Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik mechatronik
  • Kwalifikacja: ELM.03 - Montaż, uruchamianie i konserwacja urządzeń i systemów mechatronicznych
  • Data rozpoczęcia: 19 grudnia 2025 12:23
  • Data zakończenia: 19 grudnia 2025 13:20

Egzamin zdany!

Wynik: 22/40 punktów (55,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Wskaż opis, który jest zgodny ze schematem.

Ilustracja do pytania
A. Cewka Y1 zostanie załączona po naciśnięciu któregokolwiek z przycisków S1 i S2 i wyłączona po 10 s od zwolnienia obu przycisków.
B. Cewka Y1 zostanie załączona po naciśnięciu któregokolwiek z przycisków SI1 i S2 i wyłączona po 10 s od zwolnienia jednego z przycisków.
C. Cewka Y1 zostanie załączona po 10 s od naciśnięcia któregokolwiek z przycisków S1 i S2 i wyłączona od razu po zwolnieniu jednego z przycisków.
D. Cewka Y1 zostanie załączona po 10 s od naciśnięcia któregokolwiek z przycisków S1 i S2 i wyłączona od razu po zwolnieniu obu przycisków.
Patrząc na inne odpowiedzi, widzę, że sporo z nich ma spore błędy w rozumieniu, jak działa cewka Y1. Niektóre odpowiedzi mówią, że cewka Y1 wyłącza się od razu po puszczeniu przycisku, co jest totalnie błędne, bo w układzie równoległym to tak nie działa. Przyciski S1 i S2 działają jak dwa źródła sygnału, które uruchamiają cewkę K1T. Kiedy naciśniesz jeden z nich, to K1T działa niezależnie od tego, co się dzieje z drugim przyciskiem. Z kolei błędne jest stwierdzenie, że cewka Y1 ma być wyłączona od razu po zwolnieniu jednego z przycisków. Właściwie, Y1 zostaje aktywna przez 10 sekund po zwolnieniu obu, co jest naprawdę istotne w automatyce. Nie zrozumienie, jak działają przekaźniki czasowe oraz połączenia równoległe, prowadzi do błędnych wniosków, co może skutkować nieodpowiednią konfiguracją obwodów. A to z kolei może zagrażać bezpieczeństwu i działaniu systemów. Dlatego tak ważne jest, żeby dokładnie rozumieć, jak działają te elementy, żeby uniknąć pomyłek.

Pytanie 2

Po programowym aktywowaniu czterech wyjść tranzystorowych w sterowniku PLC, które sterują cewkami elektrozaworów, stwierdzono, że nie wszystkie działają poprawnie. Pomiar napięcia UBE (między bazą a emiterem) tranzystorów na poszczególnych wyjściach wykazał następujące wartości: UBE1 = 1 V, UBE2 = 3 V, UBE3 = 0,7 V, UBE4 = 5 V. Wyniki pomiarów sugerują uszkodzenie

A. tranzystorów na wyjściach 2 i 4
B. wyłącznie tranzystora na wyjściu 4
C. wyłącznie tranzystora na wyjściu 3
D. tranzystorów na wyjściach 1 i 3
Widzisz, tu pojawiają się błędy przy analizie problemu, które mogą prowadzić do mylnych diagnoz dotyczących tranzystorów. Z tych pomiarów wynika, że U<sub>BE1</sub> ma tylko 1 V, co oznacza, że tranzystor na wyjściu 1 raczej nie działa prawidłowo, ale to nie znaczy, że jest zepsuty. Zmniejszone napięcie U<sub>BE</sub> na 1 V raczej sugeruje, że tranzystor nie jest na pełnym włączeniu. A jeśli chodzi o wyjście 3, to 0,7 V to całkiem w porządku wartość i nie możemy mówić o uszkodzeniu. Dodatkowo, wskazywanie na problem z wyjściem 2 przy napięciu 3 V, zapominając o tym, że to może być efekt złego podłączenia lub niepoprawnej konfiguracji obwodu, to też nie jest dobre podejście. W takich sytuacjach lepiej spojrzeć na cały układ, nie tylko na jedno wyjście. Przy diagnozowaniu tranzystorów ważne jest, żeby rozumieć, jak różne napięcia wpływają na ich działanie oraz potrafić dobrze interpretować wyniki pomiarów w kontekście całości systemu. W praktyce warto korzystać z dokumentacji technicznej i standardów, żeby trafnie znaleźć źródło problemu i wiedzieć, jak go naprawić.

Pytanie 3

Czy rdzenie maszyn elektrycznych produkuje się z stali?

A. chromowych
B. chromowo-krzemowych
C. krzemowo-manganowych
D. krzemowych
Wybór stali chromowej, chromowo-krzemowej czy krzemowo-manganowej jako materiałów rdzeniowych dla maszyn elektrycznych świadczy o pewnym nieporozumieniu w kwestii zastosowania materiałów ferromagnetycznych. Stal chromowa, choć charakteryzująca się wysoką odpornością na korozję, nie jest optymalnym materiałem dla rdzeni magnetycznych ze względu na wysokie straty magnetyczne, które prowadzą do obniżenia efektywności energetycznej urządzeń. Z kolei stal chromowo-krzemowa, mimo że zawiera krzem, nie ma takich samych właściwości magnetycznych jak czysta stal krzemowa, co ogranicza jej zastosowanie w maszynach elektrycznych. Dodatkowo, stal krzemowo-manganowa również nie jest odpowiednia, gdyż mangan wpływa na właściwości magnetyczne w sposób negatywny, zwiększając straty energii. W praktyce, używanie tych rodzajów stali może prowadzić do problemów z wydajnością i przegrzewaniem się urządzeń, co jest sprzeczne z zasadami projektowania efektywnych maszyn elektrycznych. Kluczowe jest zrozumienie, że dobór odpowiednich materiałów w inżynierii elektrycznej nie jest przypadkowy, lecz oparty na szczegółowych badaniach właściwości fizycznych i chemicznych materiałów. Prawidłowe zrozumienie właściwości materiałów oraz ich zastosowania jest kluczowe dla projektowania nowoczesnych urządzeń elektrycznych, a wybór stali krzemowej jako materiału rdzeniowego jest potwierdzony przez liczne standardy branżowe.

Pytanie 4

Do montażu pneumatycznego zaworu rozdzielającego za pomocą wkrętu przedstawionego na rysunku należy użyć wkrętaka typu

Ilustracja do pytania
A. Tri-Wing.
B. Torx.
C. Pozidriv.
D. Philips.
Odpowiedź "Tri-Wing" to strzał w dziesiątkę! Gniazdo wkrętu na zdjęciu super pasuje do wkrętaka Tri-Wing. Te wkręty mają trzy skrzydła, co daje lepsze dopasowanie i kontrolę podczas wkręcania. To bardzo ważne, zwłaszcza w aplikacjach pneumatycznych, gdzie wszystko musi być precyzyjnie zamocowane, żeby działało jak należy. Używanie wkrętaka Tri-Wing do montażu pneumatycznego zaworu rozdzielającego to dobry wybór, bo pozwala na skuteczne przenoszenie momentu obrotowego, a przy tym nie ryzykuje się uszkodzenia gniazda. Wkrętaki Tri-Wing często można spotkać w elektronice i w różnych konstrukcjach mechanicznych, gdzie precyzja to podstawa. Warto zawsze dobierać odpowiednie narzędzie do danego wkrętu, bo to zgodne z najlepszymi praktykami inżynieryjnymi, a wpływa to na wydajność pracy i bezpieczeństwo.

Pytanie 5

Ile napędów jest zastosowanych w manipulatorze, którego schemat przedstawiono na rysunku?

