowadzenie ewentualnych prądów upływowych do ziemi. Dzięki temu, w przypadku uszkodzenia izolacji, metalowe elementy oprawy nie stają się źródłem zagrożenia dla użytkowników. Przykładem zastosowania tej klasy są oprawy stosowane w miejscach narażonych na wilgoć, takich jak łazienki czy zewnętrzne oświetlenie ogrodowe. Zgodnie z normami PN-EN 60598-1, urządzenia oznaczone klasą I muszą być również regularnie kontrolowane pod kątem stanu przewodu ochronnego oraz integralności izolacji. Takie działania pomagają w utrzymaniu bezpieczeństwa i zgodności z przepisami BHP, co jest kluczowe w każdej instalacji elektrycznej.

Pytanie 25

Elementy którego silnika elektrycznego przedstawiono na rysunku?

Ilustracja do pytania
A. Jednofazowego z kondensatorem pracy.
B. Komutatorowego prądu stałego.
C. Indukcyjnego klatkowego.
D. Indukcyjnego pierścieniowego.
Wybór nieprawidłowych odpowiedzi wskazuje na pewne nieporozumienia dotyczące różnych typów silników elektrycznych i ich konstrukcji. Silnik indukcyjny pierścieniowy to konstrukcja, która wykorzystuje wirnik z pierścieniami, co jest charakterystyczne dla silników o mocy dużej, używanych głównie w aplikacjach przemysłowych, gdzie wymagana jest wysoka moc startowa. Typowe zastosowanie to napędy dużych maszyn, gdzie istotne są parametry takie jak moment obrotowy. Z kolei silnik komutatorowy prądu stałego charakteryzuje się innym sposobem przekształcania energii - wykorzystuje komutatory do zmiany kierunku prądu w uzwojeniach wirnika, co sprawia, że jest bardziej skomplikowany konstrukcyjnie i wymaga więcej konserwacji. Silniki jednofazowe z kondensatorem pracy używane są głównie w domowych zastosowaniach, takich jak małe pompy czy wentylatory, ale ich budowa i zasada działania znacząco różnią się od silników indukcyjnych klatkowych. Typowe błędy myślowe to mylenie zastosowania tych silników oraz nieodpowiednie przypisywanie ich cech do danej konstrukcji. Wiedza o różnicach między tymi typami silników jest kluczowa dla efektywnego doboru odpowiedniego silnika do konkretnej aplikacji w przemyśle czy gospodarstwie domowym.

Pytanie 26

Jakie czynności powinny być przeprowadzone po serwisie silnika elektrycznego?

A. Pomiar rezystancji izolacji i próbne uruchomienie
B. Sprawdzenie układów sterowania i sygnalizacji
C. Impregnację uzwojeń i wyważenie wirnika
D. Sprawdzenie układów rozruchowych i regulacyjnych
Pomiar rezystancji izolacji oraz wykonanie próbnego uruchomienia silnika elektrycznego to kluczowe czynności po jego konserwacji. Rezystancja izolacji jest istotnym wskaźnikiem stanu izolacji uzwojeń silnika; jej wysoka wartość sygnalizuje dobrą izolację, co jest niezbędne do zapewnienia bezpieczeństwa eksploatacji. Standardy takie jak IEC 60034-1 zalecają, aby rezystancja izolacji była co najmniej 1 MΩ na każdy kV napięcia roboczego, co chroni przed przebiciem i zwarciem. Próbne uruchomienie pozwala na ocenę rzeczywistej pracy silnika, w tym jego momentu obrotowego, prędkości i stabilności działania. W praktyce, te czynności pozwalają na wczesne wykrycie potencjalnych usterek, co może zapobiec poważnym awariom i zwiększyć trwałość urządzenia. Regularne pomiary izolacji i testy operacyjne są zgodne z najlepszymi praktykami w branży, co przekłada się na wydajność i bezpieczeństwo operacyjne.

