Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik mechatronik
  • Kwalifikacja: ELM.06 - Eksploatacja i programowanie urządzeń i systemów mechatronicznych
  • Data rozpoczęcia: 18 grudnia 2025 19:55
  • Data zakończenia: 18 grudnia 2025 20:00

Egzamin zdany!

Wynik: 22/40 punktów (55,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Jakie ciśnienie powinno być zastosowane do przeprowadzenia testu szczelności systemu hydraulicznego?

A. Ciśnieniu testowemu 6 bar
B. Maksymalnym ciśnieniu, które występuje w trakcie pracy
C. Większym o 10% od ciśnienia roboczego
D. Mniejszym od maksymalnego ciśnienia, które występuje w trakcie pracy o 50%
Wybór ciśnienia próbnego na poziomie 6 bar jest niewłaściwy, ponieważ nie uwzględnia specyfiki konkretnego układu hydraulicznego. Takie podejście może prowadzić do błędnych wniosków dotyczących szczelności, zwłaszcza w aplikacjach, gdzie standardowe ciśnienie robocze przekracza tę wartość. Bezwzględne poleganie na wartości ciśnienia próbnego, które nie jest oparte na maksymalnym ciśnieniu roboczym, może prowadzić do zjawiska, w którym układ wydaje się sprawny, mimo że nie jest w stanie wytrzymać rzeczywistych warunków pracy. Odpowiedź sugerująca zwiększenie ciśnienia o 10% może wydawać się logiczna, jednak nie zapewnia żadnej gwarancji, że układ będzie w stanie poradzić sobie z maksymalnym ciśnieniem, które występuje w czasie eksploatacji. Ponadto, maksymalne ciśnienie robocze ma kluczowe znaczenie dla oceny integralności układów hydraulicznych, co jest zgodne z najlepszymi praktykami w branży. Ustalanie próbnej wartości ciśnienia mniejszej o 50% od maksymalnego ciśnienia roboczego jest również błędne, ponieważ nie daje pełnego obrazu potencjalnych problemów z nieszczelnościami, które mogą wystąpić w rzeczywistych warunkach pracy. W związku z tym, niewłaściwe dobranie ciśnienia próbnego może prowadzić do niezgodności z normami bezpieczeństwa oraz niebezpiecznych sytuacji w trakcie użytkowania układów hydraulicznych.

Pytanie 2

Jakie urządzenie pomiarowe powinno być użyte do określenia lepkości oleju hydraulicznego w systemie mechatronicznym?

A. Wiskozymetr
B. Wakuometr
C. Higrometr
D. Pirometr
Wiskozymetr jest kluczowym przyrządem pomiarowym wykorzystywanym w wielu dziedzinach inżynierii i technologii, szczególnie w przemyśle mechatronicznym, gdzie precyzyjne pomiary lepkości są niezbędne do zapewnienia prawidłowego działania systemów hydraulicznych. Lepkość oleju hydraulicznego odgrywa istotną rolę w pracy układów hydraulicznych, gdyż wpływa na efektywność przenoszenia mocy oraz stabilność operacyjną urządzeń. W praktyce, wiskozymetry stosuje się do określenia, jak olej reaguje na różne warunki temperaturowe, co jest kluczowe dla optymalizacji jego właściwości roboczych. W branży inżynieryjnej standardy, takie jak ASTM D445, określają metody pomiaru lepkości, co zapewnia powtarzalność i wiarygodność wyników. Zrozumienie właściwości lepkości olejów hydraulicznych pozwala inżynierom na dobór odpowiednich materiałów oraz dostosowanie parametrów pracy maszyn, co przyczynia się do zwiększenia ich wydajności oraz żywotności.

Pytanie 3

Kontrola instalacji hydraulicznej obejmuje

A. zmianę rozdzielacza
B. ocenę stanu przewodów
C. pomiar natężenia prądu zasilającego pompę
D. wymianę filtra oleju w systemie
Odpowiedź "sprawdzenie stanu przewodów" jest poprawna, ponieważ w ramach oględzin instalacji hydraulicznej kluczowe jest ocenienie stanu technicznego systemu. Oględziny powinny obejmować kontrolę szczelności przewodów, co jest niezwykle ważne dla zapobiegania wyciekom oraz zapewnienia efektywności całego układu. Ponadto, sprawdzając przewody, należy ocenić ich stan izolacji, co ma na celu uniknięcie potencjalnych uszkodzeń mechanicznych, które mogą być spowodowane różnymi czynnikami, takimi jak korozja czy działanie wysokiego ciśnienia. Dobre praktyki branżowe zalecają regularne przeprowadzanie takich oględzin, aby spełniały one normy bezpieczeństwa i efektywności, a także przedłużały żywotność systemu hydraulicznego. Przykładem zastosowania tej wiedzy może być rutynowa inspekcja w zakładach przemysłowych, gdzie niewłaściwy stan przewodów może prowadzić do poważnych awarii oraz wysokich kosztów naprawy.

Pytanie 4

W specyfikacji silnika można znaleźć oznaczenie S2 40. Pracując z układem wykorzystującym ten silnik, trzeba mieć na uwadze, aby

A. wilgotność otoczenia w trakcie pracy nie była wyższa niż 40%
B. czas działania nie przekraczał 40 min., a czas postoju był do momentu, gdy silnik się schłodzi.
C. temperatura otoczenia w trakcie pracy nie była wyższa niż 40°C
D. silnik pracował z obciążeniem nie mniejszym niż 40% mocy znamionowej
Odpowiedzi sugerujące, że temperatura otoczenia, wilgotność lub obciążenie nie mają związku z czasem pracy i odpoczynku silnika, są nieprawidłowe. Oznaczenie S2 40 jasno wskazuje na specyfikę pracy silnika, która jest ograniczona czasowo, co jest kluczowe dla jego prawidłowego funkcjonowania. Zasady dotyczące temperatury otoczenia i wilgotności są istotne, ale nie mają bezpośredniego wpływu na same limity czasowe pracy silnika. Odpowiedź dotycząca obciążenia na poziomie 40% również mylnie interpretuje wymogi związane z jego eksploatacją. W rzeczywistości, silnik S2 jest zaprojektowany do pracy z pełnym obciążeniem przez czas określony, a po tym czasie potrzebuje odpoczynku, co nie ma związku z wymaganym minimalnym obciążeniem, które jest istotne w kontekście silników pracujących w trybie ciągłym. Błędem jest zatem myślenie, że silnik może funkcjonować przez dłuższy czas w warunkach, które nie są zgodne z jego oznaczeniem, co prowadzi do ryzyka przegrzania oraz wydłużenia czasu potrzebnego na schłodzenie. Należy pamiętać, że każdy silnik ma swoje specyfikacje, które powinny być ściśle przestrzegane, aby zapewnić jego prawidłowe działanie oraz wydajność. W praktyce oznacza to, że niezrozumienie tych zasad może prowadzić do poważnych awarii, co podkreśla rolę edukacji w zakresie użytkowania maszyn oraz potrzebę konsultacji z dokumentacją techniczną.

Pytanie 5

Jaka liczba w systemie heksadecymalnym odpowiada liczbie binarnej 1010110011BIN?

A. 2B3H
B. 1F3H
C. 10EH
D. 1A4H
Odpowiedź 2B3H jest poprawna, ponieważ liczba binarna 1010110011 składa się z 10 cyfr binarnych, co odpowiada potrzebie przekształcenia jej na 2 cyfry szesnastkowe. W systemie heksadecymalnym każda cyfra reprezentuje 4 bity, co oznacza, że do reprezentacji 10 bitów (2^10 = 1024) wystarczą 3 cyfry szesnastkowe, ale w tym przypadku zdefiniowaliśmy ją w sposób, który dokładnie odpowiada. Pierwsza cyfra '2' w heksadecymalnym systemie reprezentuje wartość 2 * 16^1, a druga cyfra 'B' oznacza 11 * 16^0, co daje 2*16 + 11 = 32 + 11 = 43 w systemie dziesiętnym. Kolejnym krokiem jest zrozumienie, jak swobodnie można przechodzić pomiędzy systemami liczbowymi, co jest kluczową umiejętnością w informatyce, szczególnie w programowaniu i projektowaniu systemów cyfrowych. Przykładowo, umiejętność konwersji między tymi systemami jest niezbędna w pracy z adresami pamięci w komputerach czy komunikacji w sieciach komputerowych.

Pytanie 6

W mechatronicznym urządzeniu uszkodzony został sterownik LOGO 12/24RC. W tabeli przedstawiono producenta informacje dotyczące stosowanych oznaczeń. Które dane odpowiadają uszkodzonemu sterownikowi?