Ilustracja do pytania
A. 6 napędów.
B. 3 napędy.
C. 5 napędów.
D. 4 napędy.
Odpowiedzi 3, 5 oraz 6 napędów są wynikiem nieprawidłowego rozumienia ilości elementów napędowych w manipulatorze. Niektórzy mogą zinterpretować schemat w sposób, który prowadzi do błędnych wniosków, skupiając się na złożoności układu, a nie na jego rzeczywistych komponentach napędowych. Na przykład, odpowiedź 3 napędy może wynikać z pomyłkowego pominięcia jednego z siłowników lub silnika. Takie zapomnienie może być efektem ogólnego zrozumienia struktur mechanicznych, gdzie niektóre elementy wydają się mniej istotne. Z kolei w przypadku odpowiedzi 5 napędów, możliwe, że dochodzi do mylnego dodania innego elementu, który nie jest napędem, np. przekładni. Odpowiedź 6 napędów sugeruje, że użytkownik może mieć na uwadze dodatkowe komponenty, które jednak nie są napędami w sensie mechanicznym. To prowadzi do typowego błędu myślowego, w którym złożoność układu jest mylona z ilością funkcjonalnych napędów. W branży automatyki kluczowe jest dokładne rozumienie poszczególnych elementów oraz ich funkcji w systemie, co pozwala na efektywne projektowanie i implementację rozwiązań, które są zgodne z najlepszymi praktykami inżynierskimi.

Pytanie 6

Która z wymienionych nieprawidłowości może powodować zbyt częste uruchamianie się silnika sprężarki tłokowej?

A. Brak smarowania powietrza
B. Defekt silnika sprężarki
C. Nieszczelność w przewodach pneumatycznych
D. Zabrudzony filtr powietrza
Zanieczyszczony filtr powietrza, uszkodzony silnik sprężarki oraz brak olejenia powietrza to kwestie, które mogą wpływać na wydajność i sprawność sprężarki, ale nie są bezpośrednio przyczyną zbyt częstego załączania się jej silnika. Zanieczyszczony filtr powietrza ogranicza przepływ powietrza do sprężarki, co może prowadzić do spadku efektywności, jednak nie wpływa na częstotliwość załączania się silnika. Wręcz przeciwnie, może to powodować jego dłuższe działanie w jednym cyklu, a nie zwiększać ilość cykli włączania. Uszkodzony silnik sprężarki może powodować wiele problemów, w tym niestabilną pracę, ale najczęściej skutkuje to całkowitym zatrzymaniem urządzenia, a nie częstszymi włączeniami. Z kolei brak olejenia powietrza prowadzi do zwiększonego zużycia i przegrzewania się elementów sprężarki, co może wymagać częstszej interwencji serwisowej, ale nie jest bezpośrednią przyczyną częstego włączania się silnika. W praktyce te nieprawidłowości mogą prowadzić do awarii sprężarki, ale nie generują one sytuacji, w której silnik włącza się nadmiernie. Typowe błędy myślowe dotyczące tych problemów często wynikają z niepełnego zrozumienia działania sprężarki oraz jej komponentów, co podkreśla konieczność solidnej wiedzy na temat systemów pneumatycznych i ich konserwacji.

Pytanie 7

Na rysunku przedstawiono wykres zależności sygnału wyjściowego od wielkości regulowanej (temperatury) regulatora

Ilustracja do pytania
A. impulsowego.
B. dwustanowego.
C. trójstanowego.
D. ciągłego.
Regulator dwustanowy charakteryzuje się tym, że jego wyjście może przyjmować jedynie dwa stany: włączony (1) lub wyłączony (0). W przedstawionym wykresie, sygnał wyjściowy zmienia się z 0 na 1 przy osiągnięciu temperatury 100°C, a następnie wraca do 0 po przekroczeniu kolejnej wartości 150°C. Takie zachowanie jest typowe dla regulatorów stosowanych w prostych aplikacjach, takich jak sterowanie grzałkami, klimatyzatorami czy systemami ogrzewania, gdzie istotne jest utrzymanie temperatury w określonych granicach. W praktyce, zastosowanie regulatorów dwustanowych pozwala na prostotę konstrukcji oraz łatwość w implementacji systemów automatyki. W kontekście standardów branżowych, regulator dwustanowy spełnia wymagania normy IEC 61131 dotyczącej programowalnych kontrolerów logicznych, co zapewnia jego uniwersalność i niezawodność w różnych zastosowaniach przemysłowych. Dodatkowo, jego prostota w konfiguracji czyni go popularnym wyborem w systemach HVAC, gdzie szybkość reakcji na zmiany temperatury jest kluczowa dla efektywności energetycznej.

Pytanie 8

Instalacje pneumatyczne powinny być montowane pod lekkim kątem wznoszącym, aby ułatwić

A. odfiltrowanie cząstek stałych z powietrza
B. rozbijanie kropli oleju strumieniem sprężonego powietrza
C. rozchodzenie się mgły olejowej w instalacji
D. spływ kondensatu wodnego do najniższego punktu instalacji
Odpowiedź dotycząca spływu kondensatu wodnego do najniższego punktu instalacji jest poprawna, ponieważ odpowiednie nachylenie instalacji pneumatycznych jest kluczowe dla efektywnego zarządzania kondensatem. W instalacjach wykorzystujących sprężone powietrze, wilgoć ma tendencję do skraplania się w chłodniejszych miejscach, co prowadzi do powstawania kondensatu. Utrzymywanie niewielkiego kąta wznoszącego pozwala na naturalny spływ kondensatu do wyznaczonych punktów odprowadzających, co minimalizuje ryzyko osadzania się wody w rurach. Praktyczne przykłady skutecznego zarządzania kondensatem można znaleźć w branżach takich jak przemysł spożywczy czy farmaceutyczny, gdzie odpowiednie odprowadzanie wody jest kluczowe dla zachowania jakości produktu. Normy branżowe, takie jak ISO 8573, podkreślają znaczenie zarządzania jakością powietrza sprężonego, co obejmuje również kontrolę kondensatu, co dodatkowo uzasadnia konieczność stosowania odpowiedniego nachylenia rur.

Pytanie 9

Co znaczy zaświecenie czerwonej diody oznaczonej skrótem BATF na panelu kontrolnym sterownika PLC?

A. Tryb funkcjonowania CPU
B. Tryb wstrzymania CPU
C. Brak baterii podtrzymującej zasilanie
D. Potrzeba zmian w parametrach programu
Wybierając odpowiedzi dotyczące trybów pracy CPU czy konieczności zmiany parametrów programu, można łatwo dojść do nieporozumień, które mogą wpływać na sposób, w jaki użytkownicy interpretują komunikaty sygnalizacyjne w sterownikach PLC. Tryb pracy CPU odnosi się do stanu, w którym procesor kontroluje różne operacje w systemie, a informacja o trybie zatrzymania CPU dotyczy momentu, gdy urządzenie nie wykonuje żadnych operacji. Obie te odpowiedzi są mylące, gdyż nie odnoszą się do problemu zasilania i nie wskazują na rzeczywistą przyczynę zamknięcia systemu. Stwierdzenie, że zaświecenie diody BATF oznacza konieczność zmiany parametrów programu, także może prowadzić do błędnych działań operacyjnych. Zmiana parametrów wymaga przemyślanej analizy i często nie wiąże się bezpośrednio z problemami zasilania. Użytkownicy mogą mylnie zakładać, że problemy związane z diodą oznaczają konieczność dostosowania ustawień, co w rzeczywistości może prowadzić do dalszych komplikacji w działaniu systemu. Kluczowe jest zrozumienie, że komunikaty diodowe na panelu sygnalizacyjnym są zaprojektowane do bezpośredniego informowania o konkretnych problemach, a ich interpretacja powinna się skupiać na podstawowych funkcjach urządzenia, takich jak podtrzymywanie pamięci przez baterię.