Pytanie 27

Na zdjęciu przedstawiono

Ilustracja do pytania
A. wyłącznik.
B. odłącznik.
C. rozłącznik.
D. bezpiecznik.
Ten rozłącznik, co widać na zdjęciu, to naprawdę ważny element w elektroenergetyce. Jego główną rolą jest umożliwienie bezpiecznego odłączania obwodów, tak żeby fachowcy mogli spokojnie przeprowadzić konserwację albo naprawy. Często spotyka się je w stacjach transformatorowych czy rozdzielniach, bo czasami trzeba odciąć zasilanie w określonych warunkach. Warto wiedzieć, że w przeciwieństwie do wyłączników, rozłączniki nie są stworzone do pracy pod obciążeniem, więc ich użycie jest mocno związane z zasadami BHP. Przed jakimikolwiek pracami, technicy najpierw odłączają obwody, co jest zgodne z tym, co się powinno robić. Rozumienie tego, jak funkcjonują i gdzie się stosuje rozłączniki, jest kluczowe dla każdego, kto chce być dobrym specjalistą w elektrotechnice. Bezpieczeństwo i efektywność to podstawa w tej branży.

Pytanie 28

Który element rozdzielnicy przedstawiono na ilustracji?

Ilustracja do pytania
A. Przekaźnik czasowy.
B. Lampkę sygnalizacyjną trójfazową.
C. Czujnik zaniku fazy.
D. Regulator temperatury.
Lampka sygnalizacyjna trójfazowa, przedstawiona na ilustracji, jest kluczowym elementem w każdej rozdzielnicy elektrycznej. Jej główną funkcją jest wizualna sygnalizacja obecności napięcia w trzech fazach instalacji. Dzięki zastosowaniu kilku diod LED lub żarówek, użytkownik może szybko zidentyfikować, czy wszystkie fazy są pod napięciem. To istotne w kontekście zapewnienia stabilności i bezpieczeństwa działania urządzeń trójfazowych, takich jak silniki elektryczne czy maszyny przemysłowe. W przypadku braku napięcia w którejkolwiek z faz, zdradza to problem, który może prowadzić do uszkodzeń sprzętu lub przestojów w produkcji. Dobre praktyki w zakresie instalacji elektrycznych zalecają umieszczanie lamp sygnalizacyjnych w widocznych miejscach, co umożliwia szybkie reagowanie na ewentualne awarie. Ważne jest także, aby lampki były zgodne z normami bezpieczeństwa i odporne na warunki panujące w danym środowisku pracy.

Pytanie 29

Przewód, który jest oznaczony symbolem SMYp, ma żyły

A. jednodrutowe
B. sektorowe
C. wielodrutowe
D. płaskie
Przewód oznaczony jako SMYp to typowy przewód elektryczny, który ma w sobie wielodrutowe żyły zrobione z miedzi. Dzięki tym wielodrutowym żyłom, przewód jest elastyczny, co jest naprawdę ważne, zwłaszcza tam, gdzie przewody muszą się ruszać lub zakręcać. Fajnie, że te żyły poprawiają odporność na przeciążenia i przewodnictwo elektryczne, bo to ma duże znaczenie, gdy zasilamy różne urządzenia. W praktyce, przewody tego typu bardzo często spotyka się w instalacjach zarówno w domach, jak i w przemyśle. Ich właściwości są zgodne z normami, takimi jak PN-EN 60228, które mówią, jak klasyfikować żyły w przewodach. Co istotne, przewody SMYp są też odporne na wilgoć i wysokie temperatury, co sprawia, że można je stosować w trudnych warunkach. Zauważ, że te żyły mają większą powierzchnię przekroju, co zmniejsza straty energii podczas przesyłu prądu. To jest naprawdę ważne w dzisiejszym świecie, gdzie efektywność energetyczna ma znaczenie.

Pytanie 30

Do wykonywania której czynności przeznaczone jest narzędzie przedstawione na rysunku?

