Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektryk
  • Kwalifikacja: ELE.02 - Montaż, uruchamianie i konserwacja instalacji, maszyn i urządzeń elektrycznych
  • Data rozpoczęcia: 7 grudnia 2025 11:59
  • Data zakończenia: 7 grudnia 2025 12:17

Egzamin zdany!

Wynik: 28/40 punktów (70,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

W instalacji zasilanej napięciem 400/230 V obwód chroniony jest przez wyłącznik nadprądowy typu S-303 CLS6-C10/3. Jaką maksymalną moc można zastosować dla klimatyzatora trójfazowego w tej instalacji?

A. 9,6 kW
B. 6,9 kW
C. 3,9 kW
D. 5,9 kW
Wybór błędnych odpowiedzi może wynikać z niepełnego zrozumienia zasad dotyczących obliczania mocy w układach trójfazowych oraz niewłaściwego zastosowania wzorów. Wiele osób może błędnie obliczać moc, stosując tylko wartości napięcia jednofazowego lub nie uwzględniając współczynnika √3, który jest kluczowy w obliczeniach dla układów trójfazowych. Przykładowo, odpowiedzi 5,9 kW i 3,9 kW mogą pochodzić z pomyłek związanych z przyjęciem zbyt niskiego prądu lub napięcia. W obwodach trójfazowych moc jest zawsze większa niż w jednofazowych przy tych samych parametrach prądu. Ponadto, niektóre odpowiedzi mogą wynikać z nieprawidłowego zrozumienia charakterystyki wyłączników nadprądowych, które są zaprojektowane tak, aby chronić obwody przed przeciążeniem, a ich dobór powinien być uzależniony od planowanego obciążenia. W praktyce, dla instalacji klimatyzacyjnych, stosowanie wyłączników o odpowiednich parametrach staje się kluczowe, aby zapewnić nie tylko sprawność układu, ale także jego bezpieczeństwo. Błędne podejście do wyliczeń może prowadzić do katastrofalnych skutków, w tym do pożaru instalacji lub uszkodzenia urządzeń.

Pytanie 2

Jakie urządzenie, oprócz lutownicy, jest kluczowe podczas naprawy przeciętego przewodu LY poprzez połączenie lutowane?

A. Płaskoszczypce
B. Zagniatarka
C. Szczypce boczne
D. Nóż monterski
Nóż monterski jest kluczowym narzędziem przy naprawie przeciętego przewodu, gdyż umożliwia precyzyjne przygotowanie końcówek przewodów do lutowania. W praktyce, przed przystąpieniem do lutowania, należy odpowiednio odizolować końce przewodów, co wymaga użycia ostrego noża monterskiego. Dzięki odpowiedniej technice użycia noża, możemy uniknąć uszkodzenia żył przewodu oraz zapewnić ich czystą powierzchnię lutowniczą. Istotne jest, aby stosować nóż monterski zgodnie z zasadami BHP, co zapobiega urazom. Ponadto, zgodnie z normami branżowymi, każda naprawa powinna być przeprowadzana z użyciem narzędzi zapewniających dokładność oraz bezpieczeństwo. Dlatego nóż monterski powinien być zawsze w dobrym stanie, a jego ostrze powinno być regularnie wymieniane, aby zminimalizować ryzyko uszkodzenia przewodu. Stosowanie noża monterskiego w połączeniu z lutownicą jest zgodne z najlepszymi praktykami w branży elektrycznej oraz elektronicznej.

Pytanie 3

Jaki najniższy przekrój może mieć przewód ochronny w instalacji oświetleniowej, gdy jest umieszczony w tej samej osłonie co przewody robocze?

A. 4 mm2
B. 2,5 mm2
C. 10 mm2
D. 1,5 mm2
Wybór niewłaściwego przekroju przewodu ochronnego, jak 2,5 mm2, 4 mm2 czy 10 mm2, może wydawać się na pierwszy rzut oka uzasadniony, jednak nie odpowiada on wymaganiom przepisów i zasad bezpieczeństwa. Przekrój 2,5 mm2 jest często stosowany dla przewodów zasilających, ale nie jest przewidziany dla przewodów ochronnych w obwodach oświetleniowych. Kluczowym aspektem przy doborze przekroju przewodu ochronnego jest jego funkcja, a nie tylko zdolność do przewodzenia prądu. Głównym celem przewodu ochronnego jest zapewnienie bezpieczeństwa użytkowników poprzez odprowadzenie prądów zwarciowych; zbyt duży przekrój może opóźnić działanie zabezpieczeń, co stwarza ryzyko poważnych wypadków. Przewody o większym przekroju, jak 4 mm2 czy 10 mm2, są nieadekwatne w kontekście ochrony, ponieważ mogą prowadzić do niepoprawnej oceny stanu instalacji, co może skutkować brakiem odpowiednich reakcji w sytuacji awaryjnej. Powszechnym błędem jest również założenie, że im większy przekrój, tym lepsza ochrona. Ważne jest, aby pamiętać, że każdy element instalacji elektrycznej musi być dobrany zgodnie z jego przeznaczeniem oraz obowiązującymi normami, co w tym przypadku jasno określa minimalny przekrój przewodu ochronnego na 1,5 mm2.

Pytanie 4

Który osprzęt przedstawiono na ilustracji?

Ilustracja do pytania
A. Złączki skrętne.
B. Kapturki termokurczliwe.
C. Mufy przelotowe.
D. Dławiki izolacyjne.
Dławiki izolacyjne to kluczowe elementy stosowane w instalacjach elektrycznych, które zapewniają nie tylko ochronę przed wilgocią, ale również zabezpieczają izolację przewodów elektrycznych przed uszkodzeniem. Na ilustracji widoczne są dławiki, które charakteryzują się gwintem zewnętrznym oraz nakrętką, co umożliwia ich montaż w obudowach urządzeń. Dławiki te są zaprojektowane tak, aby wprowadzone przewody były zabezpieczone przed mechanicznymi uszkodzeniami oraz wpływem czynników zewnętrznych, takich jak woda czy zanieczyszczenia. Zgodnie z normami IEC 60529, dławiki powinny zapewniać odpowiednią klasę szczelności, co jest kluczowe w zastosowaniach przemysłowych, gdzie warunki środowiskowe mogą być ekstremalne. Na rynku dostępne są różne typy dławików, w tym dławiki plastikowe oraz metalowe, które różnią się zastosowaniem w zależności od rodzaju przewodów oraz środowiska pracy. Użycie dławików izolacyjnych w instalacjach elektrycznych jest zgodne z najlepszymi praktykami branżowymi, co podkreśla ich fundamentalne znaczenie dla bezpieczeństwa oraz niezawodności systemów elektrycznych.

Pytanie 5

Którą funkcję pomiarową powinien posiadać miernik, aby można było wyznaczyć impedancję pętli zwarcia w układzie przedstawionym na schemacie?

Ilustracja do pytania
A. Z L-L
B. Z L-N
C. Z L-PE
D. Z L-PE(RCD)
Pomiar impedancji pętli zwarcia w instalacjach elektrycznych jest kluczowy dla oceny ich bezpieczeństwa. Odpowiedź "Z L-PE(RCD)" jest prawidłowa, ponieważ umożliwia przeprowadzenie pomiaru w sytuacji, gdy w układzie obecny jest wyłącznik różnicowoprądowy (RCD). RCD mają na celu ochronę przed porażeniem prądem elektrycznym, jednak ich obecność może wpłynąć na wyniki pomiarów impedancji w standardowych konfiguracjach. Wykorzystanie pomiaru "Z L-PE(RCD)" zapewnia, że wyniki będą dokładne, co jest niezbędne dla prawidłowego doboru zabezpieczeń. Zgodnie z normą PN-EN 61557-1, każdy system elektryczny powinien być testowany pod kątem skuteczności działania zabezpieczeń, a pomiar impedancji pętli zwarcia jest integralnym elementem tych testów. Przykładem praktycznym może być wykonanie pomiarów w instalacjach domowych, gdzie RCD są powszechnie stosowane, co wymaga zastosowania odpowiednich technik pomiarowych. Tylko poprzez właściwe pomiary można zagwarantować bezpieczeństwo użytkowników oraz prawidłowe działanie systemu ochrony.

