Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik automatyk
  • Kwalifikacja: ELM.01 - Montaż, uruchamianie i obsługiwanie układów automatyki przemysłowej
  • Data rozpoczęcia: 17 grudnia 2025 08:31
  • Data zakończenia: 17 grudnia 2025 08:43

Egzamin niezdany

Wynik: 19/40 punktów (47,5%)

Wymagane minimum: 20 punktów (50%)

Udostępnij swój wynik
Szczegółowe wyniki:
Pytanie 1

Przedstawione na ilustracjach narzędzia służą do

Ilustracja do pytania
A. zaciskania tulejek.
B. ściągania izolacji.
C. zaciskania wtyków RJ-45.
D. zaciskania wtyków RJ-11.
Narzędzia przedstawione na ilustracjach to profesjonalne ściągacze izolacji, które są niezbędne w pracy każdego elektryka. Ściąganie izolacji to proces usuwania powłoki zewnętrznej przewodów, aby móc odsłonić rdzeń miedziany lub aluminiowy, co umożliwia dalsze prace, takie jak lutowanie czy zaciskanie końcówek. Prawidłowe ściągnięcie izolacji jest kluczowe, aby uniknąć uszkodzenia przewodów i zapewnić bezpieczne połączenia elektryczne. Ściągacze izolacji automatyczne, takie jak te pokazane na zdjęciu, umożliwiają szybkie i precyzyjne zdejmowanie izolacji z przewodów o różnych średnicach bez konieczności ręcznego dostosowywania narzędzia. Z mojego doświadczenia, korzystanie z takich narzędzi znacznie skraca czas pracy i minimalizuje ryzyko błędów, które mogą prowadzić do awarii systemu. Zgodnie z dobrymi praktykami branżowymi, zawsze warto używać dedykowanych narzędzi do każdej operacji, aby zapewnić ich trwałość i niezawodność, co w efekcie zwiększa bezpieczeństwo całego systemu.

Pytanie 2

Przedstawione na ilustracjach narzędzia służą do

Ilustracja do pytania
A. zaciskania wtyków RJ45.
B. ściągania izolacji.
C. cięcia przewodów.
D. zaciskania końcówek tulejkowych.
Narzędzia przedstawione na ilustracjach to zaciskarki do końcówek tulejkowych. Służą one do zakładania tulejek na przewody wielodrutowe, co jest niezbędne, aby zapewnić pewny i bezpieczny kontakt w złączach śrubowych. Tulejki te, nazywane też ferrulami, pozwalają na właściwe ułożenie przewodów w zaciskach, co jest kluczowe w instalacjach elektrycznych. Z mojego doświadczenia, dobrze zaciśnięta tulejka znacząco poprawia jakość połączenia i zmniejsza ryzyko uszkodzenia przewodu. Zaciskanie tulejek jest standardem w profesjonalnych instalacjach, zwłaszcza tam, gdzie liczy się niezawodność i bezpieczeństwo. Narzędzia te są zaprojektowane tak, aby zapewnić odpowiednią siłę nacisku, co gwarantuje trwałość połączenia. To ważne, bo nieodpowiednio zaciśnięta tulejka może prowadzić do problemów z przewodnością lub wręcz awarii. Niektórzy twierdzą, że można się obyć bez tych narzędzi, ale moim zdaniem, ich użycie jest nie tylko dobrą praktyką, ale wręcz koniecznością w profesjonalnej pracy elektryka. Zaciskarki dostępne są w różnych rozmiarach i konfiguracjach, co pozwala na ich stosowanie w szerokim zakresie aplikacji, od domowych instalacji po przemysłowe systemy elektryczne.

Pytanie 3

Program sterowniczy przedstawiony na rysunku realizuje funkcję

Ilustracja do pytania
A. NOR
B. Ex-OR
C. OR
D. Ex-NOR
Analizując błędne odpowiedzi, warto zwrócić uwagę na charakterystyki poszczególnych funkcji logicznych, które mogły wprowadzić w błąd. Funkcja OR, znana także jako suma logiczna, daje wynik prawdy, jeśli przynajmniej jeden z jej argumentów jest prawdziwy. To najprostsze do zrozumienia, ale jej zastosowanie w kontekście przedstawionego diagramu może być mylące, gdyż nie uwzględnia różnicy między sygnałami. NOR to nic innego jak negacja funkcji OR. W przypadku NOR, wyjście jest prawdziwe tylko wtedy, gdy wszystkie wejścia są fałszywe. To odwrotność OR i często używana jest w sytuacjach wymagających zanegowania sumy logicznej. Z kolei Ex-NOR, czyli negacja Ex-OR, działa na zasadzie wykrywania zgodności - wyjście jest prawdziwe, gdy oba wejścia są takie same. Typowy błąd myślowy polega na myleniu podobieństw Ex-NOR z różnicami Ex-OR. Funkcje te mogą wydawać się podobne, jednak ich zastosowania są różne i wymagają zrozumienia specyficznych warunków działania. Warto pamiętać, że w automatyce przemysłowej każda z tych funkcji ma swoje unikalne zastosowania i używa się ich w specyficznych okolicznościach. Poprawne zrozumienie różnic między nimi jest kluczowe dla projektowania skutecznych systemów sterowania.

Pytanie 4

Element przedstawione na rysunku to

Ilustracja do pytania
A. czujnik pojemnościowy.
B. czujnik rezystancyjny.
C. termometr rtęciowy.
D. pirometr.
Czujniki rezystancyjne często bywają mylone z innymi typami czujników z powodu ich zewnętrznego wyglądu. Jednak każdy z wymienionych urządzeń ma unikalne zastosowanie i charakterystykę działania. Pirometr, w przeciwieństwie do czujnika rezystancyjnego, jest urządzeniem służącym do bezdotykowego pomiaru temperatury na podstawie promieniowania podczerwonego. Jest szczególnie przydatny w sytuacjach, gdzie nie można fizycznie dotknąć obiektu, na przykład w przypadku bardzo wysokich temperatur lub w trudno dostępnych miejscach. Termometr rtęciowy z kolei działa na zasadzie rozszerzalności cieplnej rtęci i jest mniej precyzyjny w porównaniu do nowoczesnych czujników elektronicznych. Choć był popularny, ze względu na toksyczność rtęci jest coraz rzadziej stosowany. Czujnik pojemnościowy, inny z wymienionych, mierzy zmiany pojemności elektrycznej w odpowiedzi na zmiany odległości między okładkami kondensatora, co jest użyteczne w pomiarach wilgotności, a nie temperatury. Częstym błędem jest przypisywanie czujnikowi rezystancyjnemu właściwości innych czujników, co może wynikać z braku zrozumienia jego działania. Wiedza na temat specyfiki każdego z tych urządzeń pomaga uniknąć takich pomyłek i poprawnie interpretować wyniki pomiarów.

Pytanie 5

Która z wymienionych funkcji programowych sterownika PLC służy do realizacji działania odejmowania?

A. ADD
B. MUL
C. DIV
D. SUB
Funkcje dostępne w sterownikach PLC są kluczowe dla realizacji różnorodnych zadań automatyzacji. Zaczynając od DIV, odpowiada ona za dzielenie. To działanie jest często wykorzystywane w procesach przemysłowych, gdzie konieczne jest obliczanie średnich wartości czy proporcji. Niemniej jednak, nie jest to działanie odpowiedzialne za odejmowanie. Zamieszanie może wynikać z podobieństwa skrótów lub funkcjonalności związanych z podstawowymi działaniami arytmetycznymi, ale każda z tych funkcji ma swoje konkretne zastosowanie. ADD to funkcja dodawania, która z kolei sumuje wartości. Używa się jej często do akumulacji danych, czyli np. sumowania ilości wyprodukowanych sztuk. Podobnie jak w przypadku DIV, nie odpowiada ona za wykonanie odejmowania. MUL, czyli mnożenie, pozwala na zwiększanie wartości poprzez wielokrotność. Jest to przydatne np. w obliczeniach skalujących. Wszystkie te funkcje mają swoje miejsce w programowaniu PLC, ale żadna z nich nie realizuje odejmowania. Błędne przypisanie funkcji do nieodpowiedniego działania może wynikać z nieuwagi lub pomylenia skrótów. Kluczem jest zrozumienie ich specyfiki i zastosowań. Zrozumienie różnic między tymi podstawowymi działaniami jest fundamentalne dla efektywnego programowania PLC i unikania błędów logicznych w projektach.