Ilustracja do pytania
A. Odizolowywania żył przewodów.
B. Mocowania przewodów wtynkowych do ściany.
C. Przecinania karbowanych rur winidurowych.
D. Zaciskania tulejek na końcówkach przewodów.
Narzędzie przedstawione na zdjęciu to automatyczne szczypce do ściągania izolacji, które służą do odizolowywania żył przewodów elektrycznych. Dzięki zastosowaniu tego narzędzia, proces odizolowywania jest nie tylko szybszy, ale także bardziej precyzyjny, co minimalizuje ryzyko uszkodzenia samego przewodu. W praktyce narzędzie to jest niezwykle przydatne w pracach związanych z instalacjami elektrycznymi, gdzie dokładność i bezpieczeństwo są kluczowe. Używając szczypiec do ściągania izolacji, elektrycy mogą skutecznie przygotować przewody do podłączeń, co jest szczególnie ważne w kontekście standardów bezpieczeństwa takich jak normy IEC 60364, które określają wymagania dla instalacji elektrycznych niskiego napięcia. Dobre praktyki w branży zalecają również, aby zawsze używać odpowiednich narzędzi dla konkretnego zadania, co nie tylko zwiększa efektywność pracy, ale także zapewnia bezpieczeństwo operacji. Narzędzie to jest zaprojektowane tak, aby dostosowywać się do różnych średnic przewodów, co czyni je uniwersalnym rozwiązaniem dla elektryków.

Pytanie 31

Błędne podłączenie przewodu PE zamiast N na wejściu i wyjściu wyłącznika różnicowoprądowego spowoduje

A. niemożność załączenia wyłącznika pod obciążeniem
B. brak możliwości zadziałania załączonego wyłącznika
C. prawidłowe działanie wyłącznika
D. działanie wyłącznika przy znacznie mniejszych prądach upływu niż znamionowy
W przypadku niewłaściwego podłączenia przewodu PE zamiast N, pojawiają się różne nieporozumienia dotyczące funkcji i działania wyłącznika różnicowoprądowego. Wiele osób może błędnie sądzić, że takie podłączenie nie wpłynie na działanie urządzenia, jednak jest to dalekie od prawdy. Wyłącznik różnicowoprądowy działa na zasadzie porównywania prądów w przewodach fazowym i neutralnym, a jego funkcją jest zabezpieczenie użytkowników przed porażeniem prądem oraz uszkodzeniem urządzeń. Podłączenie PE zamiast N spowoduje, że wyłącznik nie będzie w stanie prawidłowo monitorować różnic prądowych, co jest niezbędne do jego działania. W związku z tym, pojawi się sytuacja, w której wyłącznik nie zadziała w przypadku wystąpienia prądu upływu, co zwiększa ryzyko porażenia prądem. Ponadto, istnieje przekonanie, że wyłącznik będzie działał przy mniejszych prądach upływu, ale to również jest błędne, ponieważ z powodu braku właściwego podłączenia, nie będzie on mógł zareagować w żadnej sytuacji. Takie nieprawidłowe założenia mogą prowadzić do niebezpiecznych konsekwencji, które mogą zagrażać zdrowiu i życiu użytkowników. Ostatecznie, kluczowe jest, aby stosować się do standardów dotyczących instalacji elektrycznych oraz przestrzegać zasad bezpieczeństwa, aby uniknąć tego typu pomyłek.

Pytanie 32

Jaki rodzaj łącznika zastosowany jest w obwodzie przedstawionym na schemacie?

Ilustracja do pytania
A. Żaluzjowy.
B. Dwubiegunowy.
C. Schodowy.
D. Świecznikowy.
Wybór innych rodzajów łączników, takich jak świecznikowy, schodowy czy dwubiegunowy, jest błędny z kilku powodów. Łącznik świecznikowy jest używany do załączania i wyłączania obwodu oświetleniowego i nie ma zastosowania w sterowaniu silnikami. Jego funkcja ogranicza się do prostego włączania światła, co wyklucza jakiekolwiek złożone sterowanie ruchem, które jest kluczowe w przypadku żaluzji. Z kolei łącznik schodowy, stosowany w systemach oświetleniowych, pozwala na kontrolowanie jednego źródła światła z dwóch różnych miejsc, jednak również nie nadaje się do sterowania silnikami. Jego konstrukcja i zasada działania są zupełnie inne, co prowadzi do nieprawidłowego wnioskowania. Podobnie łącznik dwubiegunowy, który może być używany do załączania i wyłączania urządzeń napięciowych, nie jest przystosowany do sterowania ruchem w górę i w dół, co jest niezbędne w systemach żaluzjowych. Wybór odpowiedniego łącznika jest kluczowy dla prawidłowej funkcjonalności instalacji, a błędne myślenie o tych urządzeniach prowadzi do niewłaściwych instalacji i potencjalnych problemów w działaniu urządzeń. Dlatego istotne jest zrozumienie różnic między różnymi typami łączników oraz ich zastosowaniem, co pozwala na lepsze projektowanie i efektywne wykorzystanie technologii w automatyce budynkowej.