Pytanie 6

Zgodnie z PN-IEC 60364-4-41:2000, maksymalny dozwolony czas wyłączenia w systemach typu TN przy napięciu zasilania 230 V wynosi

A. 0,1 s
B. 0,8 s
C. 0,2 s
D. 0,4 s
Maksymalny dopuszczalny czas wyłączenia w układach sieci typu TN przy napięciu zasilania 230 V wynosi 0,4 s, zgodnie z normą PN-IEC 60364-4-41:2000. Czas ten jest kluczowy w kontekście bezpieczeństwa użytkowników i ochrony instalacji elektrycznych. W układzie TN zastosowanie przewodów ochronnych oraz odpowiedniego zabezpieczenia (np. wyłączników nadprądowych i różnicowoprądowych) ma na celu zminimalizowanie ryzyka porażenia prądem. Przykładowo, w przypadku uszkodzenia izolacji, szybkie wyłączenie zasilania ogranicza czas, w którym występuje niebezpieczne napięcie na obudowach urządzeń elektrycznych. Z tego względu, normy te zalecają właśnie ten czas wyłączenia, który pozwala pełni zabezpieczyć użytkownika przed skutkami awarii. W praktyce, odpowiednie dobranie elementów zabezpieczających oraz ich regularne testowanie jest kluczowe dla zapewnienia bezpieczeństwa w instalacjach elektrycznych, co czyni tę wiedzę niezbędną dla każdego specjalisty w tej dziedzinie.

Pytanie 7

W którym wierszu tabeli prawidłowo określono funkcje i liczby przewodów jednożyłowych, które należy umieścić w rurach instalacyjnych, aby wykonać poszczególne obwody w układzie sieciowym TN-S, zakończone punktami odbioru o przedstawionych symbolach graficznych?

Ilustracja do pytania
A. W wierszu 2.
B. W wierszu 4.
C. W wierszu 3.
D. W wierszu 1.
Wiersz 4 tabeli prawidłowo określa wymagania dotyczące liczby przewodów w obwodach sieciowych TN-S. Dla obwodu 3, który odpowiada za oświetlenie, potrzebne są trzy przewody: jeden przewód fazowy, jeden neutralny oraz jeden ochronny, co jest zgodne z normami dotyczących instalacji elektrycznych. Z kolei dla obwodu 2, który obsługuje gniazdo siłowe, wymagane jest pięć przewodów: trzy fazowe, jeden neutralny i jeden ochronny. Zastosowanie odpowiedniej liczby przewodów jest kluczowe dla zapewnienia bezpieczeństwa i efektywności energetycznej instalacji. W przypadku niewłaściwej liczby przewodów, może dojść do przeciążeń, które stanowią poważne zagrożenie pożarowe. Standardy takie jak PN-IEC 60364-1 stanowią wytyczne, które należy przestrzegać w celu zapewnienia bezpieczeństwa i zgodności z obowiązującymi normami. W praktyce, prawidłowe określenie liczby przewodów jest istotne, aby uniknąć nieprawidłowości instalacyjnych, które mogą prowadzić do awarii sprzętu lub uszkodzenia instalacji.

Pytanie 8

Rysunek przedstawia sposób zainstalowania urządzenia ochronnego różnicowoprądowego w sieci typu

Ilustracja do pytania
A. TN-C-S
B. TT
C. TN-S
D. IT
Wybór odpowiedzi spośród pozostałych typów sieci może prowadzić do nieporozumień związanych z zasadami ich działania. Sieci TN-S charakteryzują się tym, że przewód neutralny i przewód ochronny są oddzielone, co jest zupełnie inną koncepcją niż izolacja stosowana w sieciach IT. Użytkownicy mogą błędnie myśleć, że w sieci TN-S urządzenia różnicowoprądowe są tak samo efektywne jak w IT, jednak w przypadku awarii izolacji, prąd upływowy w sieci TN-S może spowodować poważniejsze konsekwencje. Podobnie sieci TN-C-S, które łączą funkcję przewodów neutralnych i ochronnych, są bardziej narażone na zjawiska związane z prądami upływowymi, co stawia pod znakiem zapytania ich bezpieczeństwo. Z kolei w sieciach TT, gdzie przewód neutralny i ochronny są oddzielne, istnieje większe ryzyko wystąpienia różnicy potencjałów między ziemią a neutralnym przewodem, co może prowadzić do niebezpiecznych sytuacji. Błędem jest zakładanie, że wszystkie te systemy zapewniają taki sam poziom ochrony jak sieci IT; każdy typ ma swoje unikalne właściwości i zastosowania, które powinny być starannie rozważane w kontekście wymagań bezpieczeństwa. W przypadku sieci IT, kluczowe jest zrozumienie ich struktury oraz właściwego zastosowania, aby uniknąć niebezpieczeństw związanych z awariami. Warto również zaznaczyć, że w sieciach TN i TT instalacje różnicowoprądowe są często mniej skuteczne w detekcji uszkodzeń, co może prowadzić do większych zagrożeń dla użytkowników i urządzeń.

Pytanie 9

Na którym rysunku przedstawiono oprawkę do źródła światła dużej mocy, nagrzewającego się do temperatur rzędu 300°C?

Ilustracja do pytania
A. A.
B. B.
C. D.
D. C.
Oprawka oznaczona literą D jest właściwa, ponieważ została wykonana z ceramiki, co czyni ją idealnym materiałem do zastosowania w źródłach światła o dużej mocy. Ceramika charakteryzuje się wysoką odpornością na temperatury, które mogą osiągać nawet 300°C, co jest kluczowe dla zapewnienia bezpieczeństwa i wydajności systemu oświetleniowego. W praktyce, oprawki ceramiczne są szeroko stosowane w lampach halogenowych i LED o dużej mocy, gdzie efektywne odprowadzanie ciepła jest niezbędne. Materiał ten nie tylko dobrze przewodzi ciepło, ale również minimalizuje ryzyko deformacji pod wpływem wysokich temperatur. Zastosowanie ceramiki w takich oprawkach wpisuje się w standardy branżowe, które uwzględniają bezpieczeństwo i efektywność energetyczną. Warto również zauważyć, że w przypadku źródeł światła dużej mocy, niewłaściwie dobrane materiały mogą prowadzić do uszkodzeń zarówno oprawki, jak i samego źródła światła, co może skutkować awarią i zwiększonym ryzykiem pożaru. Dlatego wybór ceramiki jako materiału na oprawki jest zgodny z najlepszymi praktykami inżynieryjnymi.

Pytanie 10

Jaki łącznik oznacza się na schematach przedstawionym symbolem graficznym?

Ilustracja do pytania
A. Jednobiegunowy.
B. Szeregowy.
C. Dwubiegunowy.
D. Grupowy.
Wybrana odpowiedź to łącznik dwubiegunowy, co jest poprawne. Na schematach elektrycznych symbol ten towarzyszy elementom, które umożliwiają przewodzenie prądu w dwóch obiegach. Dwie kreski wychodzące z okręgu wskazują, że łącznik ten ma zdolność do kontrolowania przepływu energii elektrycznej w obydwu kierunkach. W praktyce, łączniki dwubiegunowe są wykorzystywane w instalacjach elektrycznych, gdzie ważne jest zarządzanie obciążeniem, na przykład w domowych systemach oświetleniowych, które wymagają wyłączenia lub włączenia obwodu z różnych miejsc. Stosowanie takich łączników pozwala na lepsze zarządzanie energią, a także zwiększa bezpieczeństwo instalacji, minimalizując ryzyko zwarć w obwodach. W standardach, takich jak PN-IEC 60669-1, określono zasady dotyczące stosowania łączników dwubiegunowych, co podkreśla ich znaczenie w nowoczesnych instalacjach elektrycznych.