Pytanie 6

Do pomiaru której wielkości fizycznej służy przetwornik przedstawiony na rysunku?

Ilustracja do pytania
A. Natlenienia.
B. Ciśnienia.
C. Temperatury.
D. Natężenia przepływu.
Ten przetwornik, jak można zauważyć na zdjęciu, jest używany do pomiaru ciśnienia. Urządzenia tego typu są powszechnie stosowane w różnych branżach, takich jak przemysł chemiczny, naftowy czy wodociągowy. Działają one na zasadzie przetwarzania zmiany ciśnienia na sygnał elektryczny, często w standardzie 4-20 mA, co jest globalnie uznawanym standardem komunikacji w inżynierii procesowej. Przetworniki ciśnienia są kluczowe dla zapewnienia bezpieczeństwa i efektywności procesów technologicznych, ponieważ umożliwiają monitorowanie i kontrolę ciśnienia w rurociągach i zbiornikach. Dzięki temu można uniknąć sytuacji awaryjnych, takich jak wycieki czy eksplozje. Co ważne, przetworniki te muszą być regularnie kalibrowane, aby zapewnić dokładność pomiarów. Ciekawostką jest, że tak precyzyjne urządzenia są często wyposażone w technologie kompensacji temperatury, dzięki czemu działają niezawodnie w różnych warunkach środowiskowych. Warto też wspomnieć, że wybór odpowiedniego przetwornika ciśnienia powinien być oparty na analizie specyfikacji technicznej, takich jak zakres pomiarowy, materiał obudowy czy typ połączenia procesowego.

Pytanie 7

Na rysunku przedstawiono listwę przyłączeniową regulatora temperatury. Do których zacisków regulatora należy podłączyć czujnik termoelektryczny?

Ilustracja do pytania
A. 1 i 2
B. 5 i 6
C. 2 i 3
D. 1 i 3
Wybór innych zacisków niż 2 i 3 prowadzi do błędnego podłączenia czujnika termoelektrycznego. Zaciski 1 i 3 lub 1 i 2 mogą być używane do innych funkcji niż podłączenie termopary, np. dla innych typów czujników lub jako część obwodu sterowania. Często popełnianym błędem jest mylenie zacisków z powodu podobieństwa ich oznaczeń lub konfiguracji fizycznej na listwie. W praktyce, wybór niewłaściwych zacisków skutkuje brakiem odczytu temperatury lub generowaniem błędnych wartości, co może wpływać na działanie całego systemu regulacji temperatury. Zaciski 5 i 6, które także były jedną z opcji, są zazwyczaj używane w innych częściach układu, np. do zasilania bądź jako część innego obwodu. Kluczowe jest, aby zawsze odnosić się do dokumentacji technicznej regulatora temperatury, która precyzyjnie opisuje funkcje poszczególnych zacisków. Zrozumienie, jak działa efekt Seebecka i jak termopary generują sygnały, jest istotne dla prawidłowego podłączania i diagnozowania potencjalnych problemów. Dlatego edukacja w zakresie podstawowych zasad działania czujników i regulatorów jest nieoceniona dla każdego technika zajmującego się automatyką przemysłową.

Pytanie 8

Według której zasady należy w układzie sterowania zaprojektować działanie umożliwiające wyłączenie zautomatyzowanego systemu sterowanego przez sterownik PLC?

A. Zasady blokady programowej sygnałów wejściowych.
B. Zasady przerwy roboczej - podanie stanu 0 na wejście sterownika.
C. Zasady prądu roboczego - podanie stanu 1 na wejście sterownika.
D. Zasady blokady sygnałów wyjściowych.
Zasady przerwy roboczej, czyli podanie stanu 0 na wejście sterownika, to klasyczne podejście w systemach automatyki przemysłowej. W praktyce oznacza to, że w sytuacji, gdy chcemy zatrzymać działanie systemu, podajemy sygnał niski (0) na określone wejście sterownika PLC, co powoduje jego dezaktywację. Takie rozwiązanie jest zgodne z wieloma normami bezpieczeństwa, jak chociażby EN ISO 13849, które podkreślają znaczenie bezpieczeństwa maszyn. Wyłączenie poprzez przerwanie obwodu to pewna metoda, ponieważ w razie awarii zasilania, system automatycznie przechodzi w stan bezpieczny. Z mojego doświadczenia, jest to niezwykle ważne w kontekście ochrony zarówno sprzętu, jak i ludzi. Często stosuje się to w systemach, gdzie nagłe zatrzymanie jest kluczowe dla bezpieczeństwa. Poza tym, wielu inżynierów automatyki uważa, że to podejście jest najbardziej intuicyjne i najmniej podatne na błędy ludzkie, co jest nieocenione w środowiskach produkcyjnych. Pamiętajmy, że w systemach PLC konsekwencja i logika działania są podstawą efektywnego zarządzania procesami. Zasady przerwy roboczej są więc nie tylko standardem, ale i najlepszą praktyką w branży automatyki.

Pytanie 9

W celu zmierzenia mocy czynnej pobieranej z sieci elektrycznej przez klimatyzator, należy użyć

A. woltomierza i miernika natężenia przepływu powietrza.
B. termometru i miernika natężenia przepływu powietrza.
C. woltomierza i amperomierza.
D. termometru i woltomierza.
Moc czynna, zwana też mocą rzeczywistą, jest kluczowa w określaniu, ile energii elektrycznej urządzenie zużywa do wykonywania rzeczywistej pracy, w tym przypadku chłodzenia powietrza przez klimatyzator. Aby ją zmierzyć, niezbędne są dwa podstawowe przyrządy: woltomierz i amperomierz. Woltomierz mierzy napięcie elektryczne, które jest potencjałem, jaki napędza prąd przez urządzenie. Amperomierz z kolei mierzy natężenie prądu, które jest ilością przepływających ładunków elektrycznych. Moc czynna to iloczyn napięcia, natężenia oraz współczynnika mocy. Z tego wynika, że sama znajomość napięcia i natężenia nie wystarcza do pełnego zrozumienia zużycia energii przez urządzenie, ale są to kluczowe składniki. W praktyce, mierząc moc czynną, możemy efektywnie zarządzać zużyciem energii, optymalizować koszty i unikać przeciążeń w instalacji domowej. Standardy międzynarodowe, takie jak te opracowane przez IEC, zalecają regularne monitorowanie mocy czynnej w urządzeniach elektrycznych dla ich bezpiecznej i efektywnej pracy. Klimatyzatory, szczególnie w dużych budynkach, są znaczącymi odbiorcami energii i ich efektywne monitorowanie może przełożyć się na znaczne oszczędności energetyczne. Dlatego znajomość i umiejętność stosowania tych przyrządów pomiarowych to podstawa w zawodzie elektryka.

Pytanie 10

Zintegrowany interfejs komunikacyjny w sterowniku PLC przedstawionym na rysunku to

Ilustracja do pytania
A. RS-232
B. USB
C. 8P8C
D. OBD II
Wybór interfejsu komunikacyjnego ma kluczowe znaczenie w kontekście integracji i funkcjonalności sterowników PLC. RS-232, choć kiedyś popularny, obecnie jest rzadko stosowany w zaawansowanych systemach przemysłowych ze względu na ograniczoną prędkość transmisji i brak możliwości sieciowych. Wspiera jedynie komunikację punkt-punkt, co ogranicza jego zastosowanie w nowoczesnych rozwiązaniach automatyki. OBD II to interfejs diagnostyczny stosowany w motoryzacji, zupełnie nieodpowiedni dla przemysłowych aplikacji PLC, które wymagają integracji z sieciami komputerowymi. USB, choć wszechstronny i używany do podłączania różnych urządzeń w komputerach osobistych, nie jest standardowym interfejsem komunikacyjnym w systemach przemysłowych. Przemysł stawia na stabilność i możliwość pracy w trudnych warunkach, co zapewnia interfejs 8P8C. Użycie standardu Ethernet w PLC to krok w stronę nowoczesności i integracji z systemami IT, których wymaga współczesna automatyka przemysłowa. Dlatego wybór nieodpowiedniego interfejsu może prowadzić do problemów z kompatybilnością i wydajnością w przyszłych implementacjach.

