Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektroradiolog
  • Kwalifikacja: MED.08 - Świadczenie usług medycznych w zakresie diagnostyki obrazowej, elektromedycznej i radioterapii
  • Data rozpoczęcia: 18 lutego 2026 17:27
  • Data zakończenia: 18 lutego 2026 17:37

Egzamin zdany!

Wynik: 39/40 punktów (97,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Fala głosowa rozchodzi się

A. w gazach i cieczach.
B. w gazach i próżni.
C. w cieczach i próżni.
D. w gazach, cieczach i próżni.
Poprawnie – fala głosowa, czyli fala akustyczna, w fizyce jest falą mechaniczną. To znaczy, że do swojego rozchodzenia się potrzebuje ośrodka materialnego, w którym cząsteczki mogą drgać i przekazywać energię dalej. Takim ośrodkiem mogą być gazy (np. powietrze), ciecze (np. woda) albo ciała stałe. W próżni nie ma cząsteczek, więc nie ma co drgać i klasyczna fala dźwiękowa po prostu nie może się tam rozchodzić. Dlatego odpowiedź „w gazach i cieczach” jest merytorycznie poprawna, chociaż warto pamiętać, że w rzeczywistości dźwięk rozchodzi się też w ciałach stałych. W praktyce medycznej i okołomedycznej ma to spore znaczenie. W audiometrii, badaniach słuchu czy przy kalibracji sprzętu do pomiaru hałasu zakłada się, że fala dźwiękowa biegnie głównie w powietrzu, czyli w gazie. Z kolei w ultrasonografii medycznej wykorzystujemy rozchodzenie się fal mechanicznych w tkankach, które fizycznie zachowują się jak różne ciecze i ciała stałe – stąd żel USG, żeby poprawić sprzężenie między głowicą a skórą, bo powietrze bardzo słabo przewodzi ultradźwięki. Moim zdaniem to jedno z tych prostych pytań, które później ułatwia zrozumienie, czemu np. badanie USG nie działa w powietrzu i czemu w kosmosie, w próżni, nie „słychać” eksplozji mimo że mogą emitować promieniowanie elektromagnetyczne. W dobrych praktykach technicznych zawsze rozróżniamy fale mechaniczne (wymagające ośrodka, jak dźwięk) od fal elektromagnetycznych (np. promieniowanie RTG, radiowe), które mogą iść w próżni.

Pytanie 2

Nieostrość geometryczna obrazu rentgenowskiego zależy od

A. wielkości ziarna luminoforu folii wzmacniającej.
B. ilości promieniowania rozproszonego.
C. wielkości ogniska optycznego.
D. grubości emulsji błony rentgenowskiej.
Prawidłowo wskazana została wielkość ogniska optycznego, czyli w praktyce rozmiar ogniska lampy rentgenowskiej. To właśnie od niego w dużym stopniu zależy nieostrość geometryczna, nazywana też nieostrością ogniskową. Im większe ognisko, tym bardziej krawędzie struktur na obrazie stają się rozmyte, bo promienie wychodzą z większego obszaru, a nie z jednego „punktu”. Z mojego doświadczenia dobrze to widać np. w radiogramach kości dłoni: przy dużym ognisku beleczki kostne i zarysy drobnych stawów są mniej wyraźne, przy małym ognisku – ostre jak żyleta. Dlatego w standardach pracowni RTG zaleca się używanie małego ogniska do badań wymagających wysokiej rozdzielczości przestrzennej: zdjęcia kostne, mammografia, drobne struktury stomatologiczne. Przy badaniach dużych części ciała, np. klatki piersiowej u dorosłego, częściej stosuje się większe ognisko, bo trzeba wytrzymać większe obciążenie cieplne lampy. W praktyce technik zawsze musi znaleźć kompromis między ostrością a możliwościami technicznymi aparatu i dawką dla pacjenta. Warto też pamiętać, że na nieostrość geometryczną wpływa dodatkowo odległość ognisko–błona oraz odległość obiekt–błona, ale „startem” całego problemu jest właśnie fizyczna wielkość ogniska. Gdy opanujesz tę zależność, łatwiej rozumiesz, dlaczego w protokołach badań RTG tak mocno podkreśla się dobór ogniska w zależności od badanej okolicy i masy ciała pacjenta.

Pytanie 3

Celem radioterapii paliatywnej nie jest

A. zmniejszenie dolegliwości bólowych.
B. zahamowanie procesu nowotworowego.
C. przedłużenie życia.
D. trwałe wyleczenie.
Prawidłowo wskazana odpowiedź „trwałe wyleczenie” dobrze oddaje sens radioterapii paliatywnej. Napromienianie paliatywne stosuje się u chorych, u których nowotwór jest najczęściej uogólniony, nieoperacyjny albo bardzo zaawansowany miejscowo i szanse na całkowite wyleczenie są znikome. Celem takiego leczenia nie jest więc radykalne usunięcie choroby, tylko poprawa jakości życia pacjenta. W praktyce oznacza to głównie zmniejszenie dolegliwości bólowych, redukcję krwawień z guza, zmniejszenie duszności przy naciekach na płuca czy oskrzela, a także zapobieganie powikłaniom, takim jak złamania patologiczne w przerzutach do kości czy ucisk na rdzeń kręgowy. Typowe są krótsze schematy frakcjonowania (np. 8 Gy jednorazowo, 5×4 Gy, 10×3 Gy), bo liczy się szybki efekt objawowy, a nie maksymalne „dobicie” guza. Standardy i wytyczne (np. ESMO, ESTRO) podkreślają, że w paliacji akceptuje się pewien stopień progresji choroby, o ile pacjent ma mniej objawów i funkcjonuje lepiej w życiu codziennym. Dlatego pozostałe odpowiedzi – przedłużenie życia, łagodzenie bólu i częściowe zahamowanie procesu nowotworowego – jak najbardziej mieszczą się w realnych, praktycznych celach radioterapii paliatywnej. Moim zdaniem ważne jest, żeby zawsze pamiętać o rozmowie z pacjentem: jasno tłumaczymy, że nie „wyleczymy” nowotworu, ale możemy sprawić, że będzie mniej boleć, łatwiej będzie się poruszać i ogólnie komfort życia się poprawi, czasem nawet na dłuższy okres niż wszyscy się spodziewają.

Pytanie 4

W scyntygrafii kośćca „ogniska gorące” oznaczają miejsca

A. zmniejszonego gromadzenia znacznika.
B. braku gromadzenia znacznika.
C. zwiększonego gromadzenia znacznika.
D. równomiernego gromadzenia znacznika.
Prawidłowo – w scyntygrafii kośćca tzw. „ogniska gorące” oznaczają miejsca zwiększonego gromadzenia znacznika radiofarmaceutycznego, najczęściej fosfonianu znakowanego technetem-99m (np. 99mTc-MDP). Gammakamera rejestruje promieniowanie gamma emitowane z organizmu, więc tam, gdzie komórek kostnych jest aktywnych więcej, gdzie jest wzmożony metabolizm kostny i przebudowa kości, tam radiofarmaceutyk odkłada się intensywniej. Na obrazie widzimy to jako jaśniejsze, wyraźnie odcinające się punkty lub obszary – właśnie „hot spots”. Moim zdaniem istotne jest, żeby od razu kojarzyć: gorące ognisko = wzmożona aktywność kostna, a nie „dziura” czy brak kości. Typowo takie ogniska widzimy w przerzutach osteoblastycznych (np. rak prostaty), w złamaniach (świeżych lub gojących się), w zmianach zapalnych (osteomyelitis), w chorobie Pageta, a nawet w miejscach przeciążenia mechanicznego. W praktyce technik czy lekarz medycyny nuklearnej zawsze ocenia nie tylko samą intensywność, ale też kształt, lokalizację i symetrię ogniska w porównaniu z tłem oraz innymi kośćmi. Standardy opisów zalecają, żeby nie pisać tylko „ognisko gorące”, ale dodać przypuszczalną etiologię, np. „ognisko wzmożonego gromadzenia znacznika o charakterze meta osteoblastycznej” albo „ognisko odpowiadające zmianom pourazowym”. W nowoczesnych pracowniach często łączy się scyntygrafię z SPECT/CT, co pozwala od razu skorelować „gorące” miejsce z dokładną anatomią na tomografii komputerowej. W codziennej pracy klinicznej takie rozumienie „hot spotów” pomaga odróżnić zmiany łagodne (np. stawy przeciążone) od podejrzanych onkologicznie, co jest kluczowe przy kwalifikacji chorego do dalszej diagnostyki czy leczenia onkologicznego.

Pytanie 5

W której projekcji należy wykonać badanie radiologiczne kręgosłupa lędźwiowego, by na otrzymanym zdjęciu wyrostki kręgów lędźwiowych układały się w charakterystyczny kształt piesków (teriera szkockiego)?

A. AP
B. Bocznej.
C. Skośnej.
D. PA
Prawidłowa jest projekcja skośna, bo właśnie w tym ułożeniu pacjenta wyrostki stawowe kręgów lędźwiowych ustawiają się względem siebie tak, że na obrazie RTG przypominają charakterystyczne „pieski”, często w literaturze nazywane „Scottie dog sign”. W projekcji skośnej najlepiej uwidaczniają się stawy międzywyrostkowe (stawy międzykręgowe tylne), czyli tzw. stawy międzykręgowe lędźwiowe. To one, razem z łukami kręgów, tworzą tę specyficzną sylwetkę psa: wyrostek kolczysty to ogon, wyrostek poprzeczny to pysk, nasada łuku to szyja, wyrostek stawowy górny to ucho, a wyrostek stawowy dolny to przednia łapa. W praktyce technik RTG układa pacjenta w pozycji AP skośnej pod kątem około 45° (czasem trochę mniej lub więcej, zależnie od budowy pacjenta), tak żeby promień centralny przechodził przez stawy międzywyrostkowe. Standardy wykonywania zdjęć kręgosłupa lędźwiowego zakładają, że projekcje skośne wykonuje się właśnie wtedy, gdy chcemy ocenić stawy międzywyrostkowe, podejrzewamy spondylolizę, spondylolistezę lub inne zmiany w łukach kręgów. Z mojego doświadczenia to pytanie często się pojawia na egzaminach, bo ten „piesek” to taki klasyczny obrazkowy sposób zapamiętania anatomii czynnościowej łuku kręgowego. Warto też pamiętać, że w typowym zestawie badań RTG L-S wykonuje się projekcję AP, boczną oraz – w razie wskazań – właśnie skośne, żeby „dostrzyc” to, czego nie widać dobrze na zdjęciu czołowym czy bocznym. To jest po prostu dobra praktyka w radiologii konwencjonalnej.

Pytanie 6

Co jest przyczyną artefaktu widocznego na obrazie MR?