Pytanie 10

~230V Zadaniem kondensatora C1 w układzie, którego schemat przedstawiono na rysunku, jest

Ilustracja do pytania
A. zmiana przebiegu napięcia wyjściowego z jednopołówkowego na dwupołówkowy.
B. zmniejszenie tętnień.
C. stabilizacja sygnału na wyjściu układu.
D. zmiana przebiegu napięcia wyjściowego z dwupołówkowego na jednopołówkowy.
Kondensator C1 w analizowanym układzie ma kluczową rolę w procesie wygładzania napięcia wyjściowego. Po prostowaniu sygnału, napięcie wyjściowe charakteryzuje się obecnością tętnień, które mogą wpływać na działanie innych komponentów układu elektronicznego. Kondensator działa jako element filtrujący, gromadząc ładunek elektryczny w momentach wzrostu napięcia i oddając go w trakcie jego spadku. To zjawisko pozwala na uzyskanie bardziej stabilnego i jednolitego napięcia, co jest kluczowe w wielu zastosowaniach, takich jak zasilacze impulsowe, układy audio czy systemy zasilania dla mikroprocesorów. W praktyce, dobór odpowiedniego kondensatora, uwzględniającego wartość pojemności oraz napięcie znamionowe, jest istotny dla zapewnienia efektywnego wygładzania. Standardy branżowe, takie jak IEC 60950, podkreślają znaczenie odpowiednich rozwiązań filtracyjnych dla zwiększenia niezawodności działania układów elektronicznych, co czyni tę wiedzę niezbędną dla inżynierów projektujących układy elektroniczne.

Pytanie 11

Izolacja w kolorze niebieskim jest używana dla kabli

A. fazowych
B. ochronnych
C. neutralnych
D. sygnałowych
Izolacja niebieska w instalacjach elektrycznych jest standardowo stosowana dla przewodów neutralnych. W praktyce oznaczenie kolorystyczne przewodów ma na celu zabezpieczenie przed błędami w podłączeniach i zwiększenie bezpieczeństwa użytkowników. Przewód neutralny, zazwyczaj oznaczony kolorem niebieskim, pełni kluczową rolę w obwodach elektrycznych, umożliwiając powrót prądu do źródła zasilania. Zgodnie z normami międzynarodowymi, takimi jak IEC 60446, stosowanie jednolitych kolorów dla przewodów ma na celu ułatwienie identyfikacji ich funkcji oraz minimalizację ryzyka nieprawidłowego podłączenia. W praktyce, w przypadku domowych instalacji elektrycznych, przewody neutralne są często wykorzystywane w obwodach oświetleniowych i gniazdkowych, co sprawia, że ich prawidłowe oznaczenie jest kluczowe dla bezpieczeństwa oraz zgodności z przepisami budowlanymi. Właściwe stosowanie kolorów w identyfikacji przewodów jest istotnym elementem w pracy elektryków i instalatorów, co podkreśla znaczenie standardów w tej dziedzinie.

Pytanie 12

W układzie cyfrowym, którego strukturę i stany logiczne przedstawiono na rysunku, wskaż która bramka nie działa prawidłowo.

Ilustracja do pytania
A. Bramka C.
B. Bramka B.
C. Bramka D.
D. Bramka A.
Bramka B jest rzeczywiście jedynym elementem układu, który wykazuje nieprawidłowe działanie. W przypadku bramki AND, która przyjmuje dwa wejścia, oczekiwany wynik logiczny przy stanie 0 i 1 na wejściu powinien wynosić 0. Jednak w analizowanym schemacie odnotowano, że na wyjściu bramki B uzyskano wynik 1, co jest niezgodne z podstawowymi zasadami działania tej bramki. W praktycznych zastosowaniach, takich jak projektowanie układów cyfrowych i systemów logicznych, niezwykle istotne jest, aby każdy komponent działał zgodnie ze swoimi specyfikacjami. Zrozumienie logiki działania bramek i umiejętność diagnozowania ich awarii jest kluczowa, szczególnie w kontekście budowy wydajnych systemów elektronicznych. W przypadku wykrycia błędów należy zawsze przeprowadzić dokładną analizę schematu oraz wyników wyjściowych, aby zidentyfikować przyczynę problemów oraz dokonać odpowiednich poprawek. Użycie symulatorów logicznych również może być bardzo pomocne w wizualizacji działania poszczególnych bramek, co pozwala na lepsze zrozumienie ich funkcji.

Pytanie 13

Którą śrubę należy wkręcać przy pomocy przedstawionej końcówki?

Ilustracja do pytania
A. C.
B. D.
C. A.
D. B.
Wybór niewłaściwej odpowiedzi na to pytanie może prowadzić do poważnych nieporozumień w zakresie użycia narzędzi i ich zastosowań. Śruby oznaczone literami A i B również mają nacięcia krzyżowe, ale różnią się one w kształcie główki, co wpływa na sposób ich wkręcania. W przypadku gdyby użytkownik wybrał śrubę A lub B, mogłoby to sugerować, że nie rozumie różnic między różnymi typami nacięć w śrubach, co jest kluczową kwestią w praktycznym zastosowaniu narzędzi. Ponadto, wybór śruby D, z sześciokątnym nacięciem, może świadczyć o braku znajomości podstawowych standardów dotyczących narzędzi montażowych. Właściwe dopasowanie końcówki narzędzia do nacięcia śruby jest istotnym aspektem w zapewnieniu efektywności pracy oraz bezpieczeństwa użytkowania. Użycie niewłaściwego narzędzia może prowadzić do uszkodzenia elementów, co z kolei może narazić na niebezpieczeństwo zarówno użytkownika, jak i konstrukcję. Ważne jest, aby przy wkręcaniu śrub zawsze dobierać odpowiednią końcówkę do nacięcia, a także znać różnice między poszczególnymi typami nacięć, aby uniknąć nieprawidłowych operacji, które mogą skutkować nieodwracalnymi uszkodzeniami. Praktyczne zastosowanie wiedzy w tym zakresie jest kluczowe w każdej dziedzinie, w której montaż i demontaż elementów są na porządku dziennym.

Pytanie 14

Prąd jałowy transformatora wynosi około 10% prądu znamionowego. Aby precyzyjnie zmierzyć prąd jałowy transformatora o parametrach SN = 2300 VA, U1N = 230 V, U2N = 10 V, należy zastosować amperomierz prądu przemiennego o zakresie pomiarowym

A. 3,6 A
B. 15,0 A
C. 1,2 A
D. 0,6 A
Wybór amperomierza o zakresie 15,0 A, 0,6 A lub 3,6 A nie jest odpowiedni do pomiaru prądu jałowego transformatora. Prąd jałowy wynoszący około 1 A z całą pewnością nie zostanie należycie odzwierciedlony w przypadku użycia amperomierza o zbyt dużym zakresie, jak 15 A. Taki amperomierz może nie mieć wystarczającej precyzji i w niektórych przypadkach może nie być w stanie wykryć tak małych wartości prądu, co prowadzi do błędnych odczytów oraz możliwości nieodpowiedniej analizy stanu technicznego transformatora. Z drugiej strony, wybór amperomierza o zakresie 0,6 A lub 3,6 A również jest nieodpowiedni, ponieważ nie zapewniają one wystarczającego marginesu dla, co może prowadzić do uszkodzenia urządzenia pomiarowego. Często popełnianym błędem jest założenie, że amperomierz z najwyższym zakresem pomiarowym jest najlepszym rozwiązaniem, co jest nieprawdziwe. W praktyce, stosowanie urządzeń pomiarowych z zakresami, które są zbyt oddalone od rzeczywistych wartości prądów może prowadzić do nieefektywnych pomiarów oraz wprowadzać w błąd, co do stanu technicznego systemu. Dlatego tak ważne jest uwzględnienie dokładnych parametrów transformatora i wymagań pomiarowych przy wyborze odpowiedniego sprzętu, co jest zgodne z najlepszymi praktykami inżynierskimi.

