Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektryk
  • Kwalifikacja: ELE.05 - Eksploatacja maszyn, urządzeń i instalacji elektrycznych
  • Data rozpoczęcia: 17 grudnia 2025 14:39
  • Data zakończenia: 17 grudnia 2025 14:59

Egzamin zdany!

Wynik: 25/40 punktów (62,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Możliwość przebicia izolacji uzwojeń silnika indukcyjnego trójfazowego w stosunku do korpusu można ustalić przez pomiar

A. rezystancji uzwojeń stojana
B. rezystancji przewodu ochronnego
C. symetrii uzwojeń
D. prądu upływu
Prąd upływu jest kluczowym wskaźnikiem stanu izolacji uzwojeń silnika indukcyjnego trójfazowego. W momencie wystąpienia przebicia izolacji, prąd upływu wzrasta, co może prowadzić do niebezpiecznych sytuacji, w tym uszkodzenia silnika oraz zagrożeń dla użytkowników. Pomiar prądu upływu pozwala na wykrycie niewłaściwych warunków izolacyjnych oraz wczesną identyfikację problemów, zanim dojdzie do poważniejszych awarii. W praktyce, stosuje się urządzenia pomiarowe, takie jak mierniki izolacji czy detektory prądu upływu, które mogą zarówno diagnozować stan izolacji, jak i monitorować jej zmiany w czasie. W myśl dobrych praktyk, regularne kontrole stanu izolacji silników są zalecane przez standardy branżowe, takie jak IEC 60034, co podkreśla znaczenie zapobiegania awariom oraz zapewnienia bezpieczeństwa eksploatacji urządzeń elektrycznych.

Pytanie 2

Który z dwójników służy do zabezpieczania tyrystorów przed przepięciami komutacyjnymi?

Ilustracja do pytania
A. C.
B. B.
C. D.
D. A.
Wybór odpowiedzi, który nie wskazuje na dwójnik RC, może prowadzić do nieporozumień w zakresie ochrony tyrystorów przed przepięciami komutacyjnymi. Ochrona tyrystorów jest kluczowym zagadnieniem w elektronice mocy, gdyż ich wyłączenie może generować znaczące przepięcia. Rezystory i kondensatory pełnią różne funkcje w układach elektronicznych, a ich niewłaściwe użycie może prowadzić do uszkodzeń komponentów. Wiele osób błędnie uważa, że tyrystory można zabezpieczyć stosując jedynie rezystory lub kondensatory osobno, co jest nieprawidłowe. Rezystor sam w sobie nie zareaguje na nagłe zmiany napięcia, a kondensator, chociaż jest w stanie absorbować energię, nie zredukuje energii wyzwalanej przez szybko zmieniające się napięcie. Dlatego kluczowe jest zrozumienie, że jedynie ich połączenie w formie dwójnika RC odpowiada za skuteczną ochronę. W praktyce, nieprawidłowy dobór elementów lub ich brak może prowadzić do niepożądanych zjawisk, takich jak przepięcia, które mogą uszkodzić zarówno tyrystory, jak i inne elementy obwodu. Niezrozumienie tego zagadnienia może skutkować nieefektywnością całego układu elektronicznego oraz zwiększoną awaryjnością systemów, w których stosowane są tyrystory.

Pytanie 3

Aby zabezpieczyć silnik o parametrach znamionowych podanych poniżej, należy dobrać wyłącznik silnikowy według oznaczenia producenta

Silnik 3~ Typ MAS063-2BA90-Z
0,25 kW 0,69 A Izol. F
IP 54 2755 obr/min cosφ 0,81
400 V (Y) 50 Hz

A. MMS-32S – 1,6A
B. PKZM01 – 0,63
C. PKZM01 – 1
D. MMS-32S – 4A
Wybór niewłaściwych wyłączników silnikowych często wynika z niepełnego zrozumienia zasad doboru urządzeń zabezpieczających dla silników elektrycznych. Na przykład, MMS-32S – 4A oferuje zbyt wysoki prąd znamionowy, co może prowadzić do braku skutecznej ochrony silnika. Taki wyłącznik nie zadziała w przypadku przeciążenia, co naraża silnik na uszkodzenia. Z kolei PKZM01 – 0,63, mimo że jest bliższy wymaganiom silnika, także nie spełnia norm, ponieważ jego maksymalny prąd jest zbyt niski w stosunku do prądu znamionowego silnika. Wybierając wyłączniki, należy pamiętać o odpowiednich marginesach prądowych, co oznacza, że wyłącznik powinien mieć wartość znamionową prądu większą niż prąd roboczy silnika, ale nie przeładowaną, aby nie doszło do fałszywych zadziałań. Niewłaściwy dobór wyłączników może prowadzić do poważnych konsekwencji, takich jak uszkodzenie silnika, a także potencjalne ryzyko pożaru z powodu przeciążeń. W związku z tym, kluczowe jest przestrzeganie norm dotyczących instalacji elektrycznych i zabezpieczeń, takich jak IEC 60947, które dostarczają wytycznych na temat bezpiecznego doboru urządzeń ochronnych dla silników. Zrozumienie tych zasad jest fundamentalne dla właściwego funkcjonowania systemów elektrycznych i ochrony sprzętu.

Pytanie 4

Jaki stopień ochrony powinien posiadać silnik trójfazowy eksploatowany w pomieszczeniu narażonym na wybuch?