 — 12/24: zasilanie napięciem 12/24 V DC
 — 230: zasilanie napięciem 115 ÷ 240 V AC/DC
 — R: wyjścia przekaźnikowe (brak symbolu R - wyjścia tranzystorowe)
 — C: wbudowany zegar tygodniowy
 — o: wersja bez wyświetlacza (LOGO! Pure)
 — DM: binarny moduł rozszerzenia
 — AM: analogowy moduł rozszerzenia
 — CM: komunikacyjny moduł zewnętrzny (np. moduły EIB/KNX)
 — TD: Panel tekstowy
A. Napięcie zasilania 12 V lub 24 V AC, wyjścia tranzystorowe, binarny moduł rozszerzenia, wersja z wyświetlaczem.
B. Napięcie zasilania 115 ÷ 240 V AC, wyjścia przekaźnikowe, analogowy moduł rozszerzenia, wersja bez wyświetlacza.
C. Napięcie zasilania 115 ÷ 240 V AC, wyjścia tranzystorowe, wbudowany zegar tygodniowy, wersja bez wyświetlacza.
D. Napięcie zasilania 12 V lub 24 V DC, wyjścia przekaźnikowe, wbudowany zegar tygodniowy, wersja z wyświetlaczem.
Wybrana odpowiedź jest poprawna, ponieważ dokładnie odzwierciedla specyfikację sterownika LOGO 12/24RC. Ten model rzeczywiście działa na napięciu 12 V lub 24 V DC, co jest kluczowe dla jego prawidłowego funkcjonowania w różnych aplikacjach automatyki. Wyjścia przekaźnikowe pozwalają na sterowanie obwodami z większymi obciążeniami, co jest niezbędne w wielu projektach mechatronicznych. Wbudowany zegar tygodniowy umożliwia programowanie zaawansowanych harmonogramów pracy, co zwiększa efektywność energetyczną systemów oraz pozwala na automatyzację procesów zgodnie z wymaganiami użytkownika. Wersja z wyświetlaczem ułatwia monitorowanie i diagnostykę, co jest nieocenione w praktyce inżynieryjnej. Dobrym przykładem zastosowania może być automatyka budynkowa, gdzie sterownik ten kontroluje oświetlenie i systemy grzewcze zgodnie z zaprogramowanym harmonogramem. Zrozumienie specyfikacji sterowników, takich jak LOGO, jest kluczowe dla inżynierów zajmujących się automatyką, ponieważ pozwala na ich prawidłowy dobór i zastosowanie w praktyce.

Pytanie 7

W zakres czynności konserwacyjnych dla zespołu hydraulicznego, realizowanych raz w roku, nie wchodzi

A. sprawdzenie wartości rezystancji uziemienia
B. wymiana płynu hydraulicznego
C. kontrola szczelności zespołu oraz przewodów
D. czyszczenie filtra
Wybór odpowiedzi dotyczącej wymiany płynu hydraulicznego, sprawdzenia szczelności zespołu i przewodów, czy czyszczenia filtra, może być błędny, jeśli uznamy, że wszystkie te czynności są częścią chaotycznego procesu konserwacyjnego. W rzeczywistości, każda z tych czynności ma swoje miejsce w harmonogramie konserwacji hydrauliki, ponieważ przyczyniają się do optymalnego działania systemu. Wymiana płynu hydraulicznego jest kluczowa, gdyż nieodpowiedni płyn może prowadzić do uszkodzenia pompy czy siłowników. Kontrola szczelności jest istotna z punktu widzenia bezpieczeństwa oraz efektywności energetycznej systemu, ponieważ nieszczelności mogą powodować straty płynów i obniżać wydajność. Z kolei czyszczenie filtra ma na celu eliminację zanieczyszczeń, które mogą wpływać na ciśnienie systemu oraz funkcjonowanie całego układu hydraulicznego. Niezrozumienie różnicy między tymi czynnościami a rutynowym sprawdzeniem wartości rezystancji uziemienia może prowadzić do niewłaściwego zarządzania konserwacją. Warto pamiętać, że wszystkie te działania powinny być wykonywane zgodnie z zaleceniami producentów oraz normami, takimi jak PN-EN 982, które zapewniają odpowiednie procedury konserwacyjne. Brak takiego rozróżnienia może prowadzić do poważnych konsekwencji, w tym do awarii systemu hydraulicznego w wyniku niedopatrzenia w zakresie jego konserwacji.

Pytanie 8

Jaki z wymienionych sposobów powinien być zastosowany podczas przeprowadzania początkowego testowania programu stworzonego dla robota przemysłowego?

A. Automatyczne powtarzanie ruchów z prędkością ustawioną na 100%
B. Ręczne powtarzanie ruchów, etap po etapie z prędkością ustawioną na 100%
C. Ręczne powtarzanie ruchów, etap po etapie z prędkością ustawioną na 20%
D. Automatyczne powtarzanie ruchów, z prędkością ustawioną na 20%
Ręczne odtwarzanie ruchów robota przemysłowego, krok po kroku, z prędkością ustawioną na 20% jest kluczowym podejściem podczas wstępnego testowania programów. Takie podejście zapewnia możliwość szczegółowego monitorowania każdego etapu ruchu robota, co jest niezbędne w kontekście analizy poprawności funkcjonowania zaprogramowanych sekwencji. Prędkość 20% umożliwia dokładne obserwowanie zachowań robota, co jest szczególnie istotne przy pierwszych testach, kiedy to jeszcze nie ma pełnej pewności co do stabilności i bezpieczeństwa działania robota. Działania te są zgodne z najlepszymi praktykami w obszarze automatyzacji i robotyki, gdzie bezpieczeństwo użytkowników i sprzętu ma kluczowe znaczenie. W praktyce, zarówno w laboratoriach jak i w środowiskach przemysłowych, zaleca się wprowadzenie stopniowego zwiększania prędkości po pomyślnym zakończeniu testów przy niskiej prędkości, co pozwala na minimalizację ryzyka uszkodzeń oraz błędów w działaniu systemu.

Pytanie 9

Badanie szczelności układu hydraulicznego powinno być wykonane przy ciśnieniu

A. niższym o 20% od ciśnienia roboczego
B. wyższym o 100% od ciśnienia roboczego
C. wyższym o 50% od ciśnienia roboczego
D. równym ciśnieniu roboczemu
Ocena szczelności układu hydraulicznego przy ciśnieniu większym o 50% od ciśnienia roboczego jest kluczowym standardem w branży inżynieryjnej. Taki test ma na celu zapewnienie, że układ jest w stanie wytrzymać wszelkie potencjalne przeciążenia, które mogą wystąpić w trakcie normalnej eksploatacji. Przykładowo, w aplikacjach przemysłowych, takich jak maszyny hydrauliczne czy systemy transportu cieczy, presja robocza często osiąga wysokie wartości, dlatego ważne jest, aby podczas testów przekroczyć te wartości o 50%. Takie podejście jest zgodne z normami takimi jak ISO pressures standaryzacja, które zalecają przeprowadzanie testów na ciśnienie wyższe niż robocze w celu eliminacji ryzyka awarii. Dzięki temu można zidentyfikować potencjalne nieszczelności lub słabości w konstrukcji układu, co przyczynia się do zwiększenia bezpieczeństwa i niezawodności systemu. Umożliwia to również wcześniejsze wykrycie problemów, co może zaoszczędzić znaczne koszty związane z naprawami i przestojami w produkcji.

Pytanie 10

Urządzenie przedstawione na rysunku, w projektowanym systemie mechatronicznym, będzie mogło pełnić funkcję

Ilustracja do pytania
A. analizatora stanów logicznych.
B. regulatora przepływu.
C. dotykowego panelu operatorskiego.
D. regulatora PID.
Urządzenie przedstawione na zdjęciu to dotykowy panel operatorski, co można rozpoznać po charakterystycznym interfejsie graficznym oraz oznaczeniu "TOUCH". Panele te pełnią kluczową rolę w systemach mechatronicznych, umożliwiając operatorom intuicyjną interakcję z maszynami i procesami. Dzięki technologii dotykowej operatorzy mogą szybko i skutecznie wprowadzać dane oraz monitorować stan pracy urządzeń. Tego typu rozwiązania są powszechnie stosowane w automatyce przemysłowej, gdzie wymagane jest efektywne zarządzanie złożonymi systemami. Przykładem zastosowania paneli dotykowych może być ich wykorzystanie w liniach produkcyjnych, gdzie umożliwiają one zarządzanie parametrami maszyn, ustawienie cykli pracy oraz nadzorowanie procesów w czasie rzeczywistym. W branży mechatronicznej stosowanie paneli operatorskich zgodnych z normą IEC 61131-3, dotyczącą programowania systemów automatyki, zapewnia wysoką interoperacyjność i efektywność w zarządzaniu systemami. Warto również podkreślić, że nowoczesne panele operatorskie często integrują funkcjonalności analityczne, co pozwala na lepsze śledzenie wydajności oraz diagnostykę awarii, co dodatkowo podnosi jakość pracy całego systemu.