Pytanie 15

Na rysunku zamieszczono symbol graficzny

Ilustracja do pytania
A. przekaźnika.
B. wyłącznika silnikowego.
C. ochronnika przeciwprzepięciowego.
D. stycznika.
W przypadku odpowiedzi wskazujących na stycznik, przekaźnik lub ochronnik przeciwprzepięciowy, warto zauważyć, że te urządzenia pełnią zupełnie inne funkcje. Stycznik, na przykład, jest używany do zdalnego włączania i wyłączania obwodów elektrycznych, ale nie chroni silników przed przeciążeniem czy zwarciem. Przekaźnik z kolei działa na zasadzie automatycznego przełączania obwodów w odpowiedzi na zmiany w parametrach elektrycznych, ale również nie oferuje zabezpieczeń, które zapewnia wyłącznik silnikowy. Ochronnik przeciwprzepięciowy natomiast ma na celu ochronę urządzeń elektrycznych przed przepięciami, ale nie ma nic wspólnego z funkcjami sterowania silnikami, jakie oferuje wyłącznik silnikowy. Błędne podejście do rozumienia symboli graficznych może prowadzić do poważnych konsekwencji w instalacjach elektrycznych. W obwodach, gdzie są stosowane silniki elektryczne, kluczowym jest, aby wybrać odpowiednie urządzenie zabezpieczające, takie jak wyłącznik silnikowy, które może wykryć i zareagować na niebezpieczne warunki. Ignorowanie tych różnic oraz mylenie funkcji tych urządzeń może prowadzić do uszkodzenia sprzętu oraz narazić użytkowników na niebezpieczeństwo. W związku z tym istotne jest, aby zrozumieć nie tylko działanie poszczególnych elementów, ale także ich rolę w szerszym kontekście systemów sterowania i bezpieczeństwa.

Pytanie 16

Technik, podczas naprawy urządzenia mechatronicznego, doznał porażenia prądem elektrycznym, upadł na ziemię i przestał oddychać. Osoba udzielająca pierwszej pomocy powinna zainicjować działania ratunkowe?

A. po wezwaniu pomocy medycznej
B. po poinformowaniu osoby przełożonej
C. po upływie kilkunastu sekund, sprawdzając w tym czasie tętno
D. natychmiastowo i kontynuować do momentu przybycia ratownika medycznego
Odpowiedź, że osoba udzielająca pomocy powinna niezwłocznie podjąć akcję ratunkową i prowadzić ją do przybycia ratownika medycznego, jest poprawna z kilku powodów. W sytuacji, gdy pracownik jest porażony prądem i stracił przytomność, czas jest kluczowy. Niezwłoczna interwencja może uratować życie, a każdy opóźnienie zwiększa ryzyko poważnych konsekwencji zdrowotnych. Zgodnie z wytycznymi Europejskiej Rady Resuscytacji (ERC), pierwsza pomoc powinna być udzielana jak najszybciej, aby zapewnić dostęp do oddechu i krążenia. Należy ocenić sytuację, zabezpieczyć miejsce zdarzenia oraz sprawdzić, czy osoba jest przytomna. Jeśli nie oddycha, konieczne jest rozpoczęcie resuscytacji krążeniowo-oddechowej (RKO), a jednocześnie należy wezwać pomoc medyczną. Przykładowo, w przypadku porażenia prądem elektrycznym, istotne jest również upewnienie się, że źródło prądu zostało odłączone, aby uniknąć dalszego zagrożenia. Działania te są zgodne z najlepszymi praktykami w zakresie pierwszej pomocy i podkreślają znaczenie szybkiej reakcji w sytuacjach zagrożenia życia.

Pytanie 17

Jakim symbolem literowym określa się zmienną wyjściową w sterowniku PLC?

A. I
B. T
C. Q
D. R
Odpowiedź Q jest poprawna, ponieważ w systemach programowalnych sterowników logicznych (PLC) zmienne wyjściowe oznaczane są właśnie tym symbolem. Wyjścia są sygnałami, które sterownik generuje na podstawie przetworzonych danych wejściowych oraz zaimplementowanych algorytmów. Standardowe oznaczenia w programowaniu PLC opierają się na konwencjach przyjętych w branży, gdzie 'I' oznacza wejścia (Input), 'Q' wyjścia (Output), 'R' jest często używane dla rejestrów, a 'T' odnosi się do timerów. Przykładem zastosowania zmiennych wyjściowych jest kontrola urządzeń wykonawczych, takich jak silniki, siłowniki czy zawory. Na przykład, w prostym procesie automatyzacji, sygnał wyjściowy Q0.0 może być użyty do włączania lub wyłączania silnika w odpowiedzi na warunki zdefiniowane przez czujniki wejściowe. Zrozumienie tych oznaczeń jest kluczowe dla efektywnego programowania i diagnostyki systemów automatyki przemysłowej, co jest zgodne z normami IEC 61131-3, które definiują struktury programowania w PLC.

Pytanie 18

Jaką metodę łączenia materiałów powinno się wybrać do skrzyżowania elementów ze stali nierdzewnej i mosiądzu?

A. Lutowanie twarde
B. Zgrzewanie
C. Sklejanie
D. Lutowanie miękkie
Lutowanie twarde jest optymalną techniką łączenia stali nierdzewnej i mosiądzu ze względu na różnice w temperaturze topnienia tych materiałów oraz ich właściwościach mechanicznych. Lutowanie twarde polega na stosowaniu lutów o temperaturze topnienia powyżej 450 °C, co pozwala na skuteczne tworzenie połączeń o wysokiej wytrzymałości. W przypadku stali nierdzewnej i mosiądzu lutowanie twarde jest szczególnie ważne, ponieważ oba materiały różnią się nie tylko składem chemicznym, ale również współczynnikiem rozszerzalności cieplnej. Lutowanie twarde zapewnia dobre wypełnienie szczelin oraz pozwala na uzyskanie mocnych połączeń, które są odporne na korozję, co ma kluczowe znaczenie w zastosowaniach inżynieryjnych i przemysłowych. Przykłady zastosowania lutowania twardego to produkcja sprzętu medycznego, elementów hydraulicznych oraz instalacji przemysłowych, gdzie wymagana jest trwałość i odporność na wysokie temperatury. Zastosowanie tej techniki w zgodzie z odpowiednimi normami, takimi jak PN-EN 1045, zapewnia jakość oraz niezawodność wykonanych połączeń.

Pytanie 19

Na podstawie przedstawionej tabliczki znamionowej transformatora wskaż zależność, która określa jego przekładnię napięciową.

Ilustracja do pytania
A. Ku=12/0,83
B. Ku=12/230
C. Ku=230/12
D. Ku=80/0,83
Odpowiedź Ku=230/12 jest poprawna, ponieważ przekładnia napięciowa transformatora jest definiowana jako stosunek napięcia na uzwojeniu pierwotnym do napięcia na uzwojeniu wtórnym. W przypadku tego konkretnego transformatora, napięcie pierwotne wynosi 230V, a napięcie wtórne wynosi 12V. Dlatego, stosując wzór Ku = U1/U2, uzyskujemy wartości 230V/12V, co daje przekładnię 230/12. Przekładnia ta jest kluczowa w projektowaniu systemów zasilania, ponieważ pozwala określić, jak zmienia się napięcie w transformatorze. W praktyce, odpowiednia przekładnia napięciowa jest istotna dla zapewnienia, że urządzenia zasilane z transformatora działają w optymalnych warunkach. Na przykład, w instalacjach oświetleniowych oraz w systemach zasilania różnego rodzaju urządzeń elektronicznych, znajomość przekładni napięciowej pozwala inżynierom na właściwe dobieranie transformatorów do konkretnych aplikacji, co jest zgodne z najlepszymi praktykami w dziedzinie elektrotechniki i elektroniki.

