Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik mechanik
  • Kwalifikacja: MEC.08 - Wykonywanie i naprawa elementów maszyn, urządzeń i narzędzi
  • Data rozpoczęcia: 9 grudnia 2025 08:46
  • Data zakończenia: 9 grudnia 2025 08:50

Egzamin zdany!

Wynik: 38/40 punktów (95,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Która metoda tymczasowego zabezpieczenia metali przed korozją jest skuteczna?

A. metalizacja natryskowa
B. pokrywanie smarem
C. ochrona katodowa
D. malowanie proszkowe
Pokrywanie smarem jest skuteczną metodą czasowego zabezpieczenia antykorozyjnego metali, polegającą na nałożeniu warstwy smaru, która chroni powierzchnię przed działaniem czynników atmosferycznych, takich jak wilgoć i zanieczyszczenia. Smary zawierają dodatki przeciwdziałające korozji, co sprawia, że są idealne do zastosowań w warunkach, gdzie metalowe elementy mogą być narażone na rdzewienie. Przykładem zastosowania może być smarowanie elementów maszyn i urządzeń, które są składowane na zewnątrz lub w wilgotnych warunkach. Dobre praktyki branżowe zalecają regularne inspekcje i aplikacje smaru, aby zapewnić ciągłość ochrony. W przemyśle motoryzacyjnym, pokrywanie smarem jest powszechnie stosowane w celu ochrony podzespołów przed korozją, co zwiększa ich trwałość i niezawodność. Ponadto, smary mogą być łatwo aplikowane i usuwane, co czyni tę metodę łatwą w użyciu i efektywną.

Pytanie 2

Narzędzie skrawające przedstawione na rysunku stosowane jest w procesie

Ilustracja do pytania
A. frezowania.
B. pogłębiania.
C. piłowania.
D. przepychania.
Narzędzie skrawające przedstawione na rysunku to przepychacz, które jest kluczowe w procesie przepychania. Przepychanie jest techniką obróbcza, która polega na wprowadzaniu narzędzia skrawającego do materiału w celu precyzyjnego formowania otworów. Przepychacze są zazwyczaj używane w obróbce materiałów takich jak metale, tworzywa sztuczne czy kompozyty, co pozwala na uzyskanie bardzo dokładnych kształtów i wymiarów otworów. W praktyce, przepychanie jest wykorzystywane w produkcji komponentów mechanicznych, gdzie wysoka precyzja jest niezbędna, na przykład w przemyśle motoryzacyjnym czy lotniczym. Warto również zauważyć, że stosowanie przepychaczy zgodnie z dobrymi praktykami inżynieryjnymi, takimi jak odpowiedni dobór materiałów narzędziowych oraz parametrów obróbczych, ma kluczowe znaczenie dla uzyskania optymalnych rezultatów i wydajności procesu. Ponadto, dobrym standardem jest regularne monitorowanie stanu narzędzia, co pozwala na zminimalizowanie ryzyka uszkodzeń i zapewnienie wysokiej jakości obróbki.

Pytanie 3

Do czego służy średnicówka mikrometryczna?

A. Pomiar głębokości otworów
B. Pomiar średnic zewnętrznych
C. Pomiar kątów między powierzchniami
D. Pomiar długości całkowitej przedmiotów
Średnicówka mikrometryczna to narzędzie pomiarowe, które jest powszechnie stosowane w przemyśle do dokładnego mierzenia średnic zewnętrznych elementów. Jej konstrukcja opiera się na mechanizmie mikrometrycznym, co pozwala na uzyskanie bardzo precyzyjnych wyników pomiarów, często z dokładnością do setnych części milimetra. W praktyce przemysłowej, szczególnie w obróbce skrawaniem, dokładność pomiaru jest kluczowa, ponieważ nawet niewielkie odchylenia mogą wpływać na jakość montowanych części. Średnicówki mikrometryczne są używane do kontrolowania jakości wykonanych elementów, takich jak wałki, tuleje czy inne cylindryczne części, zapewniając zgodność z wymaganiami technicznymi. Dzięki możliwości szybkiego i precyzyjnego pomiaru, narzędzie to znajduje zastosowanie w wielu branżach, od motoryzacji po produkcję maszyn, gdzie precyzja i jakość są priorytetem. Dobre praktyki branżowe zalecają regularną kalibrację średnicówek, aby utrzymać ich dokładność na najwyższym poziomie.