A. IP34
B. IP56
C. IP00
D. IP11
Stopień ochrony IP56 oznacza, że urządzenie jest całkowicie chronione przed kurzem oraz odporne na silne strumienie wody. W kontekście silnika trójfazowego pracującego w pomieszczeniu zagrożonym wybuchem, taki stopień ochrony jest kluczowy, ponieważ zanieczyszczenia i wilgoć mogą negatywnie wpływać na jego wydajność oraz bezpieczeństwo. W przypadku zastosowań w strefach Ex, gdzie występują substancje łatwopalne, zgodność z normami takimi jak ATEX czy IECEx staje się obowiązkowa. Zastosowanie silnika z odpowiednim stopniem ochrony, jak IP56, minimalizuje ryzyko uszkodzeń oraz potencjalnych wybuchów. Przykładem może być użycie takich silników w przemysłach chemicznych, gdzie nie tylko trzeba dbać o bezpieczeństwo, ale także o ciągłość procesów produkcyjnych. Warto również pamiętać o regularnych przeglądach technicznych, które pozwalają na wczesne wykrywanie ewentualnych problemów związanych z ochroną przed pyłem i wodą.

Pytanie 5

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 6

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 7

Na podstawie zamieszczonych w tabeli danych łożysk dobierz łożysko do silnika o średnicy wału d = 12 mm i szerokości tarczy łożyskowej B = 12 mm.

SymbolWymiary podstawowe
d [mm]D [mm]B [mm]r [mm]
6700101530,1
62003090,6
6001122880,3
630137121
A. 6301
B. 6700
C. 6200
D. 6001
Odpowiedź 6301 jest poprawna, ponieważ spełnia wszystkie wymagania dotyczące wymiarów łożyska do silnika o średnicy wału 12 mm oraz szerokości tarczy łożyskowej 12 mm. Łożyska 6301 mają średnicę wewnętrzną 12 mm, co jest idealne do mocowania na wale silnika, oraz standardową szerokość 12 mm, która odpowiada wymaganym parametrom. Wybór odpowiedniego łożyska jest kluczowy dla zapewnienia efektywności i trwałości pracy silnika. Stosowanie łożysk o nieodpowiednich wymiarach może prowadzić do ich przedwczesnego zużycia, zwiększonego tarcia oraz potencjalnych awarii. W praktyce, łożyska serii 6300 są powszechnie stosowane w różnych aplikacjach, w tym w silnikach elektrycznych, przekładniach oraz w układach napędowych. Ich wybór powinien opierać się na dokładnej analizie wymagań technicznych, a także na znajomości standardów branżowych, takich jak normy ISO dotyczące łożysk. Wiedza na temat doboru łożysk jest niezbędna dla inżynierów i techników, aby zapewnić optymalną wydajność i niezawodność maszyn.

Pytanie 8

Jakie działania mogą przyczynić się do poprawy współczynnika mocy?

A. Zwiększenie częstotliwości regularnych przeglądów urządzeń elektrycznych
B. Uzyskanie w Zakładzie Energetycznym wyższego przydziału mocy
C. Podniesienie kwalifikacji personelu obsługującego maszyny elektryczne
D. Wyłączenie silników oraz transformatorów działających przy niskim obciążeniu
Wszystkie pozostałe działania, takie jak zwiększenie częstotliwości przeglądów maszyn elektrycznych, podnoszenie kwalifikacji pracowników czy uzyskiwanie większego przydziału mocy w Zakładzie Energetycznym, nie prowadzą bezpośrednio do poprawy współczynnika mocy, co może prowadzić do błędnych wniosków w zakresie zarządzania energetycznego. Zwiększenie częstotliwości przeglądów maszyn elektrycznych, chociaż istotne dla utrzymania ich sprawności i wydajności, nie wpływa na współczynnik mocy sam w sobie. Główne korzyści związane z przeglądami dotyczą zapobiegania awariom i przedłużenia żywotności sprzętu, a nie bezpośredniej poprawy PF. Podnoszenie kwalifikacji pracowników jest z pewnością korzystne dla ogólnej efektywności operacyjnej zakładu, jednak nie jest to działanie, które bezpośrednio wpłynie na poprawę współczynnika mocy. Natomiast uzyskanie większego przydziału mocy w Zakładzie Energetycznym może wręcz prowadzić do zwiększenia obciążeń, co często skutkuje pogorszeniem współczynnika mocy. Właściwa strategia zarządzania mocą powinna koncentrować się na optymalizacji istniejącego sprzętu oraz eliminacji nieefektywnych operacji, zamiast na zwiększaniu przydziału mocy, co może prowadzić do niepotrzebnych kosztów.

Pytanie 9

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 10

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 11

Podczas pracy urządzeń napędowych, oględziny nie obejmują oceny

A. wskazań aparatury kontrolno-pomiarowej
B. stanu szczotek
C. stanu osłon części wirujących
D. poziomu drgań
Odpowiedź "stanu szczotek" jest poprawna, ponieważ podczas oględzin urządzeń napędowych w czasie ich pracy koncentrujemy się na aspektach, które bezpośrednio wpływają na ich funkcjonowanie oraz bezpieczeństwo. Stan szczotek, które są zwykle elementami wykonawczymi w silnikach elektrycznych, nie jest kontrolowany podczas pracy, gdyż ich ocena wymaga zatrzymania urządzenia. Oględziny skupiają się na monitorowaniu parametrów pracy, takich jak poziom drgań, które mogą wskazywać na nieprawidłowości w pracy łożysk lub wirników, oraz na wskazaniach aparatury kontrolno-pomiarowej, które dostarczają kluczowych informacji o stanie technicznym urządzenia. Przykładem praktycznym są procedury dotyczące diagnostyki i konserwacji silników elektrycznych, gdzie regularne sprawdzanie poziomu drgań i temperatury ma na celu zapobieganie awariom oraz optymalizację pracy maszyn. Zgodnie z normami ISO 10816, monitorowanie drgań jest niezbędne dla zapewnienia ciągłości produkcji oraz minimalizacji kosztów związanych z naprawami i przestojami.

