Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektryk
  • Kwalifikacja: ELE.02 - Montaż, uruchamianie i konserwacja instalacji, maszyn i urządzeń elektrycznych
  • Data rozpoczęcia: 10 grudnia 2025 23:21
  • Data zakończenia: 10 grudnia 2025 23:36

Egzamin niezdany

Wynik: 18/40 punktów (45,0%)

Wymagane minimum: 20 punktów (50%)

Udostępnij swój wynik
Szczegółowe wyniki:
Pytanie 1

Na podstawie rysunku określ kolejność zamontowanych aparatów elektrycznych w rozdzielnicy.

Ilustracja do pytania
A. Ochronnik przeciwprzepięciowy, wyłącznik nadprądowy, automat schodowy, przekaźnik bistabilny.
B. Ochronnik przeciwprzepięciowy, przekaźnik bistabilny, lampka kontrolna, automat schodowy.
C. Wyłącznik różnicowoprądowy, przekaźnik bistabilny, lampka kontrolna, automat schodowy.
D. Wyłącznik różnicowoprądowy, wyłącznik nadprądowy, lampka kontrolna, przekaźnik bistabilny.
Wybrana odpowiedź jest poprawna, ponieważ prawidłowo odzwierciedla kolejność zamontowanych aparatów elektrycznych w rozdzielnicy. Wyłącznik różnicowoprądowy, umieszczony jako pierwszy, ma kluczowe znaczenie dla ochrony użytkowników przed porażeniem prądem, wykrywając różnicę w prądzie między przewodami fazowymi a neutralnym. Następnie, wyłącznik nadprądowy chroni instalację przed przeciążeniem i zwarciami. Lampka kontrolna, jako trzeci element, pełni funkcję sygnalizacyjną, informując o stanie działania urządzeń. Na końcu znajduje się przekaźnik bistabilny, który służy do sterowania obwodami z wykorzystaniem małej mocy. Taka sekwencja jest zgodna z najlepszymi praktykami przy projektowaniu rozdzielnic, gdzie bezpieczeństwo i efektywność są priorytetem. Przy projektowaniu instalacji elektrycznych warto uwzględniać normy PN-IEC 60364, które regulują zasady projektowania i wykonania instalacji elektrycznych. Wiedza na temat rozmieszczenia aparatów w rozdzielnicach jest kluczowa dla zapewnienia niezawodności oraz bezpieczeństwa systemów elektrycznych.

Pytanie 2

Jaki jest prawidłowy sposób postępowania w przypadku wykrycia uszkodzenia izolacji przewodu zasilającego?

A. Owinięcie uszkodzonego miejsca taśmą izolacyjną.
B. Kontynuowanie użytkowania do czasu planowanej konserwacji.
C. Zapewnienie dodatkowego uziemienia uszkodzonego przewodu.
D. Natychmiastowe odłączenie zasilania i wymiana przewodu.
Prawidłowe postępowanie w przypadku wykrycia uszkodzenia izolacji przewodu zasilającego to natychmiastowe odłączenie zasilania i wymiana przewodu. Jest to zgodne z podstawowymi zasadami bezpieczeństwa pracy z urządzeniami i instalacjami elektrycznymi. Uszkodzona izolacja może prowadzić do niebezpiecznych sytuacji, takich jak porażenie prądem, zwarcia, a nawet pożar. Dlatego kluczowe jest, aby niezwłocznie usunąć zagrożenie poprzez odłączenie zasilania, co zapobiega dalszemu narażeniu na ryzyko. Następnie uszkodzony przewód powinien zostać wymieniony na nowy, spełniający odpowiednie normy i standardy. Takie podejście jest nie tylko zgodne z zasadami BHP, ale także z dobrą praktyką inżynierską, która kładzie nacisk na prewencję i dbałość o bezpieczeństwo użytkowników oraz sprzętu. Przykładem może być wymiana uszkodzonego przewodu w gospodarstwie domowym; ignorowanie takiego problemu mogłoby doprowadzić do poważnych konsekwencji, dlatego działanie jest kluczowe.

Pytanie 3

Podaj rodzaj i miejsce uszkodzenia w trójfazowym silniku indukcyjnym o uzwojeniach połączonych w gwiazdę, jeżeli wyniki pomiarów rezystancji jego uzwojeń przedstawione są w tabeli.

Rezystancja między zaciskamiWynik
U - V15 Ω
V - W15 Ω
W - U20 Ω
A. Zwarcie międzyzwojowe w fazie W
B. Zwarcie międzyzwojowe w fazie V
C. Przerwa w uzwojeniu fazy W
D. Przerwa w uzwojeniu fazy V
Przerwa w uzwojeniu fazy V oraz zwarcie międzyzwojowe w fazie W to odpowiedzi, które mogą wydawać się logiczne na pierwszy rzut oka, jednak analiza pomiarów rezystancji wskazuje na błędne interpretacje. Przerwa w uzwojeniu fazy V skutkujełaby znacznie wyższą rezystancją między zaciskami U-V i V-W, co jest sprzeczne z danymi, które pokazują mniejsze wartości rezystancji. Taki błąd myślowy często wynika z niepoprawnego założenia, że wszystkie rezystancje powinny być jednorodne, co w praktyce nie zawsze ma miejsce, zwłaszcza w obliczu uszkodzeń. Natomiast zwarcie międzyzwojowe w fazie W, choć również może wydawać się możliwą przyczyną uszkodzenia, nie znajduje potwierdzenia w pomiarach, które jasno wskazują na asymetrię w rezystancjach, a nie na zjawisko zwarcia w fazie W. W przypadku zwarcia międzyzwojowego, oczekiwalibyśmy, że rezystancja tej fazy będzie znacznie niższa niż w innych fazach, co nie jest zgodne z wynikami. Takie nieporozumienia mogą prowadzić do niewłaściwego diagnozowania problemów w silnikach indukcyjnych, co w efekcie może skutkować dalszymi uszkodzeniami i kosztownymi naprawami. Ważne jest zrozumienie różnicy pomiędzy przerwą w uzwojeniu a zwarciami, oraz umiejętność analizy danych pomiarowych w kontekście ich praktycznego zastosowania.

Pytanie 4

Który element stosowany w instalacjach mieszkaniowych przedstawiono na rysunku?

Ilustracja do pytania
A. Regulator temperatury.
B. Przekaźnik priorytetowy.
C. Regulator oświetlenia.
D. Przekaźnik bistabilny.
Jak wybrałeś regulator oświetlenia, regulator temperatury lub przekaźnik priorytetowy, to wpadłeś w kilka pułapek dotyczących ich funkcji i działania. Regulator oświetlenia, w przeciwieństwie do przekaźnika bistabilnego, nie zapamiętuje stanu po wyłączeniu prądu. Po prostu kontroluje intensywność światła. Regulator temperatury ma za zadanie utrzymywać temperaturę w pomieszczeniach, a to całkiem inna bajka. No i ten przekaźnik priorytetowy zajmuje się zarządzaniem zasilaniem dla różnych urządzeń, co również nie ma nic wspólnego z tym, co robi przekaźnik bistabilny. Używając tych terminów, można się gubisz w kontekście projektowania instalacji elektrycznych. Uważam, że ważne jest, aby dobrze rozumieć różnice między tymi urządzeniami, bo błędy w wyborze komponentów mogą prowadzić do problemów w działaniu systemów. Lepiej być ostrożnym, żeby wszystko działało bez zarzutu.

Pytanie 5

Które z parametrów są podane na przedstawionym urządzeniu?

Ilustracja do pytania
A. Napięcie znamionowe i prąd znamionowy.
B. Napięcie probiercze i prąd znamionowy.
C. Napięcie probiercze i prąd zadziałania.
D. Napięcie znamionowe i prąd zadziałania.
Wybierając inne parametry, jak napięcie probiercze czy prąd zadziałania, to nie był najlepszy pomysł. Napięcie probiercze dotyczy testów izolacji, a nie tego, co pokazuje urządzenie na stałe. Prąd zadziałania to natomiast wartość, przy której zabezpieczenie jak wyłącznik różnicowoprądowy włącza się, gdy coś jest nie tak. Te pojęcia są ważne, ale nie pasują tu do parametrów znamionowych wypisanych na urządzeniu. Ważne jest, aby rozumieć te różnice, bo to pomaga w prawidłowym użytkowaniu sprzętu elektrycznego i jego bezpieczeństwie. Często ludzie mylą te terminy, co prowadzi do błędów przy doborze sprzętu i zabezpieczeń. Brak wiedzy na ten temat może skutkować poważnymi problemami, jak uszkodzenia urządzeń czy nawet pożar. Dlatego warto zawsze sprawdzać specyfikacje znamionowe, bo to podstawa do poprawnego użytkowania i projektowania instalacji elektrycznych.