Pytanie 4

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 5

Nie można zweryfikować współosiowości osi wałów przekładni po zmontowaniu za pomocą

A. czujnika zegarowego
B. przyrządów pomiarowych
C. suwmiarki uniwersalnej
D. czujnika laserowego
Odpowiedź 'suwmiarka uniwersalna' jest fajnie wybrana, ale, no niestety, to nie do końca to. Ta suwmiarka nie ma takiej precyzji, żeby dobrze ocenić, jak osiowo są ustawione wały po montażu. Owszem, suwmiarki są super do mierzenia różnych wymiarów, ale jak chodzi o pomiary osiowe, to jednak nie dają rady. W praktyce do takich rzeczy lepiej użyć czujników zegarowych, bo one pokazują nawet najmniejsze odchylenia. To pomaga naprawić ewentualne błędy przy składaniu. Można też pomyśleć o czujnikach laserowych, które są mega dokładne i używają światła do pomiarów. Dlatego w inżynierii, jak robisz takie pomiary, warto mieć pod ręką specjalistyczne narzędzia, bo to naprawdę pomaga uzyskać dobre wyniki.

Pytanie 6

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 7

W jakim celu wykorzystuje się proces hartowania stali?

A. Zwiększenie przewodności elektrycznej
B. Obniżenie temperatury topnienia
C. Zwiększenie twardości i wytrzymałości
D. Zmniejszenie plastyczności
Proces hartowania stali to zabieg cieplny, który polega na nagrzaniu materiału do odpowiedniej temperatury, a następnie szybkim schłodzeniu. Głównym celem tego procesu jest zwiększenie twardości i wytrzymałości stali. Podczas hartowania dochodzi do przemian strukturalnych w stali, przede wszystkim do przekształcenia austenitu w martenzyt. Martenzyt jest fazą, która charakteryzuje się dużą twardością i wytrzymałością mechaniczną. Dzięki temu stal staje się bardziej odporna na zużycie i obciążenia mechaniczne, co jest niezwykle ważne w przemyśle maszynowym. Hartowanie jest szeroko stosowane w produkcji narzędzi, części maszyn oraz elementów konstrukcyjnych, które muszą wytrzymać duże obciążenia. W praktyce oznacza to, że hartowane elementy mogą pracować dłużej bez uszkodzeń, co przekłada się na większą niezawodność urządzeń. Dodatkowo, hartowanie pozwala na optymalizację kosztów eksploatacyjnych dzięki ograniczeniu częstotliwości wymiany zużytych części.

Pytanie 8

Strzałką na ilustracji wskazano powierzchnię, która została wykonana w operacji

Ilustracja do pytania
A. piłowania.
B. radełkowania.
C. szlifowania.
D. frezowania.
Radełkowanie to proces obróbczy stosowany w metalurgii, który polega na wytwarzaniu na powierzchni metalu charakterystycznych rowków. Te rowki, często w formie krzyżujących się linii, mają na celu zwiększenie chropowatości powierzchni, co z kolei poprawia chwyt oraz przyleganie elementów. W przemyśle motoryzacyjnym czy lotniczym, radełkowane powierzchnie stosuje się w elementach, które wymagają wysokiego współczynnika tarcia, aby zmniejszyć ryzyko poślizgu. Przykładem zastosowania radełkowania może być produkcja rękojeści narzędzi, gdzie odpowiednia chropowatość zapewnia pewniejszy chwyt. Radełkowanie jest również często stosowane w produkcji komponentów do połączeń mechanicznych, gdzie zapewnienie odpowiedniego tarcia jest kluczowe. Wiedza o takich procesach obróbczych jest niezbędna dla inżynierów i technologów pracujących w branżach zajmujących się obróbką metali oraz projektowaniem komponentów mechanicznych.

Pytanie 9

Jeśli po zakończeniu pracy w bruzdach narzędzi pozostaną opiłki, to trzeba je usunąć?