Pytanie 11

Z instrukcji obsługi przedstawionego na rysunku miernika wynika, że przed pomiarem rezystancji należy wyzerować omomierz. W tym celu należy przełącznikiem funkcji wybrać pomiar rezystancji i ustawić wskazówkę na 0 Ω przy pomocy pokrętła oznaczonego cyfrą

Ilustracja do pytania
A. 2 przy zwartych przewodach pomiarowych.
B. 2 przy odłączonych przewodach pomiarowych.
C. 1 przy zwartych przewodach pomiarowych.
D. 1 przy odłączonych przewodach pomiarowych.
Poprawna odpowiedź to 2 przy zwartych przewodach pomiarowych. Aby uzyskać dokładny pomiar rezystancji, konieczne jest wyzerowanie omomierza przed przystąpieniem do pomiarów. W tym celu należy ustawić przewody pomiarowe w pozycji zwartej, co eliminuje wpływ ich własnej oporności na pomiar. Użycie pokrętła oznaczonego cyfrą 2 w tej konfiguracji pozwala na precyzyjne ustawienie wskazówki miernika na zerową wartość. W praktyce, przed każdym pomiarem rezystancji, zaleca się przeprowadzanie tego kroku, aby zapewnić rzetelność wyników. W branży elektrycznej i elektronicznej, zgodnie z najlepszymi praktykami, takie działanie minimalizuje błędy pomiarowe i zwiększa dokładność urządzeń pomiarowych. Dokładne wyzerowanie omomierza jest kluczowe, zwłaszcza w aplikacjach wymagających dużej precyzji, jak pomiary w obwodach elektronicznych czy analiza materiałów. Warto również pamiętać, że nieprawidłowe przeprowadzenie tego procesu może prowadzić do błędnych wniosków i dalszych problemów w analizie diagnostycznej.

Pytanie 12

Który element i z jakiego silnika przedstawiony jest na ilustracji a) i schemacie b)?

Ilustracja do pytania
A. Wirnik silnika pierścieniowego.
B. Stojan silnika pierścieniowego.
C. Stojan silnika komutatorowego.
D. Wirnik silnika komutatorowego.
Niezrozumienie, który element silnika przedstawiony jest na ilustracji, może prowadzić do wielu nieporozumień. W przypadku silnika komutatorowego, wirnik i stojan mają zupełnie inną konstrukcję, co jest kluczowe dla ich działania. Wirnik silnika komutatorowego zazwyczaj nie posiada pierścieni ślizgowych, lecz komutator, który jest odpowiedzialny za zmianę kierunku prądu w uzwojeniach wirnika. Stojan silnika pierścieniowego, z kolei, jest nieodłącznym elementem, który współpracuje z wirnikiem, ale nie można go pomylić z wirnikiem, ponieważ jego funkcja polega na generowaniu pola magnetycznego, które umożliwia ruch wirnika. Typowym błędem myślowym jest założenie, że wirnik i stojan mogą być używane zamiennie, co prowadzi do niepoprawnych wniosków. Warto również zauważyć, że silnik pierścieniowy ma swoją specyfikę i różni się od silnika komutatorowego w zakresie budowy i zastosowania. Wiedza na temat różnic w tych konstrukcjach jest kluczowa dla zrozumienia ich działania i możliwości zastosowania. Dlatego istotne jest, aby nie tylko znać nazwy elementów, ale również ich funkcje i właściwości.

Pytanie 13

Jaką rolę odgrywa uzwojenie biegunów komutacyjnych w urządzeniach prądu stałego?

A. Redukuje hałas podczas eksploatacji
B. Kompensuje SEM samoindukcji, co eliminuje iskrzenie na szczotkach
C. Generuje moment magnetyczny o stałym kierunku
D. Tworzy nieruchome, stałe pole magnetyczne
W odpowiedziach, które nie są poprawne, pojawiają się koncepcje, które mylnie opisują funkcję uzwojenia biegunów komutacyjnych. Na przykład, generowanie jednokierunkowego momentu magnetycznego nie jest właściwym opisem roli tego uzwojenia. Moment magnetyczny w maszynach prądu stałego jest kształtowany głównie przez uzwojenia wirnika i pola magnetyczne wytwarzane przez magnesy lub uzwojenia stojana. Wytwarzanie nieruchomego, stałego pola magnetycznego to również mylne podejście, ponieważ uzwojenie biegunów komutacyjnych nie tworzy statycznego pola, lecz dynamicznie reaguje na zmiany prądu, co ma na celu ułatwienie komutacji. Ponadto, zredukowanie hałasu podczas pracy nie jest celem uzwojenia komutacyjnego, ale może być efektem ubocznym prawidłowego działania całego systemu, związanego z efektywnym komutowaniem prądu. W kontekście projektowania maszyn prądu stałego, nieprawidłowe rozumienie roli uzwojenia biegunów komutacyjnych może prowadzić do problemów z wydajnością energetyczną oraz trwałością komponentów, dlatego kluczowe jest zrozumienie jego rzeczywistej funkcji w konstrukcji maszyny.

Pytanie 14

Jakie narzędzia są konieczne do wytyczenia trasy instalacji przewodów elektrycznych montowanych na powierzchni?

A. Kątownik, młotek, punktak
B. Ołówek traserski, poziomnica, przymiar taśmowy
C. Kątownik, ołówek traserski, sznurek traserski
D. Ołówek traserski, przymiar kreskowy, rysik
Ołówek traserski, poziomnica i przymiar taśmowy to świetny wybór! Te narzędzia naprawdę są niezbędne, gdy chodzi o trasowanie drogi do układania przewodów natynkowych. Ołówek traserski pozwala na dokładne oznaczanie punktów i linii, co jest podstawą do dalszej roboty. Poziomnica zaś to must-have, żeby upewnić się, że wszystko jest równo i w odpowiednich nachyleniach. To ważne, bo estetyka i funkcjonalność idą w parze. Przymiar taśmowy z kolei umożliwia precyzyjne mierzenie, co też jest kluczowe, żeby dobrze rozmieścić przewody na ścianach. W branży mamy różne standardy, jak normy PN-IEC, które podkreślają, jak ważna jest dokładność i planowanie przy instalacjach elektrycznych. Używanie właściwych narzędzi zwiększa wydajność, a także zmniejsza ryzyko błędów, które mogą skończyć się problemami, jak zwarcia czy uszkodzenia sprzętu. Na przykład, korzystając z poziomnicy przy układaniu przewodów, mamy pewność, że będą one prosto, co będzie miało znaczenie przy montażu osprzętu elektrycznego.

Pytanie 15

Na rysunku przedstawiono oprawę oświetlenia

Ilustracja do pytania
A. przeważnie pośredniego - klasy IV.
B. bezpośredniego - klasy I.
C. pośredniego - klasy V.
D. przeważnie bezpośredniego - klasy II.
Odpowiedź 'przeważnie pośredniego - klasy IV.' jest prawidłowa, ponieważ na przedstawionym rysunku widać, że światło jest emitowane głównie w sposób pośredni. Oprawy oświetleniowe, które emitują światło pośrednio, są projektowane w taki sposób, aby rozpraszać światło za pomocą elementów takich jak mleczne szkło czy matowe powierzchnie, co zapewnia równomierne oświetlenie przestrzeni. Takie podejście jest korzystne w zastosowaniach, gdzie niepożądane są silne cienie oraz oślepiające refleksy. W kontekście norm, oprawy oświetleniowe klasy IV mogą znaleźć zastosowanie w biurach, salach konferencyjnych oraz miejscach, gdzie zależy nam na komforcie wzrokowym użytkowników. Zgodnie z zasadami ergonomii oświetlenia, odpowiednia jakość światła pośredniego wpływa korzystnie na samopoczucie i wydajność pracy, co podkreślają standardy ISO 8995-1. Zrozumienie różnych klas opraw oraz ich sposobu emisji jest kluczowe dla projektowania efektywnych systemów oświetleniowych.