Pytanie 33

Na rysunku przedstawiono sposób przeprowadzenia pomiaru

Ilustracja do pytania
A. napięcia dotykowego.
B. impedancji pętli zwarcia.
C. prądu udarowego zwarciowego.
D. rezystancji uziemienia.
Pomiar rezystancji uziemienia, jak przedstawiono na zdjęciu, jest kluczowym aspektem zapewnienia bezpieczeństwa w instalacjach elektrycznych. Uziemienie ma na celu ochronę ludzi oraz sprzętu przed skutkami awarii, a jego skuteczność można ocenić jedynie poprzez dokładne pomiary. Wykorzystanie miernika do pomiaru rezystancji uziemienia pozwala na stwierdzenie, czy wartości rezystancji mieszczą się w granicach określonych norm, takich jak PN-EN 50522, która wskazuje, że rezystancja uziemienia powinna być niższa niż 10 Ω dla obiektów użyteczności publicznej. Prawidłowe uziemienie minimalizuje ryzyko porażenia prądem elektrycznym oraz poprawia stabilność systemu zasilania. W praktyce, pomiar ten jest szczególnie istotny podczas instalacji nowych systemów elektrycznych, ich modernizacji, a także w okresowych inspekcjach, które powinny być przeprowadzane zgodnie z wymaganiami prawa budowlanego oraz normami ochrony przeciwporażeniowej. Ważne jest, aby każdy instalator posiadał wiedzę o technikach pomiarowych oraz umiał interpretować wyniki w kontekście zapewnienia bezpieczeństwa operacji elektrycznych.

Pytanie 34

Które oznaczenie dotyczy przedstawionego trzonka elektrycznego źródła światła?

Ilustracja do pytania
A. GU10
B. MR16
C. E14
D. G9
Trzonek typu GU10, który został przedstawiony na zdjęciu, jest powszechnie stosowany w oświetleniu halogenowym oraz LED. Cechą charakterystyczną trzonka GU10 są dwa bolce o średnicy 10 mm, które umożliwiają łatwe i pewne zamocowanie w gniazdach. Ten rodzaj trzonka jest szczególnie popularny w reflektorach, co czyni go idealnym do zastosowań w oświetleniu akcentującym, gdzie istotne jest skierowanie światła na konkretne obszary. Standard GU10 jest zgodny z normami międzynarodowymi dotyczącymi wymiany i instalacji źródeł światła, co zapewnia uniwersalność i łatwość w stosowaniu. Użytkownicy powinni zwrócić uwagę na to, że trzonki GU10 są dostępne w różnych wariantach mocy oraz barwie światła, co pozwala na dostosowanie oświetlenia do indywidualnych potrzeb. Warto również zauważyć, że trzonek GU10 jest szczególnie efektywny pod względem energetycznym, zwłaszcza w wersjach LED, co wpisuje się w aktualne trendy w zakresie zrównoważonego rozwoju i oszczędności energii.

Pytanie 35

Którym symbolem graficznym oznacza się instalację prowadzoną na drabinkach kablowych?

Ilustracja do pytania
A. Symbolem 4.
B. Symbolem 1.
C. Symbolem 3.
D. Symbolem 2.
Symbol 2 jest poprawnym oznaczeniem instalacji prowadzonej na drabinkach kablowych, zgodnie z aktualnymi normami i standardami branżowymi, takimi jak PN-IEC 60617. Drabinki kablowe są powszechnie stosowane w infrastrukturze elektroenergetycznej, gdzie służą do organizacji i prowadzenia okablowania w sposób uporządkowany i estetyczny. W praktyce, instalacje prowadzone na drabinkach kablowych charakteryzują się równoległymi liniami, które symbolizują drabinki, oraz dodatkowymi poprzeczkami, które mogą ilustrować mocowania kabli. Ważne jest, aby znać te symbole, gdyż są one niezbędnymi elementami dokumentacji technicznej, a ich poprawne użycie może znacząco ułatwić identyfikację i konserwację instalacji. Użycie symbolu 2 w schematach pozwala na łatwe zrozumienie rozmieszczenia instalacji przez techników oraz inżynierów, co przyczynia się do większego bezpieczeństwa i efektywności pracy. Dodatkowo, znajomość takich symboli jest kluczowa w kontekście współpracy z innymi specjalistami w branży, co może przyspieszyć procesy projektowe i wykonawcze.