Pytanie 12

Jakim skrótem literowym określamy system automatyki energetycznej, który umożliwia przywrócenie normalnej pracy linii energetycznej po jej wyłączeniu przez urządzenia zabezpieczające?

A. SPZ
B. SCO
C. SRN
D. SZR
Skrót SPZ (samoczynne przywracanie zasilania) odnosi się do systemu automatyki energetycznej, który ma na celu przywrócenie normalnego funkcjonowania linii energetycznej po jej wyłączeniu przez urządzenia zabezpieczające. System ten jest kluczowy dla zapewnienia ciągłości dostaw energii elektrycznej oraz minimalizacji przerw w zasilaniu. W praktyce, SPZ działa na zasadzie wykrywania awarii lub przeciążeń, co inicjuje proces odłączenia danego obwodu. Po ustabilizowaniu warunków pracy i wykryciu, że awaria została usunięta, system automatycznie przywraca zasilanie. Przykładowo, w przypadku chwilowego wzrostu zapotrzebowania, SPZ może zresetować wyłącznik, co pozwala uniknąć niepotrzebnych przerw w zasilaniu. Praktyczna implementacja SPZ znajduje zastosowanie w różnych sektorach, od przemysłu, przez sieci dystrybucji, aż po systemy energetyczne w budynkach. Wiele krajowych standardów, takich jak PN-EN 50160, podkreśla znaczenie takich rozwiązań dla jakości dostaw energii elektrycznej oraz bezpieczeństwa systemu energetycznego.

Pytanie 13

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 14

W jakim celu stosuje się kompensację mocy biernej w instalacjach przemysłowych?

A. Zmniejszenia strat energii i poprawy współczynnika mocy
B. Zwiększenia napięcia znamionowego
C. Zmniejszenia prędkości obrotowej silników
D. Zwiększenia częstotliwości prądu
Kompensacja mocy biernej jest kluczowym zagadnieniem w kontekście instalacji przemysłowych, ponieważ wpływa bezpośrednio na efektywność energetyczną systemu. Moc bierna to ta część zużywanej energii elektrycznej, która nie wykonuje użytecznej pracy, ale jest niezbędna do podtrzymania pola elektromagnetycznego w urządzeniach takich jak transformatory i silniki indukcyjne. Zastosowanie kompensacji mocy biernej, zazwyczaj za pomocą baterii kondensatorów, prowadzi do poprawy współczynnika mocy, co oznacza, że więcej dostarczonej energii jest wykorzystywane na pracę użyteczną. Dzięki temu zmniejszają się straty energii w systemie, co przekłada się na niższe rachunki za energię i zmniejszenie obciążenia sieci energetycznej. Co więcej, poprawa współczynnika mocy może również prowadzić do zmniejszenia opłat za moc bierną, które są często naliczane przez dostawców energii jako kara za niską efektywność energetyczną. Dlatego kompensacja mocy biernej jest nie tylko korzystna z punktu widzenia efektywności, ale również może przynieść wymierne korzyści finansowe dla przedsiębiorstw.

Pytanie 15

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 16

W tabeli przedstawiono wyniki pomiarów napięć między przewodami w sieci typu TN-C-S. Jakie uszkodzenie występuje w instalacji?

L1-N240 V
L2-N240 V
L3-N240 V
PEN-N0 V
PEN-PE10 V
A. Zwarcie między fazami L1-L2
B. Brak ciągłości przewodu PE
C. Przebicie izolacji między L1-N
D. Uszkodzenie przewodu N
Brak ciągłości przewodu PE w instalacjach TN-C-S jest kluczowym problemem, który może prowadzić do poważnych zagrożeń dla bezpieczeństwa. W sieci TN-C-S przewód PEN pełni podwójną rolę: przewodu neutralnego oraz ochronnego. Przykładowo, w sytuacji, gdy napięcie między przewodem PEN a PE wynosi 10 V, wskazuje to na brak ciągłości w przewodzie PE. W idealnych warunkach napięcie to powinno wynosić 0 V, co oznacza, że przewód ochronny jest prawidłowo uziemiony i pełni swoją funkcję zabezpieczającą. W przypadku braku ciągłości przewodu PE, istnieje ryzyko, że metalowe obudowy urządzeń mogą stać się naładowane, co stwarza niebezpieczeństwo porażenia prądem. W praktyce, wszelkie prace w instalacjach elektrycznych powinny być prowadzone zgodnie z normami, takimi jak PN-IEC 60364, które podkreślają znaczenie prawidłowego uziemienia i ochrony przeciwporażeniowej. Regularne pomiary i inspekcje mogą pomóc w identyfikacji takich problemów, co jest zgodne z zaleceniami zawartymi w dokumentach branżowych.

Pytanie 17

Obciążalność prądowa długotrwała przewodu YDY w temperaturze 30°C dla jednego ze sposobów wykonania instalacji według normy PN-IEC 60364 wynosi 46 A. Korzystając z tabeli współczynników poprawkowych obciążalności w innych temperaturach określ, jaka będzie obciążalność tego przewodu w temperaturze powietrza równej 50°C.