Ilustracja do pytania
A. Ruch narządu lub pacjenta.
B. Zjawisko zawijania fazy.
C. Zjawisko zaniku sygnału.
D. Pulsacyjny przepływ krwi.
Prawidłowo wskazany został ruch narządu lub pacjenta jako przyczyna widocznego artefaktu. W badaniach MR oko, gałki oczne, język, żuchwa, a nawet drobne drżenia głowy bardzo łatwo „psują” obraz, bo sekwencje są stosunkowo długie i sygnał z kolejnych linii k‑przestrzeni zbierany jest w czasie. Jeśli w trakcie akwizycji pacjent poruszy głową albo np. mrugnie, informacje z różnych momentów zostają nałożone na siebie i rekonstrukcja obrazu daje charakterystyczne rozmycia, podwójne kontury, przesunięcia czy „smugi” w kierunku kodowania fazy. Na prezentowanym przekroju przez oczodoły widać typowy obraz – struktury nie są ostre, brzegi są jakby „pociągnięte”, co nie wygląda ani na zanik sygnału, ani na klasyczne zawijanie fazy. W praktyce, zgodnie z dobrymi standardami pracowni MR, zawsze dąży się do minimalizacji ruchu: dokładne unieruchomienie głowy (podkładki, maski, pianki), jasne instrukcje dla pacjenta, krótsze sekwencje, techniki motion‑correction, a w badaniach u dzieci czasem sedacja zgodnie z procedurami anestezjologicznymi. Moim zdaniem kluczowe jest też spokojne wytłumaczenie pacjentowi, dlaczego musi leżeć nieruchomo – to naprawdę robi różnicę. W opisie badania warto wspomnieć o obecności artefaktów ruchowych, bo mogą one ograniczać wiarygodność oceny np. nerwów wzrokowych czy struktur tylnego dołu. Z perspektywy technika dobrze jest od razu, na konsoli, krytycznie ocenić jakość obrazów i w razie wyraźnych artefaktów rozważyć powtórzenie wybranych sekwencji, zamiast oddawać badanie z mocno zniekształconym obrazem.

Pytanie 7

Jaka jest odległość pomiędzy źródłem promieniowania a powierzchnią ciała pacjenta w technice izocentrycznej radioterapii?

A. Zmienna, zależna od lokalizacji punktu izocentrycznego w ciele pacjenta.
B. Stała i wynosi 100 cm.
C. Stała i wynosi 110 cm.
D. Zmienna, zależna od grubości pacjenta i rodzaju akceleratora.
Prawidłowa odpowiedź wynika bezpośrednio z samej idei techniki izocentrycznej. W radioterapii izocentrycznej kluczowe jest położenie izocentrum, czyli punktu w przestrzeni, w którym przecinają się osie wszystkich wiązek promieniowania i oś obrotu gantry, stołu oraz kolimatora. Ten punkt umieszcza się wewnątrz ciała pacjenta – w obszarze planowanej objętości napromienianej (PTV), a nie na powierzchni skóry. Skoro izocentrum jest „w środku”, to odległość od źródła promieniowania do powierzchni ciała musi się zmieniać w zależności od tego, jak głęboko i w jakim miejscu anatomicznym to izocentrum zostało zaplanowane. W praktyce planowania leczenia (TPS – treatment planning system) ustala się stałą odległość źródło–izocentrum (najczęściej ok. 100 cm dla typowego akceleratora liniowego), natomiast odległość źródło–skóra (SSD) wychodzi zmienna. Jeżeli punkt izocentryczny leży płytko, blisko skóry, SSD będzie stosunkowo duża. Jeśli guz jest głęboko w miednicy lub w śródpiersiu, powierzchnia skóry znajdzie się bliżej głowicy, czyli SSD się zmniejsza. Widać to bardzo dobrze przy rotacyjnych technikach jak VMAT czy klasyczna terapia łukowa: gantry obraca się wokół pacjenta, izocentrum pozostaje nieruchome w ciele, a geometria odległości do skóry zmienia się wraz z kształtem i grubością pacjenta w różnych projekcjach. Moim zdaniem najważniejsze praktyczne skojarzenie jest takie: w technice izocentrycznej „święte” i stałe jest źródło–izocentrum, a nie źródło–skóra. Dlatego radioterapeuci i technicy planując ustawienie pacjenta korzystają z współrzędnych izocentrum (laser, systemy IGRT) i nie próbują na siłę utrzymywać jednej odległości SSD. To podejście ułatwia skomplikowane techniki wielopolowe, IMRT czy stereotaksję, gdzie wiele wiązek musi trafiać w ten sam punkt w przestrzeni bez względu na kształt pacjenta. Z mojego doświadczenia, jeżeli ktoś mechanicznie myśli tylko „100 cm od skóry”, to zwykle ma kłopot ze zrozumieniem geometrii izocentrycznej i potem gorzej ogarnia planowanie bardziej zaawansowanych technik.

Pytanie 8

Które urządzenie zostało przedstawione na fotografii i w jakiej pracowni znajduje zastosowanie?

Ilustracja do pytania
A. Densytometr rentgenowski w pracowni medycyny nuklearnej.
B. Kamera scyntygraficzna w pracowni medycyny nuklearnej.
C. Rentgenograf w pracowni rentgenowskiej.
D. Gammakamera w pracowni radioterapii.
Na zdjęciu widać klasyczną kamerę scyntygraficzną, często nazywaną też gammakamerą, używaną w pracowni medycyny nuklearnej. Charakterystyczny jest duży pierścień z głowicami detekcyjnymi oraz ruchomy stół pacjenta, który wsuwa się w obszar detekcji. W medycynie nuklearnej nie oświetlamy pacjenta z zewnątrz promieniowaniem, tylko wykorzystujemy promieniowanie gamma emitowane z wnętrza ciała po podaniu radiofarmaceutyku. Detektory kamery scyntygraficznej (zwykle kryształ NaI(Tl) i fotopowielacze) rejestrują to promieniowanie i tworzą obraz rozmieszczenia znacznika w narządach. Dzięki temu można ocenić nie tylko anatomię, ale przede wszystkim funkcję – np. perfuzję mięśnia sercowego, czynność tarczycy, perfuzję nerek, metabolizm kości. W praktyce klinicznej wykonuje się takie badania jak scyntygrafia kości, scyntygrafia perfuzyjna płuc, SPECT serca, SPECT mózgu. Moim zdaniem to właśnie jest główna przewaga medycyny nuklearnej nad klasycznym RTG: widzimy fizjologię, a nie tylko kształt narządu. Dobre praktyki wymagają tu m.in. prawidłowego doboru radiofarmaceutyku, kalibracji kolimatorów, kontroli jakości detektorów oraz właściwego pozycjonowania pacjenta, żeby uniknąć artefaktów ruchowych. W nowoczesnych pracowniach często stosuje się systemy hybrydowe SPECT/CT – z zewnątrz wyglądają podobnie, ale oprócz kamery scyntygraficznej mają zintegrowany tomograf komputerowy, co pozwala łączyć informację czynnościową z anatomiczną i dokładniej lokalizować zmiany patologiczne. Zdjęcie w pytaniu pokazuje właśnie typowy układ głowic scyntygraficznych wokół stołu, a nie klasyczny aparat RTG czy akcelerator do radioterapii.

Pytanie 9

Największa wartość energii promieniowania stosowanego w radioterapii jest generowana przy użyciu

A. aparatu rentgenowskiego.
B. radioaktywnego cezu-137.
C. aparatu kobaltowego.
D. przyspieszacza liniowego.
Prawidłowo wskazany został przyspieszacz liniowy, bo to właśnie linac jest podstawowym źródłem najwyższych energii promieniowania stosowanych we współczesnej teleradioterapii. Typowy aparat kobaltowy (Co‑60) emituje promieniowanie gamma o stałej energii około 1,17–1,33 MeV, natomiast przyspieszacz liniowy generuje wiązki fotonowe o energiach nominalnych 4, 6, 10, 15, a nawet 18 MV, a także wiązki elektronowe o różnych energiach do leczenia zmian powierzchownych. Dzięki temu można dobrać energię do głębokości guza, uzyskać odpowiedni rozkład dawki i lepiej oszczędzić tkanki zdrowe. W praktyce klinicznej, zgodnie ze standardami nowoczesnej radioterapii, większość planów leczenia nowotworów głęboko położonych (np. rak płuca, rak prostaty, guzy głowy i szyi) wykonuje się właśnie na linacach, często w technikach IMRT, VMAT czy stereotaksji. Moim zdaniem kluczowe jest zrozumienie, że wysoka energia wiązki z przyspieszacza liniowego pozwala na tzw. efekt build‑up – maksymalna dawka pojawia się pod powierzchnią skóry, co zmniejsza jej uszkodzenie. Aparat rentgenowski do klasycznych zdjęć RTG pracuje na znacznie niższych napięciach (rzędu 30–150 kV), więc jego promieniowanie ma dużo mniejszą energię fotonów i nie nadaje się do głębokiego leczenia onkologicznego. Cez‑137 i kobalt‑60 są używane głównie w starszych typach teleterapii lub w brachyterapii, ale także nie osiągają tak szerokiego zakresu energii jak linac. W dobrze wyposażonych ośrodkach onkologicznych przyspieszacz liniowy jest dziś złotym standardem, właśnie ze względu na możliwość generowania najwyższych energii promieniowania terapeutycznego oraz precyzyjną modulację dawki w przestrzeni i czasie.

Pytanie 10

Którą strukturę anatomiczną zaznaczono strzałką na rentgenogramie?

Ilustracja do pytania
A. Staw krzyżowo-biodrowy.
B. Kość kulszową.
C. Talerz biodrowy.
D. Kość krzyżową.
Na obrazie RTG strzałka wskazuje staw krzyżowo‑biodrowy, czyli połączenie pomiędzy kością krzyżową a talerzem kości biodrowej. Na klasycznym zdjęciu miednicy jest on widoczny jako wąska, nieregularna szczelina stawowa biegnąca skośnie, mniej więcej od góry‑przyśrodkowo ku dołowi‑bocznie. Właśnie taki zarys widzisz na przedstawionym rentgenogramie. Moim zdaniem to jest jedno z tych miejsc, które na początku "zlewają się" z tłem, ale jak już raz dobrze je zlokalizujesz, potem rozpoznajesz je automatycznie. Staw krzyżowo‑biodrowy jest stawem o bardzo ograniczonej ruchomości, o budowie mieszanej (częściowo włóknistej, częściowo maziowej). W praktyce radiologicznej ocenia się go rutynowo na standardowym zdjęciu miednicy w projekcji AP, zwłaszcza u pacjentów z bólem dolnego odcinka kręgosłupa, urazem miednicy, podejrzeniem zesztywniającego zapalenia stawów kręgosłupa (ZZSK) albo innych spondyloartropatii. W dobrych praktykach opisowych zwraca się uwagę na szerokość szczeliny stawowej, zarysy powierzchni stawowych, obecność nadżerek, sklerotyzacji podchrzęstnej, zwapnień czy zrostów kostnych. W zmianach zapalnych (np. sakroiliitis) klasycznie pojawia się poszerzenie lub zwężenie szczeliny, nieregularność zarysu i sklerotyzacja, czasem całkowite zesztywnienie stawu. W urazach możemy szukać przemieszczenia, poszerzenia lub asymetrii stawów krzyżowo‑biodrowych, co ma duże znaczenie przy podejrzeniu niestabilnych złamań miednicy. Z mojego doświadczenia warto zawsze porównywać obie strony – symetria jest tutaj jednym z kluczowych elementów prawidłowej interpretacji. Umiejętność szybkiego rozpoznania lokalizacji stawu krzyżowo‑biodrowego jest podstawą dalszej, bardziej zaawansowanej oceny w TK czy MR, gdzie dokładniej analizuje się chrząstkę, więzadła i otaczające tkanki miękkie.