Pytanie 36

Jakie czynności kontrolne nie są zaliczane do oględzin urządzeń napędowych podczas ich pracy?

A. Sprawdzenie stanu łożysk i przeprowadzenie pomiarów elektrycznych
B. Kontrola zabezpieczeń i stanu osłon części wirujących
C. Ocena poziomu drgań oraz funkcjonowania układu chłodzenia
D. Weryfikacja stanu przewodów ochronnych oraz ich połączeń
Czynności kontrolne takie jak sprawdzenie stanu przewodów ochronnych i ich połączeń, kontrola poziomu drgań oraz sprawdzenie zabezpieczeń i stanu osłon części wirujących są niezwykle istotne podczas eksploatacji urządzeń napędowych. Zabezpieczenia, takie jak osłony części wirujących, pełnią kluczową rolę w ochronie operatorów przed urazami oraz zabezpieczają mechanizm przed uszkodzeniami. Ich sprawność jest niezbędna dla zapewnienia bezpieczeństwa operacji. Kontrola stanu przewodów ochronnych również nie powinna być pomijana, ponieważ ich uszkodzenie może prowadzić do niebezpiecznych sytuacji związanych z wyciekiem prądu lub zwarciem. Z kolei monitorowanie poziomu drgań jest kluczowe dla diagnostyki stanu maszyny; nadmierne drgania mogą wskazywać na niewłaściwe wyważenie, uszkodzenia łożysk lub inne problemy mechaniczne. Ponadto, pomiary elektryczne, chociaż ważne, są zwykle częścią rutynowych przeglądów, a nie codziennych czynności kontrolnych w trakcie pracy. Warto pamiętać, że każde z tych działań służy do wczesnego wykrywania nieprawidłowości i zapobiegania poważniejszym awariom, co jest zgodne z najlepszymi praktykami w dziedzinie utrzymania ruchu i zarządzania bezpieczeństwem pracy. Ostatecznie, aby zapewnić długowieczność i niezawodność systemów napędowych, konieczne jest regularne przeprowadzanie kompleksowych analiz stanu technicznego w oparciu o odpowiednie normy i zalecenia branżowe.

Pytanie 37

Narzędzie przestawione na ilustracji przeznaczone jest do

Ilustracja do pytania
A. profilowania żył przewodów.
B. zaciskania końcówek tulejkowych.
C. zdejmowania powłoki z przewodu.
D. zaciskania końcówek oczkowych.
Profilowanie żył przewodów jest kluczowym procesem w pracach elektrycznych, który zapewnia właściwe przygotowanie przewodów do dalszej obróbki, takiej jak ich łączenie czy izolacja. Narzędzie przedstawione na ilustracji, mianowicie szczypce okrągłe, jest idealne do tego celu dzięki swojej stożkowej budowie, która umożliwia formowanie przewodów w różne kształty. Takie profilowanie pozwala na łatwe wprowadzenie żył do złączek, co zwiększa efektywność i bezpieczeństwo całej instalacji. Zgodnie z normami branżowymi, odpowiednie przygotowanie końców przewodów ma kluczowe znaczenie dla zapewnienia ich stabilności i minimalizacji ryzyka zwarć. W praktyce, profesjonalni elektrycy często korzystają z tego rodzaju narzędzi, aby dostosować przewody do specyficznych wymogów instalacji, co poprawia jakość wykonywanej pracy oraz wpływa na trwałość całej instalacji. Dobrą praktyką jest również przeszkolenie pracowników w zakresie używania takich narzędzi oraz regularne kontrolowanie ich stanu technicznego, aby uniknąć błędów w obróbce przewodów.