Pytanie 11

Jakie parametry są najczęściej regulowane w systemach mechatronicznych z wykorzystaniem regulacji PID?

A. Wilgotność, napięcie, waga
B. Kolor, natężenie światła, zapach
C. Prędkość, temperatura, ciśnienie
D. Dźwięk, drgania, przyspieszenie
Odpowiedzi zawierające takie parametry jak kolor, natężenie światła czy zapach rzadko są regulowane za pomocą algorytmów PID. Te parametry bardziej odnoszą się do systemów związanych z kontrolą jakości wizualnej czy sensoryki, które stosują bardziej złożone algorytmy przetwarzania sygnałów. Wilgotność, napięcie i waga, choć mogą być mierzone i kontrolowane, nie są typowymi przykładami zastosowania PID w porównaniu do prędkości czy temperatury. Dźwięk, drgania i przyspieszenie również nie są standardowymi dziedzinami regulacji PID. Te parametry są zazwyczaj analizowane za pomocą technik przetwarzania sygnałów i wymagają specjalizowanych metod ze względu na swoją dynamiczną naturę. Typowym błędem jest zakładanie, że PID może być użyty do kontrolowania wszystkich rodzajów procesów fizycznych, podczas gdy jego zastosowanie ogranicza się do systemów, gdzie regulacja dynamiczna w czasie rzeczywistym jest kluczowa, a charakterystyki statyczne i dynamiczne są dobrze opisane matematycznie. To, co czyni PID tak skutecznym, to jego zdolność do reagowania na zmiany w systemie i szybkie dostosowywanie parametrów procesowych do wymaganych wartości.

Pytanie 12

Przegląd instalacji hydraulicznej urządzenia mechatronicznego obejmuje

A. sprawdzenie stanu przewodów
B. wymianę rozdzielacza
C. zmierzenie natężenia prądu w obciążeniu pompy
D. oczyszczenie filtra oleju w układzie
Odpowiedź "sprawdzenie stanu przewodów" jest prawidłowa, ponieważ oględziny instalacji hydraulicznej są kluczowym etapem zapewnienia bezpieczeństwa i efektywności urządzeń mechatronicznych. Podczas tych oględzin istotne jest, aby dokładnie ocenić stan przewodów, ponieważ to one odpowiadają za transport medium, takiego jak olej hydrauliczny. Uszkodzenia, przecieki czy zanieczyszczenia w przewodach mogą prowadzić do poważnych awarii, co skutkuje kosztownymi naprawami i przestojami w pracy urządzenia. Przykładem zastosowania tej wiedzy może być audyt stanu technicznego maszyn w zakładzie produkcyjnym, gdzie regularne kontrole przewodów hydraulicznych są częścią procedur utrzymania ruchu i zgodności z normami bezpieczeństwa, takimi jak ISO 9001. Dbanie o ich kondycję pozwala na uniknięcie nieprzewidzianych awarii oraz zwiększa żywotność całego systemu hydraulicznego.

Pytanie 13

Podczas korzystania z wiertarki udarowej zaobserwowano przerwy w jej działaniu podczas przemieszczania w przestrzeni lub przy zmianie kierunku. Jak oceniasz stan techniczny tego narzędzia?

A. Wiertarka działa poprawnie, należy jej używać jedynie w pozycji pionowej
B. Wiertarka działa poprawnie, należy sprawdzić stan instalacji zasilającej
C. Wiertarka nie działa poprawnie, należy niezwłocznie sprawdzić stan szczotek
D. Wiertarka nie działa poprawnie, należy niezwłocznie zbadać stan jej przewodu zasilającego
Odpowiedzi sugerujące, że wiertarka jest sprawna i należy jedynie sprawdzić stan instalacji zasilającej lub jej szczotek, są mylące i mogą prowadzić do poważnych konsekwencji. Przede wszystkim, jeżeli występują przerwy w pracy narzędzia, w pierwszej kolejności należy skupić się na przyczynach bezpośrednio związanych z dostawą energii, a nie na komponentach, które mogą nie być bezpośrednio odpowiedzialne za ten problem. W przypadku szczotek, ich zużycie może wpływać na wydajność silnika, ale niekoniecznie wywoła przerwy w pracy narzędzia podczas przemieszczania. Sugerowanie, że wiertarka powinna być używana tylko w pozycji pionowej, jest także błędne, ponieważ nowoczesne wiertarki udarowe są zaprojektowane do pracy w różnych pozycjach, co zwiększa ich wszechstronność. W praktyce, ograniczanie się do jednego sposobu użycia narzędzia jest nie tylko nieefektywne, ale także może prowadzić do niewłaściwego użytkowania, co w konsekwencji może skutkować uszkodzeniami. Dodatkowo, nieprawidłowe podejście do kwestii przewodu zasilającego, sugerujące, że problem można zignorować, jest niebezpieczne. Uszkodzony przewód to poważne zagrożenie, które może prowadzić do porażenia prądem lub pożaru. Dlatego kluczowe jest, aby zawsze priorytetowo traktować sprawdzenie stanu przewodu zasilającego oraz wszelkich elementów, które mogą wpływać na bezpieczeństwo i funkcjonalność narzędzia.

Pytanie 14

Konserwacja układu stycznikowo-przekaźnikowego nie obejmuje

A. oceny zużycia styków
B. sprawdzania dokręcenia śrub zacisków
C. usuwania kurzu
D. dokonywania regulacji
Wybór regulacji zamiast konserwacji mógł być spowodowany tym, że łatwo pomylić te dwie kwestie. Konserwacja przecież ma na celu utrzymanie sprzętu w dobrym stanie, a to przez różne czynności, takie jak kontrola śrub czy czyszczenie. Regulacje to zupełnie inna sprawa, bo robi się je przeważnie podczas instalacji lub w razie potrzeby zmiany ustawień układu w zależności od warunków. Często ludzie nie rozróżniają, co jest konserwacją, a co regulacją, co prowadzi do pomyłek. W praktyce, skupienie na regulacjach może nas odciągnąć od naprawdę ważnych działań, jak kontrola stanu komponentów. Na przykład, jeśli nie będziemy dbać o czystość styków, to możemy narazić się na poważne problemy. Warto też zapamiętać, że regulacje wymagają specjalistycznej wiedzy, więc nie są to sprawy podstawowe w konserwacji. Dlatego znajomość właściwych procedur konserwacyjnych i ich znaczenia jest naprawdę ważna, żeby nasze układy stycznikowo-przekaźnikowe działały bez zarzutu przez długi czas.

Pytanie 15

Jaką metodę pomiaru zastosowano w celu zmierzenia temperatury pracy urządzenia mechatronicznego, przy użyciu elementu pomiarowego Pt100?

A. Bezkontaktową termowizyjną
B. Kontaktową rezystancyjną
C. Bezkontaktową pirometryczną
D. Kontaktową termoelektryczną
Wybór nieprawidłowej metody pomiaru może prowadzić do wielu błędów w interpretacji danych dotyczących temperatury. Odpowiedzi związane z metodami termoelektrycznymi, takie jak kontaktowa termoelektryczna i bezkontaktowa termoelektryczna, opierają się na zasadzie wykorzystania zjawiska Seebecka, które polega na generowaniu napięcia w wyniku różnicy temperatur między dwoma różnymi metalami. W przypadku urządzeń mechatronicznych, które wymagają stałego monitorowania temperatury, ta metoda może być mniej precyzyjna, zwłaszcza gdy źródło ciepła jest niestabilne. Metody bezkontaktowe, jak termowizyjna czy pirometryczna, są przydatne w sytuacjach, gdzie nie można zastosować czujników kontaktowych, jednak w kontekście pomiaru temperatury urządzeń mechatronicznych mogą prowadzić do błędnych wyników z powodu odbicia ciepła, promieniowania oraz otoczenia, w którym wykonywany jest pomiar. W kontekście standardów przemysłowych, pomiar kontaktowy zapewnia wyższą dokładność i mniejsze ryzyko błędów, co czyni go bardziej odpowiednim w zastosowaniach wymagających precyzyjnego monitorowania temperatury. Dlatego ważne jest, aby zrozumieć różnice między tymi metodami i odpowiednio dobierać je do specyfikacji danego zadania pomiarowego.

Pytanie 16

Podczas czynności konserwacyjnych wykryto niewystarczający poziom sprężania powietrza w sprężarce tłokowej. Który z wymienionych komponentów sprężarki z pewnością nie uległ zniszczeniu?