Pytanie 11

Który załamek w zapisie EKG odpowiada zjawisku depolaryzacji przedsionków mięśnia sercowego?

A. T
B. Q
C. R
D. P
Załamek P w zapisie EKG odpowiada depolaryzacji przedsionków, czyli momentowi, kiedy bodziec elektryczny rozchodzi się przez mięsień przedsionków i przygotowuje je do skurczu. To jest tak naprawdę pierwszy element całego cyklu sercowego widocznego w standardowym zapisie 12-odprowadzeniowego EKG. W fizjologicznych warunkach załamek P jest dodatni w większości odprowadzeń kończynowych, szczególnie w II odprowadzeniu, które zwykle analizuje się jako wzorcowe. Moim zdaniem warto „nauczyć się na pamięć”, że P = przedsionki, bo to potem bardzo ułatwia interpretację różnych zaburzeń rytmu, np. migotania czy trzepotania przedsionków. W praktyce technika EKG i personel medyczny, zgodnie z wytycznymi kardiologicznymi, zawsze ocenia obecność, kształt i częstość załamków P. Brak prawidłowych załamków P albo ich nietypowy kształt może sugerować np. rytm z węzła AV, ektopowe pobudzenie przedsionkowe albo przerost przedsionków. W badaniach wysiłkowych czy holterowskich ciągłe śledzenie załamków P pomaga odróżnić tachykardię zatokową od nadkomorowych zaburzeń rytmu. Warto też pamiętać, że załamek P kończy się przed zespołem QRS – to czas, kiedy impuls po przejściu przez przedsionki dociera do węzła przedsionkowo‑komorowego. W dobrych praktykach diagnostyki elektromedycznej zawsze analizuje się P w kontekście całego odstępu PQ (PR), bo to daje informację nie tylko o depolaryzacji przedsionków, ale też o przewodzeniu przedsionkowo‑komorowym. Z mojego doświadczenia, jak ktoś dobrze rozumie załamek P, to dużo szybciej ogarnia resztę zapisu EKG, bo ma solidny punkt odniesienia do oceny rytmu i przewodnictwa.

Pytanie 12

Jak określa się rekonstrukcję obrazów TK, której wynikiem są obrazy dwuwymiarowe tworzone w dowolnej płaszczyźnie przez wtórną obróbkę zestawionych ze sobą wielu przekrojów poprzecznych?

A. Wielopłaszczyznowa MPR.
B. Cieniowanych powierzchni SSD.
C. Odwzorowania objętości VTR.
D. Maksymalnej intensywności MIP.
Prawidłowo wskazana została wielopłaszczyznowa MPR (multiplanar reformation / reconstruction). W tomografii komputerowej wykonujemy serię cienkich przekrojów poprzecznych (osiowych), a MPR polega na wtórnym, komputerowym „przeliczeniu” tych danych tak, żeby otrzymać obrazy w dowolnej płaszczyźnie: strzałkowej, czołowej, skośnej, a nawet krzywoliniowej. Kluczowe jest tu słowo „dwuwymiarowe” – wynik MPR to nadal obraz 2D, tylko że złożony z wielu sąsiednich warstw, a nie pojedynczego skanu. W praktyce klinicznej MPR jest absolutnym standardem np. przy ocenie kręgosłupa (rekonstrukcje strzałkowe i czołowe), zatok przynosowych, złamań kości długich, a także w angiografii TK, gdzie wykonuje się rekonstrukcje wzdłuż przebiegu naczynia. Moim zdaniem bez MPR współczesna TK byłaby mocno „upośledzona”, bo sam obraz osiowy często nie pokazuje w pełni rozległości zmiany. Dobra praktyka jest taka, że przy cienkich warstwach (np. 0,5–1 mm) zawsze generuje się zestaw standardowych rekonstrukcji MPR, dostosowanych do badanego obszaru. Warto też pamiętać, że MPR korzysta z tych samych surowych danych co obrazy osiowe, więc nie zwiększa dawki promieniowania – to tylko inny sposób prezentacji tego, co już zostało zarejestrowane. W diagnostyce obrazowej, zwłaszcza w TK wielorzędowej, umiejętność świadomego używania MPR i dobierania płaszczyzn rekonstrukcji jest traktowana jako podstawowa kompetencja technika i lekarza radiologa.

Pytanie 13

Jakie symbole mają odprowadzenia kończynowe dwubiegunowe w badaniu EKG?

A. I, II, III
B. V4, V5, V6
C. aVR, aVL, aVF
D. V1, V2, V3
Prawidłowo – odprowadzenia kończynowe dwubiegunowe w standardowym 12‑odprowadzeniowym EKG mają symbole I, II, III. Nazywają się „dwubiegunowe”, bo rejestrują różnicę potencjałów pomiędzy dwiema elektrodami czynnościowymi założonymi na kończyny. W odprowadzeniu I aparat porównuje lewą rękę z prawą ręką (LA–RA), w odprowadzeniu II – lewą nogę z prawą ręką (LL–RA), a w odprowadzeniu III – lewą nogę z lewą ręką (LL–LA. W praktyce klinicznej właśnie te trzy odprowadzenia są podstawą tzw. trójkąta Einthovena, który opisuje elektryczną oś serca w płaszczyźnie czołowej. Z mojego doświadczenia, jeżeli ktoś dobrze ogarnia I, II, III, to dużo łatwiej rozumie potem interpretację osi serca, zmian niedokrwiennych czy przerostów komór. W zapisie monitorującym (np. na OIT czy w ratownictwie) najczęściej używa się właśnie odprowadzenia II, bo zwykle daje ono najwyższe, najbardziej czytelne załamki P i zespoły QRS. To jest taki „roboczy standard” w wielu oddziałach. Warto też pamiętać, że technik zakładający EKG musi poprawnie rozmieścić elektrody kończynowe (czerwony, żółty, zielony, czarny) – nawet jeśli w praktyce klinicznej często daje się je na przedramiona i podudzia, a nie na nadgarstki i kostki. Dla jakości zapisu i poprawnej interpretacji odprowadzeń I, II, III ważne jest jeszcze ograniczenie artefaktów ruchowych, dobra przyczepność elektrod i powtarzalny schemat podłączenia, zgodny z wytycznymi producenta aparatu i standardami pracowni EKG.

Pytanie 14

Jak zgodnie ze standardem należy ustawić pacjenta do badania rentgenowskiego w skosie tylnym prawym?

A. Przodem do kasety, prawa strona przylega do kasety, lewa strona odwiedziona od kasety.
B. Tyłem do kasety, prawa strona przylega do kasety, lewa strona odwiedziona od kasety.
C. Przodem do kasety, lewa strona przylega do kasety, prawa strona odwiedziona od kasety.
D. Tyłem do kasety, lewa strona przylega do kasety, prawa strona odwiedziona od kasety.
Prawidłowa odpowiedź wynika bezpośrednio z zasad nazewnictwa projekcji w radiologii. Określenie „skos tylny prawy” (RPO – right posterior oblique) oznacza, że do kasety przylega prawa część tylnej powierzchni ciała pacjenta. Innymi słowy: pacjent stoi tyłem do kasety, jest lekko obrócony, tak żeby prawa strona pleców i tułowia dotykała kasety, a lewa strona była odsunięta – czyli odwiedziona od kasety. Takie ustawienie odpowiada właśnie odpowiedzi: „Tyłem do kasety, prawa strona przylega do kasety, lewa strona odwiedziona od kasety”. W standardach radiologicznych przyjęło się, że w projekcjach skośnych pierwsze słowo („tylny” albo „przedni”) mówi, czy do detektora bliżej jest powierzchnia tylna (PA/tył do kasety) czy przednia (AP/przodem do kasety), a określenie „prawy/lewy” wskazuje, która strona ciała przylega do kasety. To jest bardzo praktyczne, bo od razu wiadomo, jak ustawić pacjenta, niezależnie czy robisz RTG kręgosłupa lędźwiowego, klatki piersiowej, czy stawu krzyżowo-biodrowego w skośnych projekcjach. Moim zdaniem warto sobie to utrwalić na schemacie: w projekcjach tylnych skośnych (RPO, LPO) pacjent stoi tyłem do kasety, a w przednich skośnych (RAO, LAO) – przodem. Potem tylko pamiętasz, że „prawy” albo „lewy” to strona bliższa kasety. W praktyce technik radiologii podczas ustawiania pacjenta kontroluje, czy bark, biodro i odpowiednia strona klatki lub tułowia rzeczywiście dotykają kasety, a przeciwna strona jest lekko odsunięta, co zapewnia właściwy kąt skośny, redukcję nakładania się struktur i zgodność ze standardami obrazowania. Takie prawidłowe pozycjonowanie poprawia jakość diagnostyczną zdjęcia i zmniejsza ryzyko konieczności powtarzania ekspozycji, co od razu przekłada się na mniejsze narażenie pacjenta na promieniowanie.

Pytanie 15

Do zdjęcia rentgenowskiego kręgosłupa piersiowego w projekcji AP pacjenta należy ułożyć

A. na brzuchu, tak by promień centralny padał na środek mostka.
B. na plecach, tak by promień centralny padał na środek mostka.
C. na brzuchu, tak by promień centralny padał na wyrostek mieczykowaty mostka.
D. na plecach, tak by promień centralny padał na wyrostek mieczykowaty mostka.
Prawidłowa odpowiedź wynika z zasad standardowego pozycjonowania do zdjęcia RTG kręgosłupa piersiowego w projekcji AP. Pacjent powinien leżeć na plecach (pozycja na wznak), z kręgosłupem możliwie równolegle do stołu, bez rotacji barków i miednicy. Promień centralny kieruje się na środek mostka, czyli mniej więcej na poziom Th6–Th7, co pozwala objąć na obrazie cały odcinek piersiowy w projekcji przednio–tylnej. Dzięki takiemu ułożeniu centralne promieniowanie przechodzi osiowo przez trzon kręgosłupa piersiowego, a nie ucieka za bardzo w stronę szyi albo lędźwi. Moim zdaniem ważne jest, żeby kojarzyć, że w projekcji AP odcinka piersiowego orientujemy się właśnie mostkiem, a nie np. wyrostkiem mieczykowatym. W praktyce technik często palpacyjnie wyszukuje ręką środek mostka i tam kieruje promień centralny, korygując odległość ognisko–film i ewentualne podkładki pod głowę czy kolana, żeby wyrównać krzywizny kręgosłupa. Dobre praktyki mówią też o ustawieniu kasety tak, by górna krawędź sięgała mniej więcej do poziomu C7, a dolna obejmowała przejście piersiowo–lędźwiowe. W literaturze i wytycznych z zakresu techniki RTG (np. standardowe atlasy projekcji) podkreśla się, że projekcja AP odcinka piersiowego wykonywana na leżąco na plecach poprawia stabilność pacjenta, ogranicza ruchy oddechowe i zmniejsza ryzyko poruszenia obrazu. W pozycji leżącej łatwiej też zastosować prawidłową kolimację, ochronę gonad, tarczycy (tam gdzie to możliwe) i dopasować parametry ekspozycji do stosunkowo dużej grubości klatki piersiowej. To wszystko przekłada się na jakość diagnostyczną zdjęcia i bezpieczeństwo pacjenta.