Pytanie 11

Na rysunku przedstawiono

Ilustracja do pytania
A. przetwornik PWM.
B. elektroniczny czujnik ciśnienia.
C. zadajnik cyfrowo-analogowy.
D. separator sygnałów USB.
Na zdjęciu widać elektroniczny czujnik ciśnienia, czyli nowoczesne urządzenie pomiarowe stosowane do monitorowania i regulacji ciśnienia w układach hydraulicznych, pneumatycznych i procesowych. W odróżnieniu od klasycznych manometrów wskazówkowych, ten typ czujnika przetwarza ciśnienie medium (np. powietrza, oleju, wody) na sygnał elektryczny – zwykle 4–20 mA lub 0–10 V – który może być przesyłany do sterownika PLC lub systemu SCADA. Wbudowany wyświetlacz cyfrowy pozwala jednocześnie na lokalny odczyt wartości, co ułatwia diagnostykę. Moim zdaniem to świetny przykład integracji pomiaru i automatyki w jednym module – prosty w montażu, odporny na drgania i temperaturę. Takie czujniki są zgodne z normami przemysłowymi (np. EN 837, IEC 60529) i często mają funkcje progowe (OUT1, OUT2) pozwalające sterować urządzeniami bezpośrednio, np. pompą czy zaworem. W praktyce spotyka się je w systemach sprężonego powietrza, instalacjach chłodniczych, a także w procesach technologicznych, gdzie precyzja i niezawodność są kluczowe. Dobry montaż wymaga uszczelnienia gwintu (np. taśmą PTFE) i kalibracji zgodnie z zakresem roboczym. To sprzęt łączący analogowy pomiar z cyfrową kontrolą – bardzo typowy dla współczesnej automatyki.

Pytanie 12

Na schemacie przedstawiono

Ilustracja do pytania
A. regulowany wzmacniacz napięć lub prądów zmiennych.
B. konwerter łącza szeregowego na łącze światłowodowe.
C. przetwornik pomiarowy prądu lub napięcia AC.
D. przetwornik napięcia AC na prąd AC.
Schemat nie przedstawia ani przetwornika napięcia, ani wzmacniacza, ani przetwornika pomiarowego – to typowy konwerter łącza RS-232 na światłowód. Oznaczenia TxD i RxD wskazują, że mamy do czynienia z interfejsem szeregowym, używanym w komunikacji między urządzeniami cyfrowymi. Z prawej strony widoczne są diody nadawcze i odbiorcze, które zamieniają sygnały elektryczne na impulsy świetlne. W odróżnieniu od przetworników pomiarowych, które konwertują wielkości analogowe (np. napięcie lub prąd), konwerter komunikacyjny przesyła dane binarne – 0 i 1. Wzmacniacz napięcia natomiast zwiększa wartość sygnału, ale nie zmienia jego formy transmisji. W praktyce błędne rozpoznanie tego urządzenia wynika często z tego, że symbole prostokątne z trójkątem w środku mogą kojarzyć się z przetwornikami lub wzmacniaczami. W tym wypadku jednak widać charakterystyczne oznaczenia RS-232 i FO (Fiber Optic), które jednoznacznie wskazują na konwersję między dwoma standardami komunikacji. Takie konwertery stosuje się np. tam, gdzie kable miedziane nie zapewniają wystarczającej niezawodności lub bezpieczeństwa transmisji – światłowód rozwiązuje oba te problemy.

Pytanie 13

Aby zapewnić stałą wartość ciśnienia doprowadzanego do układu pneumatycznego, należy zastosować zawór

A. redukcyjny.
B. zwrotny.
C. dławiący.
D. bezpieczeństwa.
Zawór redukcyjny to kluczowy element w układach pneumatycznych, którego głównym zadaniem jest utrzymanie stałej wartości ciśnienia na wyjściu, niezależnie od zmian ciśnienia na wejściu. Działa to na zasadzie mechanizmu równoważenia siły sprężyny z siłą gazu, co pozwala na precyzyjne dostosowanie ciśnienia do wymagań układu. W praktyce takie zawory są niezbędne w systemach, gdzie stabilność i precyzyjne ciśnienie robocze mają krytyczne znaczenie, na przykład w urządzeniach medycznych, gdzie zbyt wysokie ciśnienie mogłoby zaszkodzić pacjentowi, lub w liniach produkcyjnych, gdzie zmiany ciśnienia mogą wpływać na jakość produktu. Z mojego doświadczenia wynika, że prawidłowe dobranie zaworu redukcyjnego jest kluczowe dla efektywności i bezpieczeństwa całego układu. Dobre praktyki branżowe sugerują, aby regularnie kontrolować stan zaworów i kalibrować je, by uniknąć niepotrzebnych awarii. Warto też pamiętać, że zawory te mogą być stosowane w różnorodnych środowiskach pracy, od przemysłowych po laboratoryjne, co pokazuje ich uniwersalność i znaczenie w różnych aplikacjach technicznych.

Pytanie 14

Do bezstykowego pomiaru temperatury gniazda łożyska należy zastosować termometr

A. bimetalowy.
B. rozszerzalnościowy.
C. pirometryczny.
D. manometryczny.
Pirometryczny termometr to narzędzie, które umożliwia bezdotykowy pomiar temperatury. Działa na zasadzie detekcji promieniowania podczerwonego emitowanego przez obiekt, co pozwala na uzyskanie natychmiastowych i dokładnych odczytów. Jest szczególnie przydatny w sytuacjach, gdzie bezpośredni kontakt z mierzonym obiektem jest niemożliwy lub niebezpieczny. Przykładowo, w przemyśle pirometry są stosowane do monitorowania stanu technicznego maszyn i urządzeń, gdzie ważne jest szybkie wykrycie przegrzewania się elementów, takich jak łożyska czy silniki. Zastosowanie pirometru w takich przypadkach pozwala na uniknięcie awarii i kosztownych przestojów w produkcji. Standardy branżowe, takie jak ISO 9001, zalecają użycie pirometrów do monitorowania temperatur w krytycznych punktach procesu produkcyjnego. Pirometry są również używane w laboratoriach, gdzie precyzyjne pomiary temperatury są kluczowe dla dokładności eksperymentów. Moim zdaniem, zrozumienie działania i zastosowania pirometrów to podstawa dla każdego, kto pracuje w branży technicznej, ponieważ pozwala na skuteczne monitorowanie stanu maszyn i zapobieganie ich awariom. Warto więc zagłębić się w ten temat i poznać różne modele i technologie pirometryczne dostępne na rynku.

Pytanie 15

Którego przyrządu należy użyć do sprawdzenia równoległości dwóch powierzchni?

A. Transametru.
B. Suwmiarki uniwersalnej.
C. Mikrometru.
D. Czujnika zegarowego.
Mikrometr, choć niezwykle precyzyjny, służy przede wszystkim do mierzenia grubości materiałów lub zewnętrznych wymiarów obiektów. Nie jest idealny do sprawdzania równoległości powierzchni, ponieważ jego konstrukcja nie pozwala na jednoczesne porównanie dwóch różnych płaszczyzn. Transametr to urządzenie mniej znane i rzadko stosowane w kontekście precyzyjnych pomiarów równoległości. Jego głównym zastosowaniem jest bardziej pomiar kątów i odległości w terenie, co sprawia, że nie nadaje się do precyzyjnych pomiarów mechanicznych. Suwmiarka uniwersalna, choć wszechstronna, ma ograniczenia w precyzji, zwłaszcza gdy chodzi o ocenę równoległości na dużych powierzchniach. Może być użyta do pomiaru odległości lub średnicy, ale nie zagwarantuje dokładności potrzebnej do oceny równoległości. Często spotykanym błędem jest przekonanie, że przyrząd, który mierzy odległości, automatycznie nadaje się do wszystkich rodzajów pomiarów. To mylne, gdyż w przypadku pomiaru równoległości kluczowa jest możliwość oceny odchyłek na dużej powierzchni, co zapewnia tylko czujnik zegarowy. Dlatego tak ważne jest, by stosować odpowiednie narzędzia do konkretnych zadań pomiarowych.