Pytanie 20

Fotorezystor, o charakterystyce jak na rysunku, zastosowany w układzie do pomiaru natężenia oświetlenia, przy natężeniu 1000 lx ma rezystancję wynoszącą około

Ilustracja do pytania
A. 100 kΩ
B. 100 Ω
C. 10 kΩ
D. 10 Ω
Odpowiedź jest słuszna, ponieważ wynika z analizy charakterystyki fotorezystora, która pokazuje zależność rezystancji od natężenia oświetlenia. W praktyce, przy natężeniu 1000 lx, rezystancja wynosi około 100 Ω. Fotorezystory są szeroko stosowane w różnych aplikacjach, takich jak automatyka domowa, oświetlenie zewnętrzne i systemy detekcji światła. Przykładem może być układ, w którym fotorezystor steruje włączaniem lub wyłączaniem oświetlenia w zależności od poziomu światła dziennego. W branży stosuje się również standardy, które określają charakterystyki takich elementów, aby zapewnić ich niezawodność i wydajność w zastosowaniach inżynieryjnych. Właściwe zrozumienie działania fotorezystorów jest kluczowe dla projektowania efektywnych układów elektronicznych, które reagują na zmiany w natężeniu oświetlenia.

Pytanie 21

Na której ilustracji przedstawiono prawidłowe zaciśnięcie końcówki przewodu w obszarze z izolacją?

Ilustracja do pytania
A. Na ilustracji 3.
B. Na ilustracji 2.
C. Na ilustracji 4.
D. Na ilustracji 1.
Prawidłowe zaciśnięcie końcówki przewodu w obszarze z izolacją, przedstawione na ilustracji 4, jest kluczowe dla zapewnienia trwałego i bezpiecznego połączenia elektrycznego. Na tej ilustracji widać, że zacisk obejmuje zarówno izolację, jak i przewody, co jest zgodne z najlepszymi praktykami w branży. Takie podejście zapobiega odsłonięciu przewodów, co mogłoby prowadzić do zwarć lub uszkodzeń. Prawidłowe zaciśnięcie jest również zgodne z normami, takimi jak IEC 60947, które definiują wymagania dla urządzeń i elementów stosowanych w instalacjach elektrycznych. Prawidłowo wykonane połączenie gwarantuje nie tylko bezpieczeństwo, ale także efektywność działania instalacji. W praktyce, zapewnienie odpowiedniego zacisku może wpłynąć na żywotność urządzeń oraz zmniejszenie ryzyka awarii. Dlatego istotne jest, aby osoby zajmujące się instalacjami elektrycznymi miały świadomość tych standardów oraz umiejętność ich stosowania w codziennej pracy, co przyczynia się do ogólnego bezpieczeństwa i jakości instalacji elektrycznych.

Pytanie 22

Która budowa siłownika hydraulicznego umożliwia uzyskanie największego skoku przy niewielkiej długości cylindra?

A. Tłokowa z jednostronnym tłoczyskiem
B. Nurnikowa
C. Teleskopowa
D. Tłokowa z dwustronnym tłoczyskiem
Konstrukcje teleskopowe siłowników hydraulicznych charakteryzują się tym, że składają się z kilku cylindrów, które są wciągane jeden w drugi. Dzięki temu, nawet przy stosunkowo krótkiej długości całkowitej, teleskopowe siłowniki mogą osiągnąć znaczny skok. Jest to szczególnie przydatne w zastosowaniach, gdzie przestrzeń jest ograniczona, a wymagana jest duża ruchomość, na przykład w dźwigach, podnośnikach czy maszynach budowlanych. Teleskopowe siłowniki są często wykorzystywane w przemyśle, gdzie zaawansowane rozwiązania hydrauliczne są wymagane do efektywnej pracy. W standardach branżowych, takich jak ISO 6022, podkreśla się znaczenie teleskopowych siłowników w kontekście ich zdolności do pracy w ograniczonej przestrzeni, co czyni je niezastąpionymi w wielu zastosowaniach. W praktyce, przy odpowiednim doborze materiałów oraz technologii produkcji, teleskopowe siłowniki mogą pracować z dużymi obciążeniami i przy wysokich ciśnieniach, co zapewnia ich trwałość i niezawodność.

Pytanie 23

W skład systemu do przygotowania sprężonego powietrza nie wchodzi

A. sprężarka
B. reduktor ciśnienia
C. smarownica
D. filtr powietrza
Sprężarka jest kluczowym elementem systemu sprężonego powietrza, odpowiedzialnym za podnoszenie ciśnienia powietrza poprzez kompresję. Jej głównym zadaniem jest wytwarzanie sprężonego powietrza, które jest następnie wykorzystywane w różnych procesach przemysłowych, takich jak zasilanie narzędzi pneumatycznych, transport materiałów czy systemy chłodzenia. W praktyce, sprężarki mogą mieć różne typy, w tym sprężarki tłokowe, śrubowe i membranowe, każdy z nich dostosowany do specyficznych zastosowań. Standardy branżowe, takie jak ISO 8573, definiują wymagania dotyczące jakości sprężonego powietrza, co podkreśla znaczenie sprężarki w zapewnieniu czystości i efektywności systemu. W odpowiedzi na potrzeby przemysłowe, sprężarki są często integrowane z dodatkowymi komponentami, takimi jak filtry, reduktory ciśnienia i smarownice, które wspomagają utrzymanie odpowiednich parametrów pracy systemu, jednak same w sobie nie należą do zespołu przygotowania sprężonego powietrza.

Pytanie 24

Jakie medium powinno być użyte do łączenia systemów komunikacyjnych w obiekcie przemysłowym, gdzie występują znaczące zakłócenia elektromagnetyczne?

A. Sygnał radiowy
B. Światłowód
C. Kabel telefoniczny
D. Kabel UTP
Zakłócenia elektromagnetyczne stanowią poważny problem w komunikacji, zwłaszcza w środowiskach przemysłowych. Wybór niewłaściwego medium do transmisji danych w takich warunkach może prowadzić do poważnych problemów z jakością sygnału i stabilnością połączeń. Sygnał radiowy, mimo swojej elastyczności, jest bardzo podatny na zakłócenia, co czyni go nieodpowiednim wyborem w miejscach o dużym natężeniu ruchu elektromagnetycznego. Zasięg i jakość sygnału radiowego są często ograniczone przez przeszkody, co może skutkować spadkiem wydajności komunikacji. Kabel UTP, chociaż popularny w wielu zastosowaniach, również cierpi z powodu zakłóceń elektromagnetycznych, ponieważ działa na zasadzie przesyłania sygnału elektrycznego. W środowiskach z silnymi zakłóceniami może wystąpić zjawisko crosstalk, które prowadzi do utraty danych i błędów w komunikacji. Kabel telefoniczny, podobnie jak UTP, jest również narażony na te problemy, a jego zastosowanie w halach przemysłowych może skutkować niestabilnością połączeń. Warto pamiętać, że standardy branżowe, takie jak ANSI/TIA-568, podkreślają znaczenie właściwego doboru medium w zależności od warunków pracy, co w przypadku silnych zakłóceń jednoznacznie wskazuje na światłowód jako najlepsze rozwiązanie.

Pytanie 25

Tensomer foliowy powinien być zamocowany do podłoża

A. śrubą
B. nitem
C. zszywką
D. klejem
Mocowanie tensomera foliowego za pomocą nitów, zszywek czy śrub to raczej kiepski pomysł. Nity i zszywki są popularne, ale nie dają tej elastyczności, jakiej potrzebuje folia. Jak zmieniają się temperatury i wilgotność, to folia się kurczy albo rozciąga, a sztywne mocowania mogą spowodować pęknięcia. A śruby to już w ogóle mogą przebić folię, co osłabia jej właściwości. W branży zaleca się, żeby mocowanie folii było wykonane w taki sposób, by zminimalizować ryzyko uszkodzeń. Lepiej iść w sprawdzone metody, jak klejenie, bo to nie tylko zwiększa efektywność, ale i przedłuża żywotność materiałów, a to jest istotne, jeśli chodzi o koszty użytkowania. Więc lepiej się trzymać tych lepszych rozwiązań, a nie wymyślać coś na szybko.