Pytanie 38

Który z przedstawionych wyłączników różnicowoprądowych umożliwia monitorowanie prądu upływu w instalacji elektrycznej?

Ilustracja do pytania
A. D.
B. A.
C. B.
D. C.
Wyłącznik różnicowoprądowy przedstawiony na zdjęciu D jest właściwym rozwiązaniem do monitorowania prądu upływu w instalacji elektrycznej. Posiada on wskaźnik prądu upływu, który jest kluczowy dla bezpiecznej eksploatacji systemów elektrycznych. W praktyce, posiadając wyłącznik z takim wskaźnikiem, użytkownik jest w stanie na bieżąco śledzić ewentualne nieprawidłowości w działaniu instalacji, co może zapobiec poważnym uszkodzeniom sprzętu lub zagrożeniu dla życia. Standardy, takie jak PN-EN 61008, podkreślają konieczność stosowania wyłączników różnicowoprądowych dla zwiększenia bezpieczeństwa instalacji elektrycznych. Przykładem zastosowania może być system monitorowania w budynkach mieszkalnych, gdzie wyłącznik D informuje o wszelkich problemach związanych z prądem upływu, co pozwala na szybsze reakcje i zminimalizowanie ryzyka. Posiadanie takiego wskaźnika jest zgodne z najlepszymi praktykami w zakresie ochrony przeciwnapięciowej i bezpieczeństwa elektrycznego.

Pytanie 39

W jaki sposób powinno się podłączyć obwód prądowy oraz obwód napięciowy jednofazowego elektronicznego licznika energii elektrycznej do systemu pomiarowego?

A. Prądowy i napięciowy równolegle
B. Prądowy i napięciowy szeregowo
C. Prądowy szeregowo, napięciowy równolegle
D. Prądowy równolegle, napięciowy szeregowo
Zastosowanie różnych konfiguracji połączeń prądowego i napięciowego może prowadzić do nieprawidłowego działania licznika energii elektrycznej. W przypadku podłączenia zarówno obwodu prądowego, jak i napięciowego równolegle, pojawia się ryzyko, że prąd nie przepłynie przez licznik, co uniemożliwi jego prawidłowe zarejestrowanie. Równoległe połączenie obwodu prądowego sprawia, że licznik nie mierzy rzeczywistego przepływu prądu przez obciążenie, co prowadzi do fałszywych odczytów. Analogicznie, podłączenie obwodu napięciowego szeregowo z prądowym również jest nieodpowiednie, ponieważ pomiar napięcia nie będzie reprezentatywny dla napięcia zasilającego odbiornik. Warto zauważyć, że takie pomyłki często wynikają z braku zrozumienia zasad działania liczników energii oraz z nieodpowiedniej analizy schematów połączeń. Dobrze skonfigurowany układ pomiarowy powinien być zgodny z najlepszymi praktykami branżowymi, które zalecają szeregowe połączenie obwodu prądowego oraz równoległe połączenie obwodu napięciowego, co zapewnia dokładne i wiarygodne pomiary energii elektrycznej.

Pytanie 40

Na izolatorach wsporczych instaluje się przewody

A. uzbrojone
B. kabelkowe
C. szynowe
D. rdzeniowe
Odpowiedź szynowe jest prawidłowa, ponieważ przewody szynowe są wykorzystywane w systemach elektroenergetycznych do przesyłania energii elektrycznej pomiędzy różnymi elementami instalacji. Izolatory wsporcze są kluczowym elementem, który podtrzymuje przewody szynowe, zapewniając ich stabilność i bezpieczeństwo w różnych warunkach atmosferycznych. Przewody szynowe charakteryzują się dużą zdolnością do prowadzenia prądu oraz odpornością na obciążenia mechaniczne, co czyni je odpowiednimi do zastosowań w stacjach transformacyjnych i rozdzielniach. Przykładem ich zastosowania są instalacje w elektrowniach, gdzie przewody szynowe łączą transformatory z systemem dystrybucji energii. Zgodnie z normami branżowymi, stosowanie przewodów szynowych w połączeniu z odpowiednimi izolatorami jest uznawane za jedną z najlepszych praktyk w projektowaniu sieci elektroenergetycznych.