Pytanie 16

Czujnik przedstawiony na schemacie ma wyjścia sygnałowe typu

Ilustracja do pytania
A. PNP NO
B. NPN NO
C. NPN NC
D. PNP NC
Przyjrzyjmy się teraz pozostałym opcjom. W przypadku czujnika PNP, tranzystor działa odwrotnie niż w NPN, co oznacza, że wyjście jest połączone z dodatnim biegunem zasilania, a nie z masą. PNP jest często stosowany w systemach, gdzie odbiorniki muszą być połączone z masą, a nie z zasilaniem. Choć PNP ma swoje zastosowania, to w przypadku schematu jest to niewłaściwe rozwiązanie. Teraz przeanalizujmy różnice między NO (normally open) a NC (normally closed). W przypadku NO, obwód jest normalnie otwarty i zamyka się, gdy czujnik jest aktywowany. To rozwiązanie jest stosowane tam, gdzie nieprzewidziana aktywacja czujnika nie stanowi zagrożenia, na przykład w prostych aplikacjach sterowania oświetleniem. Z kolei NC jest bardziej odpowiednie w sytuacjach, gdzie przerwanie działania może sygnalizować problem, jak w systemach bezpieczeństwa. Częstym błędem jest założenie, że PNP i NO są bardziej uniwersalne, co może prowadzić do nieoptymalnych decyzji projektowych. Zrozumienie tych różnic i ich praktycznych implikacji jest kluczowe dla właściwego doboru komponentów w systemach automatyki.

Pytanie 17

Na podstawie fragmentu dokumentacji przekaźnika wskaż zaciski, do których należy podłączyć napięcie zasilania 24 V DC.

Ilustracja do pytania
A. Do zacisku 1 podłączyć „-”, a do zacisku 3 „+”
B. Do zacisku 1 podłączyć „+”, a do zacisku 3 „-”
C. Do zacisku 3 podłączyć „-”, a do zacisku 4 „+”
D. Do zacisku 3 podłączyć „+”, a do zacisku 4 „-”
Podłączenie napięcia zasilania 24 V DC do zacisków 3 i 4 jest zgodne z dokumentacją przedstawioną na schemacie. Zacisk 3 służy jako punkt podłączenia „-”, a zacisk 4 jako „+”. To typowe oznaczenie dla zasilania urządzeń elektronicznych, gdzie biegunowość ma znaczenie dla prawidłowego działania układów. W schemacie wyraźnie widać, że obwód dla 24 V DC jest oddzielony od obwodu 230 V AC, co jest zgodne z zasadami bezpieczeństwa i dobrymi praktykami w elektronice. W praktyce często stosuje się zaciski oznaczone jako „+” i „-” w urządzeniach zasilanych napięciem stałym, co zapobiega błędnemu podłączeniu i potencjalnym uszkodzeniom. Dlatego, jeśli pracujesz z urządzeniami elektronicznymi, zawsze zwracaj uwagę na poprawne oznaczenie zacisków. I pamiętaj, że przy pracy z napięciem, nawet tak niskim jak 24 V, kluczowe jest przestrzeganie zasad bezpieczeństwa. Z mojego doświadczenia wynika, że takie detale jak poprawna biegunowość to podstawa w pracy z elektroniką.

Pytanie 18

Przed montażem sprawdzono parametry elektryczne przewodu. Z jednej strony został on podłączony jak na przedstawionym rysunku, a z drugiej żyły pozostały niepodłączone. Wykonywany w ten sposób pomiar dotyczy

Ilustracja do pytania
A. sumy rezystancji żył L1, L2, L3, PEN
B. sumy rezystancji izolacji żył L1, L2, L3
C. rezystancji żył L1, L2, L3, PEN
D. rezystancji izolacji między żyłami L1, L2, L3 a żyłą PEN.
Wydawałoby się, że pomiar rezystancji żył L1, L2, L3, PEN lub ich sumy jest właściwym podejściem do oceny przewodów, ale to nie odnosi się do pomiaru izolacji. Rezystancja przewodów zwykle jest mierzona w celu oceny ich jakości oraz doboru odpowiedniego przekroju dla zminimalizowania strat mocy. Jednak podczas testów izolacji interesuje nas przede wszystkim stan izolacji, a nie samego przewodnika. Kolejnym błędnym podejściem jest założenie, że mierzymy sumę rezystancji izolacji między żyłami. To prowadzi do mylnego wrażenia, że izolacja działa jako jedna całość, podczas gdy w rzeczywistości każda para przewodów musi być izolowana niezależnie. Takie pomiary powinny być wykonywane zgodnie z normami takimi jak IEC 60364, które precyzują metodykę i wymagania dotyczące testów izolacji. Często pomija się fakt, że złe połączenia lub urazy mechaniczne mogą nie wpływać na rezystancję przewodów, ale mają ogromny wpływ na stan izolacji. Dlatego błędne jest skupienie się wyłącznie na rezystancji żył, ponieważ pomija to kluczowy aspekt bezpieczeństwa związany z izolacją. Tego typu pomiary są podstawą konserwacji prewencyjnej, która w dłuższej perspektywie chroni zarówno sprzęt, jak i użytkowników przed niebezpieczeństwami związanymi z elektrycznością.

Pytanie 19

Na podstawie fragmentu instrukcji przekaźnika czasowego wskaż, które położenie przełączników realizuje funkcję załączenia z opóźnieniem.

Ilustracja do pytania
A. Położenie II
B. Położenie I
C. Położenie III
D. Położenie IV
Położenie I jest właściwą odpowiedzią, bo realizuje funkcję załączenia z opóźnieniem. W tym ustawieniu po podaniu napięcia sterowniczego, przekaźnik nie zadziała od razu. Jest opóźnienie, które pozwala na pewne operacje zanim urządzenie zostanie załączone. To jest przydatne w sytuacjach, gdzie nie chcemy, by sprzęt działał natychmiast po włączeniu, na przykład w systemach wentylacyjnych, gdzie potrzebujemy chwili na stabilizację innych komponentów przed uruchomieniem głównego wentylatora. Standardy branżowe wskazują, że opóźnienie załączenia poprawia niezawodność systemu poprzez redukcję skoków napięcia i przeciążeń. Z mojego doświadczenia, ustawienie takie pomaga również w zarządzaniu systemami automatyzacji budynkowej, gdzie sekwencyjne włączanie urządzeń jest kluczowe dla optymalnej pracy. Warto pamiętać, że zgodnie z normami IEC, takie przekaźniki czasowe są często używane w układach sterowania maszyn, by zapewnić bezpieczne i efektywne działanie.

Pytanie 20

Który rozrusznik typu „softstart” należy zastosować do łagodnego rozruchu silnika 1-fazowego prądu przemiennego o mocy 0,3 kW, jeżeli będzie on zamontowany bez dodatkowej obudowy, bezpośrednio przy silniku pracującym w środowisku wysokiego zapylenia?

Ilustracja do pytania
A. Rozrusznik 3.
B. Rozrusznik 2.
C. Rozrusznik 4.
D. Rozrusznik 1.
Wybór odpowiedniego rozrusznika softstart to nie tylko kwestia dopasowania mocy, ale też warunków środowiskowych, w jakich będzie on pracował. Rozruszniki 1 i 4, mimo że obsługują odpowiednie napięcie 1x230 V, posiadają obudowy o stopniu ochrony IP 20. Oznacza to, że są one tylko zabezpieczone przed ciałami stałymi większymi niż 12,5 mm, co nie jest wystarczające w środowisku wysokiego zapylenia. Bardzo często zapomina się, że pył może być jednym z najważniejszych czynników wpływających na niezawodność sprzętu elektrycznego. Rozrusznik 2, choć ma wyższy stopień ochrony IP 67, przeznaczony jest do pracy na wyższe napięcia (380-415 V), więc nie nadaje się do silnika jednofazowego na 230 V. Brak zgodności napięcia może prowadzić do nieprawidłowego działania urządzenia lub nawet jego uszkodzenia. Często pojawia się błędne przekonanie, że wyższy stopień ochrony zawsze oznacza lepszy wybór, ale nie można pomijać kwestii dopasowania do specyfikacji technicznej całego systemu. Kluczem do sukcesu jest zawsze pełne zrozumienie wymagań aplikacji i środowiska, w jakim urządzenie będzie pracować, co pozwala unikać niepotrzebnych kosztów i potencjalnych awarii.

Pytanie 21

Określ przeznaczenie urządzenia przedstawionego na rysunku.