Tabela: współczynniki poprawkowe dla temperatury otaczającego powietrza innej niż 30°C, stosowane do obciążalności prądowej długotrwałej przewodów w powietrzu (fragment tabeli)
Temperatura otoczenia °CIzolacja
PVCXLPE i EPRMineralna
Osłona z PCV lub bez osłony, dostępna 70°CBez osłony, niedostępna 105°C
450,790,870,770,88
500,710,820,670,84
550,610,760,570,80
A. 37,72 A
B. 30,82 A
C. 38,64 A
D. 32,66 A
Wybór złej odpowiedzi może wynikać z różnych nieporozumień. Przede wszystkim, warto ogarnąć, że temperatura wpływa na to, jak dobrze przewody przewodzą prąd. W przypadku PVC, im wyższa temperatura, tym obciążalność jest niższa. Niektórzy ludzie mogą myśleć, że obciążalność zostaje taka sama lub spada tylko minimalnie, co nie prowadzi do dobrych obliczeń. A jak się zapomni o normach jak PN-IEC 60364, można łatwo pominąć ważne zasady przy projektowaniu. W praktyce, zwłaszcza w instalacjach przemysłowych, gdzie przewody mogą być mocno nagrzane, istotne jest, żeby dostosować obciążalność do rzeczywistych warunków. Ignorowanie tych rzeczy może skończyć się niebezpiecznie, nawet uszkodzeniami przewodów, co w skrajnych sytuacjach oznacza ryzyko pożaru. Myśląc, że temperatura powietrza nie robi dużej różnicy, można wprowadzić w błąd zabezpieczenia, więc ta wiedza o współczynnikach poprawkowych ma ogromne znaczenie dla każdego, kto działa w branży elektrycznej.

Pytanie 18

Aby zapewnić skuteczną ochronę przed porażeniem prądem dla użytkowników gniazd wtyczkowych z prądem nieprzekraczającym 32 A, należy je chronić wyłącznikiem różnicowoprądowym o nominalnym prądzie różnicowym wynoszącym

A. 30 mA
B. 1 000 mA
C. 100 mA
D. 500 mA
Wyłącznik różnicowoprądowy o znamionowym prądzie różnicowym równym 30 mA jest uważany za standard w przypadku ochrony użytkowników obwodów gniazd wtyczkowych o prądzie nieprzekraczającym 32 A. Jego głównym zadaniem jest szybka detekcja prądów upływowych, które mogą stwarzać zagrożenie porażenia prądem elektrycznym. Prąd różnicowy 30 mA jest skutecznym zabezpieczeniem, które wyłącza obwód w przypadku wykrycia różnicy prądów powyżej tej wartości, co znacząco redukuje ryzyko poważnych obrażeń ciała. W praktyce, w przypadku zastosowań w domach i lokalach użyteczności publicznej, wyłączniki te są często stosowane w obwodach zasilających gniazda, gdzie użytkownicy mogą mieć styczność z wodą lub wilgotnymi warunkami. Dodatkowo, zgodnie z normą PN-EN 61008-1, wyłączniki różnicowoprądowe o prądzie różnicowym 30 mA powinny być standardem w instalacjach elektrycznych, gdzie występuje ryzyko porażenia ciała ludzkiego.

Pytanie 19

Który z jednofazowych wyłączników nadprądowych zapewnia odpowiednią ochronę przed porażeniem przy impedancji pętli zwarcia Z = 4,2 Ω?

A. C10
B. C16
C. B10
D. B16
Odpowiedź B10 jest prawidłowa, ponieważ wyłącznik nadprądowy typu B charakteryzuje się zdolnością do wykrywania przeciążeń oraz zwarć w instalacjach elektrycznych. Przy impedancji pętli zwarcia Z = 4,2 Ω, wyłącznik B10 zapewnia odpowiednią ochronę przeciwporażeniową, gdyż jego prąd znamionowy wynosi 10 A. W sytuacji zwarcia, czas reakcji wyłącznika jest kluczowy dla bezpieczeństwa, a wyłącznik typu B zadziała przy prądzie zwarciowym w granicach 3 do 5 krotności prądu znamionowego. Przykładowo, dla prądu zwarciowego rzędu 30 A, wyłącznik ten zadziała w czasie wystarczającym, by zminimalizować ryzyko uszkodzenia instalacji oraz zapobiec porażeniom. Zgodnie z normami, takimi jak PN-EN 60898, dobór wyłącznika powinien być dostosowany do warunków pracy oraz charakterystyki obciążenia, co potwierdza wybór B10 jako właściwy. Dodatkowo, stosowanie wyłączników nadprądowych zgodnych z obowiązującymi regulacjami sprzyja utrzymaniu wysokiego poziomu bezpieczeństwa w instalacjach elektrycznych.

Pytanie 20

Którego z wymienionych pomiarów eksploatacyjnych w instalacji oświetleniowej nie można zrealizować standardowym miernikiem uniwersalnym?

A. Prądu pobieranego przez odbiornik
B. Napięć w poszczególnych fazach
C. Ciągłości przewodów ochronnych
D. Rezystancji izolacji przewodów
Pomiar rezystancji izolacji przewodów jest kluczowym aspektem utrzymania bezpieczeństwa i niezawodności instalacji elektrycznych. Aby dokładnie wykonać ten pomiar, używa się specjalistycznych mierników zwanych megomierzami, które generują wysokie napięcia (zwykle od 250V do 1000V). Tego rodzaju pomiar jest istotny, ponieważ pozwala ocenić, czy izolacja przewodów nie jest uszkodzona oraz czy nie występują upływy prądu, co mogłoby prowadzić do zagrożenia pożarowego lub porażenia elektrycznego. Standardy takie jak PN-EN 61557-1 opisują wymagania dotyczące testowania rezystancji izolacji, a ich przestrzeganie jest kluczowe w ramach regularnych przeglądów oraz konserwacji instalacji. Przykładowo, podczas testowania instalacji oświetleniowej w budynku użycie megomierza może pomóc w identyfikacji potencjalnych problemów zanim doprowadzą one do awarii lub zagrożenia dla użytkowników.

Pytanie 21

Jakiego składnika nie powinien mieć kabel zasilający do głównej rozdzielnicy w strefie przemysłowej, która jest klasyfikowana jako niebezpieczna pod względem pożaru?