A. ciepłą wodą
B. szczotką drucianą
C. środkiem do mycia naczyń
D. palnikiem gazowym
Usunięcie opiłków z bruzd pilników za pomocą szczotki drucianej jest najlepszym rozwiązaniem, ponieważ ta metoda zapewnia skuteczne usunięcie zanieczyszczeń bez uszkadzania samego narzędzia. Szczotki druciane są projektowane z myślą o czyszczeniu metalowych powierzchni, co czyni je idealnym narzędziem do tego celu. Umożliwiają one dotarcie do wąskich przestrzeni, gdzie opiłki mogą się gromadzić, co jest kluczowe dla utrzymania efektywności narzędzia. Regularne czyszczenie pilników przy użyciu szczotki drucianej jest zgodne z zasadami konserwacji narzędzi, co przekłada się na ich dłuższą żywotność oraz lepsze wyniki pracy. Dobrą praktyką jest również przeprowadzanie takiego czyszczenia po każdym użyciu narzędzia, co zapobiega gromadzeniu się zanieczyszczeń oraz ich wpływowi na jakość obróbki. Dodatkowo, warto pamiętać, że użycie szczotki drucianej wymaga ostrożności, aby uniknąć uszkodzenia samej powierzchni pilnika, dlatego należy stosować odpowiednią siłę podczas czyszczenia.

Pytanie 10

Jakiego typu proces technologiczny powinno się zastosować do produkcji metalowych komponentów obudowy komputera?

A. Obróbka skrawaniem.
B. Przeróbka plastyczna.
C. Druk 3D.
D. Odlew.
Przeróbka plastyczna to proces technologiczny, w którym materiał, najczęściej metal, jest formowany w odpowiednie kształty poprzez działania mechaniczne, takie jak tłoczenie, walcowanie czy gięcie. Jest to szczególnie efektywna metoda produkcji metalowych elementów obudowy komputera, ponieważ pozwala na uzyskanie wysokiej precyzji oraz odpowiednich właściwości mechanicznych. Proces ten jest powszechnie stosowany w przemyśle elektronicznym, gdzie wymagana jest duża powtarzalność oraz jakość wykonania. Na przykład, obudowy komputerów często wykonuje się z blachy stalowej lub aluminiowej, które poddawane są tłoczeniu, co pozwala na szybkie i ekonomiczne wytwarzanie dużych serii elementów. Warto również zauważyć, że przeróbka plastyczna jest zgodna z normami ISO dotyczącymi procesów produkcyjnych, co zapewnia kontrolę jakości oraz zgodność z wymaganiami rynkowymi. Dodatkowo, zastosowanie przeróbki plastycznej wpływa na zmniejszenie ilości odpadów materiałowych w porównaniu do innych metod, takich jak obróbka skrawaniem.

Pytanie 11

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 12

Do wykonania wycięcia w metalowym kolanku wykonanym z blachy 0,5 mm, jak na ilustracji należy użyć wiertła oraz

Ilustracja do pytania
A. przecinaka.
B. skrobaka.
C. prasy ręcznej.
D. nożyc ręcznych.
Nożyce ręczne to narzędzie, które jest idealne do precyzyjnego cięcia cienkiej blachy, jak w przypadku blachy o grubości 0,5 mm. Ich konstrukcja umożliwia wygodne trzymanie i kontrolowanie siły cięcia, co jest kluczowe, aby uniknąć zniekształceń materiału. W branży metalowej, gdzie precyzja jest niezbędna, nożyce ręczne są powszechnie stosowane do wycinania kształtów i otworów w blachach. Dobre praktyki przewidują, aby podczas cięcia materiału nie używać zbyt dużej siły, co może skutkować uszkodzeniem blachy. Zamiast tego, warto prowadzić ruchy cięcia w sposób płynny i kontrolowany, co zwiększa jakość wykonania i estetykę cięcia. Warto również wspomnieć, że nożyce ręczne są bardziej mobilne i mogą być używane w różnych warunkach roboczych, co czyni je bardziej praktycznym narzędziem w codziennej pracy. Dlatego też, wybór nożyc ręcznych do wycięcia w blachy 0,5 mm, jak przedstawiono na ilustracji, jest uzasadniony i zgodny z najlepszymi praktykami branżowymi.

Pytanie 13

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 14

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 15

Jakiego surowca używa się do stworzenia modelu odlewniczego w technice wytapianego modelu?