Pytanie 6

Na którym rysunku przedstawiono schemat połączeń umożliwiający pomiar energii elektrycznej pobranej przez użytkownika?

Ilustracja do pytania
A. B.
B. D.
C. C.
D. A.
Schemat C pokazuje, jak powinny być połączone przewody fazowe (L) i neutralne (N). To jest ważne, bo tylko w ten sposób można dobrze zmierzyć, ile energii elektrycznej zużywa użytkownik. Licznik musi być odpowiednio podłączony, żeby dokładnie naliczał zużycie energii. Liczniki działają na zasadzie pomiaru prądu, który płynie przez obciążenie, a także napięcia między przewodami. Jeśli coś jest źle podłączone, to mogą być błędy w odczycie, a to nie jest zgodne z normami, które mówią o pomiarach energii elektrycznej, jak PN-EN 62053. Regularne kalibrowanie liczników też jest dobrym pomysłem, bo wtedy są bardziej dokładne i lepiej działają. Wiedza o tym, jak właściwie podłączać wszystko, jest naprawdę kluczowa dla elektryków i inżynierów zajmujących się pomiarami energii. Dzięki temu można lepiej zarządzać energią i unikać niepotrzebnych kosztów.

Pytanie 7

Które aparaty oznaczono na schemacie cyframi 1 i 2?

Ilustracja do pytania
A. 1 – wyłącznik nadprądowy; 2 – odłącznik instalacyjny.
B. 1 – wyłącznik różnicowoprądowy; 2 – wyłącznik nadprądowy.
C. 1 – wyłącznik nadprądowy; 2 – wyłącznik nadprądowy.
D. 1 – wyłącznik różnicowoprądowy; 2 – odłącznik instalacyjny.
Analizując podane odpowiedzi, można zauważyć, że wiele z nich zawiera nieprawidłowe założenia dotyczące funkcji wyłączników różnicowoprądowych i nadprądowych. Na przykład, niektóre z odpowiedzi mylnie klasyfikują wyłącznik nadprądowy jako odłącznik, co jest istotnym błędem w zrozumieniu ich funkcji. Odłącznik instalacyjny nie zabezpiecza przed przeciążeniem ani zwarciem, a jedynie służy do rozłączania obwodu w celach serwisowych. W praktyce, w przypadku awarii, wyłącznik różnicowoprądowy jest kluczowy, ponieważ jego zadaniem jest zapobieganie porażeniom prądem elektrycznym. Dodatkowo, wyłączniki nadprądowe i różnicowoprądowe mają różne mechanizmy działania. Wyłącznik nadprądowy reaguje na nadmierny prąd, natomiast wyłącznik różnicowoprądowy monitoruje równowagę prądów w obwodzie. Te różnice są fundamentalne do prawidłowego doboru i zastosowania tych urządzeń w instalacjach elektrycznych. W związku z tym, zrozumienie tych koncepcji jest kluczowe dla zapewnienia bezpieczeństwa oraz funkcjonalności instalacji elektrycznych, a także dla unikania zagrożeń związanych z ich niewłaściwym stosowaniem.

Pytanie 8

Którą funkcję pomiarową powinien posiadać miernik, aby można było wyznaczyć impedancję pętli zwarcia w układzie przedstawionym na schemacie?

Ilustracja do pytania
A. ZL-PE(RCD)
B. ZL-N
C. ZL-PE
D. ZL-L
Odpowiedź ZL-PE(RCD) jest prawidłowa, ponieważ pomiar impedancji pętli zwarcia powinien uwzględniać zarówno przewód fazowy (L), jak i przewód ochronny (PE), a dodatkowo obecność wyłącznika różnicowoprądowego (RCD), który może wpływać na wynik pomiaru. W praktyce, aby uzyskać wiarygodne wyniki, konieczne jest zastosowanie funkcji, która uwzględnia te warunki. Pomiar impedancji pętli zwarcia ma kluczowe znaczenie dla zapewnienia bezpieczeństwa elektrycznego i powinien być wykonywany zgodnie z obowiązującymi normami, takimi jak PN-EN 61010 czy PN-HD 60364. Użycie funkcji ZL-PE(RCD) pozwala na dokładne określenie wartości impedancji, co jest istotne w kontekście doboru odpowiednich zabezpieczeń oraz weryfikacji poprawności instalacji. Dzięki temu można zminimalizować ryzyko porażenia prądem oraz zapewnić prawidłowe działanie systemów ochronnych, co jest szczególnie ważne w obiektach użyteczności publicznej oraz w instalacjach przemysłowych.

Pytanie 9

Jakiego typu powinna być końcówka wkrętaka dobranego do wkrętu o główce, której kształt przedstawiono na rysunku?

Ilustracja do pytania
A. Płaska.
B. Phillips.
C. Torx.
D. Pozidriv.
Wybór złej końcówki wkrętaka pokazuje, że chyba nie do końca rozumiesz różnice między wkrętami. Końcówka płaska, choć popularna, w ogóle nie pasuje do krzyżowych nacięć, co może skończyć się poślizgiem narzędzia i uszkodzeniem zarówno końcówki, jak i główki wkrętu. Końcówka Torx też nie jest tu odpowiednia, bo jest zaprojektowana do większych momentów obrotowych, a to nie dotyczy wkrętów Pozidriv. Odpowiedź z końcówką Phillips też jest błędna, bo to narzędzie nie ma tych dodatkowych nacięć, które zwiększają stabilność. Takie błędy mogą skutkować problemami w pracy, a nawet niebezpieczeństwem, szczególnie na wysokości. Warto wiedzieć, jakie narzędzia pasują do jakich wkrętów, żeby wszystko robić bezpiecznie i skutecznie.

Pytanie 10

Którą funkcję pomiarową powinien posiadać miernik, aby można było wyznaczyć impedancję pętli zwarcia w układzie przedstawionym na schemacie?

Ilustracja do pytania
A. Z L-PE
B. Z L-N
C. Z L-PE(RCD)
D. Z L-L
Pomiar impedancji pętli zwarcia w instalacjach elektrycznych jest kluczowy dla oceny ich bezpieczeństwa. Odpowiedź "Z L-PE(RCD)" jest prawidłowa, ponieważ umożliwia przeprowadzenie pomiaru w sytuacji, gdy w układzie obecny jest wyłącznik różnicowoprądowy (RCD). RCD mają na celu ochronę przed porażeniem prądem elektrycznym, jednak ich obecność może wpłynąć na wyniki pomiarów impedancji w standardowych konfiguracjach. Wykorzystanie pomiaru "Z L-PE(RCD)" zapewnia, że wyniki będą dokładne, co jest niezbędne dla prawidłowego doboru zabezpieczeń. Zgodnie z normą PN-EN 61557-1, każdy system elektryczny powinien być testowany pod kątem skuteczności działania zabezpieczeń, a pomiar impedancji pętli zwarcia jest integralnym elementem tych testów. Przykładem praktycznym może być wykonanie pomiarów w instalacjach domowych, gdzie RCD są powszechnie stosowane, co wymaga zastosowania odpowiednich technik pomiarowych. Tylko poprzez właściwe pomiary można zagwarantować bezpieczeństwo użytkowników oraz prawidłowe działanie systemu ochrony.

Pytanie 11

W pomieszczeniu przyłączowym budynku sprawdzono ciągłość głównego połączenia wyrównawczego między główną szyną wyrównawczą a czterema punktami, jak na rysunku. Który pomiar powinien wykazać brak ciągłości połączenia?