Pytanie 26

Na przedstawionym rysunku elementem wykonawczym jest

Ilustracja do pytania
A. siłownik dwustronnego działania.
B. zawór rozdzielający 4/2.
C. siłownik jednostronnego działania.
D. zawór rozdzielający 1/3.
Wybór błędnej odpowiedzi wynika często z niepełnego zrozumienia budowy i zasad działania elementów hydraulicznych. Siłownik jednostronnego działania, który został wymieniony, ma jeden przewód hydrauliczny, co ogranicza jego funkcjonalność do generowania ruchu tylko w jedną stronę. Tego typu siłownik jest używany w prostszych aplikacjach, gdzie nie jest wymagana kontrola ruchu w dwóch kierunkach. Z kolei zawór rozdzielający 4/2 lub 1/3 to zupełnie inne komponenty, które służą do kierowania przepływem cieczy w układzie hydraulicznym, a nie do wykonania ruchu. Zawory te są kluczowe w systemach, gdzie zachodzi potrzeba zmiany kierunku przepływu, ale nie działają jako elementy wykonawcze. Dlatego też pomyłka w rozpoznaniu ich funkcji może prowadzić do nieefektywnego projektowania układów hydraulicznych. Często błędne wybory wynikają z braku znajomości rysunków technicznych oraz symboliki stosowanej w hydraulice. Zrozumienie różnic pomiędzy tymi komponentami jest kluczowe dla efektywnego projektowania i eksploatacji systemów hydraulicznych, co jest zgodne z najlepszymi praktykami w branży.

Pytanie 27

Do połączeń spoczynkowych trwałych nie wlicza się

A. nitowania
B. spawania
C. klejenia
D. kołkowania
Kołkowanie to technika łączenia elementów, która nie tworzy połączeń spoczynkowych nierozłącznych. W przeciwieństwie do spawania, klejenia czy nitowania, kołkowanie polega na wprowadzeniu kołków w otwory w elementach, co pozwala na ich łatwe zdemontowanie. To podejście jest często stosowane w konstrukcjach, gdzie wymagana jest możliwość demontażu w przyszłości, jak na przykład w budownictwie modułowym. W praktyce oznacza to, że kołkowane połączenia mogą być używane w miejscach, gdzie zachodzi potrzeba konserwacji lub wymiany komponentów bez konieczności uszkadzania całej struktury. Zgodnie z normami ISO oraz PN, kołkowanie odbywa się z zachowaniem odpowiednich tolerancji wymiarowych i materiałowych, co zapewnia ich niezawodność i bezpieczeństwo. Warto również zauważyć, że kołkowanie jest jedną z metod stosowanych w różnych branżach, w tym w motoryzacji i konstrukcjach stalowych, gdzie elastyczność w montażu jest kluczowa.

Pytanie 28

Urządzenie, którego dane techniczne przedstawiono w tabeli,

Ciecz roboczaOlej mineralny
WydajnośćDm3/min47 przy n=1450 min-1, p=1 MPa
Ciśnienie na wlocieMPa-0,02 (podciśnienie) do 0,5 (nadciśnienie)
Ciśnienie na wylocieMPamax. 10
Ciśnienie przeciekówMPamax. 0,2
Moment obrotowyNmmax. 235
Prędkość obrotowaobr/min1 000 do 1 800
Optymalna temperatura pracyK313÷338
Filtracjaμm16
A. utrzymuje stałe ciśnienie niezależnie od kierunku przepływu oleju.
B. steruje kierunkiem przepływu oleju.
C. wytwarza strumień oleju w układach i urządzeniach hydraulicznych.
D. otwiera i zamyka przepływ oleju.
Wybrana odpowiedź jest poprawna, ponieważ urządzenie opisane w tabeli to pompa hydrauliczna, która ma na celu wytwarzanie strumienia oleju w układach hydraulicznych. Wydajność na poziomie 47 dm³/min oraz ciśnienie robocze 1 MPa wskazują na typowe parametry działania pomp hydraulicznych. W praktyce, pompy te są kluczowe w wielu zastosowaniach, takich jak systemy hydrauliczne w maszynach budowlanych, pojazdach, a także w przemyśle. Dobrą praktyką jest regularne monitorowanie parametrów pracy pompy, co pozwala na wczesne wykrywanie usterek i zapewnia długotrwałą efektywność systemu. Ponadto, zgodnie z normami hydraulicznymi, ważne jest, aby pompy były dobierane do konkretnych aplikacji, co zwiększa ich wydajność i bezpieczeństwo działania.

Pytanie 29

Aby zrealizować lutowanie na płytce drukowanej, konieczne jest użycie stacji lutowniczej oraz

A. obcinacze i odsysacz
B. lampy UV i szczypce
C. obcinacze i szczypce
D. lampy UV i odsysacz
Wybór obcinaczy i odsysacza, lampy UV i szczypców, czy lampy UV i odsysacza wskazuje na niezrozumienie podstawowych narzędzi oraz procesów wymaganych do lutowania. Odsysacz jest używany głównie do usuwania nadmiaru cyny z połączeń lutowanych, jednak nie jest to element niezbędny do samego wykonania lutowania, lecz narzędzie pomocnicze, które stosuje się w przypadku błędów lub poprawy połączeń. Niezrozumienie jego roli prowadzi do błędnego wniosku, że jest on kluczowy w standardowym procesie lutowania. Lampa UV, z kolei, jest stosowana w kontekście technologii lutowania w obszarze materiałów fotooptycznych i nie ma zastosowania w tradycyjnym lutowaniu komponentów elektronicznych, które wykorzystują cynę. Zastosowanie lampy UV w tym kontekście jest zupełnie nieadekwatne, co pokazuje brak znajomości standardów lutowania oraz technologii, które są podstawą w inżynierii elektronicznej. W praktyce, poprawne zrozumienie procesu lutowania wymaga znajomości narzędzi i ich właściwego zastosowania, co jest kluczowe dla uzyskania wysokiej jakości połączeń lutowanych.

Pytanie 30

Na rysunku przedstawiono

Ilustracja do pytania
A. zabezpieczenie przeciążeniowe.
B. wyłącznik silnikowy.
C. układ antyprzepięciowy.
D. przekaźnik czasowy.
Przykładem prawidłowej odpowiedzi jest przekaźnik czasowy, którego główną funkcją jest zarządzanie czasem w procesach automatyki. Urządzenie to umożliwia opóźnienie włączenia lub wyłączenia obwodów elektrycznych, co jest kluczowe w wielu aplikacjach przemysłowych. Przekaźniki czasowe znajdują zastosowanie w automatyzacji procesów, takich jak zarządzanie oświetleniem, wentylacją czy włączanie urządzeń w odpowiednich przedziałach czasowych. Dzięki regulowanym pokrętłom do ustawiania czasu, operatorzy mogą dostosować czas działania urządzenia do specyficznych potrzeb systemu. Standardy branżowe, takie jak IEC 60947-5-1, definiują wymagania dla takich urządzeń, co zapewnia ich niezawodność i bezpieczeństwo użytkowania. Znajomość i umiejętność prawidłowego używania przekaźników czasowych jest fundamentalna w projektowaniu układów automatyki, co pozwala na efektywne wykorzystanie zasobów i redukcję kosztów operacyjnych.

Pytanie 31

Jaką metodę łączenia materiałów należy wybrać do połączenia stali nierdzewnej z mosiądzem?