A. Wosk.
B. Kleje.
C. Aluminium.
D. Tkanina.
Wosk jest materiałem powszechnie stosowanym w metodzie odlewania z wytapianym modelem, znanej również jako metoda wypalania wosku. Proces ten polega na wykonaniu modelu z wosku, który następnie zostaje pokryty warstwą materiału formierskiego, najczęściej z gipsu lub specjalnych piasków odlewniczych. Po utwardzeniu formy, wosk zostaje podgrzany i wytopiony, co pozostawia pustą przestrzeń, w której wlewa się metal w stanie ciekłym. Ta metoda charakteryzuje się dużą precyzją i jakością detali, co jest kluczowe w takich branżach jak jubilerstwo czy produkcja części do maszyn. Wosk pozwala na łatwe uzyskanie skomplikowanych kształtów i wzorów, których nie sposób byłoby wykonać przy użyciu innych materiałów. Zgodnie z normami branżowymi, stosowanie wosku w procesach odlewniczych zwiększa efektywność produkcji oraz jakość finalnych wyrobów. Na przykład, w jubilerstwie, wosk jest używany do tworzenia modelu biżuterii, co pozwala na precyzyjne odwzorowanie detali.

Pytanie 16

Aby określić oś symetrii czołowej powierzchni wałka, należy użyć

A. kątownika
B. linijki
C. środkownika
D. przymiaru kreskowego
Środkownik jest narzędziem pomiarowym, które służy do wyznaczania osi symetrii elementów, takich jak wałki. Jego konstrukcja umożliwia precyzyjne określenie środkowej linii na powierzchni czołowej wałka, co jest kluczowe w procesach obróbczych. Stosując środkownik, operator może szybko wykryć ewentualne odchylenia od geometrii idealnej, co jest niezbędne w przypadku precyzyjnych operacji, takich jak toczenie czy szlifowanie. W praktyce, wyznaczenie osi symetrii z użyciem środkownika pozwala na uzyskanie lepszego dopasowania pomiędzy poszczególnymi elementami maszyny, co przekłada się na ich wydajność i żywotność. Zgodnie z normami ISO dotyczącymi tolerancji wymiarowych, właściwe wyznaczenie osi symetrii jest kluczowe dla zapewnienia prawidłowego funkcjonowania układów mechanicznych. Warto również zaznaczyć, że środkownik jest narzędziem stosowanym w różnych dziedzinach przemysłu, a jego użycie jest zgodne z najlepszymi praktykami inżynieryjnymi.

Pytanie 17

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 18

Która maszyna skrawająca pozwala na jednoczesne wiercenie wielu otworów?

A. Dłutownica pionowa
B. Cykliniarka tarczowa
C. Tokarka rewolwerowa
D. Wiertarka wielowrzecionowa
Wiertarka wielowrzecionowa to maszyna, która umożliwia jednoczesne wiercenie wielu otworów w jednym cyklu pracy. Dzięki zastosowaniu kilku wrzecion, każde z nich może być wyposażone w narzędzie skrawające, co pozwala na efektywne i szybkie wykonanie dużej liczby otworów w różnych materiałach. To rozwiązanie jest szczególnie cenione w produkcji masowej, gdzie czas i precyzja mają kluczowe znaczenie. Na przykład, w branży motoryzacyjnej, wiertarki wielowrzecionowe są używane do tworzenia otworów w częściach karoserii, co przyspiesza proces montażu pojazdów. Dobre praktyki w użytkowaniu tych maszyn obejmują odpowiednie ustawienie parametrów skrawania, aby zminimalizować zużycie narzędzi i uzyskać wysoką jakość wykończenia. Ponadto, modernizacja i automatyzacja tych urządzeń, na przykład poprzez zastosowanie systemów CNC, znacząco zwiększa ich wydajność i precyzję działania, co jest zgodne z najnowszymi trendami w przemyśle produkcyjnym.

Pytanie 19

Koła zębate powstają w procesie toczenia oraz

A. tłoczenia i przeciągania
B. wytłaczania i frezowania
C. kalandrowania i szlifowania
D. frezowania i dłutowania
Frezowanie i dłutowanie to kluczowe procesy obróbcze stosowane w produkcji kół zębatych. Frezowanie polega na usuwaniu materiału za pomocą narzędzia skrawającego, które obraca się wokół własnej osi. Dzięki tej metodzie można osiągnąć wysoką precyzję w formowaniu zębatek, co jest istotne dla prawidłowego funkcjonowania mechanizmów przekładniowych. Dłutowanie z kolei jest procesem, który umożliwia uzyskanie kształtów zewnętrznych oraz wewnętrznych detali, idealnych do produkcji kół zębatych o złożonej geometrii. Przykładem zastosowania tych technologii jest produkcja kół zębatych do przekładni w samochodach, gdzie precyzyjny kształt zębów ma kluczowe znaczenie dla ich wydajności i trwałości. W branży inżynieryjnej obowiązują normy ISO dotyczące tolerancji wymiarowych, które są przestrzegane podczas obróbki kół zębatych, co zapewnia ich niezawodność i kompatybilność z innymi komponentami.