Pytanie 16

Na przedstawionym radiogramie TK głowy strzałką zaznaczono

Ilustracja do pytania
A. przegrodę nosową.
B. zbiornik wielki.
C. zatokę sitową.
D. zatokę klinową.
Na obrazie TK głowy strzałka wskazuje zatokę klinową, czyli pneumatyczną jamę kostną położoną w trzonie kości klinowej, w linii pośrodkowej, głęboko za jamą nosową. W projekcjach poprzecznych (axialnych), takich jak ta, zatoka klinowa widoczna jest jako symetryczna, powietrzna przestrzeń o niskiej gęstości (ciemna), położona centralnie, tuż przed trzonem kości klinowej i poniżej siodła tureckiego. To charakterystyczne położenie w środku podstawy czaszki jest kluczowe do jej rozpoznawania w praktyce. Moim zdaniem warto sobie to mocno skojarzyć: "ciemna, centralna bańka" z tyłu jamy nosowej to zwykle właśnie zatoka klinowa. W pracy technika elektroradiologii umiejętność szybkiego rozpoznania zatoki klinowej jest ważna np. przy planowaniu cięć TK zatok przynosowych, ocenie szerzenia się zmian zapalnych, polipów lub guzów podstawy czaszki, a także przy kwalifikacji do zabiegów endoskopowych przez zatokę klinową (dostęp do przysadki). Standardy opisów radiologicznych zalecają zawsze ocenę wszystkich zatok przynosowych: czołowych, sitowych, szczękowych i właśnie klinowej, bo zapalenie lub guz tej zatoki może dawać mało specyficzne objawy, np. bóle głowy, zaburzenia widzenia. Na TK zwracamy uwagę na stopień upowietrznienia, obecność poziomów płyn-powietrze, pogrubienie błony śluzowej lub masy tkanek miękkich. W dobrych praktykach diagnostyki obrazowej głowy i zatok zawsze porównuje się symetrię struktur, ciągłość ścian kostnych oraz relacje zatoki klinowej do tętnic szyjnych wewnętrznych, nerwów wzrokowych i przysadki – to ma znaczenie np. przy planowaniu zabiegów laryngologicznych i neurochirurgicznych.

Pytanie 17

Wynik badania słuchu metodą audiometrii tonalnej wskazuje na

Ilustracja do pytania
A. uraz akustyczny.
B. słuch w granicach normy.
C. niedosłuch uwarunkowany genetycznie.
D. starzenie się narządu słuchu.
Na przedstawionym audiogramie tonalnym widać bardzo charakterystyczny obraz: słuch w niskich i średnich częstotliwościach jest w zasadzie prawidłowy lub tylko lekko obniżony, natomiast w okolicy 4–6 kHz pojawia się wyraźny, głęboki dołek progów słyszenia. Ten tzw. „notch” w wysokich częstotliwościach jest klasycznym obrazem urazu akustycznego, czyli uszkodzenia narządu Cortiego spowodowanego hałasem o dużym natężeniu. Moim zdaniem, jak się raz to zobaczy na wykresie, to później już trudno pomylić z czymś innym. W praktyce zawodowej, szczególnie w medycynie pracy i w diagnostyce laryngologicznej, taki kształt audiogramu kojarzy się przede wszystkim z narażeniem na hałas impulsowy (wystrzał, petarda, prasa mimośrodowa) albo przewlekły hałas przemysłowy bez odpowiedniej ochrony słuchu. Standardy audiologiczne (zarówno krajowe, jak i np. zalecenia WHO czy OSHA) podkreślają, że pierwsze uszkodzenie od hałasu ujawnia się właśnie w zakresie 3–6 kHz, najczęściej z maksimum około 4 kHz, przy zachowanej w miarę dobrej słyszalności w częstotliwościach mowy (0,5–2 kHz). Dlatego pacjent może jeszcze całkiem nieźle rozumieć mowę w cichym otoczeniu, ale zaczyna mieć problemy w hałasie, skarży się na szumy uszne, dyskomfort przy głośnych dźwiękach. W dobrze prowadzonej praktyce diagnostycznej taki wynik zawsze trzeba połączyć z dokładnym wywiadem: praca w hałasie, strzelectwo, koncerty, słuchawki na uszach, brak stosowania ochronników słuchu. W badaniach okresowych pracowników wynik z typowym dołkiem 4 kHz jest sygnałem, że trzeba pilnie zweryfikować warunki akustyczne stanowiska, stosowanie ochronników i ewentualnie zmodyfikować narażenie. Dobrą praktyką jest też kontrolne powtórzenie audiometrii po okresie unikania hałasu, ale prawdziwy uraz akustyczny niestety jest zmianą trwałą, co warto mieć w głowie przy omawianiu wyniku z pacjentem.

Pytanie 18

Które urządzenia pomocnicze służą do unieruchomienia pacjenta do zabiegu radioterapii?

A. Kliny mechaniczne i maski.
B. Filtry klinowe i bolusy.
C. Maski i filtry klinowe.
D. Maski i podpórki.
Prawidłowo – w radioterapii do unieruchomienia pacjenta stosuje się przede wszystkim maski i różnego rodzaju podpórki. Maski (najczęściej z termoplastycznego tworzywa) są formowane indywidualnie do kształtu twarzy i czaszki pacjenta, zwłaszcza przy napromienianiu głowy i szyi. Po podgrzaniu materiał staje się plastyczny, nakłada się go na twarz, dopasowuje, a po ostygnięciu tworzy sztywną „skorupę”, która potem jest wielokrotnie używana w trakcie całej serii frakcji. Dzięki temu przy każdym zabiegu pacjent znajduje się praktycznie w tej samej pozycji, co zmniejsza ryzyko przemieszczenia wiązki i poprawia powtarzalność ustawień. Podpórki to cała grupa akcesoriów: podkładki pod głowę, klinowe podpory pod kolana, podnóżki, materace próżniowe, uchwyty na ręce, a także specjalne stoły z oznaczeniami. One nie modelują tak dokładnie kształtu jak maska, ale stabilizują ciało, odciążają mięśnie i redukują niekontrolowane ruchy, np. wynikające z niewygodnej pozycji. W praktyce klinicznej, zgodnie z zasadami planowania radioterapii, pozycja pacjenta musi być nie tylko wygodna, ale przede wszystkim powtarzalna i możliwa do odtworzenia przy każdym frakcjonowaniu. Moim zdaniem to właśnie temat unieruchomienia jest często trochę niedoceniany, a ma ogromny wpływ na dokładność dostarczanej dawki, ochronę narządów krytycznych i bezpieczeństwo całego leczenia. Dobrze dobrana maska i system podpórek to podstawa nowoczesnej teleterapii, szczególnie w radioterapii konformalnej i IMRT/VMAT, gdzie milimetr robi dużą różnicę.

Pytanie 19

Który typ głowicy ultrasonograficznej przedstawiono na ilustracji?

Ilustracja do pytania
A. Konweksową.
B. Liniową.
C. Endokawitarną.
D. Sektorową.
Na ilustracji widać głowicę liniową – charakterystyczną po prostokątnym, równym czołie emitera, które tworzy długi, płaski pasek kryształów piezoelektrycznych. W przekroju wiązka ma kształt prostokąta, a obraz powstaje jako równoległe linie skanowania, bez zwężania się w „wachlarz” jak w głowicach sektorowych czy konweksowych. Taka konstrukcja daje szerokie okno akustyczne tuż pod powierzchnią skóry i bardzo dobrą rozdzielczość przestrzenną w badaniu struktur położonych płytko. W praktyce klinicznej głowice liniowe stosuje się głównie do badania tkanek powierzchownych: tarczycy, sutka, moszny, naczyń (USG dopplerowskie tętnic szyjnych, żył kończyn dolnych), narządu ruchu (ścięgna, więzadła, mięśnie) oraz w ultrasonografii przyłóżkowej do oceny ściany brzucha, punkcji naczyniowych czy blokad nerwów. Z mojego doświadczenia w pracowniach diagnostycznych przyjmuje się jako dobrą praktykę, że do struktur powierzchownych wybiera się właśnie głowicę liniową o wysokiej częstotliwości, najczęściej 7,5–15 MHz, bo wyższa częstotliwość oznacza lepszą rozdzielczość kosztem głębokości penetracji, co w tym przypadku jest korzystne. W wytycznych i kursach z ultrasonografii podkreśla się, żeby przy USG naczyniowym zawsze zaczynać od głowicy liniowej, a dopiero przy bardzo głębokim położeniu naczyń rozważać inne typy. Warto też pamiętać, że płaski kształt czoła ułatwia dokładne dociśnięcie do skóry i stabilne prowadzenie głowicy wzdłuż naczyń czy ścięgien, co przekłada się na powtarzalność badania i lepszą jakość dokumentacji obrazowej.

Pytanie 20

Jak oznacza się w radioterapii obszar tkanek zawierający GTV i mikrorozsiewy w fazie niewykrywalnej klinicznie?

A. PTV
B. CTV
C. TV
D. IV
Prawidłowo wskazany CTV (Clinical Target Volume) to w radioterapii absolutna podstawa poprawnego planowania leczenia. CTV oznacza objętość tkanek, która obejmuje GTV (Gross Tumor Volume – czyli makroskopowo widoczną masę guza w badaniach obrazowych lub klinicznie) oraz obszar mikrorozsiewu nowotworu, który jest jeszcze niewidoczny w TK, MR czy PET, ale wiemy z badań i wytycznych, że statystycznie tam bywa. Czyli mówiąc po ludzku: CTV = guz + to, co już najpewniej „rozpełzło się” mikroskopowo wokół niego. W praktyce lekarz radioterapeuta, często razem z fizykiem medycznym i radiologiem, najpierw wyznacza GTV na obrazie TK/MR, a potem na podstawie zaleceń (np. wytyczne ESTRO, ICRU, lokalne protokoły) dodaje margines na mikrorozsiewy i otrzymuje właśnie CTV. Ten margines nie jest przypadkowy – zależy od typu nowotworu, stopnia złośliwości, lokalizacji anatomicznej, a także sposobu szerzenia się choroby. Na przykład w raku głowy i szyi CTV obejmuje nie tylko sam guz, ale też całe grupy węzłów chłonnych, które z dużym prawdopodobieństwem mogą być zajęte mikroskopowo. W raku prostaty CTV może obejmować samą prostatę i pęcherzyki nasienne w zależności od zaawansowania. Warto też pamiętać, że dopiero z CTV tworzy się PTV (Planning Target Volume), czyli objętość planistyczną uwzględniającą dodatkowy margines na błędy ustawienia pacjenta, ruchy narządów, niepewności układu napromieniającego. Moim zdaniem dobrze jest to sobie ułożyć w głowie jako logiczny ciąg: GTV – to, co widzę; CTV – to, co widzę + to, czego nie widzę, ale rozsądnie zakładam; PTV – CTV + margines bezpieczeństwa technicznego. Dzięki temu łatwiej potem rozumieć, skąd się biorą różnice między konturami na planie leczenia i dlaczego nie można tak po prostu „przyciąć” objętości, żeby oszczędzić zdrowe tkanki, bo ryzykowalibyśmy niedoleczenie mikrorozsiewu właśnie w CTV.