Pytanie 16

Której piły należy użyć do przycięcia korytka instalacyjnego?

Ilustracja do pytania
A. B.
B. D.
C. C.
D. A.
Okej, to piła oznaczona jako C to taka specyficzna piła do metalu. Ma cienkie ostrze i drobne zęby, więc idealnie nadaje się do precyzyjnego cięcia korytek instalacyjnych, zwłaszcza tych metalowych. Widziałem, że często używa się takich korytek w elektryce lub hydraulice, gdzie ważne jest, żeby wszystko ładnie wyglądało i było poukładane. Jak użyjesz tej piły, to cięcia będą równe, co naprawdę ma znaczenie, bo to pozwala uniknąć deformacji materiału. W budownictwie mówi się, że trzeba używać odpowiednich narzędzi do rodzaju materiału, bo to zmniejsza ryzyko, że coś się uszkodzi. Przykładowo, można precyzyjnie przyciąć korytka do odpowiedniej długości, żeby dopasować je do różnych instalacji, co jest super ważne.

Pytanie 17

Którego osprzętu instalacyjnego dotyczy przedstawiony fragment opisu?

Fragment opisu osprzętu instalacyjnego
W celu zabezpieczenia przed porażeniem prądem elektrycznym małych dzieci instaluje się modele ze specjalnymi przesłonami torów prądowych. Konstrukcja mechaniczna przesłony uniemożliwia włożenie długopisu, kredki czy innego przewodnika do toru prądowego.

Do uzyskania pełnego bezpieczeństwa stosuje się przesłony torów prądowych wyposażone dodatkowo w tzw. klucz uprawniający, uchylający przesłony torów prądowych.
A. Puszki łączeniowej.
B. Oprawki źródła światła.
C. Gniazda wtykowego.
D. Wtyczki kabla zasilającego.
Gniazda wtykowe to naprawdę ważny element w każdej instalacji elektrycznej, zwłaszcza gdy mowa o bezpieczeństwie, szczególnie dla dzieci. Opisujesz modele gniazd, które mają specjalne przesłony na torach prądowych, co naprawdę chroni przed przypadkowym dotknięciem tych niebezpiecznych części. Te gniazda, które są zgodne z różnymi normami, są stworzone z myślą o tym, żeby minimalizować ryzyko porażenia prądem. Na przykład, gniazda z systemem przesłon pozwalają na wsunięcie wtyczki tylko w konkretnej pozycji, co znacznie ogranicza ryzyko kontaktu z prądem. Używanie takich gniazd jest super ważne w pomieszczeniach, gdzie bywają dzieci, a wiele standardów branżowych, jak np. normy IEC 60884, to potwierdza. To naprawdę praktyczne podejście do projektowania osprzętu zwiększa bezpieczeństwo w naszych domach i miejscach publicznych, gdzie kontakt z prądem może być poważnym zagrożeniem.

Pytanie 18

Średnia wartość napięcia, które zostało zmierzone na wyjściu prostownika jednopołówkowego w stanie nieobciążonym, zasilanego z sinusoidalnego napięcia o wartości skutecznej 10 V, wynosi

A. 4,50 V
B. 10,00 V
C. 6,40 V
D. 7,07 V
Wartości napięcia podawane w odpowiedziach niepoprawnych mogą prowadzić do błędnych wniosków, zwłaszcza w przypadku analizy prostowników. Niektóre z tych wartości mogą wynikać z nieprawidłowego zrozumienia podstawowych koncepcji związanych z prostowaniem napięcia zmiennego. Na przykład, odpowiedź sugerująca 6,40 V mogła być obliczona na podstawie niewłaściwego pomiaru lub założenia dotyczącego średniej z całego cyklu napięcia AC, co nie uwzględnia faktu, że w przypadku prostownika jednopołówkowego napięcie jest prostowane tylko w jednej połówce sinusoidy. Z kolei odpowiedź 7,07 V może wskazywać na mylne zrozumienie wartości szczytowej, a nie średniej, co jest częstym błędem w obliczeniach. Istotne jest, aby rozróżniać między wartością skuteczną, szczytową a średnią, ponieważ każdy z tych terminów ma swoje specyficzne definicje i zastosowanie. Zrozumienie, jak oblicza się te wartości, jest kluczowe w praktycznych zastosowaniach elektrotechnicznych, na przykład w projektowaniu obwodów prostowniczych, gdzie błędne obliczenia mogą prowadzić do nieprawidłowego działania zasilaczy oraz uszkodzenia komponentów. Dlatego tak istotna jest znajomość wzorów oraz zasad rządzących działaniem prostowników, by uniknąć powszechnych pułapek w analizie elektronicznej.

Pytanie 19

Wybierz z tabeli numer katalogowy wtyczki, która wraz przewodem wystarczy do zasilenia betoniarki z silnikiem trójfazowym pobierającym w warunkach pracy znamionowej moc 12 kVA. Maszyna sterowana jest stycznikiem z cewką na napięcie 230 V i zasilana z sieci TN-S o napięciu 230/400 V.

Ilustracja do pytania
A. 025-6
B. 024-6
C. 014-6
D. 015-6
Wybór wtyczki 025-6 jest poprawny, ponieważ zapewnia ona odpowiednią wydajność prądową dla betoniarki o mocy 12 kVA przy zasilaniu 400V. Przy tej mocy, wartość prądu oblicza się ze wzoru: I = P / (√3 * U), co daje około 17,32 A. Wtyczka 025-6 jest przystosowana do obciążeń do 32 A, co oznacza, że bezproblemowo obsłuży podłączone urządzenie. Dodatkowo, istotne jest, aby wtyczki i gniazda były zgodne z obowiązującymi normami, takimi jak IEC 60309, które określają wymagania dla wtyczek do urządzeń o dużym poborze mocy. W praktyce, wybór odpowiedniej wtyczki ma kluczowe znaczenie dla bezpieczeństwa i efektywności zasilania sprzętu elektrycznego, zwłaszcza w warunkach budowlanych, gdzie obciążenia mogą się zmieniać. Użycie wtyczki o niewłaściwej wydajności prądowej może prowadzić do przegrzewania, uszkodzeń sprzętu, a w najgorszym przypadku do zagrożeń pożarowych.

Pytanie 20

Której końcówki wkrętaka należy użyć do demontażu wyłącznika nadprądowego z szyny TH 35?

Ilustracja do pytania
A. Końcówki 3.
B. Końcówki 1.
C. Końcówki 4.
D. Końcówki 2.
Końcówka 2. jest właściwym rozwiązaniem, ponieważ wyłączniki nadprądowe montowane na szynie TH 35 wymagają użycia wkrętaka o płaskiej końcówce do ich demontażu. Końcówka płaska zapewnia odpowiednią stabilność i precyzję podczas wkręcania i wykręcania śrub mocujących, co jest kluczowe w kontekście pracy z instalacjami elektrycznymi. Użycie odpowiedniego narzędzia minimalizuje ryzyko uszkodzenia złączy oraz zwiększa bezpieczeństwo pracy. Przykładowo, używając końcówki płaskiej, można z łatwością uzyskać dostęp do wyłącznika, co jest szczególnie istotne w przypadku rutynowych przeglądów lub konserwacji instalacji elektrycznych. Standardy branżowe zalecają korzystanie z narzędzi, które są dostosowane do specyfiki montażu, dlatego znajomość odpowiednich końcówek wkrętaka, jak w tym przypadku, jest niezbędna dla każdego elektryka.

Pytanie 21

Które urządzenie przedstawiono na ilustracji?