Ilustracja do pytania
A. Pomiar wielkości procesowych.
B. Zasilanie układu sterowania.
C. Programowanie układu.
D. Wizualizacja przebiegu procesu.
Urządzenie, które widzisz, to panel HMI, czyli interfejs człowiek-maszyna. Jest to podstawowe narzędzie w systemach automatyki przemysłowej do wizualizacji przebiegu procesu. Tego typu panele, jak ten na zdjęciu, umożliwiają operatorom interakcję z systemami sterowania procesem. Za ich pomocą można monitorować parametry procesu, wizualizować dane w czasie rzeczywistym oraz podejmować decyzje operacyjne w oparciu o wizualizowane informacje. Moim zdaniem, panel HMI jest fundamentem każdego nowoczesnego systemu automatyki, bo pozwala na szybkie diagnozowanie i reagowanie na nieprawidłowości w procesie. W praktyce, panele HMI są używane w wielu gałęziach przemysłu, od produkcji po energetykę. Z mojego doświadczenia, dobry interfejs HMI zgodny z normami, jak ISO 9241, ułatwia pracę operatorom, a dobrze zaprojektowana wizualizacja ogranicza ryzyko błędów ludzkich. Warto też wspomnieć, że niektóre panele HMI oferują możliwość zdalnego dostępu, co jest ogromnym ułatwieniem w czasach wzmożonej automatyzacji i potrzeby szybkiego reagowania na sytuacje awaryjne.

Pytanie 22

Regulator służy do utrzymywania w urządzeniach grzewczych temperatury T z zadaną histerezą H. Pomiar temperatury dokonywany jest za pomocą czujnika temperatury, zaś sterowanie elementem grzewczym odbywa się przez wyjście przekaźnikowe. Na którym wykresie czasowym przedstawiony jest prawidłowy sposób załączania wyjścia regulatora, zgodny z zamieszczonym przebiegiem temperatury?

Ilustracja do pytania
A.
Ilustracja do odpowiedzi A
B.
Ilustracja do odpowiedzi B
C.
Ilustracja do odpowiedzi C
D.
Ilustracja do odpowiedzi D
Problem z nieprawidłowymi odpowiedziami polega na niezrozumieniu zasady działania histerezy w układach regulacji temperatury. Wykresy, które pokazują zbyt częste przełączanie wyjścia przekaźnikowego, jak w przypadku niektórych błędnych odpowiedzi, wskazują na brak zastosowania właściwej histerezy. Jeśli wyjście włącza się i wyłącza zbyt szybko, powoduje to nadmierne zużycie elementów przekaźnikowych oraz zwiększone zużycie energii. Taki mechanizm nie jest efektywny, ani praktyczny w rzeczywistych zastosowaniach, jak systemy HVAC czy przemysłowe piece grzewcze. Typowym błędem jest myślenie, że im szybciej system reaguje, tym lepiej, podczas gdy w rzeczywistości prowadzi to do niepożądanych oscylacji w systemie. Brak właściwej histerezy może także prowadzić do niestabilności temperaturowej, co jest niekorzystne dla delikatnych procesów technologicznych. Dlatego tak ważne jest, aby zrozumieć, jak histereza działa jako element buforujący, stabilizujący cały proces regulacji. W systemach automatyki przemysłowej, takich jak sterowniki PLC, właściwe zaimplementowanie histerezy jest kluczem do efektywnego i trwałego działania systemu regulacji temperatury. Z mojego doświadczenia, często spotyka się błędne założenie, że mniejsza histereza oznacza lepszą kontrolę, podczas gdy w rzeczywistości optymalny dobór histerezy to kompromis między efektywnością a stabilnością.

Pytanie 23

Na podstawie fragmentu rysunku wykonawczego określ długość krawędzi X.

Ilustracja do pytania
A. 10 mm
B. 30 mm
C. 20 mm
D. 60 mm
Krawędź X ma długość 20 mm. Wynika to z analizy wymiarów pokazanych na rysunku technicznym. Całkowita wysokość figury to 80 mm, a dolna część ma łącznie 50 mm (20 mm + 30 mm). Oznacza to, że różnica wysokości między górną a dolną częścią wynosi 30 mm, z czego 10 mm przypada na odcinek pionowy z lewej strony (od 30 mm do 20 mm). W efekcie krawędź X, będąca poziomym odcinkiem na wysokości 50 mm, ma długość 20 mm. To typowe zadanie z odczytywania wymiarów na rysunku wykonawczym, gdzie kluczowe jest rozumienie zależności między wymiarami sumarycznymi i częściowymi. W praktyce warsztatowej taka analiza pozwala uniknąć błędów przy obróbce materiału lub frezowaniu, ponieważ wymiary pośrednie często nie są podane bezpośrednio, a wynikają z prostych obliczeń geometrycznych. Moim zdaniem to świetny przykład, że dokładne czytanie rysunku jest równie ważne, jak sama umiejętność mierzenia – w realnym świecie mechanik nie może zgadywać, musi logicznie analizować każdy wymiar.

Pytanie 24

W regulatorze PID symbolem TI oznacza się czas

A. wyprzedzenia.
B. propagacji.
C. opóźnienia.
D. zdwojenia.
Pojęcia takie jak czas propagacji, opóźnienia czy wyprzedzenia mogą być mylące w kontekście regulatorów PID. Czas propagacji odnosi się raczej do opóźnień sygnału w systemach komunikacyjnych i nie ma związku z funkcjonowaniem regulatora PID. Czas opóźnienia to parametr występujący w modelach układów dynamicznych, związany z czasem potrzebnym na reakcję systemu na dany sygnał wejściowy. Może to być czas transportu materiału w procesie, ale nie jest to bezpośrednio związane z parametrami TI regulatora PID. Kolejnym błędnym pojęciem jest czas wyprzedzenia, który w automatyce może dotyczyć członów korekcyjnych stosowanych do kompensacji opóźnień czy poprawy dynamiki układu, lecz nie odnosi się do TI, który jest czasem całkowania. Typowym błędem jest zakładanie, że wszystkie te czasy są wymienne, co prowadzi do nieprawidłowego dostrajania regulatorów i destabilizacji procesu. Rozumienie, że TI to czas zdwojenia, jest kluczowe, bo to on określa, jak szybko regulator skoryguje odchyłki procesu względem zadanej wartości, co jest fundamentem stabilizacji i optymalizacji w systemach sterowania. Warto więc zrozumieć te koncepcje, aby unikać typowych błędów w projektowaniu i stosowaniu regulatorów PID w praktyce inżynierskiej. Właściwe zrozumienie parametrów regulatora pozwala na bardziej efektywne projektowanie i implementację systemów automatyki, co przekłada się na większą niezawodność i wydajność procesów technologicznych. Dlatego też nauka i zrozumienie tych pojęć jest niezbędne dla inżynierów automatyków i technologów procesów. Takie podejście pozwala na zgodność z dobrą praktyką projektową i wymogami norm jakościowych, co w efekcie zwiększa konkurencyjność przedsiębiorstw na rynku."]

Pytanie 25

Przedstawiony na rysunku czujnik jest przeznaczony do detekcji

Ilustracja do pytania
A. pola magnetycznego.
B. temperatury.
C. ciśnienia.
D. napiężeń.
To, co widzisz na zdjęciu, to czujnik typu kontaktron, który służy do detekcji pola magnetycznego. Kontaktrony są powszechnie używane w różnych zastosowaniach, takich jak systemy alarmowe, gdzie wykrywają obecność lub ruch drzwi i okien. Działają na zasadzie magnetycznego zamknięcia obwodu - kiedy w pobliżu znajdzie się magnes, dwie metalowe blaszki wewnątrz szklanej obudowy stykają się, zamykając obwód elektryczny. W przemyśle te czujniki są również stosowane do wykrywania pozycji maszyn czy robotów, a także w urządzeniach takich jak liczniki rowerowe, gdzie magnes zamocowany na kole zamyka obwód kontaktronu z każdą pełną rewolucją. Co ciekawe, kontaktrony są bardzo niezawodne, ponieważ nie mają mechanicznych części ruchomych, co zmniejsza ryzyko awarii. Moim zdaniem, to niesamowite, że coś tak prostego w konstrukcji może być tak użyteczne w tylu dziedzinach.