Pytanie 21

Na zamieszczonej rycinie przedstawiono

Ilustracja do pytania
A. zjawisko fotoelektryczne.
B. efekt Comptona.
C. zjawisko anihilacji.
D. zjawisko tworzenia par.
Na rycinie widać klasyczny schemat zjawiska fotoelektrycznego: kwant promieniowania γ (lub X) pada na elektron związany w atomie, przekazuje mu energię i wybija go poza atom jako elektron swobodny. Opis matematyczny Ee = hν − Ew pokazuje, że energia kinetyczna elektronu wybitego (Ee) jest równa energii fotonu (hν) pomniejszonej o energię wiązania elektronu w atomie (Ew). To jest dokładnie definicja efektu fotoelektrycznego, tak jak uczą w fizyce medycznej i w podstawach radiologii. W diagnostyce obrazowej to zjawisko ma ogromne znaczenie przy niższych energiach promieniowania, typowych np. dla mammografii czy zdjęć kostnych – tam dominująca absorpcja w tkankach to właśnie fotoefekt. Moim zdaniem warto zapamiętać, że fotoefekt jest mocno zależny od liczby atomowej Z materiału (z grubsza rośnie jak Z³) – dlatego kości, zawierające dużo wapnia, pochłaniają więcej promieniowania niż tkanki miękkie i wychodzą na zdjęciu jaśniej. W praktyce technika radiologiczna wykorzystuje to przy doborze napięcia kV: niższe kV wzmacnia udział zjawiska fotoelektrycznego, poprawia kontrast tkankowy, ale zwiększa dawkę pochłoniętą. Standardy ochrony radiologicznej i dobre praktyki (np. zasada ALARA) wymagają takiego doboru parametrów, żeby uzyskać wystarczającą jakość obrazu przy jak najmniejszej dawce, czyli rozsądnego kompromisu między udziałem fotoefektu a rozpraszaniem Comptona. Warto też pamiętać, że po wybiciu elektronu w atomie powstaje luka w powłoce, co prowadzi do emisji promieniowania charakterystycznego lub elektronów Augera – to z kolei leży u podstaw działania kontrastów zawierających jod czy gadolin w niektórych technikach obrazowania.

Pytanie 22

Którą strukturę anatomiczną uwidoczniono na zamieszczonym obrazie USG?

Ilustracja do pytania
A. Pęcherz moczowy z kamieniami.
B. Pęcherzyk żółciowy z kamieniami.
C. Nerkę lewą ze złogami.
D. Ciężarną macicę z czterema płodami.
Na obrazie USG widoczny jest typowy pęcherzyk żółciowy z kamieniami (cholecystolithiasis). Charakterystyczny jest wydłużony, gruszkowaty kształt bezechowej (czarnej) struktury, otoczonej cienką, wyraźną ścianą. W świetle pęcherzyka widoczne są silnie hiperechogeniczne ogniska z wyraźnym cieniem akustycznym za nimi – to klasyczny obraz złogów żółciowych. Zgodnie z zasadami opisu USG jamy brzusznej, zawsze zwracamy uwagę na: kształt pęcherzyka, grubość ściany, zawartość światła oraz obecność cienia akustycznego. Kamienie są jasne, dobrze odgraniczone i „rzucają cień” w głąb obrazu, co jest jednym z najważniejszych kryteriów różnicujących je od np. polipów. W praktyce klinicznej taki obraz, szczególnie przy dolegliwościach bólowych w prawym podżebrzu, jest podstawą do rozpoznania kamicy pęcherzyka żółciowego i dalszego postępowania – zwykle obserwacja albo kwalifikacja do cholecystektomii laparoskopowej, zgodnie z aktualnymi zaleceniami. Moim zdaniem warto wyrobić sobie nawyk, żeby przy każdym badaniu USG jamy brzusznej bardzo dokładnie oceniać pęcherzyk w pozycji leżącej i w razie wątpliwości także w pozycji stojącej lub na lewym boku – kamienie często zmieniają położenie pod wpływem grawitacji, co dodatkowo potwierdza rozpoznanie. Dobra praktyka to też dokumentowanie przynajmniej dwóch przekrojów (podłużny i poprzeczny) oraz opisywanie wielkości największego złogu, bo ma to znaczenie przy planowaniu zabiegu i dalszej obserwacji pacjenta.

Pytanie 23

W badaniu EKG elektrodę przedsercową V4 należy umocować

A. w 5-tej przestrzeni międzyżebrowej w linii pachowo-przedniej lewej.
B. w 4-tej przestrzeni międzyżebrowej przy lewym brzegu mostka.
C. w 4-tej przestrzeni międzyżebrowej przy prawym brzegu mostka.
D. w 5-tej przestrzeni międzyżebrowej w linii środkowo-obojczykowej lewej.
Prawidłowe umieszczenie elektrody V4 to 5-ta przestrzeń międzyżebrowa w linii środkowo-obojczykowej lewej. Tak właśnie opisują to standardy 12‑odprowadzeniowego EKG (np. wytyczne ESC/ACC i typowe procedury szpitalne). V4 jest odprowadzeniem przedsercowym, które ma „patrzeć” mniej więcej na przednią ścianę lewej komory, w okolicy koniuszka serca. Żeby to osiągnąć, trzeba połączyć dwie rzeczy: właściwą przestrzeń międzyżebrową oraz odpowiednią linię pionową na klatce piersiowej. 5-ta przestrzeń międzyżebrowa znajduje się zwykle nieco poniżej brodawki sutkowej (ale nie wolno kierować się tylko brodawką, bo u różnych osób jest w innym miejscu), a linia środkowo-obojczykowa to pionowa linia poprowadzona przez środek obojczyka. W praktyce najpierw lokalizuje się mostek, liczy przestrzenie międzyżebrowe od góry (od drugiej, przy kącie mostka) i schodzi do piątej. Dopiero potem odmierza się linię środkowo-obojczykową i tam przykleja V4. Moim zdaniem warto wyrobić sobie nawyk: najpierw V1 i V2 przy mostku, potem V4 w tym dokładnym punkcie, a dopiero później V3 pomiędzy V2 i V4, oraz V5 i V6 bardziej bocznie. Dobre pozycjonowanie V4 ma duże znaczenie w rozpoznawaniu zawału przedniej i bocznej ściany serca, przerostu lewej komory czy zmian w repolaryzacji. Błędne położenie potrafi całkowicie zniekształcić zapis – na przykład zaniżyć amplitudę załamków R albo stworzyć fałszywy obraz niedokrwienia. W praktyce klinicznej technik EKG jest oceniany m.in. po tym, jak dokładnie potrafi znaleźć te punkty anatomiczne, więc ta wiedza jest mocno praktyczna, nie tylko „testowa”.

Pytanie 24

W zapisie EKG prawidłowego rytmu zatokowego wszystkie załamki P są

A. ujemne w odprowadzeniach I, II i dodatnie w odprowadzeniu aVR.
B. ujemne w odprowadzeniach I, aVR i dodatnie w odprowadzeniach II, III.
C. dodatnie w odprowadzeniach I, aVR i ujemne w odprowadzeniach II, III.
D. dodatnie w odprowadzeniach I, II i ujemne w odprowadzeniu aVR.
Prawidłowo – w rytmie zatokowym załamek P musi być dodatni w odprowadzeniach I oraz II i jednocześnie ujemny w odprowadzeniu aVR. Wynika to bezpośrednio z kierunku przewodzenia pobudzenia z węzła zatokowo-przedsionkowego: impuls biegnie z prawego górnego odcinka przedsionków w dół i w lewo, czyli zasadniczo w stronę elektrody odprowadzenia II oraz I, a od elektrody aVR. Dlatego w standardowych kryteriach EKG przyjmuje się, że taki układ biegunowości załamka P jest jednym z kluczowych wyznaczników prawidłowego rytmu zatokowego. Jeżeli w praktyce klinicznej widzisz załamki P dodatnie w I i II oraz wyraźnie ujemne w aVR, a do tego każdy załamek P poprzedza zespół QRS w stałym odstępie PQ, to z dużym spokojem możesz wpisać w opisie „rytmu zatokowy”. To jest absolutny fundament interpretacji EKG, stosowany w każdej pracowni diagnostyki, od izby przyjęć po oddziały intensywnej terapii. Moim zdaniem warto wyrobić sobie nawyk: zanim zaczniesz doszukiwać się zawałów, bloków czy przerostów, zawsze najpierw oceń załamek P i jego biegunowość w I, II i aVR. W codziennej pracy technika EKG czy ratownika medycznego to naprawdę oszczędza czas i ogranicza pomyłki. Dodatkowo, odchylenie od tego schematu (np. ujemny P w II) od razu sugeruje rytm pozazatokowy – np. ektopowy przedsionkowy, rytm z węzła AV lub nawet rytm z komór, co ma bezpośrednie przełożenie na dalszą diagnostykę i decyzje lekarskie. W standardach interpretacji EKG podkreśla się, że prawidłowy rytm zatokowy to nie tylko częstość 60–100/min, ale właśnie obecność typowych załamków P w odpowiednich odprowadzeniach, co tutaj bardzo ładnie zostało uchwycone.

Pytanie 25

Zamieszczony elektrokardiogram przedstawia

Ilustracja do pytania
A. zawał przedniej ściany serca.
B. migotanie komór.
C. zawał dolnej ściany serca.
D. blok prawej odnogi pęczka Hisa.
To zapis bardzo typowy dla migotania komór. Na przedstawionym EKG nie widać żadnych wyraźnych, powtarzalnych zespołów QRS, brak też załamków P i załamków T. Zamiast tego jest nieregularna, chaotyczna, falista linia o zmiennej amplitudzie i częstotliwości. W praktyce mówi się, że zapis wygląda jak „robaczkowanie” albo „drżenie” linii izoelektrycznej. To właśnie klasyczny obraz VF (ventricular fibrillation). W tej arytmii poszczególne włókna mięśnia komór kurczą się nieskoordynowanie, serce mechanicznie nie pompuje krwi, a krążenie w zasadzie ustaje. Z punktu widzenia medycyny ratunkowej to rytm do defibrylacji – zgodnie z wytycznymi ERC/AHA po rozpoznaniu VF natychmiast wykonuje się wyładowanie defibrylatora (u dorosłych najczęściej 150–200 J w defibrylacji dwufazowej), równolegle prowadząc wysokiej jakości uciśnięcia klatki piersiowej. Moim zdaniem warto zapamiętać, że w migotaniu komór nie próbujemy liczyć tętna ani częstości – tu liczy się szybkie rozpoznanie „chaosu” na EKG i natychmiastowa reakcja. W warunkach szpitalnych VF często widzi się na monitorze jako nagłą utratę zespołów QRS i przejście w właśnie taki nieregularny zapis bez linii izoelektrycznej między „falami”. W diagnostyce elektromedycznej dobrą praktyką jest zawsze sprawdzenie, czy nie jest to artefakt (np. luźne elektrody), ale przy braku tętna i nagłej utracie przytomności zakładamy, że to prawdziwe VF i działamy od razu, bez zwłoki na dodatkową analizę.