Ilustracja do pytania
A. Automat zmierzchowy.
B. Regulator temperatury.
C. Przekaźnik priorytetowy.
D. Przekaźnik czasowy.
Urządzenie przedstawione na ilustracji to przekaźnik czasowy, co można stwierdzić na podstawie charakterystycznych oznaczeń obecnych na jego obudowie, w tym symboli związanych z czasem oraz pokręteł służących do ustawiania opóźnień. Przekaźniki czasowe są kluczowymi elementami w systemach automatyki, umożliwiającymi kontrolowanie działania urządzeń w określonych odstępach czasu. Na przykład, w instalacjach oświetleniowych, przekaźniki czasowe mogą być ustawiane tak, aby włączać światło o zmierzchu i wyłączać je o świcie, co jest zgodne z zasadami efektywnego zarządzania energią. Dodatkowo, oznaczenia takie jak 'T1' i 'T2' na urządzeniu wskazują na różne funkcje czasowe, co potwierdza jego przeznaczenie. Zastosowanie przekaźników czasowych jest powszechne w różnych sektorach, od budynków mieszkalnych, gdzie automatyzują oświetlenie, po przemysł, gdzie kontrolują maszyny w zależności od czasu pracy. Stosowanie przekaźników czasowych w zgodzie z normami branżowymi, takimi jak IEC 60947, zapewnia bezpieczeństwo oraz efektywność operacyjną systemów elektrycznych i elektronicznych.

Pytanie 22

Jakie parametry wyłącznika różnicowoprądowego powinny być zmierzone, aby ocenić jego poprawne działanie?

A. Napięcie w sieci oraz prąd różnicowy
B. Prąd różnicowy oraz czas reakcji
C. Obciążenie prądowe i czas reakcji
D. Napięcie w sieci oraz prąd obciążeniowy
Odpowiedź, która wskazuje na pomiar prądu różnicowego oraz czasu zadziałania wyłącznika różnicowoprądowego, jest poprawna, ponieważ te parametry są kluczowe dla oceny skuteczności działania tego urządzenia. Prąd różnicowy to różnica między prądami wpływającymi i wypływającymi z obwodu, a jego pomiar pozwala zidentyfikować potencjalne nieprawidłowości, takie jak upływ prądu do ziemi. Czas zadziałania, z kolei, określa, jak szybko wyłącznik reaguje na wykrycie tego prądu różnicowego, co jest istotne dla zapewnienia bezpieczeństwa użytkowników. Przykładem zastosowania jest sytuacja, gdy osoba dotyka uszkodzonego przewodu; w tym przypadku wyłącznik różnicowoprądowy powinien natychmiast zadziałać, aby uniknąć porażenia prądem. Zgodnie z normami IEC 61008 oraz IEC 61009, wyłączniki różnicowoprądowe powinny mieć określone wartości prądu różnicowego i czasu zadziałania, co podkreśla ich znaczenie w systemach zabezpieczeń. Regularne testowanie tych parametrów jest niezbędne do utrzymania wysokiego poziomu bezpieczeństwa w instalacjach elektrycznych.

Pytanie 23

W dokumentacji dotyczącej instalacji elektrycznej w wielopiętrowym budynku mieszkalnym wskazano, że konieczne jest użycie ochronników przeciwprzepięciowych klasy C. Gdzie powinny one zostać zamontowane?

A. w puszkach instalacyjnych gniazd odbiorczych
B. na linii zasilającej budynek
C. w złączu budynku
D. w rozdzielnicach mieszkaniowych
Wybór innych lokalizacji dla instalacji ochronników przeciwprzepięciowych klasy C, takich jak linie zasilające budynek, puszki instalacyjne gniazd odbiorczych czy złącza budynku, nie jest odpowiedni z kilku powodów. Linie zasilające są głównie odpowiedzialne za przesył energii, ale nie stanowią one miejsca, gdzie można efektywnie zainstalować ochronniki, które powinny być zlokalizowane tam, gdzie dochodzi do centralnej dystrybucji zasilania. Instalacja ochronników w puszkach instalacyjnych gniazd odbiorczych również nie przynosi oczekiwanych korzyści, ponieważ w przypadku wystąpienia przepięcia, ochrona jest niekompletna i może nie objąć urządzeń podłączonych do innych obwodów. Złącze budynku, mimo że jest istotnym punktem przyłączeniowym, nie zapewnia pełnej ochrony dla wszystkich obwodów zasilających w budynku. Takie podejście prowadzi do fragmentarycznej ochrony, co może skutkować poważnymi uszkodzeniami sprzętu elektronicznego i instalacji elektrycznej. Kluczowym błędem myślowym jest przekonanie, że ochrona może być stosowana w dowolnym miejscu bez uwzględnienia kontekstu, w jakim działają ochronniki przeciwprzepięciowe. Według norm i najlepszych praktyk, ochrona przed przepięciami powinna być centralizowana w odpowiednich punktach, takich jak rozdzielnice, w celu zapewnienia pełnej ochrony całej instalacji elektrycznej.

Pytanie 24

Który typ źródła światła przedstawiono na rysunku?

Ilustracja do pytania
A. Halogenowe.
B. Diodowe.
C. Rtęciowe.
D. Wolframowe.
Odpowiedź diodowe jest poprawna, ponieważ na zdjęciu znajduje się żarówka LED, która jest jednym z najnowocześniejszych źródeł światła dostępnych na rynku. Żarówki LED, czyli diody elektroluminescencyjne, charakteryzują się wysoką efektywnością energetyczną, co oznacza, że emitują więcej światła przy mniejszym zużyciu energii w porównaniu do tradycyjnych żarówek wolframowych czy halogenowych. Dzięki temu są one doskonałym wyborem do oświetlenia domów, biur oraz przestrzeni publicznych. W praktyce, zastosowanie żarówek LED pozwala na znaczną redukcję kosztów energii oraz dłuższy czas użytkowania, sięgający nawet 25 000 godzin. Warto również zwrócić uwagę na standardy ekologiczne, które promują użycie źródeł światła o niskim wpływie na środowisko; żarówki LED nie emitują szkodliwych substancji, takich jak rtęć, co czyni je bardziej ekologicznym wyborem. Dodatkowo, LED-y są dostępne w szerokiej gamie kolorów i temperatur barwowych, co umożliwia ich zastosowanie w różnorodnych projektach oświetleniowych, dostosowanych do indywidualnych potrzeb użytkowników.

Pytanie 25

Łącznik przedstawiony na zdjęciu jest oznaczony na schematach symbolem graficznym

Ilustracja do pytania
A. A.
B. B.
C. D.
D. C.
Wybór odpowiedzi A, B lub D może wynikać z nieporozumienia dotyczącego symboliki graficznej używanej w elektrotechnice. Symbole te mają na celu ułatwienie identyfikacji funkcji urządzeń oraz ich prawidłowego połączenia w instalacjach elektrycznych. Odpowiedź A może sugerować, że użytkownik pomylił dwuklawiszowy łącznik z innym typem łącznika, podczas gdy w rzeczywistości każdy typ łącznika ma swoje specyficzne oznaczenie. Z kolei odpowiedź B może być wynikiem nieprawidłowego zrozumienia schematów elektrycznych, gdzie umiejętność ich czytania jest kluczowa. Odpowiedź D, która nie odnosi się w ogóle do dwuklawiszowego łącznika, może świadczyć o braku wiedzy na temat różnorodności łączników dostępnych na rynku. W każdym z tych przypadków, kluczowym błędem jest brak zrozumienia, jak symbole graficzne przekładają się na rzeczywiste urządzenia elektryczne oraz ich funkcjonalności. Właściwe rozpoznawanie symboli jest fundamentalne, ponieważ pozwala na poprawne wykonanie instalacji elektrycznych zgodnie z obowiązującymi normami i standardami, co jest istotne dla zapewnienia bezpieczeństwa oraz efektywności energetycznej w obiektach budowlanych. Aby uniknąć takich pomyłek, warto zapoznać się z materiałami edukacyjnymi związanymi z podstawami elektrotechniki oraz z praktykami instalacyjnymi, które pomogą w interpretacji schematów oraz właściwym doborze elementów w instalacjach.

Pytanie 26

Jaką wartość maksymalnej dopuszczalnej impedancji pętli zwarcia należy zastosować w trójfazowym obwodzie elektrycznym o napięciu znamionowym 230/400 V, aby ochrona przeciwporażeniowa była skuteczna w przypadku uszkodzenia izolacji, przy założeniu, że wyłączenie zasilania będzie realizowane przez instalacyjny wyłącznik nadprądowy C20?