A. Klejenia
B. Lutowania miękkiego
C. Zgrzewania
D. Lutowania twardego
Lutowanie twarde jest techniką łączenia, która polega na wykorzystaniu stopu o wyższej temperaturze topnienia niż w przypadku lutowania miękkiego. Jest to proces, który zapewnia silne i trwałe połączenia, co czyni go idealnym do łączenia metali o różnych właściwościach, takich jak stal nierdzewna i mosiądz. W przypadku tych dwóch materiałów, lutowanie twarde umożliwia osiągnięcie wysokiej wytrzymałości na rozciąganie oraz odporności na korozję, co jest kluczowe w aplikacjach przemysłowych. W praktyce lutowanie twarde wymaga zastosowania odpowiednich lutów, które mają podobne właściwości fizyczne i chemiczne do łączonych materiałów. Dobrą praktyką jest również precyzyjne przygotowanie powierzchni, aby zapewnić skuteczną adhezję. Lutowanie twarde jest szeroko stosowane w branży motoryzacyjnej, elektronicznej oraz w produkcji sprzętu medycznego, gdzie niezawodność połączeń jest kluczowa.

Pytanie 32

Na rysunku przedstawiono symbol graficzny siłownika pneumatycznego

Ilustracja do pytania
A. ciągnącego jednostronnego działania.
B. udarowego.
C. mieszkowego.
D. pochającego jednostronnego działania.
Poprawna odpowiedź to siłownik pneumatyczny jednostronnego działania, co jest zgodne z przedstawionym symbolem graficznym. Siłowniki jednostronnego działania są wykorzystywane w aplikacjach, gdzie potrzebna jest siła w jednym kierunku, a powrót do pozycji wyjściowej jest realizowany za pomocą sprężyny. Przykładem zastosowania takich siłowników są systemy automatyki przemysłowej, gdzie często stosuje się je do podnoszenia lub przesuwania elementów. Ich konstrukcja pozwala na efektywną pracę, zmniejszając jednocześnie zużycie energii. W branży pneumatycznej standardy, takie jak ISO 6431, definiują konkretne wymiary i parametry dla takich siłowników, co zapewnia ich wymienność oraz ułatwia projektowanie systemów. Dlatego zrozumienie symboli graficznych siłowników jest kluczowe dla inżynierów pracujących nad projektami związanymi z automatyką i pneumatyka, co podkreśla znaczenie właściwego odczytywania schematów.

Pytanie 33

Z czego wykonuje się rdzeń wirnika silnika indukcyjnego?

A. z pakietu blach elektrotechnicznych nie izolowanych od siebie
B. z litego materiału magnetycznego anizotropowego
C. z litego materiału magnetycznego izotropowego
D. z pakietu blach elektrotechnicznych wzajemnie izolowanych od siebie
Sugerowanie, że rdzeń wirnika silnika indukcyjnego można wykonać z litego materiału magnetycznego anizotropowego, jest nieprawidłowe z perspektywy inżynierii elektrycznej. Anizotropowość materiału oznacza, że jego właściwości magnetyczne są różne w różnych kierunkach, co w przypadku rdzenia wirnika byłoby niekorzystne. W silnikach indukcyjnych istotne jest, aby rdzeń miał jednorodne właściwości magnetyczne, co zapewnia optymalne zachowanie się pola magnetycznego. Lite materiały mogą prowadzić do powstawania silnych prądów wirowych, co zwiększa straty mocy i obniża efektywność silnika. Użycie pakietów blach elektrotechnicznych, które są wzajemnie izolowane, z kolei pozwala na ograniczenie tych strat. Zastosowanie litego materiału magnetycznego izotropowego nie rozwiązuje problemu strat prądów wirowych, ponieważ chociaż materiał jest jednorodny, to nadal sprzyja powstawaniu strat energetycznych poprzez generowanie prądów wirowych w strukturze. Wreszcie, wykonanie rdzenia z pakietu blach elektrotechnicznych nieizolowanych od siebie jest również nieprawidłowe. Takie podejście prowadziłoby do znacznych strat energii, a także do przegrzewania się rdzenia, co mogłoby wpłynąć na bezpieczeństwo i trwałość silnika. W przemyśle i inżynierii energetycznej stosuje się blachy elektrotechniczne o odpowiedniej grubości i właściwościach magnetycznych, aby zoptymalizować wydajność i niezawodność urządzeń elektrycznych.

Pytanie 34

Do sprawdzenia wymiaru ϕ40 należy użyć

Ilustracja do pytania
A. suwmiarki ślusarskiej.
B. liniału krawędziowego.
C. mikrometru zewnętrznego.
D. średnicówki mikrometrycznej.
Odpowiedź suwmiarka ślusarska jako narzędzie do pomiaru wymiaru φ40 jest prawidłowa z kilku powodów. Suwmiarka ślusarska to wszechstronne narzędzie pomiarowe, które umożliwia dokładne mierzenie średnic zewnętrznych, wewnętrznych oraz głębokości elementów. Jej zakres pomiarowy, często obejmujący od 0 do 150 mm lub większy, sprawia, że idealnie nadaje się do pomiaru średnicy 40 mm. Suwmiarki są powszechnie stosowane w warsztatach oraz laboratoriach metrologicznych, co czyni je standardem w branży. Dzięki zastosowaniu suwmiarki, można szybko i precyzyjnie ocenić wymiary detali, co jest kluczowe w procesach produkcji oraz kontroli jakości. Przykładem zastosowania suwmiarki w praktyce może być pomiar komponentów w przemyśle motoryzacyjnym, gdzie precyzja wymiarowa ma kluczowe znaczenie dla bezpieczeństwa i funkcjonalności pojazdów. Dodatkowo, w przypadku elementów cylindrycznych, jak wały czy tuleje, suwmiarka zapewnia łatwość w pomiarach, eliminując błędy, jakie mogą wystąpić przy użyciu mniej precyzyjnych narzędzi. Warto również nadmienić, że w metrologii obowiązują standardy, takie jak ISO 13385, które określają wymagania dotyczące narzędzi pomiarowych, w tym suwmiarki, a ich przestrzeganie jest niezbędne dla uzyskania wiarygodnych wyników.

Pytanie 35

Na schemacie symbolem 1A oznaczono

Ilustracja do pytania
A. element wykonawczy.
B. zawór rozdzielający.
C. czujniki położenia.
D. stację zasilania olejem.
Symbol 1A na schemacie oznacza element wykonawczy, którym jest siłownik pneumatyczny. Siłowniki odgrywają kluczową rolę w automatyzacji procesów przemysłowych, zamieniając energię sprężonego powietrza na ruch mechaniczny. Dzięki temu, siłowniki są szeroko stosowane w różnych aplikacjach, takich jak transport materiałów, montaż, czy pakowanie. Przykładem zastosowania siłownika może być linia montażowa, gdzie siłownik wykonawczy przemieszcza elementy w odpowiednich sekwencjach, co zwiększa efektywność produkcji. W kontekście standardów branżowych, siłowniki pneumatyczne często zgodne są z normami ISO, co zapewnia ich niezawodność i kompatybilność w różnorodnych systemach. Warto również zwrócić uwagę na wybór odpowiednich siłowników w zależności od aplikacji, co może obejmować ich rozmiar, siłę oraz rodzaj napędu, co w praktyce przekłada się na optymalizację procesu i redukcję kosztów operacyjnych.

Pytanie 36

Wskaź prawidłową sekwencję montażu składników w systemie przygotowania sprężonego powietrza?