Pytanie 26

Na skanie rezonansu magnetycznego serca oznaczono

Ilustracja do pytania
A. przedsionek prawy.
B. przedsionek lewy.
C. komorę lewą.
D. komorę prawą.
Na obrazie rezonansu magnetycznego serca strzałka wskazuje prawą komorę. W projekcji poprzecznej (osiowej) warto pamiętać o zasadzie, że na obrazach MR i TK prawa strona pacjenta znajduje się po lewej stronie ekranu. To jest pierwszy krok, żeby się nie pogubić. Prawa komora leży bardziej do przodu (czyli bliżej mostka) i ma zwykle cieńszą ścianę niż lewa komora, a jej kształt jest bardziej nieregularny, trochę jak półksiężyc otaczający część lewej komory. Lewa komora z kolei jest położona bardziej ku tyłowi i ma grubszy, masywny mięsień, przez co wygląda na bardziej okrągłą i „mięsistą”. Na standardowych sekwencjach cine MR w projekcjach osiowych i krótkiej osi to właśnie te cechy morfologiczne są podstawą identyfikacji jam serca. W praktyce klinicznej poprawne rozpoznanie prawej komory ma duże znaczenie przy ocenie kardiomiopatii prawej komory, nadciśnienia płucnego, wad wrodzonych czy dysfunkcji prawej komory po zatorowości płucnej. Radiolog i technik powinni umieć szybko odróżnić prawą komorę od przedsionków, bo pomylenie jam może prowadzić do błędnej oceny frakcji wyrzutowej, objętości końcoworozkurczowej i końcowoskurczowej. Moim zdaniem warto zawsze „zakotwiczyć się” na kilku punktach orientacyjnych: mostek z przodu, kręgosłup z tyłu, aorta zwykle bardziej centralnie i nieco po lewej, lewa komora najgłębiej ku tyłowi, a prawa komora – z przodu i bardziej przy mostku. Taka rutynowa check‑lista bardzo ułatwia interpretację badań MR serca zgodnie z dobrymi praktykami opisanymi w wytycznych ESC i standardach obrazowania kardiologicznego SCMR.

Pytanie 27

W medycynie nuklearnej wykorzystuje się:

A. emisyjną tomografię, EEG, scyntygraf.
B. scyntygraf, gammakamerę, emisyjną tomografię i PET.
C. ultrasonograf, scyntygraf i EMG.
D. gammakamerę, PET, USG i scyntygraf.
Prawidłowo wskazałeś zestaw aparatury typowej dla medycyny nuklearnej: scyntygraf, gammakamera, emisyjna tomografia i PET. Wszystkie te urządzenia mają jedną wspólną cechę – rejestrują promieniowanie emitowane z wnętrza ciała pacjenta po podaniu radiofarmaceutyku. To właśnie odróżnia medycynę nuklearną od klasycznej radiologii, gdzie źródło promieniowania jest na zewnątrz (np. lampa rentgenowska). Scyntygraf i gammakamera to w praktyce nazwy bliskoznaczne – gammakamera jest współczesnym urządzeniem rejestrującym promieniowanie gamma i tworzącym obrazy scyntygraficzne. Wykorzystuje się ją np. w scyntygrafii kości, tarczycy, perfuzji mięśnia sercowego. Emisyjna tomografia (SPECT – tomografia emisyjna pojedynczych fotonów) pozwala uzyskać obrazy przekrojowe, podobnie jak tomografia komputerowa, ale pokazuje głównie funkcję narządu, a nie tylko jego budowę. Dzięki temu można ocenić perfuzję mózgu, żywotność mięśnia sercowego czy czynność nerek. PET, czyli pozytonowa tomografia emisyjna, wykorzystuje radioizotopy emitujące pozytony i zjawisko anihilacji. Standardowo stosuje się np. 18F-FDG do oceny metabolizmu glukozy w onkologii, kardiologii czy neurologii. W nowoczesnych pracowniach łączy się PET z CT lub MR (PET/CT, PET/MR), co pozwala na bardzo dokładne połączenie informacji funkcjonalnej z anatomiczną. Z mojego doświadczenia to właśnie zrozumienie, że medycyna nuklearna bada przede wszystkim funkcję i metabolizm, a nie samą anatomię, bardzo pomaga w zapamiętaniu, jakie urządzenia do niej należą. W dobrych praktykach ważne jest też prawidłowe przygotowanie radiofarmaceutyku, kontrola jakości aparatury oraz ścisłe przestrzeganie zasad ochrony radiologicznej, bo pracujemy z promieniowaniem jonizującym podanym do organizmu pacjenta.

Pytanie 28

Parametr spirometryczny czynnościowa pojemność zalegająca oznaczany jest skrótem

A. TV
B. FRC
C. TLC
D. RV
Prawidłowy skrót dla czynnościowej pojemności zalegającej to FRC, czyli z angielskiego functional residual capacity. Ten parametr opisuje objętość powietrza, która pozostaje w płucach po spokojnym, biernym wydechu – ani wymuszonym, ani maksymalnym, po prostu po zwykłym oddechu. Z technicznego punktu widzenia FRC = RV + ERV, czyli suma objętości zalegającej (residual volume) oraz zapasowej objętości wydechowej (expiratory reserve volume). W spirometrii klasycznej FRC nie jest mierzona bezpośrednio, bo spirometr nie „widzi” powietrza, którego nie można wydmuchać. Do oceny FRC stosuje się więc metody takie jak pletyzmografia całego ciała, metoda rozcieńczenia helu czy metoda wypłukiwania azotu. W praktyce FRC ma duże znaczenie kliniczne – w chorobach obturacyjnych (np. POChP, ciężka astma) FRC zwykle wzrasta z powodu pułapkowania powietrza, a w chorobach restrykcyjnych (np. zwłóknienie płuc, kifoza) spada, bo cała objętość płuc jest zmniejszona. W anestezjologii FRC jest ważna przy planowaniu wentylacji mechanicznej i w pozycjonowaniu pacjenta – np. u osób otyłych FRC mocno maleje w pozycji leżącej, co zwiększa ryzyko niedodmy. Moim zdaniem warto ten skrót naprawdę dobrze zapamiętać, bo FRC często pojawia się w opisach badań spirometrycznych, w interpretacji pletyzmografii i w standardach takich jak zalecenia ATS/ERS dotyczące badań czynnościowych układu oddechowego. Jeżeli rozumiesz, że FRC to „powietrze po zwykłym wydechu”, łatwiej jest później logicznie ogarnąć wszystkie pozostałe objętości i pojemności płucne.

Pytanie 29

Wysoką rozdzielczość przestrzenną obrazowania MR uzyskuje się przez

A. zwiększenie wielkości FoV i zwiększenie matrycy obrazującej.
B. zmniejszenie wielkości FoV i zmniejszenie matrycy obrazującej.
C. zwiększenie wielkości FoV i zmniejszenie matrycy obrazującej.
D. zmniejszenie wielkości FoV i zwiększenie matrycy obrazującej.
Prawidłowo – wysoka rozdzielczość przestrzenna w MR zależy głównie od wielkości piksela, a ten wynika z relacji: rozmiar piksela = FoV / matryca obrazująca (osobno w kierunku X i Y). Jeśli zmniejszamy FoV i jednocześnie zwiększamy matrycę, to dzielimy mniejszy obszar na większą liczbę elementów, więc każdy piksel reprezentuje mniejszy fragment ciała. To właśnie daje lepszą zdolność do rozróżniania drobnych struktur, czyli wyższą rozdzielczość przestrzenną. W praktyce technik MR, planując badanie, bardzo często świadomie zmniejsza FoV dla małych struktur, np. nadgarstka, kolana, przysadki mózgowej czy drobnych zmian w kręgosłupie, i ustawia możliwie dużą matrycę (np. 320×320, 512×512), oczywiście w granicach czasu badania i dostępnego SNR. Standardy pracy w pracowniach rezonansu, zalecane przez producentów skanerów i towarzystwa radiologiczne, mówią wprost: jeśli chcesz poprawić szczegółowość obrazu, manipuluj FoV i rozdzielczością matrycy, pamiętając o kompromisie z SNR i czasem akwizycji. Moim zdaniem to jedno z kluczowych ustawień, które odróżnia „byle jakie” badanie od naprawdę diagnostycznego. Warto też pamiętać, że przy bardzo małym FoV trzeba uważać na aliasing (zawijanie obrazu), dlatego często stosuje się techniki antyaliasingowe lub oversampling. Zwiększenie matrycy zwykle wydłuża czas sekwencji, więc w praktyce szuka się złotego środka: tak dobra rozdzielczość, żeby lekarz widział szczegóły, ale jednocześnie akceptowalny czas badania i poziom szumów. Dobrą praktyką jest też różnicowanie parametrów: inne FoV i matryca dla sekwencji przeglądowych, a inne – bardziej „wyżyłowane” – dla sekwencji celowanych na konkretną zmianę.

Pytanie 30

Na zamieszczonej ilustracji przedstawiono ułożenie pacjenta do wykonania zdjęcia rentgenowskiego

Ilustracja do pytania
A. śródstopia.
B. palców stopy.
C. stopy.
D. kości piętowej.
Prawidłowo rozpoznałeś, że na ilustracji pokazano ułożenie pacjenta do wykonania zdjęcia rentgenowskiego całej stopy. Stopa jest oparta podeszwą na kasecie, palce są swobodnie wyprostowane, a oś promienia głównego (strzałka) jest skierowana mniej więcej na środkową część podeszwy, w okolice łuku podłużnego. To jest typowe ułożenie do projekcji AP (dorso–plantarnej) stopy, stosowanej rutynowo w radiologii. W standardach opisujących technikę badania RTG stopy przyjmuje się, że promień centralny przechodzi przez środek stopy, tak aby na jednym obrazie ocenić paliczki, kości śródstopia, stawy śródstopno‑paliczkowe, kość skokową, piętową oraz część stawów stępu. Chodzi o kompleksową ocenę całej stopy, a nie tylko jednego jej fragmentu. W praktyce klinicznej taka projekcja jest wykorzystywana m.in. przy urazach (podejrzenie złamań śródstopia, paliczków, urazów stawu Lisfranca), przy deformacjach (płaskostopie, hallux valgus), w kontroli pooperacyjnej po zespoleniach kostnych czy przy ocenie zmian zwyrodnieniowych i reumatycznych. Moim zdaniem kluczowe jest tu rozumienie, że przy projekcji stopy pacjent leży lub siedzi, a stopa spoczywa podeszwą na kasecie, dzięki czemu uzyskujemy obraz zbliżony do warunków obciążenia fizjologicznego. W odróżnieniu od zdjęć celowanych na kość piętową lub palce, tutaj nie rotujemy istotnie stopy ani nie ustawiamy jej w skrajnych zgięciach. Dobra praktyka techniczna wymaga też prawidłowego kolimowania – obejmujemy całą stopę, ale ograniczamy pole, aby zminimalizować dawkę promieniowania. Dodatkowo należy pamiętać o oznaczeniu strony (L/P) oraz stabilnym ułożeniu, żeby uniknąć poruszenia i rozmycia obrazu. Takie nawyki bardzo ułatwiają późniejszą interpretację zdjęcia przez lekarza radiologa lub ortopedę.