A. 3,83 Ω
B. 2,00 Ω
C. 1,15 Ω
D. 2,30 Ω
Przy ocenie maksymalnej dopuszczalnej wartości impedancji pętli zwarcia, istotne jest zrozumienie, że wartości takie jak 2,00 Ω, 3,83 Ω czy 2,30 Ω są niewłaściwe i mogą prowadzić do niebezpiecznych sytuacji. Impedancja pętli zwarcia jest kluczowym parametrem dla zadziałania wyłączników nadprądowych w przypadku zwarcia. Wyłącznik C20 działa na zasadzie detekcji nadmiernego prądu, a jego skuteczność jest w dużej mierze uzależniona od wartości impedancji pętli. Przy zbyt wysokiej impedancji, czas wyłączenia może się wydłużyć, co stwarza ryzyko porażenia prądem. Wartości takie jak 2,00 Ω czy 3,83 Ω nie spełniają wymagań dla bezpiecznych instalacji, które powinny być projektowane zgodnie z normami oraz zaleceniami branżowymi. Typowe błędy myślowe, które mogą prowadzić do wyboru nieprawidłowych wartości, obejmują niepełne zrozumienie zasad działania wyłączników oraz ich czasów reakcji w różnych warunkach obciążeniowych. Wartości impedancji pętli zwarcia muszą być starannie obliczane i regularnie sprawdzane w praktyce, aby uniknąć zagrożeń związanych z porażeniem prądem oraz uszkodzeniami instalacji elektrycznych. Zastosowanie niewłaściwych wartości impedancji może prowadzić do długotrwałych kompromisów w zakresie bezpieczeństwa elektrycznego.

Pytanie 27

Silnika klatkowego, którego fragment tabliczki znamionowej przedstawiono na ilustracji, nie należy zasilać napięciem międzyfazowym o wysokości

Ilustracja do pytania
A. 230 V, gdy jego uzwojenia skojarzy się w gwiazdę.
B. 230 V, gdy jego uzwojenia skojarzy się w trójkąt.
C. 400 V, gdy jego uzwojenia skojarzy się w trójkąt.
D. 400 V, gdy jego uzwojenia skojarzy się w gwiazdę.
Odpowiedź 400 V, gdy jego uzwojenia skojarzy się w trójkąt jest poprawna, ponieważ w przypadku silników klatkowych, tabliczka znamionowa dostarcza istotnych informacji na temat dopuszczalnych warunków zasilania. W sytuacji, gdy uzwojenia są połączone w trójkąt (Δ), zasilanie napięciem 400 V może prowadzić do uszkodzenia silnika, gdyż jest to napięcie przeznaczone do połączenia w gwiazdę (Y). Warto zauważyć, że przy połączeniu w gwiazdę, napięcie zasilające wynosi 400 V, natomiast przy połączeniu w trójkąt napięcie to wynosi 230 V, co oznacza, że silnik musi być zasilany odpowiednim napięciem, aby pracować bezawaryjnie. Przestrzeganie tych zasad jest kluczowe, aby uniknąć przegrzania uzwojeń oraz innych poważnych uszkodzeń, które mogą prowadzić do znacznych kosztów napraw oraz przestojów w pracy maszyn. Dlatego ważne jest, aby technicy i inżynierowie dobrze rozumieli różnice w połączeniach uzwojeń i ich wpływ na parametry pracy silników.

Pytanie 28

Jakie zakresy powinien mieć multimetr woltomierza, wykorzystywanego do konserwacji systemu sterującego bramą garażową, jeśli brama jest napędzana silnikami prądu stałego, zasilanymi napięciem 24 V, a system sterujący otrzymuje zasilanie z sieci 230 V?

A. AC 500 V i DC 50 V
B. DC 500 V i AC 100 V
C. AC 500 V i DC 10 V
D. DC 500 V i AC 50 V
Wybór zakresów AC 500 V i DC 50 V dla multimetru używanego do prac konserwacyjnych w systemie sterowania bramą garażową jest uzasadniony ze względu na specyfikę zasilania urządzeń. Zasilanie silników prądu stałego o napięciu 24 V wymaga, by woltomierz mierzył napięcia stałe w zakresie do 50 V, co jest wystarczające dla takich zastosowań. Z kolei, zasilanie układu sterowania z sieci 230 V wymaga pomiaru napięcia zmiennego, dlatego górny zakres 500 V w AC jest konieczny dla zapewnienia bezpieczeństwa i dokładności pomiarów. W praktyce, tego typu pomiar może być użyty do diagnozowania i konserwacji obwodów sterujących, co jest kluczowe w zapewnieniu ich prawidłowej pracy. Używając multimetru o odpowiednich zakresach, technicy mogą swobodnie sprawdzać zarówno napięcia niskie, jak i wysokie bez ryzyka uszkodzenia urządzenia, co jest zgodne z zasadami dobrych praktyk branżowych oraz normami bezpieczeństwa.

Pytanie 29

W których z wymienionych rodzajów silników stosuje się wirnik przedstawiony na ilustracji?

Ilustracja do pytania
A. Asynchronicznych pierścieniowych.
B. Asynchronicznych klatkowych.
C. Uniwersalnych.
D. Synchronicznych.
Wirnik, który widzisz na obrazku, to typowy element silników asynchronicznych klatkowych. Te silniki są naprawdę powszechne w przemyśle, bo są proste w budowie i bardzo niezawodne. Mówi się na nie często 'klatka wiewiórki'. Jak to działa? No, wirnik składa się z prętów przewodzących, które są zamknięte na końcach pierścieniami. Dzięki temu mają świetne właściwości elektromagnetyczne. Co ciekawe, te silniki idealnie nadają się tam, gdzie potrzebna jest duża moc przy niskich kosztach. Przykładowo, używa się ich w wentylatorach, pompach czy kompresorach. W takich aplikacjach stała prędkość obrotowa i łatwość obsługi są mega ważne. Dodatkowo, są zgodne z międzynarodowymi standardami efektywności energetycznej, co jest dużym plusem dla środowiska. Nie zapominajmy też, że ich konstrukcja ułatwia konserwację, co jest naprawdę istotne w dłuższej perspektywie. Dlatego wybór silnika asynchronicznego klatkowego w przemyśle ma sens zarówno pod względem technicznym, jak i finansowym.

Pytanie 30

Osoba powinna kontrolować działanie stacjonarnych urządzeń różnicowoprądowych poprzez naciśnięcie przycisku kontrolnego

A. posiadająca uprawnienia SEP, co rok
B. przeszkolona, co rok
C. mająca uprawnienia SEP, co 6 miesięcy
D. przeszkolona, co 6 miesięcy
Odpowiedź, że stacjonarne urządzenia różnicowoprądowe powinny być sprawdzane przez osobę przeszkoloną co sześć miesięcy, jest zgodna z obowiązującymi normami i najlepszymi praktykami w zakresie bezpieczeństwa elektrycznego. Regularne kontrole pozwalają na wczesne wykrycie potencjalnych usterek, co jest kluczowe dla zapewnienia bezpieczeństwa użytkowników oraz ochrony przed skutkami porażenia prądem. Osoby przeszkolone mają odpowiednią wiedzę na temat działania tych urządzeń, potrafią ocenić ich stan techniczny oraz zidentyfikować ewentualne problemy. Przykładowo, w przypadku stacjonarnych urządzeń różnicowoprądowych, takich jak wyłączniki różnicowoprądowe, regularne testowanie przycisku kontrolnego pozwala na upewnienie się, że urządzenie działa prawidłowo i jest w stanie zareagować na zwarcia lub inne niebezpieczne sytuacje. Zgodnie z normami, takimi jak PN-EN 60947-2, zaleca się przeprowadzanie takich kontroli co najmniej dwa razy w roku, co potwierdza konieczność przeszkolenia personelu odpowiedzialnego za te działania.