A. Obudowy stalowej.
B. Żył z aluminium.
C. Pokrywy polietylenowej.
D. Zewnętrznego splotu włóknistego.
Zewnętrzny oplot włóknisty nie jest odpowiednim elementem w przypadku kabli zasilających używanych w pomieszczeniach przemysłowych o podwyższonym ryzyku pożarowym. W takich środowiskach kluczowe jest zapewnienie wysokiego poziomu ochrony przed działaniem ognia oraz substancji chemicznych. Oplot włóknisty, choć lekki i elastyczny, nie oferuje wystarczającej odporności na wysokie temperatury ani zabezpieczenia przed rozprzestrzenieniem się ognia. W praktyce, kable w takich strefach powinny posiadać pancerz stalowy, który chroni przed mechanicznymi uszkodzeniami oraz powłokę polietylenową, która zapewnia odpowiednią odporność na ogień. Zastosowanie takich materiałów jest zgodne z normami, takimi jak PN-EN 50575, która określa wymagania dotyczące kabli w kontekście ochrony przeciwpożarowej. Warto również pamiętać, że odpowiednia konstrukcja kabli zasilających może mieć kluczowe znaczenie dla bezpieczeństwa całego systemu zasilania w obiektach przemysłowych.

Pytanie 22

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 23

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 24

W jakim trybie pracy silnik asynchroniczny osiąga najmniejszy współczynnik mocy?

A. Zwarcia awaryjnego
B. Biegu jałowego
C. Zwarcia pomiarowego
D. Obciążenia znamionowego
W stanie biegu jałowego silnik asynchroniczny pracuje bez obciążenia, co prowadzi do niskiego współczynnika mocy. W tym trybie, silnik zużywa moc bierną, co skutkuje niską efektywnością energetyczną. W rzeczywistości, współczynnik mocy może wynosić zaledwie 0,1 do 0,2, co oznacza, że tylko niewielka część energii elektrycznej jest przekształcana w moc użyteczną. Zastosowanie tego trybu jest ograniczone, ale w niektórych sytuacjach, jak w przypadku urządzeń uruchamianych w warunkach niskiego obciążenia, mogą występować momenty pracy w biegu jałowym. W praktyce, dla poprawy efektywności energetycznej, często stosuje się kondensatory, które kompensują moc bierną, co pozwala zwiększyć współczynnik mocy do bardziej akceptowalnych wartości. Ponadto, znajomość tego zjawiska jest kluczowa przy projektowaniu układów zasilania oraz przy wyborze odpowiednich urządzeń i komponentów w systemach elektronicznych i elektrycznych, co jest zgodne z normami takimi jak IEC 60034 dotyczące maszyn elektrycznych.

Pytanie 25

Uszkodzenie izolacji uzwojenia w działającym przekładniku może wystąpić na skutek rozłączenia zacisków jego strony

A. pierwotnej przekładnika napięciowego
B. wtórnej przekładnika prądowego
C. wtórnej przekładnika napięciowego
D. pierwotnej przekładnika prądowego
Odpowiedzi związane z pierwotnym uzwojeniem przekładników prądowych i napięciowych są nieprawidłowe, ponieważ zakładają, że rozwarcie może wystąpić w obwodzie, który nie generuje niebezpiecznych warunków. W rzeczywistości pierwotne uzwojenie przekładnika prądowego jest na stałe podłączone do obwodu zasilającego i nie jest narażone na bezpośrednie rozwarcie, co powodowałoby wzrost napięcia na jego końcach. W przypadku przekładnika napięciowego, rozwarcie uzwojenia wtórnego może prowadzić do sytuacji, w której napięcie na uzwojeniu pierwotnym wzrasta, ale nie prowadzi to do uszkodzenia izolacji. Typowym błędem myślowym jest mylenie ról uzwojeń wtórnych i pierwotnych; uzwojenia wtórne są wrażliwe na rozwarcia, które prowadzą do ryzykownych warunków operacyjnych z powodu braku obciążenia. Dlatego istotne jest, aby zrozumieć, że uszkodzenia izolacji wynikają głównie z nieprawidłowego działania obwodów wtórnych, a nie pierwotnych, co powinno być uwzględnione w każdym projekcie systemu energetycznego. Przestrzeganie norm oraz stosowanie odpowiednich zabezpieczeń to kluczowe elementy zapewniające bezpieczeństwo i niezawodność systemów elektroenergetycznych.

Pytanie 26

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 27

Jak zastosowanie w instalacji puszek rozgałęźnych o stopniu ochrony IP 43 zamiast wymaganych w projekcie o stopniu ochrony IP44 wpłynie na jej jakość?

A. Poprawi się klasa izolacji.
B. Poprawi się klasa ochrony.
C. Zmniejszy się odporność na pył.
D. Zmniejszy się odporność na wilgoć.
Dobra robota, że zwróciłeś uwagę na wybór puszek rozgałęźnych z IP 43. Wiesz, że to gorsza opcja w porównaniu do IP 44? IP oznacza, jak dobrze urządzenie radzi sobie z wodą i innymi nieprzyjemnościami. W przypadku IP 43, ochrona przed wilgocią nie jest zbyt silna, więc urządzenia mogą być narażone na wodne mgły, ale nie na krople wody spadające pod kątem. W przeciwieństwie do tego, IP 44 to lepsza opcja, jeśli chodzi o odporność na wilgoć, co jest super ważne w miejscach jak łazienki czy piwnice. Tak naprawdę, dobierając odpowiednie puszki, nie tylko dbamy o bezpieczeństwo, ale też o długość życia całej instalacji elektrycznej. Wybór elementów z właściwą klasą ochrony ma ogromny wpływ na to, jak system będzie działał i zmniejsza ryzyko różnych awarii związanych z wilgocią.