Pytanie 26

Na rysunku przedstawiono diagram działania jednego z bloków funkcjonalnych sterownika PLC. Jest to blok

Ilustracja do pytania
A. timera opóźniającego wyłączenie TOF
B. licznika impulsów zliczającego w dół CTD.
C. timera opóźniającego załączenie TON.
D. licznika impulsów zliczającego w górę CTU.
Diagram przedstawia licznik impulsów zliczający w dół, czyli CTD. Częstym błędem jest mylenie go z timerami, takimi jak TON czy TOF. Timery działają inaczej – TON (Timer On Delay) opóźnia załączenie sygnału wyjściowego po załączeniu sygnału wejściowego. TOF (Timer Off Delay) działa na odwrót, opóźnia wyłączenie sygnału po zaniku sygnału wejściowego. Oba te bloki funkcjonalne są używane do różnych celów, takich jak opóźnianie sygnałów w systemach sterowania. Jednakże, w przypadku CTD, mówimy o liczniku, który dekrementuje przy każdym impulsie, co jest niezbędne w aplikacjach wymagających śledzenia zmniejszających się wartości, takich jak magazynowanie lub licznik czasu pozostałego do zakończenia operacji. Błąd myślowy polega na skupieniu się tylko na oscylacjach sygnałów bez zrozumienia kontekstu ich zastosowania. W praktyce, zrozumienie różnic między tymi blokami jest kluczowe dla skutecznego projektowania systemów automatyki i ich efektywnego wdrażania. Dlatego zawsze warto analizować diagramy również pod kątem ich zastosowania w rzeczywistych sytuacjach produkcyjnych.

Pytanie 27

W układzie regulacji temperatury zastosowano czujnik Pt500. Jaką wartość rezystancji czujnika w temperaturze 0 °C pokaże omomierz?

A. 1 000 Ω
B. 100 Ω
C. 500 Ω
D. 0 Ω
Czujnik Pt500 to popularny typ czujnika rezystancyjnego wykonanego z platyny, który ma rezystancję nominalną 500 Ω przy temperaturze 0 °C. Platyna jest stosowana ze względu na jej stabilność chemiczną i liniowy przyrost rezystancji wraz ze wzrostem temperatury, co czyni ją idealnym materiałem do precyzyjnych pomiarów temperatury. W praktyce oznacza to, że czujnik Pt500 będzie miał wartość 500 Ω w temperaturze zera stopni Celsjusza. Dlaczego to takie ważne? W inżynierii i automatyzacji, precyzyjne pomiary temperatury są kluczowe dla utrzymania procesów produkcyjnych w odpowiednich warunkach. Czujniki Pt500 są stosowane w wielu aplikacjach, od kontroli klimatyzacji po zaawansowane procesy przemysłowe, ponieważ oferują wysoką dokładność i stabilność pomiarów. Ich zastosowanie jest szeroko zgodne ze standardami przemysłowymi, gdzie stabilność i niezawodność są priorytetami. Warto pamiętać, że rezystancja czujnika zmienia się zgodnie z wzrostem temperatury, co pozwala na precyzyjne określenie aktualnych warunków termicznych. To sprawia, że są one wyjątkowo przydatne w środowiskach wymagających dokładnego monitorowania temperatury.

Pytanie 28

Którym z przedstawionych na rysunkach miernikiem należy się posłużyć przy testowaniu okablowania strukturalnego?

A.
Ilustracja do odpowiedzi A
B.
Ilustracja do odpowiedzi B
C.
Ilustracja do odpowiedzi C
D.
Ilustracja do odpowiedzi D
Wybór miernika z obrazu #2 jest trafny, gdyż jest to specjalistyczne urządzenie dedykowane do testowania okablowania strukturalnego. Takie mierniki, jak te od Fluke Networks, są zaprojektowane do dokładnego mierzenia parametrów sieciowych, takich jak długość kabla, tłumienie sygnału czy przesłuch między parami. Mierniki te pozwalają wykonywać testy zgodnie z normami, takimi jak TIA/EIA, co gwarantuje, że okablowanie spełnia wymagania certyfikacyjne. W praktyce, przy instalacjach sieciowych, użycie takiego sprzętu jest nieocenione, bo pozwala na szybkie diagnozowanie problemów związanych z jakością połączenia. Dzięki wbudowanym funkcjom, takim jak auto-test, użytkownik może w prosty sposób sprawdzić, czy kabel spełnia normy dla Ethernetu 1000BASE-T, co jest istotne w środowiskach wymagających wysokiej przepustowości. Ważne jest, aby stosować odpowiednie urządzenia, które nie tylko wskazują problemy, ale też dostarczają szczegółowych raportów dotyczących stanu sieci, co jest kluczowe dla utrzymania jej niezawodności i wydajności.

Pytanie 29

Na podstawie schematu podłączenia przewodów do przemiennika częstotliwości wskaż zaciski, do których należy podłączyć czujnik temperatury wykorzystany do termicznego zabezpieczenia silnika.

Ilustracja do pytania
A. O oraz L
B. 2 oraz L
C. 5 oraz L
D. H oraz L
Odpowiedzi, które nie są poprawne, mogą wynikać z niepełnego zrozumienia schematu podłączenia lub zasad działania falowników. Zaciski H i L, O i L, a także 2 i L często pojawiają się w różnych kontekstach, ale w tym przypadku nie są one przeznaczone do podłączenia termistora. Błąd może wynikać z założenia, że każde wejście programowalne będzie odpowiednie dla czujnika temperatury, co nie jest prawdą. Wejście musi być specjalnie skonfigurowane do współpracy z termistorem, co w tym falowniku jest możliwe tylko na zacisku 5. Niepoprawne podłączenie czujnika może prowadzić do braku reakcji na zmianę temperatury silnika, co w efekcie może skutkować poważnymi uszkodzeniami sprzętu. Warto pamiętać, że w przypadku programowania i podłączania urządzeń do falowników kluczowe jest dokładne przestrzeganie instrukcji producenta. Typowym błędem jest także ignorowanie roli zacisku wspólnego, jakim jest L, który pełni istotną funkcję w kontekście działania całego układu. Wiedza o tym, jak różne elementy układu współpracują ze sobą, jest fundamentem bezpiecznego i efektywnego korzystania z falowników.

Pytanie 30

W regulatorze PID symbolem Kₚ oznacza się współczynnik

A. propagacji.
B. zdwojenia.
C. proporcjonalności.
D. wyprzedzenia.
W regulatorze PID symbol Kₚ odnosi się do współczynnika proporcjonalności, który jest kluczowym elementem działania regulatora PID. Działa na zasadzie proporcjonalnego wzmacniania sygnału błędu, co oznacza, że im większy błąd, tym większa odpowiedź regulatora. Dzięki temu Kₚ pozwala na szybkie reagowanie na zmiany w systemie. Przykładowo, w systemach HVAC (ogrzewanie, wentylacja i klimatyzacja), odpowiednie ustawienie Kₚ może szybko zniwelować zmiany temperatury, zapewniając komfort termiczny w pomieszczeniach. Jednak zbyt wysokie ustawienie Kₚ może prowadzić do przeregulowania, co objawia się oscylacjami wokół wartości zadanej, dlatego ważne jest, aby dokładnie dostroić ten parametr. W praktyce inżynierskiej często stosuje się technikę strojenia PID, jak np. metoda Zieglera-Nicholsa, która pomaga w doborze odpowiednich wartości Kₚ, Kᵢ i Kd dla konkretnego procesu, zapewniając stabilność i wydajność systemu. Warto więc poświęcić czas na zrozumienie, jak ten współczynnik wpływa na cały proces regulacyjny, co jest nieocenione w praktyce inżynierskiej.

Pytanie 31

Przedstawiony fragment programu realizuje funkcję

Ilustracja do pytania
A. OR
B. AND
C. NAND
D. NOR
Odpowiedź OR jest poprawna, ponieważ program zrealizowany w języku drabinkowym (Ladder Diagram) wykorzystuje operację OR, która jest logicznym lub. Instrukcja LD (Load) ładuje wartość wejścia X1:I0.0, a następnie instrukcja OR dodaje do tego wartość wejścia X2:I0.1. Wynik operacji jest zapisywany w wyjściu Y1:Q0.0 za pomocą instrukcji ST (Store). Logika OR działa w ten sposób, że wynik jest prawdą, jeśli przynajmniej jedno z wejść jest prawdą. Praktyczne zastosowanie takiego schematu można znaleźć w automatyce przemysłowej, na przykład kiedy chcemy uruchomić maszynę, jeśli jeden z dwóch różnych czujników wykryje określony stan. Standardy programowania PLC, takie jak IEC 61131-3, wskazują na stosowanie drabinkowych schematów do tworzenia czytelnych logik dla techników. Logika OR jest jednym z podstawowych bloków budujących bardziej złożone systemy automatyki, gdzie często wymagana jest elastyczność w reagowaniu na wiele warunków wejściowych. Moim zdaniem w automatyce przemysłowej umiejętność czytania i interpretacji takich prostych programów jest kluczowa do szybkiego diagnozowania i naprawy systemów.