A. Uszczelka głowicy
B. Zawór ssący
C. Korbowód tłoka
D. Gładź cylindra
Korbowód tłoka jest kluczowym elementem układu tłokowego sprężarki, ale jego stan nie wpływa bezpośrednio na poziom sprężania powietrza. Działa on jako przekaźnik ruchu, przekształcając ruch obrotowy wału korbowego na ruch posuwisty tłoka. W przypadku niskiego poziomu sprężania, przyczyny mogą leżeć w innych elementach, takich jak zawory lub gładź cylindra. Na przykład, zużycie gładzi cylindra może prowadzić do nieszczelności, co skutkuje obniżonym sprężaniem. Korbowód, będąc elementem mechanicznym, jest bardziej odporny na uszkodzenia, jeśli nie jest obciążony innymi problemami, takimi jak rozszczelnienie. Dobra praktyka w konserwacji sprężarek zaleca regularne kontrole stanu korbowodu oraz jego smarowanie, aby zminimalizować ryzyko uszkodzeń. Korbowód tłoka powinien być również sprawdzany pod kątem luzów, aby zapewnić efektywność całego układu sprężania.

Pytanie 17

Urządzenia mechatroniczne, które jako napędy wykorzystują silniki komutatorowe, nie powinny być stosowane w

A. pomieszczeniach o niskich temperaturach
B. pomieszczeniach z klimatyzacją
C. zadaszonej hali produkcyjnej
D. pomieszczeniach narażonych na wybuch
Silniki komutatorowe są powszechnie stosowane w aplikacjach mechatronicznych, jednak ich użycie w pomieszczeniach zagrożonych wybuchem jest niebezpieczne. Generowane przez nie iskry mogą stanowić bezpośrednie źródło zapłonu w obecności łatwopalnych gazów i pyłów, co jest zgodne z normami bezpieczeństwa, takimi jak ATEX (Dyrektywa Unii Europejskiej dotycząca sprzętu przeznaczonego do pracy w atmosferze wybuchowej). W praktyce, w takich środowiskach wybiera się silniki bezkomutatorowe lub inne konstrukcje zabezpieczone przed wybuchem, co minimalizuje ryzyko zapłonu. Warto zwrócić uwagę, że w przemyśle chemicznym, naftowym czy gazowym, użycie odpowiednich silników zgodnych z normami IECEx jest kluczowe dla zapewnienia bezpieczeństwa operacji. Prawidłowy dobór urządzeń napędowych w tych warunkach nie tylko spełnia wymogi prawne, ale także zabezpiecza ludzi i mienie przed poważnymi zagrożeniami.

Pytanie 18

Który z poniższych komponentów jest używany w układach sterowania do konwersji sygnałów analogowych na cyfrowe?

A. Przetwornik A/C
B. Transformator
C. Silnik elektryczny
D. Zawór proporcjonalny
Przetwornik analogowo-cyfrowy, znany jako A/C (ang. ADC - Analog to Digital Converter), jest kluczowym elementem w systemach mechatronicznych, ponieważ pozwala na przekształcenie sygnałów analogowych na cyfrowe. W praktyce oznacza to, że sygnały, które są ciągłe w czasie i mogą przyjmować nieskończoną liczbę wartości, są zamieniane na sygnały cyfrowe, które są dyskretne i mogą być przetwarzane przez systemy cyfrowe, takie jak mikroprocesory czy sterowniki PLC. To umożliwia efektywne zarządzanie i kontrolowanie procesów przemysłowych. Przetworniki A/C znajdują zastosowanie w wielu dziedzinach, takich jak automatyka przemysłowa, robotyka oraz systemy pomiarowe. Dzięki nim możemy precyzyjnie monitorować i reagować na zmiany w układzie, co jest niezbędne w złożonych systemach mechatronicznych. Przykładem zastosowania jest odczyt wartości czujników takich jak temperatury, ciśnienia czy wilgotności, które są następnie interpretowane przez system sterujący w celu podjęcia odpowiednich działań. Standardy branżowe wymagają, by takie przetworniki charakteryzowały się wysoką dokładnością i szybkością przetwarzania, co jest kluczowe dla zachowania jakości i precyzji działania systemów.

Pytanie 19

Na podstawie załączonego fragmentu instrukcji obsługi frezarki wskaż, która z wymienionych czynności konserwacyjnych powinna być najczęściej wykonywana dla maszyny niewyposażonej w opcjonalny układ chłodziwa wrzeciona (TSC).

CzęstośćPrace konserwacyjne wykonywane
Codziennie
  • Sprawdzić poziom chłodziwa podczas każdej ośmiogodzinnej zmiany (zwłaszcza podczas intensywnego użytkowania TSC)
  • Sprawdzić poziom oleju w zbiorniku olejowym prowadnicy
  • Usunąć wióry z osłon prowadnicy i osadnika
  • Usunąć wióry z urządzenia do wymiany narzędzi
  • Oczyścić stożek wrzeciona czystą szmatą i nasmarować lekkim olejem
Co tydzień
  • Sprawdzić filtry układu chłodziwa wrzeciona (TSC). W razie potrzeby oczyścić lub wymienić.
  • Sprawdzić prawidłowość pracy automatycznego spustu na filtrze regulatora.
  • W maszynach z opcją TSC oczyścić osadnik wiórów w zbiorniku płynu chłodzącego. Zdjąć pokrywę zbiornika i usunąć osad ze zbiornika. Odłączyć pompę chłodziwa od szafki i wyłączyć zasilanie maszyny przed rozpoczęciem pracy przy zbiorniku chłodziwa.
    Wykonywać tę czynność COMIESIĘCZNIE dla maszyn bez opcji TSC.
Co miesiąc
  • Sprawdzić poziom oleju w skrzynce przekładniowej. Dla wrzecion o stożku 40: Zdjąć osłonę otworu inspekcyjnego pod głowicą wrzeciona. Dolewać powoli olej od góry, aż zacznie kapać przez rurkę przelewową w nie miski osadnika. Dla wrzecion o stożku 50: Sprawdzić poziom oleju przez wziernik. W razie potrzeby dolać z boku skrzynki przekładniowej.
  • Sprawdzić, czy osłony prowadnicy działają prawidłowo i w razie potrzeby nasmarować je lekkim olejem.
  • Nałożyć gałkę smaru na zewnętrznej krawędzi szyn prowadnicy w urządzeniu do wymiany narzędzi i zmienić kolejno wszystkie narzędzia.
  • Sprawdzić poziom oleju SMTC we wzierniku (patrz „Kontrola poziomu oleju w mocowanym bocznie urządzeniu do wymiany narzędzi" w niniejszym rozdziale).
  • EC-400 Oczyścić podkładki ustalające na osi A i stanowisko ładowania. Wiąże się to z koniecznością zdjęcia palety.
A. Oczyszczenie osadnika wiórów w zbiorniku płynu chłodzącego.
B. Sprawdzenie prawidłowości pracy automatycznego spustu na filtrze regulatora.
C. Sprawdzenie poziomu oleju w skrzynce przekładniowej.
D. Sprawdzenie działania osłon prowadnicy.
Wybór odpowiedzi, która sugeruje inne czynności konserwacyjne, wskazuje na niezrozumienie harmonogramu konserwacji urządzeń mechanicznych. Sprawdzanie poziomu oleju w skrzynce przekładniowej jest istotnym zadaniem, ale zgodnie z instrukcją powinno być przeprowadzane co miesiąc, a nie co tydzień. Ignorowanie częstotliwości tych czynności może prowadzić do sytuacji, w której ważne elementy maszyny nie są odpowiednio monitorowane, co w dłuższej perspektywie może skutkować poważnymi awariami. Sprawdzanie działania osłon prowadnicy również jest ważne, ale jest to zadanie o niższej częstotliwości. Z kolei oczyszczanie osadnika wiórów w zbiorniku płynu chłodzącego dotyczy tylko maszyn wyposażonych w opcjonalny układ chłodziwa wrzeciona i nie ma zastosowania w kontekście maszyny, która go nie posiada. Takie nieprecyzyjne podejście do konserwacji może prowadzić do błędów w zarządzaniu zasobami i nieoptymalnego wykorzystania czasu pracy. Wiedza na temat częstotliwości poszczególnych czynności konserwacyjnych oraz ich znaczenia w kontekście wydajności maszyny jest kluczowa w codziennej pracy operatorów i techników. Dobre praktyki zakładają, że każda czynność powinna być dostosowana do specyfikacji producenta i rzeczywistych warunków pracy maszyny, co zdecydowanie poprawia efektywność operacyjną.

Pytanie 20

Do którego portu komputera PC należy podłączyć przedstawiony na ilustracji kabel komunikacyjny?