Pytanie 20

Na podstawie fragmentu dokumentacji szlifierki taśmowej odczytaj długość taśmy szlifierskiej.

ModelMMF 75-200-2
Artykuł3922075
Dane techniczne
Szerokość szlifu75 mm
Szybkość taśmy14,5 / 29 m/s
Moc silnika1,5 / 2,2 kW
Podłączenie elektryczne400 V / 50 Hz
Wymiary taśmy szlifierskiej75 x 2000 mm
Ø koła kontaktowego200 mm
Ø króćca odsysającego100 mm
Wymiary w mm (dł. x szer. x wys.)1070 x 340 x 950
Ciężar72 kg
A. 75 mm
B. 1 070 mm
C. 2 000 mm
D. 100 mm
Odpowiedź 2 000 mm jest poprawna, ponieważ zgodnie z dokumentacją szlifierki taśmowej, długość taśmy szlifierskiej wynosi właśnie 2000 mm. Informacja ta znajduje się w sekcji "Wymiary taśmy szlifierskiej", co jest istotne dla prawidłowego doboru materiałów eksploatacyjnych oraz parametrów roboczych urządzenia. Długość taśmy ma kluczowe znaczenie w kontekście wydajności pracy szlifierki. Wybór odpowiedniej długości taśmy wpływa nie tylko na efektywność szlifowania, ale również na bezpieczeństwo użytkowania maszyny. Zastosowanie taśmy o niewłaściwych wymiarach może prowadzić do jej uszkodzenia, co w konsekwencji zwiększa koszty eksploatacji. W przemyśle, gdzie szlifierki taśmowe są powszechnie używane, zgodność z podanymi wymiarami jest fundamentem efektywnego zarządzania procesem produkcyjnym. Warto również pamiętać, że dobór odpowiedniej długości taśmy powinien być zgodny z normami branżowymi, które regulują parametry techniczne dla tego typu urządzeń.

Pytanie 21

Na ilustracji przedstawiono narzędzie stosowane w procesie

Ilustracja do pytania
A. gwintowania.
B. pogłębiania.
C. wiercenia.
D. rozwiercania.
Narzynka, przedstawiona na ilustracji, jest narzędziem używanym w procesie gwintowania, które polega na wycinaniu gwintów na zewnętrznych powierzchniach cylindrycznych. Gwintowanie jest kluczowym procesem w mechanice precyzyjnej, wykorzystywanym do tworzenia połączeń śrubowych, które są niezbędne w budowie maszyn oraz różnorodnych konstrukcji. Narzynki, ze względu na swoją konstrukcję, umożliwiają precyzyjne i efektywne wycinanie gwintów, co jest szczególnie istotne w przemyśle motoryzacyjnym oraz lotniczym, gdzie tolerancje wymiarowe są niezwykle rygorystyczne. W procesie gwintowania narzynka obraca się wokół osi materiału, a ostrza narzędzia wycinają gwint, zapewniając odpowiednią jakość oraz kształt. Warto również dodać, że stosowanie narzynek zgodnie z zaleceniami producentów oraz praktykami branżowymi, takimi jak odpowiednia prędkość obrotowa i stosowanie smarów, pozwala na wydłużenie żywotności narzędzi oraz uzyskanie lepszych rezultatów końcowych.

Pytanie 22

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 23

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 24

Do budowy wanny, która ma służyć do przechowywania soku jabłkowego, należy użyć stali

A. ocynkowanej
B. chromowo-niklowej
C. konstrukcyjnej
D. narzędziowej
Wybór stali chromowo-niklowej do konstrukcji wanny do magazynowania soku z jabłek jest uzasadniony jej wyjątkowymi właściwościami. Stal chromowo-niklowa, znana również jako stal nierdzewna, charakteryzuje się wysoką odpornością na korozję, co jest kluczowe w kontekście przechowywania substancji takich jak sok jabłkowy, który ma tendencję do kwaszenia. Przykładem zastosowania stali nierdzewnej w przemyśle spożywczym jest produkcja zbiorników do fermentacji, w których zachowanie czystości i stabilności materiału jest niezbędne dla zachowania jakości produktu. Dodatkowo, stal chromowo-niklowa nie tylko spełnia normy sanitarno-epidemiologiczne, ale także jest łatwa do czyszczenia, co przyspiesza proces konserwacji i utrzymania sprzętu. W branży stosuje się różne klasy stali nierdzewnej, w tym austenityczną (np. 304, 316), która jest szczególnie ceniona za swoje właściwości antykorozyjne. Takie podejście jest zgodne z najlepszymi praktykami w zakresie bezpieczeństwa żywności oraz ochrony zdrowia, co czyni stal chromowo-niklową idealnym wyborem do produkcji wyposażenia przetwórstwa owocowego.