Ilustracja do pytania
A. 1
B. 3
C. 2
D. 4
Prawidłowa odpowiedź to 4, ponieważ wskazuje na punkt, który może wykazywać brak ciągłości połączenia wyrównawczego. Punkt 4 jest połączony z rurą gazową, a jeśli instalacja gazowa została wykonana z materiału nieprzewodzącego prąd elektryczny, na przykład z plastiku, to brak ciągłości jest całkowicie uzasadniony. W praktyce, aby zapewnić bezpieczeństwo instalacji elektrycznej, istotne jest, aby wszystkie elementy metalowe były odpowiednio połączone, aby uniknąć ryzyka wystąpienia różnicy potencjałów. Zgodnie z normami, takimi jak PN-EN 62305, połączenia wyrównawcze powinny zapewniać skuteczne odprowadzanie prądów zakłócających oraz zabezpieczać przed niebezpiecznymi napięciami. Kiedy mówimy o punktach 1, 2 i 3, są one połączone z elementami metalowymi, które są przewodnikami elektryczności, co oznacza, że powinny wykazywać ciągłość połączenia. To pokazuje, jak ważne jest zrozumienie materiałów używanych w instalacji i ich właściwości przewodzących w kontekście bezpieczeństwa elektrycznego.

Pytanie 12

Podczas inspekcji świeżo zainstalowanej sieci elektrycznej nie ma konieczności weryfikacji

A. wartości natężenia oświetlenia w miejscach pracy
B. doboru zabezpieczeń i urządzeń
C. doboru oraz oznaczenia przewodów
D. układu tablic informacyjnych i ostrzegawczych
Odpowiedź dotycząca wartości natężenia oświetlenia na stanowiskach pracy jest prawidłowa, ponieważ podczas oględzin nowo wykonanej instalacji elektrycznej, kluczowe jest sprawdzenie elementów, które bezpośrednio wpływają na bezpieczeństwo oraz funkcjonalność instalacji. Wartości natężenia oświetlenia są kontrolowane w kontekście ergonomii i komfortu pracy, ale ich pomiar nie jest wymagany w ramach odbioru samej instalacji elektrycznej. Zgodnie z normą PN-EN 12464-1, która określa wymagania dotyczące oświetlenia miejsc pracy, wartości natężenia powinny być dostosowane do rodzaju wykonywanej pracy, jednak ich pomiar jest bardziej związany z późniejszym użytkowaniem przestrzeni niż z samą instalacją elektryczną. Ważne jest, aby w trakcie odbioru zwracać szczególną uwagę na dobór i oznaczenie przewodów, zabezpieczeń oraz aparatury, które mają kluczowe znaczenie dla prawidłowego funkcjonowania instalacji i zapewnienia bezpieczeństwa użytkowników, co potwierdzają standardy branżowe i przepisy prawa budowlanego.

Pytanie 13

Który element instalacji elektrycznej przedstawiono na rysunku?

Ilustracja do pytania
A. Wyłącznik priorytetowy.
B. Wyłącznik ciśnieniowy.
C. Ogranicznik przepięć.
D. Ogranicznik mocy.
Odpowiedź jest trafna! Na tym rysunku widzimy urządzenie elektryczne, które ma oznaczenia związane z mocą, takie jak Pm. Ogranicznik mocy odgrywa naprawdę ważną rolę w nowoczesnych instalacjach elektrycznych. Jego zadaniem jest pilnowanie i regulowanie, ile energii zużywamy, co pomaga uniknąć przepięć i przeciążeń. W praktyce, takie urządzenia często spotykamy w obiektach komercyjnych i przemysłowych, gdzie ryzyko przekroczenia przydzielonej mocy jest spore. Dzięki temu, osoby zarządzające instalacjami mogą lepiej kontrolować zużycie prądu, co przekłada się na niższe koszty i większe bezpieczeństwo. Co więcej, ograniczniki mocy muszą być zgodne z europejskimi normami, jak na przykład EN 61000, które mówią o jakości energii elektrycznej oraz o ochronie instalacji przed napięciami, które są za wysokie.

Pytanie 14

Na ilustracji przedstawiono schemat układu zasilania silnika elektrycznego zawierający

Ilustracja do pytania
A. czujnik kolejności i zaniku faz.
B. wyłącznik silnikowy.
C. cyklokonwertor.
D. przekaźnik termobimetalowy.
Czujnik kolejności i zaniku faz jest kluczowym elementem w układach zasilania silników trójfazowych. Jego podstawowym zadaniem jest monitorowanie obecności oraz kolejności faz, co ma istotne znaczenie dla prawidłowej pracy silników elektrycznych. W sytuacji, gdy jedna z faz zniknie lub dojdzie do zmian w kolejności, czujnik natychmiast odcina zasilanie, co zapobiega uszkodzeniu silnika. Przykładowo, w aplikacjach przemysłowych, gdzie silniki są narażone na różne warunki pracy, użycie czujnika pozwala na zwiększenie bezpieczeństwa i niezawodności systemu. W standardzie PN-EN 60204-1, który dotyczy bezpieczeństwa urządzeń elektrycznych w maszynach, podkreślono znaczenie ochrony silników przed negatywnymi skutkami zasilania. Dodatkowo, czujniki te mogą być wyposażone w dodatkowe funkcje, takie jak sygnalizacja optyczna stanu pracy, co ułatwia diagnostykę i konserwację systemów zasilania.

Pytanie 15

Który element oznaczony jest na przedstawionym schemacie symbolem literowym dT?

Ilustracja do pytania
A. Przekaźnik termobimetalowy.
B. Bezpiecznik.
C. Wyłącznik silnikowy.
D. Rozłącznik.
Odpowiedź "Przekaźnik termobimetalowy" jest prawidłowa, ponieważ symbol dT na schemacie odnosi się do urządzenia, które ma kluczowe znaczenie w ochronie silników elektrycznych. Przekaźnik termobimetalowy działa na zasadzie reakcji na temperaturę, co czyni go idealnym rozwiązaniem do monitorowania i ochrony przed przeciążeniem prądowym. Kiedy prąd przekracza dopuszczalny poziom, generowane ciepło powoduje odkształcenie bimetalu, co prowadzi do otwarcia obwodu i wyłączenia silnika. Tego typu urządzenia są często stosowane w aplikacjach przemysłowych oraz w systemach automatyki, gdzie wymagane jest niezawodne zabezpieczenie przed uszkodzeniem spowodowanym przeciążeniem. Zgodnie z normami IEC 60204-1, przekaźniki termobimetalowe są zalecane do ochrony silników, co podkreśla ich wysoką jakość i skuteczność w praktycznych zastosowaniach. Warto również zaznaczyć, że ich instalacja jest zgodna z dobrymi praktykami w zakresie bezpieczeństwa, co przyczynia się do długowieczności oraz efektywności pracy silników.

Pytanie 16

Jaką rolę odgrywa wyzwalacz elektromagnetyczny w wyłączniku nadprądowym?

A. Napina sprężynę mechanizmu
B. Zatrzymuje łuk elektryczny
C. Identyfikuje przeciążenia
D. Rozpoznaje zwarcia
Wybór odpowiedzi dotyczącej gaszenia łuku elektrycznego jest mylny, ponieważ proces ten nie jest bezpośrednio związany z funkcją wyzwalacza elektromagnetycznego. Wyłączniki nadprądowe, przy wykrywaniu zwarcia, mogą generować łuk elektryczny, który jest następnie gaszony przez specjalne mechanizmy w urządzeniach, takich jak komory gaszenia łuku. W związku z tym, gaszenie łuku to proces, który zachodzi po detekcji zwarcia, a nie jest funkcją wyzwalacza. Ponadto, odpowiedź odnosząca się do wykrywania przeciążeń jest również nieprawidłowa, ponieważ wyzwalacz elektromagnetyczny skupia się głównie na detekcji zwarć, a przeciążenia są zwykle rozpoznawane przez funkcję wyzwalacza termicznego, który działa na zasadzie wydłużania się elementu bimetalowego pod wpływem ciepła generowanego przez przepływający prąd. Naciąganie sprężyny napędu, chociaż istotne w niektórych mechanizmach wyłączników, nie ma żadnego związku z funkcjami wyzwalacza elektromagnetycznego. W praktyce, mylenie funkcji tych komponentów prowadzi do nieporozumień w zakresie projektowania systemów zabezpieczeń elektrycznych, co może skutkować niewłaściwym doborem urządzeń oraz potencjalnym zagrożeniem dla użytkowników i sprzętu.