Ilustracja do pytania
A. LPT
B. RS232
C. PS/2
D. USB
Odpowiedź RS232 jest prawidłowa, ponieważ na ilustracji widać kabel z końcówkami DB9, które są charakterystyczne dla portu szeregowego RS232. Porty te były powszechnie stosowane w komputerach osobistych do komunikacji z urządzeniami peryferyjnymi, takimi jak modemy, drukarki czy skanery. RS232 jest standardem szeregowej komunikacji danych, który umożliwia przesyłanie informacji bit po bicie. W praktyce oznacza to, że urządzenia mogą wymieniać dane w sposób sekwencyjny, co jest idealne dla wielu zastosowań przemysłowych i biurowych. Porty USB oferują znacznie szybszy transfer danych i są bardziej uniwersalne, ale nie są kompatybilne z końcówkami DB9. Z kolei porty LPT, używane głównie do podłączania drukarek, oraz PS/2, stosowane do klawiatur i myszy, mają zupełnie inne złącza i standardy komunikacji. Zrozumienie różnic między tymi portami jest kluczowe w praktyce inżynierskiej, zwłaszcza przy pracy z różnorodnymi urządzeniami elektronicznymi.

Pytanie 21

Ile poziomów kwantyzacji oraz jaka jest rozdzielczość napięciowa przetwornika A/C użytego w urządzeniu mechatronicznym o zakresie pomiarowym 0÷10 V i dokładności 10 bitów?

A. 1024 poziomów kwantyzacji i rozdzielczość napięciowa 9,76 mV
B. 512 poziomów kwantyzacji i rozdzielczość napięciowa 19,53 mV
C. 2048 poziomów kwantyzacji i rozdzielczość napięciowa 4,88 mV
D. 256 poziomów kwantyzacji i rozdzielczość napięciowa 39,06 mV
Przetwornik A/C o rozdzielczości 10 bitów umożliwia przetwarzanie sygnału wejściowego na 1024 poziomy kwantyzacji, co jest wynikiem obliczenia 2^10. Każdy poziom odpowiada konkretnej wartości napięcia, a w przypadku skali pomiarowej 0÷10 V, rozdzielczość napięciowa wynosi około 9,76 mV. Oznacza to, że najmniejsza różnica napięcia, którą można rozróżnić, wynosi właśnie 9,76 mV. Taki przetwornik znajduje zastosowanie w wielu urządzeniach mechatronicznych, gdzie precyzyjny pomiar napięcia jest kluczowy, na przykład w systemach automatyki przemysłowej, czujnikach temperatury czy systemach monitorowania parametrów w czasie rzeczywistym. Zrozumienie działania przetworników A/C oraz ich parametrów, takich jak rozdzielczość i poziomy kwantyzacji, jest niezbędne dla inżynierów projektujących nowoczesne systemy, które muszą współpracować z różnorodnymi sygnałami analogowymi. W praktyce stosuje się te przetworniki w aplikacjach, gdzie wymagane jest dokładne odwzorowanie zmiennych sygnałów analogowych na wartości cyfrowe, co pozwala na dalsze przetwarzanie i analizy danych.

Pytanie 22

Jak zwiększenie częstotliwości napięcia zasilającego podawanego z falownika wpłynie na działanie silnika trójfazowego?

A. Maksymalny moment napędowy silnika ulegnie zmniejszeniu
B. Obroty silnika się zmniejszą
C. Moment obciążenia silnika się zwiększy
D. Obroty silnika wzrosną
Wzrost częstotliwości zasilania silnika trójfazowego nie prowadzi do zwiększenia momentu obciążenia ani do zmniejszenia maksymalnego momentu napędowego. Moment obciążenia silnika jest związany z jego zastosowaniem oraz z rodzajem napędzanego obciążenia, a nie z częstotliwością zasilania. Często można spotkać mylne przekonanie, że zmniejszenie obrotów silnika automatycznie prowadzi do wzrostu momentu, co jest błędnym rozumowaniem. W rzeczywistości, zmniejszenie obrotów silnika w wyniku obniżenia częstotliwości może powodować, że silnik nie będzie w stanie dostarczyć wymaganego momentu obrotowego, co może prowadzić do przeciążenia silnika i jego uszkodzenia. Należy również zauważyć, że przy zmniejszeniu częstotliwości pracy silnika, jego wydajność spada, a straty mocy wzrastają. W kontekście zastosowań przemysłowych, nieprzemyślane zmiany częstotliwości mogą prowadzić do nieoptymalnych warunków pracy, co w efekcie negatywnie wpłynie na cały proces technologiczny. Właściwa regulacja obrotów silnika trójfazowego powinna być przeprowadzana z uwzględnieniem jego charakterystyki oraz wymagań danego zastosowania, co jest zgodne z zasadami projektowania systemów napędowych oraz dobrymi praktykami inżynieryjnymi.

Pytanie 23

Jakim napięciem powinien być zasilany cyfrowy mikroprocesorowy regulator DCRK 12 przeznaczony do kompensacji współczynnika mocy w układach napędów elektrycznych, o danych znamionowych zamieszczonych w tabeli?

Ilość stopni regulacji12
Regulacja współczynnika mocy0,8 ind. – 0,8 pojem.
Napięcie zasilania i kontroli Ue380...415V, 50/60Hz
Roboczy zakres działania Ue- 15% ... +10% Ue
Wejście pomiarowe prądu5 A
Typ pomiaru napięcia i prąduRMS
Ilość wyjść przekaźnikowych12
Maksymalny prąd załączenia12 A
A. 230 V AC
B. 400 V AC
C. 230 V DC
D. 400 V DC
Poprawna odpowiedź to 400 V AC, co wynika z danych znamionowych regulatora DCRK 12, które wskazują na napięcie zasilania w zakresie 380...415V, 50/60Hz. W zastosowaniach przemysłowych, napięcia te są powszechnie stosowane w układach zasilających maszyny oraz urządzenia elektryczne. Napięcie 400 V AC jest standardem w Europie i wielu innych krajach, co czyni je odpowiednim wyborem dla aplikacji przemysłowych. Wartością wyjściową tego regulatora może być również dostosowanie do zmiennych warunków pracy, co jest istotne w kontekście optymalizacji współczynnika mocy. Znajomość standardowych napięć zasilających jest niezbędna dla inżynierów, aby projektować i wdrażać systemy zasilania, które są zarówno efektywne, jak i zgodne z normami bezpieczeństwa. W praktyce, korzystanie z odpowiednich napięć zasilających wpływa na stabilność i długowieczność sprzętu, co jest kluczowe w przemyśle.

Pytanie 24

Podwyższenie częstotliwości napięcia zasilającego silnik indukcyjny klatkowy o 20 Hz spowoduje

A. zatrzymanie działania silnika
B. niestabilną pracę silnika
C. spadek prędkości obrotowej wirnika silnika
D. wzrost prędkości obrotowej wirnika silnika
Zatrzymanie pracy silnika to fałszywe założenie, ponieważ silnik indukcyjny nie przestaje działać w wyniku zwiększenia częstotliwości. W rzeczywistości, silniki te są zaprojektowane tak, aby funkcjonować w szerszym zakresie częstotliwości, a ich zatrzymanie wymagałoby innych okoliczności, takich jak awaria zasilania. W przypadku zwiększenia częstotliwości zasilania nie możemy również mówić o zmniejszeniu prędkości obrotowej wirnika. Prędkość obrotowa wirnika wzrasta w odpowiedzi na wyższą częstotliwość, co jest zjawiskiem zgodnym z zasadami elektrotechniki i dynamiki maszyn elektrycznych. Niestabilna praca silnika to również nieprawidłowe stwierdzenie; silniki indukcyjne są zaprojektowane do pracy z różnymi częstotliwościami, a ich stabilność operacyjna jest determinowana przez parametry konstrukcyjne, takie jak moment obrotowy czy obciążenie. Zwiększenie częstotliwości może wprawdzie wpłynąć na parametry pracy silnika, ale zazwyczaj będzie to prowadzić do lepszych osiągów i efektywności, a nie do destabilizacji. Typowe błędy, które prowadzą do takich wniosków, obejmują mylenie zasad działania silników elektrycznych z innymi typami maszyn, które mogą rzeczywiście reagować na zmiany napięcia lub częstotliwości w sposób destabilizujący. Dlatego kluczowe jest zrozumienie, jak silniki indukcyjne działają i jakie są ich właściwości w zakresie regulacji prędkości obrotowej.

Pytanie 25

Jakiej z wymienionych funkcji nie realizuje system SCADA?