Pytanie 28

Który z poniższych sposobów łączenia uzwojeń transformatora zapewnia jednoczesne zasilanie wszystkich faz?

A. Układ równoległy
B. Układ gwiazda-trójkąt
C. Układ trójkąt-gwiazda
D. Układ szeregowy
Układ trójkąt-gwiazda, choć podobny do układu gwiazda-trójkąt, działa na odwrót – uzwojenie pierwotne jest połączone w trójkąt, a wtórne w gwiazdę. Taki układ nie jest typowo stosowany do jednoczesnego zasilania wszystkich faz, ponieważ ma inne zastosowania, takie jak redukcja prądu rozruchowego w silnikach trójfazowych. Układ równoległy odnosi się do połączenia równoległego, które nie jest stosowane w przypadku uzwojeń transformatorów trójfazowych. Transformator działa na zasadzie indukcji elektromagnetycznej, a nie przepływu prądu jak w połączeniu równoległym, co czyni tę koncepcję nieodpowiednią. Układ szeregowy odnosi się do połączenia szeregowego, które również nie jest stosowane w transformatorach trójfazowych do zasilania wszystkich faz jednocześnie. W szeregowych połączeniach uzwojeń, napięcie się sumuje, co jest przydatne w innych kontekstach, ale nie w przypadku zasilania trójfazowego. Typowym błędem jest myślenie, że wszystkie te układy mogą być stosowane zamiennie w transformatorach, co nie jest prawdą. Każdy z nich ma swoje specyficzne zastosowania i nie można ich stosować zamiennie bez zrozumienia ich funkcji oraz wpływu na działanie całego systemu zasilającego.

Pytanie 29

Przy eksploatacji odbiornika, oznaczonego przedstawionym symbolem, przewód zasilający

Ilustracja do pytania
A. musi mieć wtyczkę ze stykiem ochronnym.
B. musi mieć żyły ekranowane.
C. nie musi mieć żyły PE.
D. powinien mieć żyłę PE.
Odpowiedź "nie musi mieć żyły PE" jest poprawna, ponieważ urządzenia elektryczne oznaczone symbolem klasy ochronności II są zaprojektowane tak, aby nie wymagały połączenia z przewodem ochronnym PE (Protective Earth). Urządzenia te posiadają podwójną izolację lub izolację wzmocnioną, co eliminuje potrzebę stosowania uziemienia. Zastosowanie takich urządzeń jest powszechne w przypadku sprzętu, który może być narażony na kontakt z użytkownikiem, jak na przykład sprzęt AGD, narzędzia elektryczne czy lampy. W praktyce oznacza to, że nie musimy martwić się o dodatkowe podłączenia uziemiające, co zwiększa wygodę w użytkowaniu. Warto zatem zwrócić uwagę na oznaczenia na urządzeniach oraz stosować zalecenia w zakresie instalacji elektrycznych, aby zapewnić bezpieczeństwo ich eksploatacji. Przykładowo, w instalacjach domowych urządzenia klasy II mogą być stosowane bez obaw o pojawienie się niepożądanych efektów związanych z brakiem uziemienia.

Pytanie 30

Symbol zabezpieczenia instalacji elektrycznej, pokazany na rysunku, odnosi się do wyłącznika

Ilustracja do pytania
A. bezpiecznikowego.
B. silnikowego.
C. różnicowoprądowego.
D. nadprądowego.
Wyłącznik różnicowoprądowy, oznaczony na rysunku, to kluczowy element zabezpieczeń w instalacjach elektrycznych, którego fundamentalnym zadaniem jest ochrona przed porażeniem prądem elektrycznym. Jego działanie opiera się na detekcji różnicy prądów płynących przez przewody fazowy i neutralny. W sytuacji, gdy dochodzi do wycieku prądu, na przykład w przypadku uszkodzenia izolacji, wyłącznik natychmiast reaguje, odłączając zasilanie w obwodzie. Stosowanie wyłączników różnicowoprądowych jest zgodne z normami PN-EN 61008 oraz PN-EN 61009, które regulują kwestie dotyczące ochrony przed porażeniem elektrycznym w instalacjach niskonapięciowych. Zastosowanie tych urządzeń w miejscach o zwiększonym ryzyku, jak łazienki czy kuchnie, jest nie tylko zalecane, ale często wymagane przez przepisy budowlane oraz normy dotyczące bezpieczeństwa. Warto również zauważyć, że wyłączniki różnicowoprądowe mogą być stosowane w połączeniu z innymi zabezpieczeniami, co zwiększa poziom ochrony w instalacjach elektrycznych.

Pytanie 31

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 32

Jak wpłynie na ilość wydzielanego ciepła w czasie, w grzejniku elektrycznym, gdy spiralę grzejną zmniejszy się o połowę, a napięcie pozostanie takie samo?