Pytanie 31

Na obrazie RM uwidoczniono odcinek kręgosłupa

Ilustracja do pytania
A. L w przekroju strzałkowym.
B. Th w przekroju czołowym.
C. Th w przekroju strzałkowym.
D. L w przekroju czołowym.
Na przedstawionym obrazie RM widoczny jest odcinek lędźwiowy kręgosłupa (L) w przekroju strzałkowym, dlatego odpowiedź „L w przekroju strzałkowym” jest prawidłowa. Świadczy o tym kilka charakterystycznych cech. Po pierwsze, kształt trzonów kręgowych i wysokość przestrzeni międzykręgowych odpowiada typowemu obrazowi kręgosłupa lędźwiowego: masywne trzony, brak żeber, szeroki kanał kręgowy z widocznym ogonem końskim. W odcinku piersiowym zawsze widać przyczepy żeber i bardziej klinowaty kształt trzonów, tutaj tego nie ma, więc logika podpowiada, że to L. Po drugie, przekrój strzałkowy rozpoznajemy po tym, że oglądamy kręgosłup „z boku”: widać ułożone jeden nad drugim trzony, krążki międzykręgowe jako „placki” między nimi, ciągły przebieg kanału kręgowego i worka oponowego. W przekroju czołowym (koronalnym) obraz wygląda jak „od przodu lub od tyłu” – kręgi układają się bardziej jak kolumny po obu stronach, a kanał kręgowy jest między nimi centralnie. W praktyce technik obrazowania musi szybko odróżniać płaszczyzny skanowania, bo od tego zależy poprawna interpretacja np. dyskopatii, stenoz kanału czy zmian pourazowych. W badaniach MRI kręgosłupa standardem jest zestaw sekwencji T1 i T2 w płaszczyźnie strzałkowej oraz dodatkowe przekroje poprzeczne na wybranych poziomach – dokładnie tak, jak sugeruje ten obraz. Moim zdaniem warto przyzwyczaić się do „kluczy” anatomicznych: brak żeber = L, widoczne żebra = Th, szeroki worek oponowy z ogonem końskim = odcinek lędźwiowy/stożek rdzeniowy. To bardzo ułatwia codzienną pracę przy konsoli i późniejszą analizę obrazów w systemie PACS.

Pytanie 32

Zastosowana w badaniu radiologicznym kratka przeciwrozproszeniowa powoduje

A. zmniejszenie ilości promieniowania rozproszonego przez co zwiększa się kontrast obrazu.
B. zmniejszenie ilości promieniowania rozproszonego przez co zmniejsza się kontrast obrazu.
C. zwiększenie ilości promieniowania rozproszonego przez co zwiększa się kontrast obrazu.
D. zwiększenie ilości promieniowania rozproszonego przez co zmniejsza się kontrast obrazu.
Właściwie wychwyciłeś sedno działania kratki przeciwrozproszeniowej. Jej głównym zadaniem jest właśnie zmniejszenie ilości promieniowania rozproszonego docierającego do detektora lub kliszy, dzięki czemu poprawia się kontrast obrazu. Fizycznie wygląda to tak, że kratka składa się z równoległych lub zbieżnych listew ołowianych przedzielonych materiałem przepuszczającym promieniowanie. Promieniowanie pierwotne, biegnące mniej więcej prostopadle do detektora, przechodzi przez szczeliny, a promieniowanie rozproszone, które ma kierunek skośny (po zjawisku Comptona w pacjencie), jest w dużej części pochłaniane przez listwy ołowiane. W efekcie na obrazie jest mniej „mgły” promiennej, a różnice gęstości tkanek są wyraźniejsze. To właśnie nazywamy wzrostem kontrastu. W praktyce klinicznej kratkę stosuje się szczególnie przy badaniach struktur grubych lub gęstych: klatka piersiowa u dorosłych, zdjęcia kręgosłupa, miednicy, czaszki. Tam rozproszenia jest dużo i bez kratki obraz byłby mocno spłaszczony tonalnie. Trzeba jednak pamiętać o jednym ważnym aspekcie – kratka usuwa nie tylko promieniowanie rozproszone, ale też część promieniowania pierwotnego. To oznacza, że aby uzyskać odpowiednią ekspozycję, trzeba zwiększyć dawkę (mAs), co z kolei podnosi narażenie pacjenta. Z mojego doświadczenia to jest klasyczny kompromis w radiologii: lepsza jakość obrazu kontra dawka. Standardy dobrej praktyki (np. wytyczne ICRP, europejskie zalecenia dla radiografii) mówią jasno: kratkę stosować wtedy, gdy rzeczywiście jest potrzebna, a u dzieci i w badaniach cienkich części ciała raczej z niej rezygnować. Warto też dobrać odpowiedni współczynnik kratki (np. 8:1, 10:1) do typu badania i odległości ognisko–detektor, bo to ma wpływ zarówno na kontrast, jak i na konieczną ekspozycję.

Pytanie 33

Kryterium rozpoznawczym dla fali δ (delta) w badaniu EKG jest

A. zażębienie na ramieniu zstępującym załamka R.
B. zażębienie na ramieniu wstępującym załamka R.
C. uniesienie odcinka ST.
D. obniżenie odcinka ST.
Fala δ (delta) w EKG jest jednym z tych elementów, które łatwo pomylić z innymi zmianami w obrębie zespołu QRS albo odcinka ST, szczególnie jeśli ktoś dopiero zaczyna przygodę z interpretacją zapisów. Kluczowe jest zrozumienie, że fala delta dotyczy samego początku pobudzenia komór, a nie fazy repolaryzacji czy końcowej części załamka R. Dlatego łączenie jej z uniesieniami lub obniżeniami odcinka ST jest merytorycznie błędne. Odcinek ST odzwierciedla fazę plateau potencjału czynnościowego komórek mięśnia sercowego, czyli głównie procesy związane z repolaryzacją. Zmiany w ST kojarzymy przede wszystkim z niedokrwieniem, ostrym zawałem, czasem z przerostami czy zaburzeniami elektrolitowymi. Fala delta natomiast powstaje przez przedwczesne, wolniejsze pobudzenie części komory przez dodatkową drogę przewodzenia. To jest zupełnie inny etap cyklu sercowego, więc technicznie nie może być rozpoznawana na podstawie samego ST. Podobny problem pojawia się przy skojarzeniu fali delta z zażębieniem na ramieniu zstępującym załamka R. Ta część zespołu QRS odzwierciedla już późniejsze etapy depolaryzacji komór. Różne „ząbki” w tej części mogą wynikać np. z bloku prawej lub lewej odnogi pęczka Hisa, z zaburzeń przewodzenia śródkomorowego, czasem z przerostów komór. To są inne mechanizmy niż preekscytacja. Typowym błędem myślowym jest patrzenie tylko na kształt „jakiegokolwiek załamania” w obrębie QRS, bez zwracania uwagi, w którym dokładnie miejscu ono się pojawia. Dobra praktyka jest taka: kiedy szukasz fali delta, skupiasz się na samym początku zespołu QRS i pytasz siebie, czy początek załamka R jest łagodnie zaokrąglony, jakby „rozmyty”, czy raczej stromy i ostry. Jeśli jest to jakby małe, powolne narastanie na ramieniu wstępującym R, wtedy myślisz o fali delta. Jeżeli widzisz ząbki później albo zmiany dopiero w ST, to już nie jest delta, tylko zupełnie inne zjawiska, które trzeba interpretować w innym kontekście klinicznym. Moim zdaniem najważniejsze jest nauczyć się porządnie rozdzielać w głowie: początek QRS = przewodzenie i ewentualna preekscytacja, odcinek ST i załamek T = niedokrwienie, elektrolity, leki, przerosty. Taka struktura myślenia bardzo ogranicza liczbę pomyłek przy analizie EKG.

Pytanie 34

Którym skrótem oznacza się tomografię komputerową wysokiej rozdzielczości?

A. PTCA
B. EPCW
C. SPECT
D. HRCT
Prawidłowy skrót to HRCT, czyli High Resolution Computed Tomography – po polsku tomografia komputerowa wysokiej rozdzielczości. Jest to specjalny protokół badania TK, stosowany głównie do bardzo dokładnej oceny miąższu płuc. Różni się od standardowej tomografii przede wszystkim ustawieniami technicznymi: używa się bardzo cienkich warstw (rzędu 0,5–1,5 mm), wysokiej rozdzielczości przestrzennej i odpowiednich filtrów rekonstrukcyjnych (tzw. filtry wysokiej rozdzielczości, „sharp kernel”). Dzięki temu można zobaczyć drobne struktury, jak oskrzeliki końcowe, przegrody międzypęcherzykowe czy wczesne zmiany śródmiąższowe, które na zwykłym TK mogłyby się „zgubić”. W praktyce klinicznej HRCT jest złotym standardem przy diagnostyce chorób śródmiąższowych płuc, rozedmy, zmian w przebiegu kolagenoz, sarkoidozy, a także przy ocenie powikłań po radioterapii klatki piersiowej. Bardzo często wykonuje się je w określonych fazach oddechu (wdech, czasem wydech) i z ograniczonym zakresem naświetlania, żeby zmniejszyć dawkę promieniowania, bo z natury cienkie warstwy zwiększają ekspozycję. Moim zdaniem warto zapamiętać, że HRCT to nie osobne urządzenie, tylko sposób wykonania badania na standardowym tomografie, zgodnie z zaleceniami towarzystw radiologicznych (np. standardy diagnostyki ILD). W opisach badań zawsze powinno się wyraźnie zaznaczać, że zastosowano protokół HRCT, bo ma to duże znaczenie dla dalszej interpretacji i porównywania badań w czasie.

Pytanie 35

Na obrazie rezonansu magnetycznego głowy strzałką wskazano zatokę

Ilustracja do pytania
A. klinową.
B. szczękową.
C. strzałkową.
D. czołową.
Prawidłowo rozpoznałeś zatokę czołową. Na strzałkowym (sagittalnym) obrazie MR głowy zatoka czołowa leży najbardziej do przodu, nad nasadą nosa, w obrębie kości czołowej. W badaniu T1-zależnym, takim jak na tym obrazku, jej światło jest zwykle ciemne (hipointensywne), bo wypełnia je powietrze, a ściany zatoki mają sygnał zbliżony do kości i tkanek miękkich. Charakterystyczne jest to, że zatoka czołowa „siedzi” nad oczodołami i ma kształt mniej więcej trójkątny lub nieregularny, z przegrodą pośrodku. Moim zdaniem znajomość topografii zatok przynosowych na MR jest bardzo praktyczna, bo w codziennej pracy technika czy lekarza opisującego badania łatwo wychwycić np. zapalenie zatok, torbiel śluzową, poziom płynu albo masę guzowatą. W typowym opisie zgodnie z dobrymi praktykami (np. wytyczne neuroradiologiczne ESNR) zawsze warto krótko odnieść się do zatok przynosowych, nawet jeśli badanie było zlecane z innego powodu, bo zmiany zapalne są częste i nierzadko przypadkowo wykrywane. Na MR zatoka czołowa będzie leżeć powyżej jamy nosowej i zatok szczękowych, przed przednim dołem czaszki. W projekcjach czołowych i osiowych dobrze widać, że jest ona parzysta, ale bywa asymetryczna – to jest normalny wariant anatomiczny. W praktyce klinicznej lokalizacja tej zatoki ma znaczenie np. przy planowaniu zabiegów endoskopowych laryngologicznych, dostępu chirurgicznego do przedniego dołu czaszki czy ocenie pourazowych złamań kości czołowej. Na MR, w porównaniu z TK, lepiej oceniamy tkanki miękkie wokół zatoki i ewentualne szerzenie się procesu zapalnego lub nowotworowego wewnątrzczaszkowo. Dlatego taka, wydawałoby się prosta identyfikacja na obrazie, jest fundamentem dalszej, bardziej zaawansowanej diagnostyki obrazowej.