Pytanie 17

Jaki jest najmniejszy błąd pomiaru natężenia prądu wynoszącego 30 mA, gdy używamy cyfrowego miliamperomierza z wyświetlaczem do 2 miejsc po przecinku oraz miernika o określonej dokładności?

A. ±2,5% + 1 cyfra
B. ±1,0% + 4 cyfry
C. ±2,0% + 2 cyfry
D. ±1,5% + 3 cyfry
Wybór błędnych opcji wynika często z niepełnego zrozumienia zasad działania mierników oraz błędnego interpretowania wartości procentowych i cyfr. Na przykład odpowiedzi z dokładnością ±2,0% + 2 cyfry czy ±1,5% + 3 cyfry oferują znacznie większy margines błędu, co sprawia, że ​​są mniej odpowiednie do precyzyjnych pomiarów. Przy odpowiedzi ±2,0% + 2 cyfry, maksymalny błąd wyniósłby 30 mA × 2,0% + 2 cyfry, co daje 0,6 mA + 0,02 mA, czyli 0,62 mA, a to już znacznie przekracza akceptowalny poziom dokładności w wielu zastosowaniach. Podobnie, dla ±1,5% + 3 cyfry, obliczenia prowadzą do maksymalnego błędu 0,45 mA + 0,03 mA, czyli 0,48 mA. Te wartości są niewystarczające w kontekście aplikacji, które wymagają dużej precyzji. W praktyce, większa dokładność miernika pozwala na dokładniejsze przyrządzanie obwodów elektronicznych oraz zmniejsza ryzyko wystąpienia błędów w obliczeniach związanych z analizą danych. W branży inżynieryjnej, ważne jest, aby dobierać urządzenia zgodnie z wymaganiami pomiarowymi, co przekłada się na jakość i wiarygodność wyników.

Pytanie 18

Jaką funkcję w wyłączniku nadprądowym pełni element wskazany na rysunku czerwoną strzałką?

Ilustracja do pytania
A. Komory łukowej.
B. Styku ruchomego.
C. Wyzwalacza zwarciowego.
D. Wyzwalacza przeciążeniowego.
Pojęcia związane ze stykami ruchomymi, komorami łukowymi oraz wyzwalaczami przeciążeniowymi często mylone są z funkcją wyzwalacza zwarciowego, co prowadzi do nieporozumień w zrozumieniu działania wyłączników nadprądowych. Styki ruchome są elementami, które w momencie zadziałania wyłącznika fizycznie przerywają obwód, jednak same w sobie nie mają zdolności do detekcji zwarcia. Ich rola jest czysto mechaniczna i nie obejmuje analizy prądu. Komory łukowe natomiast służą do gaszenia łuku elektrycznego, który powstaje w momencie przerywania obwodu, ale również nie mają zdolności wykrywania zwarć. Wyzwalacze przeciążeniowe, z drugiej strony, odpowiadają za zadziałanie w sytuacji długotrwałego nadmiaru prądu, co różni się od nagłego zwarcia. Często występujące nieporozumienia dotyczące tych elementów mogą wynikać z błędnej interpretacji ich funkcji. Kluczowe jest zrozumienie, że wyzwalacz zwarciowy jest wyspecjalizowanym elementem odpowiedzialnym za natychmiastowe przerwanie obwodu w przypadku niebezpiecznego wzrostu prądu, co ma fundamentalne znaczenie dla ochrony instalacji elektrycznej. Zatem, znajomość działania tych elementów oraz ich roli w systemie ochrony elektrycznej jest niezbędna dla zapewnienia bezpieczeństwa w instalacjach i umożliwienia prawidłowego doboru komponentów w zgodzie z normami branżowymi.

Pytanie 19

Wyzwalacz elektromagnetyczny wyłącznika toru prądowego, przedstawiamy na schemacie blokowym jak na rysunku, oznacza się na schemacie elektrycznym symbolem graficznym

Ilustracja do pytania
A. B.
B. A.
C. D.
D. C.
Wyzwalacz elektromagnetyczny wyłącznika toru prądowego jest kluczowym elementem w obwodach elektrycznych, który zadziała w przypadku nadmiernego prądu. Odpowiedź "B" jest poprawna, ponieważ symbol ten jest standardowym przedstawieniem wyzwalacza elektromagnetycznego w schematach elektrycznych, co można znaleźć w normach takich jak IEC 60617. Wyzwalacze elektromagnetyczne działają na zasadzie przyciągania rdzenia magnetycznego, który w momencie przegrzania lub przeciążenia powoduje otwarcie obwodu. To zastosowanie jest niezwykle istotne w systemach ochronnych, gdzie funkcja wyłączenia obwodu zapobiega uszkodzeniom urządzeń oraz pożarom. W praktyce, zrozumienie funkcji i symboliki wyzwalaczy elektromagnetycznych jest niezbędne dla inżynierów i techników w branżach elektrycznych oraz automatyki, ponieważ pozwala to na właściwe projektowanie systemów zabezpieczeń oraz ich efektywne wdrażanie.

Pytanie 20

Na której ilustracji przedstawiono kabel typu YAKY?

Ilustracja do pytania
A. Na ilustracji 2.
B. Na ilustracji 4.
C. Na ilustracji 1.
D. Na ilustracji 3.
Kabel typu YAKY to jeden z najczęściej stosowanych kabli energetycznych, który charakteryzuje się szczególnymi właściwościami izolacyjnymi. W kontekście omawianej ilustracji, kabel na ilustracji 2 wykazuje cechy typowe dla kabli YAKY, takie jak izolacja z polwinitu oraz oplot z PVC. Izolacja ta zapewnia wysoką odporność na działanie czynników atmosferycznych, a także na uszkodzenia mechaniczne, co czyni go idealnym do zastosowań w instalacjach wewnętrznych i zewnętrznych. Kable YAKY są często wykorzystywane w budownictwie do zasilania różnych urządzeń oraz w instalacjach oświetleniowych, ponieważ ich konstrukcja pozwala na bezpieczne prowadzenie energii elektrycznej. Dodatkowo, w ramach norm europejskich, kable YAKY spełniają wymagania dotyczące bezpieczeństwa przeciwpożarowego i ochrony środowiska, jak również są zgodne z dyrektywami RoHS, co potwierdza ich przydatność w nowoczesnych instalacjach elektrycznych.

Pytanie 21

W jakiej odległości od siebie powinny być umieszczone miejsca montażu dwóch sufitowych lamp w pomieszczeniu o wymiarach 2 m × 4 m, aby uzyskać optymalną równomierność oświetlenia?

A. 2,0 m
B. 1,5 m
C. 2,5 m
D. 1,0 m
Wybór odpowiedzi, która zakłada inne odległości między oprawami oświetleniowymi, może wynikać z niepełnego zrozumienia zasad projektowania oświetlenia. Na przykład, odległość wynosząca 1,5 m zbyt blisko umiejscawia oprawy, co może prowadzić do nadmiernego oświetlenia w centralnej części pomieszczenia, powodując jednocześnie, że obszary na skrajach będą niedostatecznie oświetlone. W rezultacie pojawiają się cienie, co jest niedopuszczalne w kontekście funkcjonalności przestrzeni. Odpowiedź 1,0 m wskazuje na bardzo bliskie umiejscowienie opraw, co skutkuje nadmiarem światła i olśnieniem, co negatywnie wpływa na komfort użytkowników. Z kolei odległość 2,5 m może prowadzić do znacznych różnic w natężeniu oświetlenia, ponieważ pomimo równomiernego rozmieszczenia, obszary pomieszczenia mogą pozostać niedostatecznie oświetlone. Ponadto, zbyt duża odległość może powodować, że światło nie będzie wystarczająco koncentrowane, a niektóre obszary mogą pozostać w cieniu. W projektowaniu oświetlenia kluczowe jest także zrozumienie, że równomierność oświetlenia jest najważniejszym czynnikiem wpływającym na komfort i funkcjonalność przestrzeni. Standardy branżowe, takie jak EN 12464-1, podkreślają znaczenie zachowania odpowiednich odległości między źródłami światła, aby spełniać wymagania dotyczące oświetlenia w różnych rodzajach pomieszczeń.