A. Zwiększy się dwukrotnie
B. Zmniejszy się czterokrotnie
C. Zmniejszy się dwukrotnie
D. Zwiększy się czterokrotnie
Wybór opcji wskazującej na czterokrotne zmniejszenie wydzielanego ciepła w jednostce czasu wynika z mylnego rozumienia relacji między długością spirali grzejnej a oporem elektrycznym. Koncepcja, że zmiana długości spirali prowadzi do ekstremalnego spadku wydajności, ignoruje podstawowe zasady elektrotechniki. W rzeczywistości, zmniejszenie długości spirali grzejnika elektrycznego o połowę prowadzi do zmniejszenia oporu R, co z kolei, przy zachowaniu napięcia, skutkuje zwiększeniem wydobywanej mocy. Błędne podejście opiera się na założeniu, że wydajność grzejnika spadnie w sposób proporcjonalny do długości spirali, co jest nieprawdziwe. Również stwierdzenia, że zmniejszenie długości spirali o połowę prowadzi do zmniejszenia wydzielania ciepła w sposób czterokrotny, nie uwzględniają charakterystyki elektronicznego przewodzenia energii w materiałach. Efekt Joule'a, który wyjaśnia generację ciepła w przewodnikach, mówi o kwadracie napięcia podzielonym przez opór, co wykazuje jednoznaczną zależność, która w tym przypadku wskazuje na wzrost mocy. Zrozumienie tych zasad jest kluczowe nie tylko w kontekście teorii, ale także w praktycznym projektowaniu systemów grzewczych, gdzie odpowiednia regulacja parametrów, takich jak długość spirali i napięcie, może znacząco wpłynąć na efektywność energetyczną i komfort użytkowania.

Pytanie 33

Podczas wymiany gniazdka trójfazowego w instalacji przemysłowej należy

A. zamontować końcówki oczkowe na przewodach
B. utrzymać odpowiednią kolejność przewodów fazowych w zaciskach gniazda
C. zagiąć oczka na końcach przewodów
D. zmienić przewody na nowe o większym przekroju
Zachowanie kolejności przewodów fazowych w zaciskach gniazda trójfazowego jest kluczowym aspektem bezpieczeństwa i prawidłowego działania instalacji. W układach trójfazowych, każdy z przewodów fazowych (L1, L2, L3) ma przypisane określone funkcje oraz wartości napięć, które powinny być utrzymywane w odpowiedniej sekwencji. Niezachowanie tej kolejności może prowadzić do problemów z równowagą obciążenia, co z kolei może skutkować uszkodzeniem urządzeń elektrycznych, a nawet zagrożeniem pożarowym. W praktyce, np. w przypadku podłączania silników elektrycznych, niewłaściwa kolejność faz może spowodować, że silnik będzie działał w odwrotnym kierunku, co może prowadzić do poważnych uszkodzeń. Zgodnie z normami PN-IEC 60364, zachowanie odpowiedniej kolejności połączeń jest niezbędne dla zapewnienia właściwej funkcjonalności oraz bezpieczeństwa instalacji elektrycznych.

Pytanie 34

Maksymalny prąd nastawczy przekaźnika termobimetalowego, który chroni silnik pompy wodnej, przy prądzie znamionowym In = 10 A, nie powinien być wyższy niż

A. 10,10 A
B. 10,50 A
C. 11,00 A
D. 9,50 A
Wybór odpowiedzi 10,10 A, 10,50 A lub 9,50 A opiera się na błędnym rozumieniu zasad działania przekaźników termobimetalowych i ogólnych zasad dotyczących zabezpieczeń silników. Ustawienie prądu nastawczego na wartość zaledwie odrobinę wyższą niż wartość znamionowa (jak 10,10 A czy 10,50 A) może prowadzić do niepożądanego wyłączania silnika w sytuacjach, które są całkowicie normalne, takich jak rozruch, gdzie prąd może chwilowo wzrosnąć. Z kolei wartość 9,50 A jest zbyt niska, aby skutecznie chronić silnik przed uszkodzeniem w przypadku przeciążeń. W praktyce, stosowanie zbyt niskiego prądu nastawczego może prowadzić do fałszywych wyłączeń, co z kolei może skutkować dodatkowymi kosztami związanymi z naprawami i przestojami w produkcji. Wybierając wartości nastawcze, należy uwzględnić nie tylko prąd znamionowy, ale również charakterystyki rozruchowe silnika oraz typ pompy, która może generować dodatkowe obciążenia. Standardy branżowe, takie jak IEC 60204-1, podkreślają znaczenie adekwatnego doboru zabezpieczeń, co w praktyce oznacza, że wartości nastawcze muszą być starannie obliczone i dostosowane do rzeczywistych warunków pracy. Dlatego kluczowe jest skupienie się na odpowiednim marginesie oraz zrozumieniu dynamiki działania urządzeń, aby zapewnić efektywność i niezawodność systemu zabezpieczeń.

Pytanie 35

Który z poniższych środków ostrożności nie jest wymagany do bezpiecznego przeprowadzenia prac na linii napowietrznej odłączonej od zasilania?

A. Ogrodzenie obszaru pracy
B. Używanie sprzętu izolacyjnego
C. Zarządzanie pracą w grupie
D. Uziemienie odłączonej linii
Odpowiedź 'Stosowanie sprzętu izolacyjnego' jest prawidłowa, ponieważ w przypadku prac przy linii napowietrznej, która jest wyłączona spod napięcia, nie ma konieczności stosowania sprzętu izolacyjnego. Sprzęt izolacyjny, taki jak rękawice i narzędzia, jest niezbędny w sytuacjach, gdy istnieje ryzyko wystąpienia wysokiego napięcia. W przypadku linii, która jest bezpiecznie wyłączona, nie ma takiego ryzyka, co oznacza, że użycie sprzętu izolacyjnego nie jest wymagane. Mimo to, w praktyce zaleca się stosowanie sprzętu ochronnego dla pewności, zwłaszcza gdy pracownicy nie mają pełnej pewności co do stanu instalacji. Dodatkowo, w wielu branżach stosuje się zasady BHP, które zalecają zachowanie ostrożności i przygotowanie do ewentualnych awarii, nawet gdy urządzenia są wyłączone. Standardy, takie jak normy ISO i PN, podkreślają znaczenie bezpieczeństwa pracy oraz stosowania odpowiednich procedur i praktyk przy wszelkich czynnościach związanych z energią elektryczną.