Pytanie 36

W pozytonowej emisyjnej tomografii komputerowej PET radioznacznik podawany jest pacjentowi najczęściej

A. doodbytniczo.
B. dożylnie.
C. domięśniowo.
D. doustnie.
W pozytonowej tomografii emisyjnej (PET) standardem klinicznym jest dożylne podanie radioznacznika, najczęściej w postaci radiofarmaceutyku 18F-FDG rozpuszczonego w roztworze fizjologicznym. Podanie dożylne zapewnia bardzo szybkie i przewidywalne dotarcie substancji do krwiobiegu, a następnie jej dystrybucję do tkanek zgodnie z ich metabolizmem glukozy czy innymi cechami biologicznymi. Dzięki temu personel może precyzyjnie kontrolować czas od podania do rozpoczęcia skanowania, co jest kluczowe dla jakości obrazów i porównywalności badań. W praktyce wygląda to podobnie jak zwykły wenflon na oddziale – zakłada się wkłucie obwodowe, podaje dawkę radiofarmaceutyku, a potem pacjent odpoczywa w wyciszonym pomieszczeniu, żeby dystrybucja była stabilna i bez zbędnej aktywności mięśniowej. Moim zdaniem ważne jest zapamiętanie, że PET to badanie funkcjonalne, a nie klasyczne obrazowanie anatomiczne, dlatego farmakokinetyka radioznacznika ma ogromne znaczenie. Drogę dożylną wybiera się też dlatego, że pozwala na dokładne obliczenie podanej aktywności w MBq na kilogram masy ciała, co jest wymagane przez wytyczne EANM i IAEA. Umożliwia to później prawidłową rekonstrukcję obrazu, obliczanie SUV (standardized uptake value) oraz porównywanie wyników między różnymi badaniami i ośrodkami. Dodatkowo podanie dożylne zmniejsza zmienność związaną z wchłanianiem z przewodu pokarmowego czy z mięśnia, co byłoby dużym problemem w tak czułej metodzie, jak PET. W wielu procedurach hybrydowych, np. PET/CT onkologiczne, ten schemat jest absolutnie dominujący i traktowany jako złoty standard postępowania.

Pytanie 37

Który radioizotop stosuje się do badania scyntygraficznego kości?

A. ¹²³I
B. ⁹⁹ᵐTc
C. ⁶⁷Ga
D. ²⁰¹Tl
Prawidłowo wskazany radioizotop to 99mTc, czyli technet-99m. To jest podstawowy znacznik stosowany w scyntygrafii kości praktycznie na całym świecie. W badaniu nie podaje się „gołego” technetu, tylko radiofarmaceutyk – najczęściej 99mTc-MDP lub 99mTc-HDP, czyli związki fosfonianowe, które mają duże powinowactwo do tkanki kostnej, szczególnie tam, gdzie jest wzmożony metabolizm i przebudowa kości. Dzięki temu ogniska zwiększonej aktywności, np. przerzuty nowotworowe, świeże złamania, zapalenia kości, bardzo wyraźnie wychwytują znacznik i dobrze się odcinają na obrazie z gammakamery. 99mTc ma kilka cech, które z praktycznego punktu widzenia są idealne: emituje promieniowanie gamma o energii ok. 140 keV – bardzo dobrze rejestrowane przez gammakamerę, a jednocześnie stosunkowo bezpieczne dla pacjenta; ma krótki okres półtrwania (ok. 6 godzin), co ogranicza dawkę pochłoniętą; można go wygodnie pozyskiwać z generatora 99Mo/99mTc w pracowni medycyny nuklearnej. W standardach pracowni medycyny nuklearnej scyntygrafia kości z 99mTc jest jednym z badań „podstawowych” – wykonuje się ją m.in. u pacjentów onkologicznych w poszukiwaniu przerzutów do kości, przy podejrzeniu jałowej martwicy, w ocenie endoprotez, a także przy niewyjaśnionych bólach kostnych. Moim zdaniem warto zapamiętać prostą zasadę: „kości = 99mTc z fosfonianem”, bo to pojawia się często i w praktyce klinicznej, i na egzaminach. Inne izotopy z listy mają swoje zastosowania, ale nie są standardem do scyntygrafii kości.

Pytanie 38

W badaniu MR nadgarstka w ułożeniu na supermana pacjent leży na

A. plecach, głową do magnesu, a badana kończyna jest wyciągnięta wzdłuż tułowia.
B. brzuchu, głową do magnesu, a badana kończyna jest wyciągnięta wzdłuż tułowia.
C. brzuchu, głową do magnesu, a badana kończyna jest wyciągnięta za głową.
D. plecach, głową do magnesu, a badana kończyna jest wyciągnięta za głową.
W ułożeniu „na supermana” w badaniu MR nadgarstka pacjent leży na brzuchu (pozycja pronacyjna), głową do magnesu, a badana kończyna górna jest wyciągnięta nad głową, w osi długiej stołu. Ta konfiguracja dokładnie odpowiada odpowiedzi: „brzuchu, głową do magnesu, a badana kończyna jest wyciągnięta za głową”. Taki sposób pozycjonowania nie jest przypadkowy – pozwala wprowadzić dłoń i nadgarstek głęboko do cewki nadgarstkowej lub małej cewki odbiorczej, możliwie blisko izocentrum magnesu, gdzie pole magnetyczne jest najbardziej jednorodne. Dzięki temu uzyskujemy wysoką rozdzielczość przestrzenną i lepszy stosunek sygnału do szumu (SNR), co ma ogromne znaczenie przy obrazowaniu drobnych struktur stawowych, więzadeł czy chrząstki. Moim zdaniem to jedna z tych pozycji, które na początku wydają się trochę niewygodne i „udziwnione”, ale w praktyce technika MR nadgarstka bardzo na niej zyskuje. Pozycja na brzuchu dodatkowo stabilizuje tułów, zmniejsza ruchomość klatki piersiowej w stosunku do badanej ręki i ułatwia unieruchomienie kończyny za pomocą klinów, gąbek czy taśm. W standardach pracowni rezonansu, zwłaszcza przy badaniach kończyn górnych, często zaleca się właśnie układ „superman” szczególnie u pacjentów, którzy gorzej tolerują długie badania w tunelu, bo reszta ciała może znajdować się bliżej wlotu gantry, a do środka wchodzi głównie ręka. Jest to też dobra praktyka przy planowaniu sekwencji o dużej czułości na ruch (np. T2 z saturacją tłuszczu), gdzie każdy artefakt ruchowy nadgarstka czy palców może zepsuć całe badanie. Warto zapamiętać, że kluczowe elementy tego ułożenia to: pozycja na brzuchu, głowa do magnesu i kończyna wyciągnięta nad głową – dopiero komplet tych trzech warunków daje typowe ułożenie „na supermana” opisane w literaturze i procedurach działowych.

Pytanie 39

Na elektrokardiogramie uwidoczniono

Ilustracja do pytania
A. migotanie przedsionków.
B. migotanie komór.
C. blok prawej odnogi pęczka Hisa.
D. blok lewej odnogi pęczka Hisa.
Na przedstawionym zapisie EKG widać typowy obraz migotania przedsionków. Kluczowa cecha, na którą zawsze warto patrzeć, to brak wyraźnych, regularnych załamków P przed zespołami QRS. Zamiast nich linia izoelektryczna jest lekko „pofalowana” – widoczne są drobne, nieregularne fale przedsionkowe (tzw. fale f). Do tego dochodzi całkowicie niemiarowa, „chaotyczna” częstość zespołów QRS, czyli tzw. rytm całkowicie niemiarowy. W praktyce mówi się często: brak P, nieregularne R–R, obecne drobne fale – myślimy o migotaniu przedsionków. W codziennej pracy technika czy pielęgniarki EKG ważne jest, żeby przy każdym opisie rytmu świadomie przejść prosty schemat: najpierw ocena regularności odstępów R–R, potem szukanie załamków P, następnie ocena szerokości QRS. W migotaniu przedsionków QRS-y są zwykle wąskie (jeśli nie ma jednocześnie bloku odnóg), co też widać w tym przykładzie. Taki zapis oznacza, że skurcze przedsionków są całkowicie chaotyczne, a węzeł przedsionkowo‑komorowy przepuszcza impulsy w sposób nieregularny. Z praktycznego punktu widzenia rozpoznanie AF na EKG ma ogromne znaczenie kliniczne: pacjent z takim zapisem wymaga oceny ryzyka zatorowości (skala CHA₂DS₂‑VASc), często wdrożenia leczenia przeciwkrzepliwego i kontroli częstości rytmu komór. W standardach postępowania (m.in. wytyczne ESC) podkreśla się, że pojedynczy 12‑odprowadzeniowy zapis EKG z typowym obrazem, jak tutaj, wystarcza do potwierdzenia rozpoznania. Moim zdaniem warto sobie takie klasyczne przykłady „wdrukować w pamięć”, bo potem na dyżurze, gdy trzeba szybko ocenić monitor czy wydruk z aparatu, decyzja jest znacznie prostsza i pewniejsza. Ten rodzaj zadania dobrze uczy patrzenia na rytm całościowo, a nie tylko na pojedynczy odprowadzenie.

Pytanie 40

Zgodnie ze standardami do wykonania zdjęcia bocznego czaszki, należy zastosować kasetę o wymiarze

A. 18 × 24 cm i ułożyć poprzecznie.
B. 24 × 30 cm i ułożyć poprzecznie.
C. 24 × 30 cm i ułożyć podłużnie.
D. 18 × 24 cm i ułożyć podłużnie.
Prawidłowo – w projekcji bocznej czaszki standardowo stosuje się kasetę 24 × 30 cm ułożoną poprzecznie. Wynika to z bardzo prostego, ale ważnego powodu: trzeba objąć cały obrys czaszki w projekcji bocznej, razem z kością potyliczną, czołową i częściowo twarzoczaszką, a jednocześnie zachować odpowiedni margines bezpieczeństwa, żeby nic nie „uciekło” poza pole obrazowania. Format 24 × 30 cm daje po prostu wygodny zapas pola na długość czaszki i na ewentualne lekkie błędy w pozycjonowaniu pacjenta. Ułożenie poprzeczne (czyli dłuższy bok w osi przednio–tylnej stołu lub statywu) lepiej dopasowuje się do kształtu głowy w pozycji bocznej. Dzięki temu nie trzeba kombinować z odległością ognisko–film ani z przesadnym zbliżaniem głowy do krawędzi kasety. W praktyce technik ma wtedy większy komfort ustawienia pacjenta, łatwiej jest też zachować prostopadłość promienia centralnego do płaszczyzny strzałkowej i uniknąć obcięcia kości potylicznej. W większości pracowni radiologicznych przyjmuje się właśnie taki standard: czaszka boczna – kaseta 24 × 30 cm, układ poprzeczny, głowa możliwie blisko kasety, linia między otworem słuchowym a kątem oczodołu w poziomie. Moim zdaniem, jak się to raz zapamięta i powiąże z anatomią (długość czaszki w projekcji bocznej), to potem praktycznie nie ma pomyłek przy doborze formatu. Dodatkowo ten format dobrze współgra z typową odległością ognisko–detektor (około 100–115 cm) i pozwala uzyskać czytelne, diagnostyczne odwzorowanie struktur kostnych podstawy czaszki, siodła tureckiego, piramid kości skroniowych i zatok, bez zbędnego powiększenia geometrycznego.