Pytanie 25

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 26

Aby zrealizować produkcję rury okrągłej z blachy, konieczne jest użycie

A. frezarki poziomej
B. wytaczarki
C. walcarki
D. prasy hydraulicznej
Wybór walcarki jako narzędzia do wykonania rury okrągłej z blachy jest słuszny, ponieważ walcarka to maszyna przeznaczona do formowania metalu w kształty cylindryczne lub stożkowe. Proces walcowania polega na przekształcaniu płaskiego arkusza blachy poprzez jego przeprowadzenie między dwoma lub więcej walcami, co umożliwia uzyskanie pożądanej średnicy i grubości ścianki rury. Walcarki są powszechnie stosowane w przemyśle metalowym do produkcji rur, kształtowników i innych elementów z blachy. Dzięki precyzyjnemu ustawieniu walców, można osiągnąć wysoką jakość produkcji i zachować tolerancje wymiarowe, które są kluczowe w wielu zastosowaniach inżynieryjnych, np. w budowie rur do przesyłu gazu czy cieczy. Dobrą praktyką jest także stosowanie walcowników z automatycznymi ustawieniami, co zwiększa efektywność i powtarzalność procesu. Oprócz zastosowania w rurociągach, walcarki znajdują również szerokie zastosowanie w produkcji mebli metalowych oraz konstrukcji stalowych, co podkreśla ich uniwersalność i znaczenie w nowoczesnym przemyśle.

Pytanie 27

Środkownik pozwala na określenie

A. płaskości powierzchni
B. średnicy rowków wewnętrznych
C. długości powierzchni cylindrycznych wałków
D. środka płaskich powierzchni czołowych przedmiotów walcowych
Środkownik to narzędzie wykorzystywane w obróbce skrawaniem, które umożliwia precyzyjne wyznaczanie środka płaskich powierzchni czołowych przedmiotów walcowych. Dzięki zastosowaniu środkownika, operatorzy maszyn mogą skutecznie określić centralny punkt na takich powierzchniach, co jest kluczowe w procesach takich jak wiercenie, frezowanie czy toczenie. Przykładowo, w tokarstwie, idealne umiejscowienie narzędzia skrawającego w osi obrotu przedmiotu obrabianego jest istotne dla zapewnienia symetrii oraz estetyki finalnego produktu. W standardach przemysłowych, takich jak ISO 2768, podkreśla się znaczenie precyzyjnego wyznaczania środków w kontekście tolerancji wymiarowych. W praktyce, wykorzystanie środkownika pozwala na uzyskanie wyższej jakości obróbki oraz minimalizację odchyleń, co bezpośrednio wpływa na wydajność produkcji oraz redukcję kosztów materiałowych.

Pytanie 28

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 29

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 30

W oparciu o dane w tabeli, dobierz rodzaj kleju do wykonania połączeń stalowych elementów korpusu, narażonego na wibracje i pracującego w środowisku wilgotnym.