Pytanie 22

Jakie działania należy podjąć po odłączeniu zasilania, aby zgodnie z PN-HD 60364-6:2008 Instalacje elektryczne niskiego napięcia, przeprowadzić pomiar rezystancji izolacji kabli?

A. Zasilić badaną instalację napięciem stałym oraz zapewnić skuteczną ochronę przed możliwością przypadkowego, ponownego załączenia napięcia zasilającego
B. Rozłączyć oprawy oświetleniowe, zewrzeć łączniki oświetlenia oraz zapewnić skuteczną ochronę przed możliwością przypadkowego, ponownego załączenia napięcia zasilającego
C. Odłączyć odbiorniki, zewrzeć łączniki oraz zapewnić skuteczną ochronę przed dotykiem bezpośrednim
D. Wyłączyć odbiorniki oraz zapewnić skuteczną ochronę przed możliwością przypadkowego, ponownego załączenia napięcia zasilającego
Wybór innych odpowiedzi, takich jak zewrzenie łączników czy zasilanie instalacji napięciem stałym, jest nieodpowiedni i stwarza poważne zagrożenia. Zewrzenie łączników oświetleniowych lub innych elementów instalacji przed pomiarem rezystancji izolacji jest niebezpieczne, ponieważ może prowadzić do niezamierzonych skutków ubocznych, w tym do uszkodzenia sprzętu lub wystąpienia zwarcia. Na przykład, jeśli zewnętrzne źródło zasilania jest wciąż aktywne, a łączniki są zwarte, może to prowadzić do niebezpiecznych sytuacji, takich jak porażenie prądem lub pożar. Zasilanie instalacji napięciem stałym podczas pomiarów również jest niezgodne z najlepszymi praktykami, ponieważ pomiar rezystancji izolacji powinien być przeprowadzany na odłączonej instalacji. Działanie to ma na celu ochronę zarówno osób wykonujących pomiar, jak i samej instalacji, ponieważ wiele urządzeń elektrycznych nie jest przystosowanych do pracy przy wyższych napięciach generowanych przez megomierze. Kluczowe jest, aby podczas prac związanych z instalacjami elektrycznymi przestrzegać standardów bezpieczeństwa oraz procedur operacyjnych, co jest nie tylko kwestią zgodności z przepisami, ale również zdrowego rozsądku. Zaniedbanie tych zasad może prowadzić do poważnych, a nawet tragicznych w skutkach zdarzeń w miejscu pracy.

Pytanie 23

Których aparatów montowanych na szynie TH 35 dotyczą przedstawione w tabeli parametry techniczne?

Parametry techniczne
Prąd znamionowy
In w A
Szerokość
w modułach
o wymiarach
17,5 mm
Charakterystyka
61B
101B
161B
201B
251B
321B
401B
501B
631B
A. Transformatorów.
B. Styczników.
C. Wyłączników różnicowoprądowych.
D. Wyłączników nadprądowych.
Wyłączniki nadprądowe to naprawdę ważne elementy w systemach elektrycznych, bo chronią nas przed przeciążeniami i zwarciami. Patrząc na parametry w tabeli, takie jak prąd znamionowy (In) czy szerokość 17,5 mm, to są one typowe dla takich urządzeń, które zakłada się na szynę TH 35. Ciekawostką jest, że wyłączniki z charakterystyką B są idealne do obwodów, gdzie mogą występować krótkotrwałe skoki prądu, co często zdarza się w instalacjach oświetleniowych czy gniazdkowych. Dzięki nim, jak prąd przekroczy ustalony poziom, to automatycznie odłączają zasilanie, co zapobiega uszkodzeniu sprzętu i zmniejsza ryzyko pożaru. Warto pamiętać, że zgodnie z normą PN-EN 60898, musi się je regularnie testować, żeby wszystko działało jak należy. Dlatego ważne jest, żeby dobrze dobierać i instalować te wyłączniki, bo mają ogromne znaczenie dla bezpieczeństwa i niezawodności naszych instalacji elektrycznych.

Pytanie 24

Miernikiem, którego przełącznik zakresów przedstawiono na rysunku, nie można zmierzyć

Ilustracja do pytania
A. rezystancji izolacji.
B. parametrów wyłączników RCD.
C. ciągłości połączeń.
D. impedancji pętli zwarcia.
Wszystkie pozostałe odpowiedzi mogą być mylone z rzeczywistymi możliwościami miernika, co prowadzi do nieporozumień w zakresie jego zastosowania. Pomiar parametrów wyłączników RCD, ciągłości połączeń oraz impedancji pętli zwarcia jest możliwy dzięki odpowiednim zakresom, które są dostępne w większości nowoczesnych mierników elektrycznych. Ważne jest zrozumienie, że wyłączniki RCD, czyli różnicowoprądowe, wymagają pomiaru impedancji, aby ocenić ich skuteczność w ochronie przed porażeniem prądem. Ciągłość połączeń jest również istotna, ponieważ zapewnia, że prąd elektryczny prawidłowo przepływa przez układ, co jest niezbędne dla bezpieczeństwa i wydajności instalacji. Jednakże, pomiar rezystancji izolacji nie można wykonać na tym mierniku, co może prowadzić do błędnych wniosków o stanie izolacji w instalacjach elektrycznych. Często, użytkownicy zastanawiają się, dlaczego ich mierniki nie oferują pomiaru rezystancji izolacji, co może prowadzić do przekonania, że urządzenie jest niewłaściwe lub wadliwe. W rzeczywistości, kluczowe jest, aby posiadać odpowiednie narzędzia, takie jak mierniki izolacji, które są specjalnie zaprojektowane do przeprowadzania tego rodzaju pomiarów, zgodnie z normami bezpieczeństwa oraz najlepszymi praktykami przemysłowymi.

Pytanie 25

Które urządzenie przedstawiono na ilustracji?

Ilustracja do pytania
A. Przekaźnik priorytetowy.
B. Regulator temperatury.
C. Automat zmierzchowy.
D. Przekaźnik czasowy.
Urządzenie przedstawione na ilustracji to przekaźnik czasowy, co można stwierdzić na podstawie charakterystycznych oznaczeń obecnych na jego obudowie, w tym symboli związanych z czasem oraz pokręteł służących do ustawiania opóźnień. Przekaźniki czasowe są kluczowymi elementami w systemach automatyki, umożliwiającymi kontrolowanie działania urządzeń w określonych odstępach czasu. Na przykład, w instalacjach oświetleniowych, przekaźniki czasowe mogą być ustawiane tak, aby włączać światło o zmierzchu i wyłączać je o świcie, co jest zgodne z zasadami efektywnego zarządzania energią. Dodatkowo, oznaczenia takie jak 'T1' i 'T2' na urządzeniu wskazują na różne funkcje czasowe, co potwierdza jego przeznaczenie. Zastosowanie przekaźników czasowych jest powszechne w różnych sektorach, od budynków mieszkalnych, gdzie automatyzują oświetlenie, po przemysł, gdzie kontrolują maszyny w zależności od czasu pracy. Stosowanie przekaźników czasowych w zgodzie z normami branżowymi, takimi jak IEC 60947, zapewnia bezpieczeństwo oraz efektywność operacyjną systemów elektrycznych i elektronicznych.

Pytanie 26

Do którego rodzaju ochrony przeciwporażeniowej zaliczane są środki ochrony opisane w ramce?