Pytanie 32

Zgodnie z zamieszczonym schematem lampka sygnalizacyjna H1 będzie świecić, gdy

Ilustracja do pytania
A. będą naciśnięte tylko przyciski S1 i S3
B. będzie naciśnięty tylko przycisk S3
C. będą naciśnięte tylko przyciski S1 i S2
D. będzie naciśnięty tylko przycisk S1
Wiele osób patrząc na taki schemat, może automatycznie założyć, że wystarczy wcisnąć dowolny z przycisków albo nawet kilka naraz, żeby lampka H1 się zapaliła. To jest dość częsty błąd wynikający z nieprzeanalizowania, w jaki sposób przewodzenie prądu jest uzależnione od stanu każdego z przekaźników. Jeżeli wybiera się opcję, że muszą być naciśnięte dwa lub trzy przyciski, albo tylko S3, to ignoruje się fakt, że przekaźniki w tym układzie pracują w taki sposób, że ich styki są połączone szeregowo – a więc otwarcie któregokolwiek z nich przerywa całą drogę prądu do lampki. Wciśnięcie tylko S3 spowoduje zadziałanie K3, ale ponieważ K1 i K2 nie są aktywne, ich styki nie zamykają obwodu, więc lampa się nie zaświeci. Podobnie, jednoczesne naciśnięcie kilku przycisków, np. S1 i S2, oznacza załączenie przekaźników K1 i K2, ale jeżeli K3 nie jest aktywny, to obwód nadal jest otwarty. Dobrym nawykiem jest analizowanie, czy układ jest typu 'AND', czyli wszystkie warunki muszą być spełnione, czy 'OR', czyli wystarczy spełnić jeden z warunków. W tym układzie mamy do czynienia z klasycznym połączeniem szeregowym, które sprawia, że brak zadziałania choćby jednego przekaźnika skutkuje rozwarciem całej gałęzi zasilającej lampkę. Mylenie się w tej kwestii prowadzi do błędnych wniosków i jest dość powszechne – szczególnie u osób, które nie mają jeszcze wyczucia w czytaniu schematów elektrycznych. Dobrą praktyką jest zawsze śledzenie drogi prądu od zasilania do odbiornika krok po kroku, sprawdzanie, które styki muszą być zamknięte, a które otwarte – to pomaga unikać takich pomyłek.

Pytanie 33

Na rysunku przedstawiono symbol graficzny

Ilustracja do pytania
A. przepływomierza.
B. przetwornika pomiarowego.
C. wzmacniacza operacyjnego.
D. separatora.
Separator, przepływomierz i wzmacniacz operacyjny to urządzenia o zupełnie innych zastosowaniach niż przetwornik pomiarowy. Separator służy do oddzielania składników mieszanin, co jest istotne w przetwórstwie chemicznym, ale nie ma bezpośredniego związku z przetwarzaniem sygnałów. Przepływomierz natomiast mierzy przepływ cieczy lub gazu, kluczowy w systemach hydraulicznych i pneumatycznych, ale nie przetwarza sygnałów w sensie ich konwersji lub wzmacniania. Wzmacniacz operacyjny to element elektroniczny służący do wzmacniania sygnałów elektrycznych. Choć może być stosowany w niektórych przetwornikach, sam w sobie nie pełni funkcji przetwornika pomiarowego. Często myli się te elementy z przetwornikami z powodu ich zastosowania w systemach elektronicznych i automatyki, ale każde z nich pełni inną rolę. Typowe błędy myślowe polegają na utożsamianiu funkcjonalności z podobieństwami strukturalnymi, ale kluczowe jest zrozumienie specyficznej roli każdego z tych elementów. Dlatego zawsze należy uważnie analizować funkcje i przeznaczenie każdego komponentu w systemie.

Pytanie 34

Który blok czasowy należy zastosować w programie, by realizował on bezpośrednio zależności czasowe przedstawione na rysunku?

Ilustracja do pytania
A. TONR
B. TON
C. TP
D. TOF
Wybór innych bloków czasowych, takich jak TP, TOF i TONR, może wynikać z niepełnego zrozumienia ich charakterystyki działania w porównaniu do bloku TON. TP, czyli Timer Pulse, jest używany do generowania impulsów o określonym czasie trwania, co nie odpowiada przedstawionemu na diagramie działaniu, gdzie wymagane jest opóźnienie reakcji na sygnał. Stosowanie TP byłoby rozsądne, gdybyśmy potrzebowali impulsu o stałej długości, niezależnie od czasu trwania sygnału wejściowego. TOF, Timer Off-Delay, działa w przeciwny sposób, gdzie opóźnienie dotyczy momentu wyłączenia sygnału wyjściowego po zaniku sygnału wejściowego. Zastosowanie TOF w tym kontekście byłoby błędne, ponieważ nie spełnia wymogów opóźnienia przy aktywacji. Blok TONR działa podobnie jak TON, ale z możliwością resetowania, co nie jest pokazane na diagramie, gdzie nie ma potrzeby resetowania czasu opóźnienia. Wybór nieodpowiedniego bloku często wynika z nieprawidłowego rozpoznania wymagań czasowych układu lub braku zrozumienia różnic między blokami. Ważne jest dokładne przemyślenie, jakie działanie jest potrzebne i który blok najlepiej to działanie realizuje. Praktyka w automatyce przemysłowej uczy, że właściwy dobór elementów czasowych jest kluczem do zrównoważonego i efektywnego działania systemów.

Pytanie 35

Wskaż stany logiczne wejść I2 i I3 sterownika w układzie przedstawionym na rysunku przy wsuniętym tłoczysku i poprawnej pracy czujników.

Ilustracja do pytania
A. I2 = 0, I3 = 0
B. I2 = 1, I3 = 0
C. I2 = 0, I3 = 1
D. I2 = 1, I3 = 1
Wybierając błędną odpowiedź, można wpaść w pułapkę nieprawidłowego zrozumienia działania czujników krańcowych w układzie sterowania siłownikiem. Jeśli oba wejścia I2 i I3 byłyby ustawione na '0', oznaczałoby to, że żaden z czujników nie jest aktywowany, co jest sprzeczne z założeniem, że tłoczysko jest wsunięte. Taka sytuacja mogłaby sugerować błędne podłączenie lub uszkodzenie czujników. Z drugiej strony, jeśli I2 było '0', a I3 '1', oznaczałoby to, że czujnik krańcowy B2, odpowiadający za pozycję wysuniętą, jest aktywowany, co również nie byłoby zgodne z podanym stanem. Odpowiedź I2 = I3 = 1 sugerowałaby, że oba czujniki są jednocześnie aktywne, co w praktyce jest mało prawdopodobne i może świadczyć o usterce w systemie lub błędzie logicznym w programie sterującym. Typowym błędem myślowym może być założenie, że czujniki są w stanie przejściowym, podczas gdy w rzeczywistości system wymaga jednoznacznego określenia pozycji tłoczyska dla prawidłowego działania. Ważne jest, aby zawsze dokładnie analizować schematy i logikę działania czujników w kontekście aplikacyjnego zastosowania PLC.

Pytanie 36

Napięcie wyjściowe przetwornika ciśnienia, przy liniowej charakterystyce przetwarzania, przyjmuje wartość z przedziału 0 ÷ 10 V dla ciśnienia z przedziału 0 ÷ 600 kPa. Jaka będzie wartość napięcia wyjściowego dla wartości ciśnienia 450 kPa?