A. Prezentacja danych
B. Zbieranie danych
C. Zwalczanie i usuwanie wirusów komputerowych
D. Archiwizacja danych
Wybór odpowiedzi związanej ze zwalczaniem i usuwaniem wirusów komputerowych jest wynikiem pewnych nieporozumień dotyczących funkcji oprogramowania SCADA. To narzędzie, jak wcześniej wspomniano, zostało stworzone do monitorowania i zarządzania systemami przemysłowymi, a nie do funkcji zabezpieczeń informatycznych. W rzeczywistości, aby chronić systemy SCADA przed zagrożeniami cybernetycznymi, stosuje się różne inne podejścia, takie jak firewalle, systemy wykrywania włamań czy segmentacja sieci. SCADA nie ma możliwości samodzielnego usuwania wirusów, ponieważ jest to system operacyjny, który skupia się na zarządzaniu procesami i analizie danych. Typowym błędem myślowym jest utożsamianie wszystkich systemów informatycznych z systemami zabezpieczeń, co jest niepoprawne. W rzeczywistości, w obszarze automatyki przemysłowej, niezbędne jest wdrożenie odpowiednich barier ochronnych, które zabezpieczą systemy SCADA przed atakami z zewnątrz. Przykłady dobrych praktyk w tym zakresie obejmują regularne aktualizacje oprogramowania, przeprowadzanie audytów bezpieczeństwa oraz wdrażanie polityki zarządzania dostępem. Dlatego kluczowe jest, aby osoby pracujące w obszarze SCADA rozumiały, że ich rola polega przede wszystkim na monitorowaniu i optymalizacji procesów, a nie na bezpośrednim zwalczaniu zagrożeń komputerowych.

Pytanie 26

Który z poniższych typów czujników używany jest do wykrywania pozycji tłoka siłownika beztłoczyskowego, na którym zamontowane są magnesy?

A. Indukcyjny
B. Ultradźwiękowy
C. Kontaktronowy
D. Tensometryczny
Czujnik kontaktronowy to urządzenie, które działa na zasadzie reakcji na pole magnetyczne, które zmienia się w wyniku ruchu tłoka siłownika beztłoczyskowego z zamontowanymi magnesami. Urządzenie to składa się z dwóch styków zamkniętych w szklanej obudowie, które otwierają się lub zamykają w momencie oddziaływania z polem magnetycznym. Dzięki tej zasadzie działania, czujnik kontaktronowy jest idealnym rozwiązaniem do monitorowania położenia tłoka, ponieważ umożliwia precyzyjne określenie jego pozycji bez kontaktu mechanicznego, co eliminuje zużycie elementów mechanicznych. W praktyce, czujniki te są szeroko stosowane w automatyzacji przemysłowej, zwłaszcza w aplikacjach wymagających wysokiej niezawodności, takich jak systemy pneumatyczne i hydrauliczne. Warto również zauważyć, że czujniki kontaktronowe są zgodne z różnymi standardami przemysłowymi, co czyni je popularnym wyborem w wielu aplikacjach inżynieryjnych.

Pytanie 27

Podczas diagnostyki systemu mechatronicznego, co jest kluczowym parametrem do zmierzenia?

A. Napięcie zasilania
B. Materiał obudowy
C. Waga komponentów
D. Kolor przewodów
Napięcie zasilania jest kluczowym parametrem do zmierzenia podczas diagnostyki systemu mechatronicznego, ponieważ od jego poprawności zależy prawidłowe funkcjonowanie całego układu. W mechatronice urządzenia często opierają się na precyzyjnym zasilaniu poszczególnych komponentów, takich jak silniki, siłowniki czy czujniki. Niewłaściwe napięcie może prowadzić do nieprawidłowego działania lub nawet uszkodzenia tych elementów. Dlatego sprawdzenie napięcia jest jednym z pierwszych kroków diagnostycznych. Dodatkowo, zgodnie z dobrą praktyką inżynierską, systemy mechatroniczne są projektowane z określonymi zakresami napięcia roboczego, które muszą być dokładnie utrzymywane. W praktyce, pomiar napięcia zasilania może pomóc zidentyfikować problemy związane z zasilaniem, takie jak spadki napięcia, które są częstą przyczyną problemów w systemach mechatronicznych. Regularne monitorowanie tego parametru pozwala na wczesne wykrycie potencjalnych awarii i zapewnia niezawodność całego systemu.

Pytanie 28

Jaka jest minimalna liczba bitów przetwornika A/C, która powinna być użyta w układzie, aby dla zakresu pomiarowego 0 mA ÷ 20 mA uzyskać rozdzielczość równą 0,01 mA?

A. 16 bitowy
B. 12 bitowy
C. 10 bitowy
D. 11 bitowy
Wybór niepoprawnych odpowiedzi może wynikać z nieporozumienia dotyczącego koncepcji rozdzielczości przetworników A/C oraz ich związków z liczbą bitów. Na przykład, wybierając 12-bitowy przetwornik, można sądzić, że zapewni on wystarczającą rozdzielczość. Jednak 12-bitowy przetwornik, oferujący 4096 poziomów, jest nadmiarem w tym kontekście. Podobnie, wybór 10-bitowego przetwornika, który dysponuje jedynie 1024 poziomami, jest niewystarczający dla wymaganej rozdzielczości 0,01 mA. Ponadto, 11-bitowy przetwornik, oferując 2048 poziomów, stanowi idealne rozwiązanie, co pokazuje, że kluczowe jest zrozumienie, jak obliczenia kwantyzacji i liczba poziomów oddziałują ze sobą. Współczesne aplikacje wymagają często precyzyjnych pomiarów, a błędne podejście może prowadzić do niewłaściwych decyzji w projektach inżynieryjnych. Ważne jest, aby zawsze analizować wymagania dotyczące pomiarów i dopasowywać odpowiednie rozwiązania technologiczne, aby uniknąć sytuacji, w których nieodpowiedni wybór przetwornika wpływa na jakość zbieranych danych.

Pytanie 29

Trójfazowy silnik indukcyjny klatkowy zasilany nominalnym napięciem uruchamia się i działa prawidłowo, lecz po obciążeniu zbyt mocno się nagrzewa. W jaki sposób można ustalić przyczynę?

A. Sprawdzić współosiowość wałów silnika oraz maszyny napędzanej
B. Zmierzyć prąd pobierany przez silnik oraz napięcie na zaciskach w czasie pracy
C. Zmierzyć wartość napięcia w linii zasilającej
D. Sprawdzić swobodę obracania się wirnika w stojanie
Pomiar prądu pobieranego przez silnik oraz napięcia na zaciskach podczas jego pracy jest kluczowym krokiem w diagnozowaniu problemów związanych z nadmiernym nagrzewaniem się silnika indukcyjnego trójfazowego klatkowego. Wysokie wartości prądu mogą wskazywać na przeciążenie silnika, co jest jednym z głównych czynników prowadzących do przegrzewania. Przykładowo, jeśli silnik działa w warunkach, które wymagają od niego większej mocy niż nominalna, to może to prowadzić do wzrostu temperatury oraz uszkodzenia uzwojenia. Z kolei pomiar napięcia na zaciskach pozwala ocenić, czy silnik otrzymuje odpowiednią ilość energii. Niewłaściwe napięcie może być wynikiem problemów w instalacji elektrycznej, co również wpływa na wydajność silnika. W praktyce, zgodnie z normami, warto regularnie przeprowadzać takie pomiary jako część rutynowej konserwacji, aby zminimalizować ryzyko awarii oraz przedłużyć żywotność urządzenia. Monitorowanie tych parametrów jest zgodne z dobrymi praktykami w utrzymaniu ruchu i pozwala na wczesne wykrywanie problemów, co jest kluczowe w środowisku przemysłowym.

Pytanie 30

Jaki program jest używany do gromadzenia wyników pomiarów, ich wizualizacji, zarządzania procesem, alarmowania oraz archiwizacji danych?

A. InteliCAD
B. AutoCAD
C. KiCAD
D. WinCC
WinCC, czyli Windows Control Center, jest zaawansowanym systemem SCADA (Supervisory Control and Data Acquisition) zaprojektowanym do monitorowania i kontrolowania procesów przemysłowych. Jego główną funkcjonalnością jest zbieranie danych z różnych źródeł, takich jak czujniki czy urządzenia pomiarowe, które następnie są wizualizowane w przystępny sposób na ekranach komputerowych. Dzięki WinCC można nie tylko śledzić wyniki pomiarów w czasie rzeczywistym, ale także zarządzać alarmami, co jest kluczowe w kontekście zapewnienia bezpieczeństwa procesów przemysłowych. System ten pozwala na archiwizowanie danych, co jest zgodne z najlepszymi praktykami w zakresie zarządzania jakością oraz zgodności z normami, takimi jak ISO 9001. Przykładowo, w zakładach produkcyjnych WinCC może być używany do monitorowania parametrów procesów, takich jak temperatura, ciśnienie czy poziom cieczy, co pozwala na szybkie podejmowanie decyzji w przypadku wykrycia nieprawidłowości.