Pytanie 36

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 37

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 38

W tabeli zestawiono wyniki pomiarów rezystancji izolacji różnych instalacji elektrycznych, przeprowadzonych podczas prób odbiorczych. Która z instalacji znajduje się w złym stanie technicznym, wykluczającym jej eksploatację?

InstalacjaRezystancja izolacji, MΩ
A.SELV0,9
B.FELV0,9
C.230 V/400 V1,5
D.400 V/ 690 V1,2
A. B.
B. D.
C. C.
D. A.
Wybór innej odpowiedzi niż B może wynikać z niedostatecznego zrozumienia kryteriów oceny stanu technicznego instalacji elektrycznych. Wiele osób przypuszcza, że wszystkie wartości rezystancji izolacji są akceptowalne, jeśli mieszczą się w pewnym zakresie, co jest błędnym podejściem. Każda instalacja elektryczna ma określone normy, które muszą być przestrzegane, aby zapewnić bezpieczeństwo i niezawodność. W przypadku instalacji elektrycznych, normy takie jak IEC 60364 wyraźnie wskazują, że rezystancja izolacji poniżej 1 MΩ jest niebezpieczna. Przypuszczenie, że wartości takie jak 1 MΩ są jedynie orientacyjne, ignoruje poważne zagrożenia związane z niską rezystancją, takie jak ryzyko pożaru lub porażenia prądem. Odpowiedzi inne niż B mogą również wskazywać na mylne zrozumienie pojęcia rezystancji izolacji, gdzie sądzono, że im wyższa wartość, tym lepiej, ale bez odniesienia do kontekstu użytkowego. Ignorowanie wpływu rezystancji na bezpieczeństwo eksploatacji prowadzi do poważnych konsekwencji, dlatego tak istotne jest stosowanie się do standardów i dobrych praktyk w każdej instalacji elektrycznej. W kontekście praktycznym, brak regularnych pomiarów i konserwacji instalacji, co może być przyczyną niskiej rezystancji, jest kolejnym typowym błędem, który może prowadzić do tragedii. Utrzymanie właściwych wartości rezystancji nie tylko chroni użytkowników, ale również zapewnia długowieczność samej instalacji.

Pytanie 39

Do wykonania WLZ w instalacji trójfazowej jak na rysunku należy zastosować przewód typu

Ilustracja do pytania
A. LgY
B. YDY
C. UTP
D. YKY
Wybór przewodu YDY do wykonania WLZ w instalacji trójfazowej nie jest optymalnym rozwiązaniem, mimo że ten typ przewodu jest wykonany z miedzi i charakteryzuje się izolacją PVC. Główna różnica między YDY a YKY polega na tym, że YDY posiada dodatkową izolację z polwinitu, co może być korzystne w niektórych zastosowaniach, ale w przypadku WLZ, gdzie kluczowe są zarówno odporność na czynniki zewnętrzne, jak i mechaniczne uszkodzenia, YKY zapewnia lepsze właściwości. Przewód LgY, będący jednożyłowym, kompletnie nie nadaje się do zastosowań w instalacjach trójfazowych. Jego konstrukcja uniemożliwia efektywne przesyłanie energii w układzie trójfazowym, co prowadzi do degradacji efektywności instalacji. UTP, z kolei, jest kablem stosowanym w teleinformatyce, a nie w instalacjach elektrycznych, co czyni go zupełnie nieodpowiednim wyborem. Użytkownicy często mylą zastosowanie różnych typów przewodów, co może prowadzić do poważnych błędów w projektowaniu i wykonaniu instalacji elektrycznych. Właściwy dobór przewodów jest kluczowy dla bezpieczeństwa i funkcjonalności instalacji, dlatego tak ważne jest, aby kierować się aktualnymi normami i standardami branżowymi w celu zapewnienia ich optymalnej pracy i trwałości.

Pytanie 40

Podczas badania skuteczności działania dwóch wyłączników różnicowoprądowych, których znamionowy prąd różnicowy wynosi 30 mA, uzyskano wyniki przedstawione w tabeli:
Przy założeniu, że prąd wyzwalający nie powinien być mniejszy niż 0,5 znamionowego prądu różnicowego oraz nie powinien przekraczać wartości znamionowego prądu różnicowego, o działaniu tych wyłączników można powiedzieć, że

Numer wyłącznika różnicowoprądowegoRzeczywisty, zmierzony prąd różnicowy
120 mA
210 mA
A. pierwszy i drugi działają prawidłowo.
B. pierwszy działa nieprawidłowo, a drugi działa prawidłowo.
C. pierwszy i drugi działają nieprawidłowo.
D. pierwszy działa prawidłowo, a drugi działa nieprawidłowo.
Wyłącznik różnicowoprądowy nr 1 działa jak należy, bo jego prąd wyzwalający to 20 mA. Mieści się to w akceptowalnym zakresie, bo prąd nie powinien być mniejszy niż 0,5 znamionowego prądu różnicowego. Dla wyłącznika 30 mA to oznacza, że musi być minimalnie 15 mA. Działanie takiego wyłącznika ocenia się pod kątem ochrony przed porażeniem prądem, co jest naprawdę ważne. W praktyce, wyłączniki różnicowoprądowe są kluczowe w instalacjach elektrycznych, bo zapewniają bezpieczeństwo wszystkich użytkowników. Regularne kontrolowanie i testowanie tych urządzeń to podstawa, żeby mieć pewność, że działają zgodnie z normami, na przykład PN-EN 61008-1, która określa wymagania dla tych wyłączników. Warto też prowadzić dokumentację pomiarów i regularnie je kalibrować, bo to zapewnia, że systemy ochrony przed porażeniem są niezawodne.