A. 7,5 V
B. 10,0 V
C. 3,0 V
D. 4,5 V
Przyjrzyjmy się najpierw, dlaczego odpowiedź 7,5 V jest poprawna. Mamy liniową charakterystykę przetwornika ciśnienia, co oznacza, że stosunek między ciśnieniem a napięciem jest stały. W tym przypadku wiemy, że dla 0 kPa napięcie wynosi 0 V, a dla 600 kPa jest to 10 V. Zatem możemy łatwo policzyć, że dla 1 kPa przypada 0,0167 V (10 V / 600 kPa). Teraz wystarczy pomnożyć 450 kPa przez ten współczynnik (450 kPa * 0,0167 V/kPa), co daje nam 7,5 V. Taki sposób wyliczania jest standardową praktyką w branży, szczególnie w systemach automatyki, gdzie precyzyjne przetwarzanie danych procesowych jest kluczowe. W praktyce tego typu przetworniki są szeroko stosowane w przemyśle chemicznym i petrochemicznym, gdzie kontrola ciśnienia jest niezmiernie ważna. Przy wyborze przetwornika warto zwrócić uwagę na jego liniowość, ponieważ to wpływa na dokładność pomiaru. Przemyśl, jak łatwo możemy zastosować tę wiedzę do innych zastosowań, np. do kalibracji czujników w różnych urządzeniach elektronicznych. Znajomość takich zasad jest nieodzowna, jeśli chcemy rozumieć, jak działa sprzęt w nowoczesnych fabrykach, gdzie automatyzacja odgrywa kluczową rolę.

Pytanie 37

Który wynik pomiaru rezystancji żyły przewodu YLY 3x10 mm² o długości około 8 m wskazuje na jej ciągłość?

A. Wynik 4
Ilustracja do odpowiedzi A
B. Wynik 2
Ilustracja do odpowiedzi B
C. Wynik 3
Ilustracja do odpowiedzi C
D. Wynik 1
Ilustracja do odpowiedzi D
Nieprawidłowe wyniki (1, 2 i 4) wynikają z błędnej interpretacji pomiaru rezystancji lub z zastosowania niewłaściwej skali przyrządu. W pierwszym przypadku multimetr pokazuje 9,94 Ω – to zdecydowanie zbyt dużo, jak na przewód miedziany o długości zaledwie 8 metrów i przekroju 10 mm². Dla takiego przewodu opór powinien być praktycznie pomijalny (rzędu miliomów). Odczyt w granicach 10 Ω oznaczałby poważne uszkodzenie żyły lub brak dobrego styku przewodów pomiarowych. W drugim wyniku (220 Ω) sytuacja jest jeszcze bardziej oczywista – taka rezystancja wskazuje na przerwę w obwodzie lub całkowity brak ciągłości przewodu. Multimetr w tym zakresie po prostu pokazuje wartość bliską nieskończoności, czyli otwarty obwód. Wynik czwarty, 13,999 mΩ, jest z kolei zbyt mały w stosunku do możliwości typowego przewodu i pomiaru, sugeruje użycie mikroohmmetru o wysokiej dokładności, ale dla długości 8 metrów i przekroju 10 mm² rzeczywisty opór wynosi około 0,013 Ω – a więc wartość byłaby widoczna dopiero po przeliczeniu jednostek, co może prowadzić do mylnej interpretacji. Częsty błąd wśród uczniów to nieuwzględnienie skali odczytu i jednostek (Ω, kΩ, mΩ). W praktyce, aby potwierdzić ciągłość przewodu, wynik powinien mieścić się poniżej 1 Ω – to prosta zasada, którą stosują elektrycy podczas przeglądów i pomiarów odbiorczych instalacji.

Pytanie 38

Na podstawie opisu zamieszczonego na obudowie urządzenia określ jego rodzaj.

Ilustracja do pytania
A. Przetwornica napięcia 2x24 V DC / 230 V AC
B. Przetwornica akumulatorowa 2x24 V / 230 V AC
C. Zasilacz 230 V AC / 24 V DC
D. Obiektowy separator napięć 24 V DC
Zasilacz 230 V AC / 24 V DC to urządzenie, które zamienia prąd zmienny o napięciu 230 V na prąd stały o napięciu 24 V. Jest to niezwykle przydatne w wielu aplikacjach przemysłowych, gdzie potrzeba zasilania urządzeń elektronicznych i sterowników, które działają na niskim napięciu stałym. Zasilacze tego typu są wykorzystywane w automatyce przemysłowej, systemach kontroli oraz w instalacjach, gdzie wymagana jest stabilność i niezawodność zasilania. Standardem w branży jest zapewnienie, że zasilacz posiada odpowiednie zabezpieczenia przed przeciążeniem, przegrzaniem i zwarciem, co zwiększa bezpieczeństwo użytkowania. Warto zauważyć, że takie zasilacze często wyposażone są w różne tryby pracy, jak np. Hiccup Mode, który automatycznie resetuje zasilanie w przypadku awarii, co jest zgodne z dobrymi praktykami zapewniającymi ciągłość pracy systemów. Moim zdaniem, zrozumienie funkcji i konstrukcji zasilaczy to podstawa dla każdego technika zajmującego się elektroniką i automatyzacją, bo często to właśnie od nich zależy bezawaryjność całego systemu.

Pytanie 39

Do pomiaru wartości podciśnienia w zautomatyzowanej instalacji pneumatycznej, w której stosowane są ejektory wraz z przyssawkami, należy zastosować

A. manometr różnicowy.
B. manometr.
C. wakuometr.
D. barometr.
Wybór odpowiedniego przyrządu do pomiaru podciśnienia jest kluczowy w zautomatyzowanych systemach pneumatycznych. Często pojawia się błąd myślowy polegający na myleniu wakuometru z innymi przyrządami do pomiaru ciśnienia. Barometr, na przykład, mierzy ciśnienie atmosferyczne i jest używany głównie do celów meteorologicznych, a nie w systemach technicznych, gdzie potrzebny jest pomiar podciśnienia. Manometr, z kolei, to przyrząd mierzący ciśnienie powyżej ciśnienia atmosferycznego, stosowany najczęściej do pomiaru ciśnienia cieczy lub gazów w systemach zamkniętych. Manometr różnicowy mierzy różnicę ciśnień między dwoma punktami, co jest użyteczne w systemach, gdzie trzeba kontrolować przepływy, ale nie w pomiarze podciśnienia. Typowym błędem jest także niedocenianie znaczenia dokładnego pomiaru w aplikacjach takich jak ejektory. Ewentualne niepoprawne wartości mogą prowadzić do nieefektywnej pracy systemu, co w konsekwencji może wpłynąć na cały proces produkcyjny. Warto pamiętać, że poprawny dobór narzędzi pomiarowych to nie tylko kwestia techniczna, ale również ekonomiczna, gdyż niewłaściwe narzędzia mogą powodować przestoje i dodatkowe koszty związane z konserwacją systemu.

Pytanie 40

W której pozycji ustawią się tłoczyska siłowników 1A1 i 2A1 po włączeniu zasilania układu sprężonym powietrzem przy niewzbudzonych cewkach Y1 i Y2?

Ilustracja do pytania
A. Tłoczysko siłownika 1A1 wysunie się, a tłoczysko siłownika 2A1 nie wysunie się.
B. Tłoczyska obu siłowników wysuną się.
C. Tłoczyska obu siłowników pozostaną wsunięte.
D. Tłoczysko siłownika 1A1 nie wysunie się, a tłoczysko siłownika 2A1 wysunie się.
Jeśli ktoś uznał, że oba siłowniki się wysuną lub że oba pozostaną wsunięte – to oznacza, że nie przeanalizował dokładnie pozycji spoczynkowych zaworów sterujących. W tym układzie zawory 1V1 i 2V1 są sterowane elektromagnetycznie, ale mają różne położenia startowe. Zawór 1V1 w stanie niewzbudzonym (brak sygnału na cewce Y1) ma pozycję, w której dopływ powietrza jest odcięty od siłownika 1A1, więc jego tłoczysko się nie poruszy. Natomiast zawór 2V1, gdy cewka Y2 nie jest zasilona, dzięki sprężynie ustawia się w pozycji, która łączy port zasilania (1) z portem roboczym (2), co powoduje podanie powietrza do siłownika 2A1 i jego wysunięcie. To typowy układ, w którym jeden siłownik ustawia się automatycznie w pozycji roboczej po włączeniu zasilania. Częsty błąd w interpretacji polega na myleniu symbolu sprężyny (oznaczającego pozycję spoczynkową zaworu) z kierunkiem przepływu powietrza. W praktyce technicznej zawsze analizuje się układ od źródła powietrza (OZ1) do siłownika, śledząc połączenia w stanie nieaktywnym cewek. Dopiero po takim prześledzeniu można poprawnie określić, który siłownik wykona ruch po uruchomieniu sprężarki. Dlatego tylko siłownik 2A1 się wysunie, a 1A1 pozostanie w stanie wsuniętym.