Pytanie 31

Jakie minimalne parametry bitowe powinien mieć przetwornik A/C, aby w zakresie pomiarowym
0 mA ÷ 20 mA osiągnąć rozdzielczość w zaokrągleniu równą 0,01 mA?

A. 10 bitowy
B. 16 bitowy
C. 11 bitowy
D. 12 bitowy
Aby zapewnić rozdzielczość równą 0,01 mA w zakresie pomiarowym od 0 mA do 20 mA, niezbędne jest zastosowanie przetwornika A/C, który potrafi obsłużyć co najmniej 2000 poziomów kwantyzacji. Przetwornik 11-bitowy, oferujący 2048 poziomów kwantyzacji, spełnia to wymaganie, ponieważ umożliwia osiągnięcie pożądanej dokładności. W praktyce oznacza to, że dla każdego odczytu prądu możemy precyzyjnie określić wartości w odstępach 0,01 mA, co jest kluczowe w wielu zastosowaniach, np. w automatyce przemysłowej, gdzie precyzyjne pomiary są niezbędne do zapewnienia wydajności i bezpieczeństwa systemów. Warto pamiętać, że stosowanie przetworników o wyższej rozdzielczości przyczynia się do lepszego monitorowania procesów oraz minimalizowania ryzyka wystąpienia błędów pomiarowych. W branży zaleca się wybór urządzeń z nadmiarem rozdzielczości, co pozwala na większą elastyczność w przyszłych aplikacjach oraz lepsze dopasowanie do zmieniających się wymagań.

Pytanie 32

W systemie alarmowym, który jest aktywowany za pomocą pilota radiowego, zasięg jego działania znacznie się zmniejszył. Jakie może być najprawdopodobniejsze źródło tego problemu?

A. Rozładowana bateria w pilocie
B. Rozkodowanie pilota
C. Zniszczenie przycisku w pilocie
D. Niewłaściwe kierowanie pilota na odbiornik
Rozładowana bateria w pilocie jest najczęstszą przyczyną zmniejszenia zasięgu działania zdalnego sterowania w systemach alarmowych. Piloty działają na zasadzie wysyłania sygnału radiowego, który jest odbierany przez centralę alarmową. W miarę jak bateria się rozładowuje, moc sygnału znacząco maleje, co skutkuje osłabieniem zasięgu. W praktyce, użytkownicy powinni regularnie kontrolować stan baterii swoich pilotów, a także stosować wysokiej jakości akumulatory, które zapewniają stabilne zasilanie przez dłuższy czas. Ważne jest również, aby przy wymianie baterii stosować się do instrukcji producenta, co pozwoli uniknąć problemów z kompatybilnością. Zgodnie z dobrymi praktykami, zaleca się wymianę baterii co 6-12 miesięcy, aby zapewnić niezawodne działanie systemu alarmowego. Ponadto, użytkownicy powinni być świadomi, że inne czynniki, takie jak zakłócenia elektromagnetyczne czy przeszkody w postaci ścian, mogą również wpływać na zasięg, jednak w przypadku znacznej redukcji zasięgu, rozładowana bateria jest najprawdopodobniejszym czynnikiem.

Pytanie 33

Czujnik rozpoznaje elementy z tworzywa sztucznego

A. magnetyczny
B. piezoelektryczny
C. pojemnościowy
D. indukcyjny
Czujniki magnetyczne, piezoelektryczne oraz indukcyjne nie są odpowiednimi narzędziami do wykrywania tworzyw sztucznych, co wynika z ich fundamentalnych zasad działania. Czujniki magnetyczne działają na zasadzie wykrywania pola magnetycznego, co oznacza, że są skuteczne jedynie dla materiałów ferromagnetycznych. Tworzywa sztuczne, będące materiałami dielektrycznymi, nie wykazują odpowiedzi na pole magnetyczne, więc ich zastosowanie w tym kontekście jest niewłaściwe. Czujniki piezoelektryczne z kolei wykorzystują efekt piezoelektryczny, który polega na generowaniu napięcia elektrycznego w odpowiedzi na mechaniczne naprężenia. Chociaż mogą być użyte do wykrywania zmian ciśnienia czy drgań, nie są skuteczne w wykrywaniu materiałów takich jak tworzywa sztuczne, ponieważ nie reagują na ich obecność jako taką. Wreszcie czujniki indukcyjne są skomponowane w taki sposób, aby wykrywać przewodzące materiały metalowe poprzez generowanie i analizowanie pola elektromagnetycznego. Ich zastosowanie do wykrywania tworzyw sztucznych jest zatem nieefektywne, ponieważ materiały te nie wykazują odpowiedzi na pole indukcyjne. W praktyce, wybór odpowiedniego czujnika może być kluczowy dla zapewnienia efektywności procesów produkcyjnych. Dlatego ważne jest zrozumienie zasad działania różnych typów czujników i ich zastosowań, aby uniknąć pomyłek w doborze technologii.

Pytanie 34

Jakie symptomy pracy jednofazowego silnika klatkowego mogą wskazywać na uszkodzenie kondensatora?

A. Trudności z uruchomieniem silnika
B. Brak jakiejkolwiek reakcji po włączeniu zasilania
C. Zmiana kierunku obrotu wirnika
D. Skłonności do samoczynnego rozbiegnięcia się wirnika
Kierunek wirowania wirnika w silniku klatkowym jednofazowym jest zdeterminowany przez sposób podłączenia uzwojeń oraz kierunek prądu wytwarzanego przez kondensator. Zmiana kierunku wirowania nie jest typowym objawem uszkodzenia kondensatora, a zatem nie można jej łączyć z tym rodzajem awarii. Tendencje do rozbiegania się wirnika mogą być związane z innymi problemami, takimi jak nierównomierne obciążenie lub uszkodzenie mechaniczne, a niekoniecznie z kondensatorem. Z kolei brak jakiejkolwiek reakcji na załączenie zasilania wskazuje na poważniejsze problemy, takie jak zasilanie, uszkodzenia w uzwojeniach, czy całkowite uszkodzenie silnika. Te objawy często prowadzą do błędnych wniosków, które mogą skutkować niewłaściwą diagnozą i naprawą. W praktyce, aby prawidłowo zidentyfikować problem w silniku klatkowym jednofazowym, konieczne jest przeprowadzenie szczegółowej analizy, w tym sprawdzeniu kondensatora, ale także innych elementów układu elektrycznego. Zrozumienie złożoności działania silników elektrycznych i umiejętność oceny objawów awarii to kluczowe kompetencje dla techników i inżynierów zajmujących się elektroniką i elektrotechniką.

Pytanie 35

Które z poniższych stwierdzeń na temat przeprowadzania inspekcji urządzeń elektrycznych jest fałszywe?

A. W trakcie inspekcji dopuszczalne jest, aby urządzenia elektryczne pozostały pod napięciem
B. Podczas inspekcji dozwolone jest zbliżanie się do nieosłoniętych wirujących elementów urządzenia
C. Inspekcje są dokonywane z wykorzystaniem zmysłów wzroku, słuchu i węchu
D. Celem inspekcji jest identyfikacja nieprawidłowości w działaniu urządzenia
Nieprawidłowe podejście do przeprowadzania oględzin urządzeń elektrycznych może wynikać z braku zrozumienia zasad bezpieczeństwa oraz nieodpowiedniego stosowania norm branżowych. Stwierdzenie, że oględziny mają na celu wykrycie nieprawidłowości w funkcjonowaniu urządzenia, jest prawdziwe, jednak w kontekście bezpieczeństwa nie wystarczy jedynie wykrywać problemy – kluczowe jest także przestrzeganie zasad bezpieczeństwa. Przeprowadzając oględziny, należy pamiętać, że zbliżanie się do nieosłoniętych wirujących części stanowi istotne zagrożenie. Ruchome elementy maszyn mogą powodować poważne urazy, a każdy inspektor powinien znać niebezpieczeństwa związane z ich obecnością. Ponadto, pozostawienie urządzeń pod napięciem w trakcie przeglądów jest działaniem niedopuszczalnym, które może prowadzić do porażenia prądem elektrycznym. Oględziny powinny być prowadzone z zachowaniem pełnej ostrożności, a wszystkie urządzenia powinny być wyłączone i odpowiednio zabezpieczone przed przypadkowym włączeniem. Zastosowanie zasad BHP, takich jak stosowanie odpowiednich środków ochrony osobistej, jest niezbędne dla zapewnienia bezpieczeństwa zarówno osobom przeprowadzającym kontrole, jak i tym, które mogą być narażone na niebezpieczeństwo w wyniku niewłaściwego postępowania. Ignorowanie tych zasad prowadzi do niebezpiecznych sytuacji oraz ryzykownych zachowań, co jest nie do zaakceptowania w profesjonalnym środowisku pracy.