1.Urządzenia ochronne różnicowoprądowe o znamionowym prądzie różnicowym nieprzekraczającym 30 mA.
2.Dodatkowe połączenia wyrównawcze ochronne.
A. Ochrony przy uszkodzeniu (dodatkowej).
B. Ochrony podstawowej.
C. Ochrony przez zastosowanie bardzo niskiego napięcia.
D. Ochrony uzupełniającej.
Wybór ochrony podstawowej, ochrony przy uszkodzeniu (dodatkowej) lub ochrony przez zastosowanie bardzo niskiego napięcia jako odpowiedzi na to pytanie jest błędny, ponieważ te kategorie ochrony nie obejmują środków opisanych w ramce. Ochrona podstawowa opiera się na właściwej konstrukcji instalacji i jej komponentów, a nie na dodatkowych urządzeniach zabezpieczających. Kluczowym elementem ochrony podstawowej jest odpowiednie uziemienie oraz izolacja przewodów, co nie jest wystarczające w przypadku, gdy pojawia się ryzyko porażenia prądem. Ochrona przy uszkodzeniu, często utożsamiana z dodatkowymi metodami zabezpieczeń, również nie ma zastosowania do urządzeń różnicowoprądowych, które są zaprojektowane z myślą o działaniu w sytuacjach awaryjnych. Z kolei ochrona przez zastosowanie bardzo niskiego napięcia nie odnosi się do standardowych metod ochrony w instalacjach zasilających, lecz dotyczy specyficznych zastosowań, na przykład w systemach automatyki lub w przypadku zasilania LED. Wybór nieodpowiednich kategorii ochrony świadczy o niepełnym zrozumieniu mechanizmów, które stoją za funkcjonowaniem systemów zabezpieczeń w instalacjach elektrycznych. Kluczowe jest zrozumienie, że ochrona uzupełniająca ma na celu zapewnienie dodatkowego poziomu bezpieczeństwa, który jest niezbędny, gdy inne metody ochrony zawiodą. Dlatego wybór ochrony uzupełniającej powinien być preferowany w każdej nowoczesnej instalacji elektrycznej.

Pytanie 27

Na którym rysunku przedstawiono rozdzielnicę natynkową?

Ilustracja do pytania
A. D.
B. A.
C. C.
D. B.
Rozdzielnica natynkowa, jak wskazuje odpowiedź D, jest konstrukcją zaprojektowaną do montażu na powierzchni ścian, co odróżnia ją od modeli podtynkowych, które są osadzone w murze. W odpowiedzi D widzimy wyraźnie rozdzielnicę z drzwiczkami, co umożliwia dostęp do osprzętu elektrycznego, takiego jak bezpieczniki czy wyłączniki. W praktyce, rozdzielnice natynkowe są często stosowane w budynkach użyteczności publicznej, biurach oraz obiektach przemysłowych, gdzie zapewniają łatwy dostęp do instalacji elektrycznych. Dobrze zaprojektowana rozdzielnica powinna przestrzegać norm bezpieczeństwa, takich jak PN-EN 61439, która reguluje wymagania dotyczące rozdzielnic niskonapięciowych. W kontekście aplikacji, uwagę należy zwrócić na odpowiednie rozmieszczenie urządzeń w rozdzielnicy oraz ich oznakowanie, co wspomaga zarówno wykonanie prac serwisowych, jak i codzienną eksploatację instalacji elektrycznej.

Pytanie 28

Która zależność musi być spełniona podczas wymiany uszkodzonych przewodów instalacji elektrycznej i ewentualnej zmiany ich zabezpieczeń nadprądowych?

Iz – prąd obciążalności długotrwałej przewodu
Ib – prąd znamionowy zabezpieczenia przeciążeniowego
IB – prąd wynikający z przewidywanej mocy przesyłanej przewodem
A. IB ≤ IZ ≤ IN
B. IZ ≤ IN ≤ IB
C. IN ≤ IB ≤ IZ
D. IB ≤ IN ≤ IZ
Wybór odpowiedzi, która nie spełnia relacji IB ≤ IN ≤ IZ, prowadzi do nieprawidłowego rozumienia zasad projektowania instalacji elektrycznych. Niektóre z niepoprawnych odpowiedzi sugerują, że prąd obciążenia może być większy od prądu znamionowego zabezpieczenia, co jest fundamentalnym błędem. Taki błąd może prowadzić do sytuacji, w której zabezpieczenie nie zadziała w odpowiednim momencie, co z kolei skutkuje przegrzaniem przewodów i ich uszkodzeniem. Istotne jest, aby pamiętać, że prąd znamionowy zabezpieczenia powinien być zawsze dostosowany do przewidywanego obciążenia; w przeciwnym razie może dojść do ryzyka awarii. Ponadto, nieodpowiednie przypisanie wartości prądu obciążenia w stosunku do obciążalności przewodów prowadzi do nieefektywnego działania całej instalacji. Zgodnie z normami, przed przystąpieniem do wymiany przewodów lub zmiany zabezpieczeń, należy dokładnie obliczyć zarówno IB, jak i IZ oraz zrozumieć, jak te wartości wpływają na dobór IN. Ignorowanie tych zasad może prowadzić do kosztownych błędów w instalacji elektrycznej, które mogą zagrażać bezpieczeństwu użytkowników i mienia.

Pytanie 29

Jakim oznaczeniem charakteryzuje się przewód jednożyłowy z żyłą wykonaną z aluminium, w izolacji z PVC, o przekroju 2,5 mm2, przeznaczony na napięcie znamionowe izolacji 500 V?

A. ALY 500 V 2,5 mm2
B. ADY 500 V 2,5 mm2
C. YLY 500 V 2,5 mm2
D. YDY 500 V 2,5 mm2
No, niestety, nie wszystkie inne odpowiedzi są poprawne. Odpowiedź ALY 500 V 2,5 mm2 ma poważny błąd, bo 'L' sugeruje, że przewód wykonany jest z miedzi, a nie z aluminium. W przypadku YDY 500 V 2,5 mm2, 'Y' mówi, że to przewód jednożyłowy, ale 'D' jest tu problematyczne, bo powinno dotyczyć PVC przy żyłach aluminiowych. Co do YLY 500 V 2,5 mm2, to znowu 'L' sugeruje miedź, co jest sprzeczne z informacjami w pytaniu. Często ludzie popełniają błąd, ignorując materiał żyły, co może prowadzić do różnych problemów w instalacji. Mylimy symbole różnych typów przewodów, co może później skutkować ich niewłaściwym doborem i zwiększa ryzyko awarii. W inżynierii elektrycznej, ogarnięcie tych oznaczeń jest mega ważne, żeby wszystko działało bezpiecznie i sprawnie.

Pytanie 30

Który z wymienionych zestawów narzędzi jest konieczny do realizacji połączeń przewodów typu DY w instalacji elektrycznej, w puszkach rozgałęźnych, przy użyciu złączek śrubowych?

A. Nóż monterski, szczypce boczne, zestaw wkrętaków
B. Zestaw wkrętaków, szczypce czołowe, prasa ręczna
C. Szczypce długie, nóż monterski, szczypce czołowe
D. Nóż monterski, szczypce boczne, szczypce monterskie
Wybór innych zestawów narzędzi może prowadzić do trudności w prawidłowym wykonaniu instalacji elektrycznych. Na przykład, zestaw zawierający kleszcze długie, nóż monterski i kleszcze czołowe nie zapewnia wystarczającej funkcjonalności. Kleszcze długie są przydatne do chwytania i wyginania przewodów, ale nie są optymalne do precyzyjnego cięcia lub usuwania izolacji. Dodatkowo, kleszcze czołowe są bardziej przeznaczone do chwytania i manipulacji w trudnodostępnych miejscach, co nie jest kluczowe przy wykonywaniu połączeń w puszkach rozgałęźnych. Zestaw z kompletem wkrętaków, kleszczami czołowymi i prasą ręczną również nie odpowiada wymaganiom, ponieważ prasa ręczna jest narzędziem do zaciskania złączek, które nie są typowe dla połączeń typu DY w instalacjach elektrycznych. W przypadku zestawu z nożem monterskim, szczypcami bocznymi i kleszczami monterskimi, chociaż niektóre narzędzia są przydatne, to jednak brak wkrętaków sprawia, że nie można prawidłowo wykonać połączenia przy użyciu złączek śrubowych, co jest kluczowe dla bezpieczeństwa. Prawidłowe połączenia elektryczne wymagają nie tylko odpowiednich narzędzi, ale także stosowania standardów i procedur, które zapewniają bezpieczeństwo oraz trwałość instalacji. Dlatego każda decyzja dotycząca doboru narzędzi musi być dokładnie przemyślana, aby uniknąć niebezpiecznych sytuacji w przyszłości.