Pytanie 31

Który element stosowany w instalacjach mieszkaniowych przedstawiono na rysunku?

Ilustracja do pytania
A. Regulator oświetlenia.
B. Przekaźnik priorytetowy.
C. Regulator temperatury.
D. Przekaźnik bistabilny.
Ten przekaźnik bistabilny, który widzisz na rysunku, to naprawdę przydatne urządzenie w elektryce. Ma super fajną funkcję – potrafi zapamiętać, jaki miał stan nawet po odłączeniu zasilania. To oznaczenie 'BIS-403' i ten schemat wyraźnie pokazują, że działa na zasadzie przełączania między dwoma stanami, które mogą sobie być niezależnie od prądu. Takie przekaźniki są często używane w automatyce budynkowej, na przykład przy oświetleniu, które powinno działać, nawet jak prąd jest wyłączony. To jest naprawdę dobre rozwiązanie, bo zmniejsza zużycie energii – nie potrzebują ciągłego prądu, żeby pamiętać swój stan. A to, moim zdaniem, jest ważne w kontekście ekologii i oszczędności energii. Warto o tym wiedzieć, planując nowe instalacje.

Pytanie 32

Na podstawie rysunku określ kolejność zamontowanych aparatów elektrycznych w rozdzielnicy.

Ilustracja do pytania
A. Ochronnik przeciwprzepięciowy, przekaźnik bistabilny, lampka kontrolna, automat schodowy.
B. Ochronnik przeciwprzepięciowy, wyłącznik nadprądowy, automat schodowy, przekaźnik bistabilny.
C. Wyłącznik różnicowoprądowy, przekaźnik bistabilny, lampka kontrolna, automat schodowy.
D. Wyłącznik różnicowoprądowy, wyłącznik nadprądowy, lampka kontrolna, przekaźnik bistabilny.
Wybrana odpowiedź jest poprawna, ponieważ prawidłowo odzwierciedla kolejność zamontowanych aparatów elektrycznych w rozdzielnicy. Wyłącznik różnicowoprądowy, umieszczony jako pierwszy, ma kluczowe znaczenie dla ochrony użytkowników przed porażeniem prądem, wykrywając różnicę w prądzie między przewodami fazowymi a neutralnym. Następnie, wyłącznik nadprądowy chroni instalację przed przeciążeniem i zwarciami. Lampka kontrolna, jako trzeci element, pełni funkcję sygnalizacyjną, informując o stanie działania urządzeń. Na końcu znajduje się przekaźnik bistabilny, który służy do sterowania obwodami z wykorzystaniem małej mocy. Taka sekwencja jest zgodna z najlepszymi praktykami przy projektowaniu rozdzielnic, gdzie bezpieczeństwo i efektywność są priorytetem. Przy projektowaniu instalacji elektrycznych warto uwzględniać normy PN-IEC 60364, które regulują zasady projektowania i wykonania instalacji elektrycznych. Wiedza na temat rozmieszczenia aparatów w rozdzielnicach jest kluczowa dla zapewnienia niezawodności oraz bezpieczeństwa systemów elektrycznych.

Pytanie 33

Jakie parametry ma wyłącznik różnicowoprądowy, zastosowany w instalacji zasilającej mieszkanie, której schemat ideowy przedstawiono na rysunku?

Ilustracja do pytania
A. Prąd znamionowy 10 A oraz charakterystykę B
B. Prąd znamionowy 16 A oraz charakterystykę B
C. Prąd znamionowy 30 mA i prąd znamionowy różnicowy 25 A
D. Prąd znamionowy 25 A i prąd znamionowy różnicowy 30 mA
Wyłącznik różnicowoprądowy z parametrami, jak prąd znamionowy 25 A i prąd różnicowy 30 mA, to naprawdę ważny element w zabezpieczaniu elektryki w mieszkaniach. Prąd znamionowy 25 A mówi nam, ile maksymalnie może on przenieść, co jest kluczowe, bo musimy myśleć o zasilaniu domowych sprzętów. Z kolei prąd różnicowy 30 mA to wartość, która bardzo dobrze chroni przed porażeniem, bo jak zauważy różnicę w prądzie, to odetnie zasilanie. Te wartości są zgodne z normami PN-EN 61008-1 i PN-EN 60947-2, które mówią, jak powinny być projektowane wyłączniki. Używając takich parametrów, zapewniamy bezpieczeństwo i ochronę przed ewentualnymi awariami. Fajnie jest także regularnie sprawdzać wyłączniki różnicowoprądowe, żeby mieć pewność, że działają, a można to łatwo zrobić przyciskiem testowym, który jest na każdym z tych urządzeń.

Pytanie 34

Wkładka topikowa bezpiecznika oznaczona symbolem gL służy do ochrony

A. urządzeń półprzewodnikowych przed zwarciami
B. przewodów przed przeciążeniami oraz zwarciami
C. silników przed przeciążeniami oraz zwarciami
D. urządzeń półprzewodnikowych przed przeciążeniami
Wkładka topikowa bezpiecznika oznaczona symbolem gL jest przeznaczona do zabezpieczania przewodów przed przeciążeniami i zwarciami. Oznaczenie gL wskazuje na to, że wkładki te są dostosowane do ochrony obwodów o charakterystyce A, co oznacza, że mogą one wyłączyć obwód w przypadku wystąpienia nadmiernego prądu, który może prowadzić do uszkodzenia instalacji elektrycznej. Przykładem zastosowania wkładek gL są instalacje oświetleniowe oraz obwody zasilające gniazdka, gdzie istnieje ryzyko przeciążenia spowodowanego podłączeniem wielu urządzeń. Takie bezpieczniki są zgodne z międzynarodowymi standardami IEC 60269, które określają wymagania dotyczące wkładek topikowych. Stosowanie wkładek gL w obwodach prądowych pozwala na skuteczną ochronę przed uszkodzeniami, co jest istotne zarówno z punktu widzenia bezpieczeństwa, jak i efektywności energetycznej instalacji.

Pytanie 35

Na rysunku przedstawiono wynik uzyskany podczas pomiaru rezystancji izolacji silnika indukcyjnego między zaciskami W2 i PE tabliczki silnikowej. Uzyskany wynik świadczy o

Ilustracja do pytania
A. zbyt dużej wartości rezystancji izolacji uzwojenia W1 – W2.
B. zbyt małej wartości rezystancji izolacji uzwojenia W1 – W2.
C. dobrym stanie izolacji uzwojenia W1 – W2.
D. zwarciu uzwojenia z obudową silnika.
Wybierając odpowiedzi, które sugerują zbyt dużą wartość rezystancji izolacji W1 – W2, zwarcie uzwojenia z obudową silnika lub zbyt małą wartość rezystancji, można wpaść w szereg błędnych wniosków. Każda z tych odpowiedzi nie uwzględnia kluczowych aspektów dotyczących analizy wyników pomiaru rezystancji izolacji. Zbyt duża wartość rezystancji nie jest problematyczna, a wręcz przeciwnie - wskazuje na dobrą izolację. Twierdzenie o zwarciu uzwojenia z obudową jest również mylne, ponieważ pomiar wykazał bardzo wysoką rezystancję, co jasno świadczy o braku takiego zwarcia. Z kolei niska wartość rezystancji izolacji zazwyczaj sugeruje problemy z izolacją, takie jak uszkodzenia mechaniczne lub degradacja materiału, co może prowadzić do poważnych konsekwencji, takich jak uszkodzenia silnika czy zagrożenie dla bezpieczeństwa użytkowników. Należy pamiętać, że interpretacja wyników pomiaru rezystancji izolacji wymaga zrozumienia zasad działania silników oraz praktyk inżynieryjnych związanych z bezpieczeństwem elektrycznym. Właściwa analiza danych pomiarowych jest kluczowa do prawidłowej oceny stanu technicznego urządzeń elektrycznych oraz podejmowania odpowiednich działań prewencyjnych.