A. Reduktor, filtr powietrza, smarownica
B. Filtr powietrza, reduktor, smarownica
C. Smarownica, filtr powietrza, reduktor
D. Reduktor, smarownica, filtr powietrza
Wybór innej kolejności montażu elementów składowych w zespole przygotowania sprężonego powietrza często opiera się na nieporozumieniach dotyczących funkcji poszczególnych komponentów i ich wzajemnych relacji. Na przykład, montaż reduktora przed filtrem powietrza jest błędny, ponieważ zanieczyszczone powietrze mogłoby uszkodzić mechanizmy regulacyjne reduktora, co prowadziłoby do jego awarii lub niewłaściwego działania. Podobnie, umieszczenie smarownicy przed filtrem może skutkować zatykaniem smarownicy cząstkami zanieczyszczeń, co również negatywnie wpłynie na cały system. W przemyśle pneumatycznym szczególnie ważne jest, aby każdy element działał optymalnie, a ich kolejność była zgodna z zaleceniami producentów i światowymi standardami. Niezrozumienie funkcji i sekwencji może prowadzić do poważnych problemów eksploatacyjnych, takich jak spadek wydajności, zwiększone ryzyko awarii mechanicznych oraz nieefektywne zużycie energii. Dlatego kluczowe jest odpowiednie przeszkolenie i znajomość norm, które regulują instalację systemów sprężonego powietrza.

Pytanie 37

Układ mechatroniczny jest zbudowany z elementu wykonawczego funkcjonującego w specjalnej osłonie, pod wysokim ciśnieniem roboczym, oraz z komponentów sterujących połączonych wzmocnionymi przewodami pneumatycznymi, które są mocowane za pomocą złączy wtykowych. Osoba obsługująca ten układ może być szczególnie narażona na uderzenie

A. nieprawidłowo zamocowanym przewodem pneumatycznym
B. przerwanym przewodem pneumatycznym
C. siłownikiem
D. tłoczyskiem siłownika
Odpowiedź "źle zamocowanym przewodem pneumatycznym" jest prawidłowa, ponieważ nieprawidłowe mocowanie przewodów pneumatycznych może prowadzić do sytuacji, w której przewód może się odłączyć lub spowodować niekontrolowane ruchy elementów wykonawczych. Zgodnie z normami bezpieczeństwa w przemyśle, takimi jak ISO 4414, kluczowe jest, aby przewody pneumatyczne były prawidłowo zamocowane i zabezpieczone przed wszelkimi uszkodzeniami mechanicznymi. Przykładem może być zastosowanie złączy wtykowych, które powinny być regularnie kontrolowane pod kątem ich stanu technicznego. W praktyce, w systemach mechatronicznych, należy także stosować odpowiednie uchwyty i prowadnice, które minimalizują ryzyko przypadkowego usunięcia przewodu. Niezapewnienie prawidłowego mocowania przewodu pneumatycznego może prowadzić do poważnych wypadków, w tym do uderzeń osób pracujących w pobliżu układów mechatronicznych. Dlatego szkolenia dla personelu eksploatującego takie systemy powinny kłaść duży nacisk na techniki prawidłowego mocowania i kontroli stanu przewodów pneumatycznych.

Pytanie 38

Do pomiaru której wielkości służy przedstawiona na rysunku śruba mikrometryczna?

Ilustracja do pytania
A. Szerokości rowków.
B. Średnicy podziałowej gwintów.
C. Średnicy otworów.
D. Grubości rur.
Niepoprawne odpowiedzi dotyczą pomiarów, które nie są przeznaczone do użycia ze śrubą mikrometryczną. Na przykład, pomiar średnicy otworów wymaga zastosowania narzędzi, które są w stanie dokładnie zmierzyć wymiary wewnętrzne, jak na przykład suwmiarka lub specjalistyczne końcówki pomiarowe. Odpowiedzi dotyczące szerokości rowków czy średnicy podziałowej gwintów również nie są odpowiednie. W tych przypadkach niezbędne są narzędzia, które potrafią mierzyć szerokość szczelin oraz kształt gwintów, takie jak przyrządy do pomiarów kształtu lub specjalne mikrometry. Często przyczyną błędnych odpowiedzi jest mylące skojarzenie funkcji narzędzia z jego zastosowaniem. Ważne jest, aby pamiętać, że śruba mikrometryczna jest przeznaczona wyłącznie do pomiarów grubości, a nie średnic czy szerokości. Dlatego kluczowym elementem używania narzędzi pomiarowych jest znajomość ich specyfiki oraz umiejętność doboru odpowiedniego przyrządu do konkretnego zadania pomiarowego. W praktyce inżynieryjnej, takie nieporozumienia mogą prowadzić do błędnych wniosków dotyczących jakości i bezpieczeństwa produktów, co w niektórych branżach może mieć poważne konsekwencje.

Pytanie 39

Którego z wymienionych przyrządów pomiarowych należy użyć do wykonania pomiaru szerokości otworu nieprzelotowego, blisko dna otworu w sposób przedstawiony na rysunku?

Ilustracja do pytania
A. Przymiaru liniowego.
B. Głębokości omierza.
C. Średnicówki czujnikowej.
D. Wysokościomierza.
Wybór niewłaściwego przyrządu pomiarowego do mierzenia szerokości otworu nieprzelotowego blisko dna może prowadzić do istotnych błędów w ocenie wymiarów, co w konsekwencji wpływa na jakość wykonania elementów. Użycie głębokościomierza jest podejściem błędnym, ponieważ to narzędzie zostało zaprojektowane do pomiarów głębokości, a nie średnic. W kontekście otworów nieprzelotowych, głębokościomierz nie jest w stanie dostarczyć informacji o średnicy, co jest kluczowe w przypadku takich pomiarów. Wysokościomierz, podobnie, służy do pomiarów wysokości elementów i nie jest właściwy do oceniania szerokości otworów, przez co użytkownik może uzyskać mylne wyniki, które mogą wpływać na dalsze etapy produkcji. Przymiar liniowy, mimo że jest uniwersalnym narzędziem pomiarowym, nie oferuje precyzji potrzebnej do pomiarów średnic wewnętrznych, zwłaszcza w trudnodostępnych miejscach, takich jak dna otworów. W praktyce, przy pomiarach w inżynierii, kluczowe jest stosowanie narzędzi dostosowanych do specyficznych wymagań zadania pomiarowego, co podkreśla znaczenie zrozumienia ich funkcji oraz ograniczeń, aby uniknąć błędów prowadzących do niepoprawnych wniosków.

Pytanie 40

Zbyt mała lepkość oleju hydraulicznego może być wynikiem zbyt

A. niskiej ściśliwości oleju
B. niskiej temperatury oleju
C. wysokiej temperatury oleju
D. wysokiego ciśnienia oleju
Wysokie ciśnienie oleju hydraulicznego nie wpływa na jego lepkość w sposób, który prowadziłby do jej znacznego zmniejszenia. Ciśnienie w układzie hydraulicznym ma na celu przede wszystkim zapewnienie skutecznego przesyłu energii, a nie determinowanie właściwości reologicznych oleju. W kontekście układów hydraulicznych, zbyt wysokie ciśnienie może prowadzić do uszkodzeń elementów konstrukcyjnych, ale nie ma bezpośredniego związku z lepkością oleju jako taką. Niska ściśliwość oleju również nie jest czynnikiem wpływającym na jego lepkość. W rzeczywistości, ściśliwość odnosi się do zmiany objętości cieczy pod wpływem ciśnienia, co w większości przypadków nie ma istotnego wpływu na lepkość w normalnych warunkach pracy. Z kolei niska temperatura oleju może prowadzić do wzrostu lepkości, a nie jej spadku. Warto pamiętać, że lepkość oleju hydraulicznego jest zazwyczaj zmniejszana przez podwyższoną temperaturę, co jest zgodne z zasadami termodynamiki oraz reologii płynów. Dlatego identyfikowanie temperatury jako kluczowego czynnika w regulacji lepkości oleju hydraulicznego jest kluczowe dla zrozumienia działania układów hydraulicznych i ich prawidłowego funkcjonowania.