Pytanie 31

Kontrola instalacji elektrycznych, które są narażone na szkodliwe działanie warunków atmosferycznych lub destrukcyjne oddziaływanie czynników występujących podczas eksploatacji budynku, powinna odbywać się nie rzadziej niż raz na

A. kwartał
B. 4 lata
C. rok
D. 2 lata
Wybór nieodpowiedniego okresu pomiędzy kontrolami instalacji elektrycznych może prowadzić do poważnych konsekwencji zarówno dla bezpieczeństwa użytkowników, jak i dla stanu technicznego budynku. Decydując się na kontrolę co kwartał, można błędnie zakładać, że tak częste inspekcje są niezbędne dla zapewnienia bezpieczeństwa. Takie podejście może prowadzić do niepotrzebnych kosztów i obciążenia dla właścicieli budynków, które mogą być nadmierne w porównaniu do rzeczywistych potrzeb. Z drugiej strony, wybierając okres dwóch lub czterech lat, użytkownicy mogą nie dostrzegać, że instalacje elektryczne, szczególnie te narażone na działanie czynników atmosferycznych, mogą ulegać szybkiemu zużyciu. Statystyki pokazują, że awarie elektryczne często występują w wyniku zaniedbania regularnych kontroli, co może skutkować nie tylko stratami materialnymi, ale i zagrożeniem dla życia ludzi. Dlatego istotne jest, aby nie opierać się na subiektywnych odczuciach co do stanu technicznego instalacji, lecz kierować się zaleceniami norm branżowych, które wskazują na konieczność przeprowadzania kontroli co roku. Umożliwia to nie tylko zachowanie bezpieczeństwa, ale również utrzymanie instalacji w odpowiednim stanie technicznym przez długi czas.

Pytanie 32

Jakie narzędzia będą konieczne do zamocowania listew elektroizolacyjnych na ścianie z płyt gipsowych?

A. Wiertarka, wiertło, piła do cięcia, wkrętak.
B. Piła do cięcia, przecinak, młotek.
C. Nóż monterski, wiertarka, zestaw kluczy.
D. Zestaw kluczy, wkrętarka, wiertło, przecinak.
Wybór odpowiedzi 'Wiertarka, wiertło, piła do cięcia, wkrętak' jest prawidłowy, ponieważ montaż listew elektroizolacyjnych na ścianie gipsowej wymaga precyzyjnych narzędzi do wykonania otworów oraz odpowiedniego przymocowania listew. Wiertarka z wiertłem pozwala na wykonanie otworów w ścianie, co jest kluczowe dla stabilnego montażu. Piła do cięcia jest niezbędna, gdyż listew często trzeba dostosować do długości, co wymaga precyzyjnego cięcia. Ostatnim kluczowym narzędziem jest wkrętak, który umożliwia przymocowanie listew do ściany za pomocą odpowiednich śrub. Zastosowanie wiertarki i wiertła zgodnie z zasadami bhp jest niezbędne, aby uniknąć uszkodzeń ściany i zapewnić, że otwory są odpowiedniej głębokości. Dobrą praktyką jest także stosowanie wkrętów samowiercących, co ułatwia montaż oraz zwiększa trwałość mocowania.

Pytanie 33

Na podstawie przedstawionych na rysunku zależności napięcia na zaciskach akumulatora od prądu i czasu rozładowywania wskaż wartość napięcia akumulatora o pojemności C = 100 Ah, który przez 30 minut był obciążony prądem o wartości 60 A.

Ilustracja do pytania
A. 11,0 V
B. 11,3 V
C. 12,4 V
D. 12,0 V
Wybór napięcia 11,0 V, 11,3 V lub 12,4 V jako odpowiedzi na postawione pytanie może wynikać z nieporozumień związanych z dynamiką rozładowania akumulatorów oraz ich charakterystyką. Napięcie akumulatora w trakcie rozładowania zmienia się, a jego wartość końcowa jest zależna od wielu czynników, w tym od wartości prądu i czasu rozładowania. Odpowiedzi 11,0 V oraz 11,3 V są zbyt niskie, co może sugerować, że nie uwzględniono rzeczywistego zachowania akumulatora w opisanym czasie i przy danym obciążeniu. Natomiast odpowiedź 12,4 V może wydawać się kusząca, lecz w rzeczywistości jest zbyt wysoka, co wskazuje na brak uwzględnienia prawidłowego spadku napięcia, typowego dla akumulatorów poddanych dużym obciążeniom. Ponadto, niektóre osoby mogą błędnie interpretować wykresy lub nie dostrzegać, że napięcie nie tylko zależy od pojemności, ale również od charakterystyki chemicznej użytego akumulatora oraz warunków jego pracy. Kluczowym błędem jest także pomijanie faktu, że w trakcie rozładowania przy dużym prądzie akumulator nie jest w stanie utrzymać nominalnego napięcia, co prowadzi do zaniżenia prognozowanej wartości. Dlatego niezwykle ważne jest, aby przy takich analizach zawsze odnosić się do danych wykresów oraz zrozumieć, jak różne czynniki wpływają na wydajność i żywotność akumulatorów.

Pytanie 34

W jakiego rodzaju instalacjach elektrycznych typowe jest stosowanie przewodów w karbowanych rurkach?

A. Wtynkowych
B. Podtynkowych
C. Napowietrznych
D. Nadtynkowych
Rozważając odpowiedzi, które nie są poprawne, można zauważyć, że układanie przewodów w rurkach karbowanych nie jest praktykowane w instalacjach natynkowych. W tego typu instalacjach przewody są często umieszczane na powierzchni ścian, co nie tylko obniża estetykę, ale również naraża je na uszkodzenia mechaniczne. Rurki karbowane pełnią funkcję ochronną, a ich stosowanie w instalacjach natynkowych jest zbędne, ponieważ przewody nie są ukryte w ścianach. Kolejny błąd myślowy dotyczy odpowiedzi odnośnie instalacji wtynkowych. Termin ten jest często mylony z podtynkowymi, jednak wtynkowe oznacza, że przewody są osadzone w elementach budowlanych, co nie wymaga dodatkowej ochrony, jaką zapewniają rurki karbowane. Wreszcie, instalacje napowietrzne również nie wymagają użycia rur karbowanych. Przewody w takich instalacjach są zwykle zawieszone na słupach i nie są narażone na te same warunki, co przewody w ścianach. Dlatego stosowanie rur karbowanych w tych przypadkach byłoby niepraktyczne i nieefektywne. W każdym przypadku, ignorowanie odpowiednich norm i praktyk dotyczących instalacji elektrycznych może prowadzić do problemów z bezpieczeństwem oraz niezawodnością, dlatego zrozumienie różnic pomiędzy typami instalacji jest kluczowe dla właściwego podejścia do tematu.

Pytanie 35

W jaki sposób i przewodem o jakim przekroju ma być wykonana trójfazowa wewnętrzna linia zasilająca (WLZ), której obciążalność prądowa wynosi 220 A?

Obciążalność prądowa długotrwała w A przewodów
o żyłach Cu w izolacji PVC ułożonych w różny sposób
Przekrój
znamionowy żył
w mm²
Instalacja wykonana
sposobami
CE
70211216
95225238
gdzie:
C – przewody układane po wierzchu, na ścianie lub suficie drewnianym
E – przewody wielożyłowe ułożone swobodnie w powietrzu lub korytku kablowym
A. Sposób E i 95 mm2
B. Sposób E i 70 mm2
C. Sposób C i 95 mm2
D. Sposób C i 70 mm2
W przypadku niepoprawnych odpowiedzi można zauważyć kilka kluczowych błędów logicznych, które mogą prowadzić do niewłaściwych wniosków. Na przykład, wybór metody C z przekrojem 95 mm², mimo że przekrój przewodu spełnia wymogi obciążalności, nie uwzględnia faktu, że sposób ułożenia ma zasadnicze znaczenie dla bezpieczeństwa i wydajności. Sposób C to układ przewodów w rurkach instalacyjnych, co ogranicza ich zdolność do odprowadzania ciepła. W rezultacie może to prowadzić do przegrzania i potencjalnych uszkodzeń instalacji. Również wybór sposobu E z mniejszym przekrojem 70 mm² jest nieadekwatny, ponieważ obciążalność tego przewodu wynosi jedynie 200 A, co nie wystarcza do obsługi wymaganej wartości 220 A. W takich przypadkach warto zwrócić uwagę na obliczenia dotyczące obciążalności prądowej przewodów, które są podstawą do projektowania prawidłowych instalacji elektrycznych. Niezastosowanie się do standardów, takich jak PN-IEC 60364, w kontekście doboru zarówno metody ułożenia, jak i przekroju przewodu, może prowadzić do awarii systemów zasilających oraz zagrożeń dla bezpieczeństwa użytkowników. Dlatego tak ważne jest, aby przed podjęciem decyzji o wyborze odpowiednich komponentów instalacji elektrycznej, dokładnie analizować wymagania oraz standardy branżowe.