Pytanie 36

Oprawy oświetleniowe opatrzone symbolem przedstawionym na ilustracji

Ilustracja do pytania
A. muszą być zasilane wyłącznie przez transformator separacyjny.
B. mają wzmocnioną izolację.
C. muszą być zasilane wyłącznie z sieci PELV.
D. wymagają uziemienia obudowy.
Oprawy oświetleniowe oznaczone symbolem podwójnej izolacji, który widnieje na ilustracji, posiadają wzmocnioną izolację, co jest kluczowe dla ich bezpiecznego użytkowania. Tego typu oprawy są projektowane w taki sposób, aby zminimalizować ryzyko porażenia prądem elektrycznym, korzystając z dwóch niezależnych warstw izolacyjnych zamiast tradycyjnego uziemienia. W praktyce oznacza to, że mogą być stosowane w miejscach, gdzie uziemienie jest trudne do zrealizowania, na przykład w pomieszczeniach wilgotnych. Zastosowanie podwójnej izolacji jest zgodne z normą IEC 61140, która określa wymagania dotyczące ochrony osób przed porażeniem elektrycznym. Wzmocniona izolacja sprawia, że są one odpowiednie do użytku w domach, biurach oraz innych obiektach, gdzie bezpieczeństwo użytkowników jest priorytetem. Warto również zauważyć, że wiele nowoczesnych opraw LED posiada ten symbol, co podkreśla ich innowacyjność oraz zgodność z aktualnymi standardami bezpieczeństwa.

Pytanie 37

Na podstawie przedstawionych na rysunku zależności napięcia na zaciskach akumulatora od prądu i czasu rozładowywania wskaż wartość napięcia akumulatora o pojemności C = 100 Ah, który przez 30 minut był obciążony prądem o wartości 60 A.

Ilustracja do pytania
A. 11,3 V
B. 12,0 V
C. 11,0 V
D. 12,4 V
Odpowiedź 12,0 V jest poprawna, ponieważ przy analizie wykresu zależności napięcia na zaciskach akumulatora od prądu i czasu rozładowywania, można stwierdzić, że dla akumulatora o pojemności 100 Ah, który przez 30 minut był obciążony prądem 60 A, rzeczywiście napięcie wynosi około 12,0 V. W praktyce, akumulatory kwasowo-ołowiowe, które najczęściej są używane w zastosowaniach motoryzacyjnych i przemysłowych, charakteryzują się spadkiem napięcia w trakcie rozładowania, co jest uzależnione od wielu czynników, takich jak temperatura czy stopień naładowania. Zrozumienie tych zależności jest kluczowe w kontekście zapewnienia optymalnej pracy urządzeń zasilanych akumulatorami, a także w trakcie ich konserwacji i wymiany. Dobrą praktyką jest regularne monitorowanie stanu napięcia akumulatora, co pozwala na wczesne wykrywanie problemów i uniknięcie nieprzewidzianych awarii.

Pytanie 38

Którą rolę pełni w styczniku element wskazany na ilustracji czarną strzałką?

Ilustracja do pytania
A. Likwiduje magnetyzm szczątkowy.
B. Likwiduje drgania zwory.
C. Zmniejsza siłę docisku zwory.
D. Zmniejsza napięcie podtrzymania cewki.
W kontekście analizowanej ilustracji oraz roli elementu w styczniku, ważne jest zrozumienie, dlaczego pozostałe opcje są nieprawidłowe. Pierwsza z błędnych odpowiedzi sugeruje, że element ten likwiduje magnetyzm szczątkowy. Magnetyzm szczątkowy to zjawisko, które występuje po odłączeniu zasilania i najczęściej jest związane z materiałem rdzenia elektromagnesu. Eliminacja tego efektu wymaga zastosowania odpowiednich materiałów magnetycznych oraz projektowania, a nie tłumika drgań. Kolejna opcja mówi o zmniejszeniu siły docisku zwory, co nie jest rolą opisanego elementu. Siła docisku zwory jest istotna dla prawidłowego działania stycznika i wpływa na jakość kontaktu elektrycznego. Zmniejszenie jej mogłoby prowadzić do przegrzewania lub niestabilności kontaktów. Ostatnia odpowiedź odnosi się do zmniejszenia napięcia podtrzymania cewki. Napięcie podtrzymania jest kluczowe dla utrzymania zwory w pozycji załączonej i jego zmniejszenie mogłoby skutkować przypadkowym wyłączeniem stycznika, co jest niepożądane w aplikacjach wymagających ciągłej pracy. Warto zauważyć, że poszczególne pomyłki w odpowiedziach wynikają często z niepełnego zrozumienia działania mechanizmów styczników oraz ich elementów składowych. Kluczowe jest, aby w procesie nauki zwracać uwagę na detale techniczne oraz zasady działania urządzeń, co pozwoli uniknąć mylnych interpretacji w przyszłości.

Pytanie 39

Jak należy interpretować przedstawiony na zdjęciu wynik pomiaru rezystancji izolacji przewodu o napięciu znamionowym 300 V/300 V wykonany miernikiem MIC-2 ustawionym na zakres 500 V?

Ilustracja do pytania
A. Miernik ma rozładowaną baterię.
B. Miernik jest uszkodzony.
C. Zbyt mała rezystancja izolacji przewodu.
D. Rezystancja izolacji przewodu jest wystarczająca.
Wybór innej odpowiedzi może wynikać z kilku błędnych założeń dotyczących działania miernika oraz interpretacji wyników pomiaru. Przykładowo, uznanie, że rezystancja izolacji przewodu jest zbyt mała, jest nieuzasadnione. Wartość '>999MΩ' wyraźnie wskazuje na właściwy stan izolacji, znacznie przewyższający minimalne wymagania. W przypadku przewodów o napięciu znamionowym 300 V/300 V, jak wspomniano wcześniej, minimalna wartość izolacji powinna wynosić przynajmniej 1 MΩ, a wynik pomiaru wskazuje na znacznie wyższy poziom. Ponadto, jeśli użytkownik zauważyłby problemy z działaniem miernika, takie jak rozładowana bateria czy uszkodzenie urządzenia, nie powinno to wpływać na wyniki pomiarów, które są już interpretowane jako bardzo wysokie. Często spotykanym błędem jest także zakładanie, że jakiekolwiek odchylenia od oczekiwanej wartości są oznaką uszkodzenia, jednak w przypadku tego pomiaru nie ma dowodów na to, by miernik działał nieprawidłowo. Warto zaznaczyć, że umiejętność właściwej interpretacji wyników pomiarów oraz zrozumienie ich znaczenia w kontekście bezpieczeństwa instalacji elektrycznych jest kluczowa dla każdej osoby pracującej w branży elektrotechnicznej. Wiedza ta jest nie tylko podstawą odpowiedzialnego zachowania w pracy, ale także fundamentem budowania zaufania do systemów elektrycznych w ogóle.

Pytanie 40

Jakie typy przewodów instaluje się na izolatorach wspornikowych?

A. Kabelkowe
B. Uzbrojone
C. Szynowe
D. Rdzeniowe
Odpowiedź 'szynowe' jest poprawna, ponieważ szyny montowane są na izolatorach wsporczych w systemach elektroenergetycznych. Izolatory wsporcze pełnią kluczową rolę w podtrzymywaniu szyn, zapewniając jednocześnie ich izolację od otoczenia. Szyny są elementami wykorzystywanymi do przesyłania energii elektrycznej na dużą skalę, a ich zastosowanie w instalacjach wysokiego napięcia jest standardem w branży. Przykładem mogą być linie przesyłowe oraz rozdzielnie, gdzie szyny są stosowane do efektownego i bezpiecznego przekazywania prądu. Dobrą praktyką jest również korzystanie z szyn w instalacjach przemysłowych, gdzie ich zastosowanie zwiększa niezawodność oraz zmniejsza opory elektryczne. W instalacjach szynowych należy przestrzegać standardów dotyczących materiałów i konstrukcji, co zapewnia długotrwałość i bezpieczeństwo operacyjne tych systemów.