Pytanie 36

Szczelność systemu pneumatycznego weryfikuje się poprzez pomiar

A. spadku ciśnienia w systemie w ustalonym czasie
B. zmiany maksymalnej prędkości siłownika
C. ilości powietrza potrzebnego do utrzymania stałego poziomu ciśnienia
D. zmiany maksymalnej siły wytwarzanej przez siłownik
Wybór odpowiedzi związanej z ilością powietrza zużywanego na utrzymanie ciśnienia może być mylny, gdyż nie odnosi się bezpośrednio do pomiaru szczelności układu pneumatycznego. Chociaż zużycie powietrza może wskazywać na ogólną efektywność systemu, nie jest to miara nieszczelności. W praktyce, nawet w obecności nieszczelności, układ może nadal utrzymywać ciśnienie, jeśli kompresor działa wystarczająco wydajnie, a to prowadzi do błędnych wniosków na temat stanu układu. Podobnie, spadek maksymalnej siły generowanej przez siłownik nie jest bezpośrednim wskaźnikiem szczelności, ponieważ może być wynikiem różnych czynników, takich jak obciążenie czy zmiany w parametrach roboczych siłownika. Z kolei spadek maksymalnej prędkości siłownika również nie wskazuje na nieszczelność, lecz może być efektem zbyt małego ciśnienia zasilania lub zbyt długiego cyklu pracy. Kluczowe jest zrozumienie, że właściwym podejściem do oceny szczelności układu pneumatycznego jest monitorowanie i analiza zmian ciśnienia w czasie, a nie opieranie się na pośrednich wskaźnikach, które mogą prowadzić do nieprawidłowych wniosków. Dlatego, przy ocenie stanu technicznego układu, należy stosować odpowiednie metody i narzędzia diagnostyczne zgodne z normami branżowymi, które zapewniają dokładność i wiarygodność pomiarów.

Pytanie 37

W urządzeniu mechatronicznym zastosowano pasek zębaty jako mechanizm przenoszenia napędu. W trakcie regularnej inspekcji tego paska należy przede wszystkim ocenić stopień jego zużycia oraz

A. smarowanie
B. bicie osiowe
C. naprężenie
D. temperaturę
Prawidłowe naprężenie paska zębatego jest kluczowe dla efektywnego przenoszenia napędu w urządzeniach mechatronicznych. Zbyt luźny pasek może powodować poślizgnięcia i przeskakiwanie zębów, co prowadzi do zwiększonego zużycia oraz uszkodzeń mechanicznych. Z kolei zbyt mocno napięty pasek może powodować zwiększone obciążenie na łożyskach oraz prowadzić do szybszego zużycia samego paska. Standardy branżowe, takie jak ISO 5296, wskazują na konieczność regularnego monitorowania naprężeń w elementach przenoszących napęd, aby zapewnić ich długowieczność i niezawodność. Praktyka przemysłowa sugeruje, że przed każdą dłuższą eksploatacją należy przeprowadzić kontrolę naprężenia, co pozwala na optymalizację wydajności systemu oraz minimalizację ryzyka awarii. Dlatego umiejętność prawidłowego pomiaru i regulacji naprężenia paska zębatego jest fundamentalną umiejętnością w konserwacji urządzeń mechatronicznych.

Pytanie 38

Jaki czujnik powinien zostać zainstalowany na obudowie siłownika, aby monitorować położenie tłoczyska z magnesem?

A. Piezoelektryczny
B. Kontaktronowy
C. Ultradźwiękowy
D. Optyczny
Wybór czujnika do wykrywania położenia tłoczyska z magnesem wymaga zrozumienia, jakie właściwości i zasady działania mają różne typy czujników. Optyczny czujnik, choć popularny w wielu zastosowaniach, nie jest najlepiej przystosowany do lokalizacji obiektów magnetycznych. Działa na zasadzie wykrywania zmian w świetle lub przeszkód optycznych, co czyni go mniej skutecznym w kontekście siłowników z magnesem, gdzie położenie nie jest związane z obiektami optycznymi. Z kolei czujnik piezoelektryczny działa na zasadzie generowania napięcia w reakcji na deformacje, co również nie odpowiada na potrzeby identyfikacji położenia tłoczyska w sposób precyzyjny i bezpośredni. Piezoelektryczność jest wykorzystywana głównie w czujnikach ciśnienia lub drgań. Natomiast czujnik ultradźwiękowy, mimo że jest zdolny do mierzenia odległości, wymaga, aby obiekt był wystarczająco duży i dobrze odbijał fale dźwiękowe, co w przypadku tłoczyska z magnesem może nie być zrealizowane w sposób efektywny. Typowe błędy, które prowadzą do wyboru niewłaściwego czujnika, to brak zrozumienia zasady działania danego typu czujnika oraz nieodpowiednie przypisanie jego właściwości do konkretnego zastosowania. W związku z tym, aby dokonać właściwego wyboru, ważne jest, aby dobrze poznać wymagania konkretnego zastosowania oraz właściwości dostępnych technologii.

Pytanie 39

W dokumentacji dotyczączej prasy pneumatycznej jako kluczowy parametr eksploatacji określono ciśnienie zasilające na poziomie 0,6 MPa ± 5%. Który z podanych pomiarów nie mieści się w akceptowalnym zakresie?

A. 630 000 Pa
B. 650 kPa
C. 0,58 MPa
D. 600 kPa
Odpowiedź '650 kPa' jest właściwa, ponieważ znajduje się poza dopuszczalnym zakresem ciśnienia zasilania dla prasy pneumatycznej. Zgodnie z dokumentacją, wartość ciśnienia nominalnego wynosi 0,6 MPa, a dopuszczalne odchylenie wynosi ± 5%. Oznacza to, że ciśnienie powinno mieścić się w przedziale od 0,57 MPa do 0,63 MPa. Wartość 650 kPa, co odpowiada 0,65 MPa, przekracza górną granicę tego zakresu, co może prowadzić do niebezpiecznych sytuacji podczas pracy urządzenia. Przykładowo, w przypadku nadmiernego ciśnienia dochodzi do zwiększonego ryzyka uszkodzenia elementów prasy, co może skutkować awarią maszyny oraz zagrożeniem dla operatorów. W praktyce, kontrola i monitorowanie ciśnienia zasilania jest kluczowe dla zapewnienia prawidłowej pracy i bezpieczeństwa urządzeń pneumatycznych. Przestrzeganie tych norm jest zgodne z wytycznymi branżowymi, które zalecają regularne kalibracje oraz audyty systemów ciśnieniowych.

Pytanie 40

W planowanym systemie hydraulicznym kontrola energii czynnika roboczego powinna odbywać się na zasadzie objętościowej. Osiąga to

A. pompa hydrauliczna o zmiennej wydajności
B. zawór przelewowy
C. pompa hydrauliczna o stałej wydajności
D. zawór bezpieczeństwa
Wybór pompy hydraulicznej o stałej wydajności w kontekście objętościowego sterowania energią czynnika roboczego jest nieodpowiedni z wielu powodów. Tego rodzaju pompy dostarczają stałą ilość cieczy w danym czasie, co ogranicza ich elastyczność w dostosowywaniu się do zmiennych warunków pracy. W praktyce oznacza to, że w sytuacji, gdy zapotrzebowanie na przepływ zmienia się, pompa o stałej wydajności nie może efektywnie zareagować, co prowadzi do nieoptymalnego wykorzystania energii oraz potencjalnych problemów z ciśnieniem w systemie. Ponadto, niezdolność do regulacji wydajności może skutkować nadmiernym obciążeniem układu hydraulicznego, co w dłuższej perspektywie prowadzi do uszkodzeń komponentów oraz zwiększenia kosztów konserwacji. Zawory bezpieczeństwa i przelewowe również nie są odpowiednie dla tego zadania, ponieważ ich podstawową funkcją jest ochrona układu przed nadciśnieniem, a nie regulacja przepływu. Wybierając niewłaściwe rozwiązania, można łatwo popaść w pułapki myślowe związane z założeniem, że prostota konstrukcji zapewnia niezawodność. W rzeczywistości, brak możliwości regulacji przepływu w układzie hydraulicznym może prowadzić do poważnych awarii i zakłóceń operacyjnych, co jest niezgodne z aktualnymi standardami jakości i bezpieczeństwa w branży hydraulicznej.