Pytanie 36

Który rodzaj źródła światła pokazano na rysunku?

Ilustracja do pytania
A. Elektroluminescencyjne.
B. Wyładowcze.
C. Żarowe.
D. Fluorescencyjne.
Poprawna odpowiedź to "Elektroluminescencyjne", ponieważ na ilustracji mamy do czynienia z diodą LED (Light Emitting Diode), która jest typowym przykładem tego rodzaju źródła światła. Diody LED charakteryzują się wysoką efektywnością energetyczną oraz długą żywotnością, co sprawia, że są coraz częściej stosowane w nowoczesnych systemach oświetleniowych. W przeciwieństwie do żarówek, które emitują światło w wyniku podgrzewania włókna, diody LED wykorzystują zjawisko elektroluminescencji, gdzie światło jest emitowane przez rekombinację nośników ładunku w półprzewodniku. Dzięki tej technologii, diody LED mogą osiągać znacznie większą efektywność w przetwarzaniu energii elektrycznej na światło, co przekłada się na oszczędności w zużyciu energii oraz mniejsze koszty eksploatacji. Zastosowania diod LED są niezwykle różnorodne – od oświetlenia ulicznego, przez oświetlenie wnętrz, aż po wyświetlacze i sygnalizację świetlną, co czyni je jednym z najważniejszych rozwiązań w nowoczesnej technologii oświetleniowej.

Pytanie 37

Którego aparatu należy użyć w celu zastąpienia bezpieczników topikowych w modernizowanej instalacji w obwodzie zasilającym silnik trójfazowy?

Ilustracja do pytania
A. C.
B. B.
C. A.
D. D.
Wybór niewłaściwego aparatu zabezpieczającego do modernizowanej instalacji zasilającej silnik trójfazowy może prowadzić do poważnych problemów, zarówno w kontekście bezpieczeństwa, jak i efektywności działania systemu. Aparaty, które nie są przystosowane do obsługi takiego obwodu, mogą nie posiadać odpowiedniej liczby wejść i wyjść, co skutkuje niewłaściwym zasilaniem silnika. W przypadku podejść, które ignorują normy dotyczące zabezpieczeń obwodowych, jak na przykład stosowanie aparatów jednofazowych, można łatwo doprowadzić do przegrzania lub uszkodzenia silnika na skutek braku odpowiedniego odcięcia zasilania w przypadku awarii. Ponadto, nieodpowiedni dobór prądu znamionowego, który nie będzie odpowiadał wymaganiom silnika, może prowadzić do fałszywego wyzwolenia zabezpieczeń, co w praktyce oznacza nieprawidłowe działanie całego systemu. Istotnym aspektem jest również zrozumienie charakterystyki wyzwalania. Aparaty, które nie posiadają odpowiednich charakterystyk, takich jak "C16", mogą reagować zbyt wolno na nagłe skoki prądu, co w przypadku silników trójfazowych jest szczególnie istotne. W ten sposób, niepoprawne koncepcje w doborze zabezpieczeń mogą wynikać z braku zrozumienia zasady działania instalacji trójfazowych i ich specyficznych wymagań. Dlatego ważne jest, aby stosować się do standardów i dobrych praktyk branżowych, co gwarantuje nie tylko bezpieczeństwo, ale również niezawodność działania zasilania silników trójfazowych.

Pytanie 38

Na schematach instalacji elektrycznych symbolem przedstawionym na ilustracji oznacza się przewód prowadzony

Ilustracja do pytania
A. nad sufitem podwieszanym.
B. w korytku instalacyjnym.
C. w tynku.
D. pod tynkiem.
Wybór odpowiedzi dotyczącej przewodów prowadzonych nad sufitem podwieszanym, pod tynkiem lub w korytku instalacyjnym jest mylny i wynika z kilku nieporozumień związanych z oznaczeniami instalacji elektrycznych. Przewody prowadzone nad sufitem podwieszanym są zazwyczaj oznaczane innymi symbolami, które wskazują na ich lokalizację oraz sposób układania. W przypadku instalacji pod tynkiem, przewody również wymagają szczególnych oznaczeń, gdyż ich położenie jest często związane z różnorodnymi wytycznymi dotyczącymi ochrony przed uszkodzeniami. Korytka instalacyjne, w których przewody są prowadzone, również mają swoje własne symbole, które różnią się od tych stosowanych dla przewodów ukrytych w tynku. Niezrozumienie tych różnic może prowadzić do błędnych interpretacji schematów, co w konsekwencji może skutkować nieprawidłowym wykonaniem instalacji. Przykładem błędu myślowego jest założenie, że dowolne oznaczenie przewodu może odnosić się do jakiejkolwiek metody prowadzenia, co jest dalekie od rzeczywistości. Właściwa znajomość symboliki elektrycznej jest kluczowa dla poprawnego projektowania i wykonania instalacji, a każde nieporozumienie w tej kwestii może mieć poważne konsekwencje dla bezpieczeństwa użytkowników oraz funkcjonalności instalacji.

Pytanie 39

Stosując kryterium obciążalności prądowej, dobierz na podstawie tabeli minimalny przekrój przewodu do zasilenia grzejnika elektrycznego o danych: PN = 4,6 kW, UN = 230 V.

S, mm21,01,52,54,06,0
Idd, A1519243242
A. 4,0 mm2
B. 1,5 mm2
C. 6,0 mm2
D. 2,5 mm2
Dobra robota z wybraniem przekroju przewodu 2,5 mm²! Z tego co pamiętam, taki przekrój jest ok, gdy chodzi o obciążalność prądową. Kiedy obliczamy prąd dla grzejnika elektrycznego 4,6 kW przy 230 V, to wychodzi nam około 20 A. Jak spojrzysz na tabelę obciążalności przewodów, to zobaczysz, że 2,5 mm² spokojnie wytrzyma do 24 A, co oznacza, że jest to bezpieczny wybór. Moim zdaniem, dobrze dobrany przekrój przewodu to klucz do efektywnej pracy urządzenia i bezpieczeństwa naszych instalacji. Taki przekrój jest także często używany w instalacjach oświetleniowych czy przy zasilaniu urządzeń o podobnych parametrach. Zawsze warto mieć na uwadze tabele obciążalności i normy, jak PN-IEC 60364 – to pomoże uniknąć problemów w przyszłości.

Pytanie 40

Które wyprowadzenia czujnika kontroli i zaniku faz należy włączyć szeregowo z cewką stycznika zgodnie z przedstawionymi schematami z jego instrukcji fabrycznej?

Ilustracja do pytania
A. 7 i 8
B. 1 i 7
C. 4 i 8
D. 1 i 4
Wybrane odpowiedzi sugerują błędne podejście do analizy schematu połączeń czujnika kontroli i zaniku faz z cewką stycznika. W przypadku odpowiedzi 1 i 4, wyprowadzenia 1 oraz 4 nie są przeznaczone do szeregowego połączenia z cewką, co oznacza, że nie będą monitorować obecności faz w sposób wymagany do zabezpieczenia silnika. Podobnie, połączenie 1 i 7 oraz 4 i 8 również nie spełnia kryteriów, które pozwoliłyby na efektywne działanie czujnika. Typowym błędem myślowym jest zakładanie, że wystarczą dowolne wyprowadzenia czujnika do zabezpieczenia urządzenia. Ważne jest, aby zrozumieć, że czujnik zaniku faz ma specyficzne wyprowadzenia, które muszą być stosowane zgodnie z zaleceniami producenta, aby uniknąć niepożądanych sytuacji, takich jak zbyt wczesne wyłączenie silnika lub jego uszkodzenie w wyniku pracy w warunkach braku zasilania. Niezrozumienie zasad działania systemów zabezpieczeń może prowadzić do poważnych awarii, a w konsekwencji do wysokich kosztów napraw i przestojów produkcji. W związku z tym kluczowe jest, aby każdy inżynier miał pełne zrozumienie schematów oraz zasad działania urządzeń, z którymi pracuje.