KlejeOpisZastosowanieUwagi
CyjanoakrylowePrzeznaczone specjalnie do naprawPrzedmioty z porcelany, ceramiki, metali, plastików, skóry, kauczuku, drewna, kartonu, papieruDo łączenia niewielkich powierzchni, przy których wymagana jest duża odporność na odrywanie.
DyspersyjnePrzeznaczone do łączenia elementówKlejenie parkietów, paneli, drewna. Można stosować do lister, do niektórych plastików narażonych na ślapanie, do styropianuDo łączenia dużych powierzchni.
NeoprenowePrzeznaczone do naprawiania, łączenia przedmiotówPraktycznie wszystkie materiałyDo powierzchni z naprężeniami. Sklejenia mogą być poddawane skręcaniu, wibracjom, uderzeniom.
EpoksydowePrzeznaczone do łączenia elementówDo większości materiałówDo wypełnienia niewielkich pęknięć, ubytków. Połączenia mogą być poddawane skręceniom, wibracji, uderzeniom, są też odporne na wilgoć.
A. Dyspersyjny.
B. Cyjanokrylowy.
C. Neoprenowy.
D. Epoksydowy.
Klej epoksydowy jest idealnym rozwiązaniem do łączenia stalowych elementów korpusu, które są narażone na wibracje i wilgoć. Charakteryzuje się on wysoką odpornością na różne czynniki chemiczne oraz termiczne, co czyni go odpowiednim do zastosowań w trudnych warunkach. Sprawdzając dane w tabeli, zauważamy, że kleje epoksydowe wykazują znakomite właściwości adhezyjne, co pozwala na skuteczne łączenie stali z innymi materiałami. W praktyce, kleje epoksydowe są szeroko stosowane w przemyśle motoryzacyjnym i budowlanym, gdzie połączenia narażone są na dynamiczne obciążenia oraz zmienne warunki atmosferyczne. Ponadto, ich odporność na wilgoć sprawia, że są idealne do zastosowań w środowiskach o wysokiej wilgotności, co jest kluczowe dla długowieczności oraz niezawodności konstruowanych elementów. Zgodnie z normami i dobrymi praktykami, użycie klejów epoksydowych w takich aplikacjach zapewnia trwałość oraz bezpieczeństwo, co jest niezbędne w kontekście aplikacji narażonych na wibracje.

Pytanie 31

Na podstawie rysunku wskaż wynik pomiaru wykonanego za pomocą mikrometru.

Ilustracja do pytania
A. 80,32 mm
B. 84,82 mm
C. 81,30 mm
D. 84,32 mm
Dobra robota! 84,82 mm to poprawny wynik. To efekt dokładnego odczytu z mikrometru, gdzie musisz spojrzeć na obie skale: główną i pomocniczą. W skali głównej widzisz 84 mm, co pokazuje, że krawędź bębna jest pomiędzy 80 a 85 mm. Potem, żeby dostać dokładniejszy wynik, sprawdź skalę pomocniczą, która daje nam 0,82 mm. Odczytanie tej wartości jest ważne, bo pokazuje, jak dokładnie używamy mikrometru. Te narzędzia są szeroko stosowane w warsztatach czy laboratoriach, bo precyzyjny pomiar jest kluczowy dla jakości produktów. Przypominają mi, że jeśli coś jest źle odczytane, to później może być problem w produkcji. Także dobrze znać zasady prawidłowego odczytu, bo to naprawdę ma znaczenie, żeby wszystko działało jak należy. Nie zapominaj, że te odczyty są też ważne, bo związane z normami ISO, które określają, jak dokładne muszą być pomiary. Po prostu pamiętaj, że to nie jest takie trudne, ale wymaga skupienia i uwagi.

Pytanie 32

Którego surowca nie wykorzystuje się w łożyskach ślizgowych?

A. Wolframu
B. Boksytu
C. Stopu aluminium
D. Stopu cyny
Boksyt, będący naturalnym minerałem aluminium, nie jest materiałem stosowanym w łożyskach ślizgowych ze względu na swoje właściwości fizyczne i chemiczne. Łożyska ślizgowe wymagają materiałów o wysokiej odporności na ścieranie, niskim współczynniku tarcia oraz dobrej odporności na obciążenia. Stop aluminium i stop cyny są powszechnie stosowane w przemyśle ze względu na ich dobre właściwości mechaniczne oraz niską gęstość, co przekłada się na lepsze osiągi w aplikacjach łożyskowych. Wolfram, z kolei, jest materiałem o wysokiej twardości i odporności na wysokie temperatury, co czyni go użytecznym w aplikacjach wymagających dużej niezawodności. W przypadku boksytu jego struktura i właściwości nie są przystosowane do pracy w łożyskach, co może prowadzić do szybkiego zużycia oraz awarii, co jest sprzeczne z zasadami projektowania efektywnych systemów łożyskowych.

Pytanie 33

Jakie elementy maszyn można naprawić, wykorzystując procesy strugania, szlifowania oraz skrobania?

A. Zawory
B. Prowadnice
C. Łożyska
D. Wałki
Prowadnice w maszynach są kluczowymi elementami, które mają na celu zapewnienie wysokiej precyzji ruchu komponentów. Procesy strugania, szlifowania i skrobania są istotne w obróbce prowadnic, ponieważ pozwalają na uzyskanie odpowiednich tolerancji wymiarowych oraz gładkości powierzchni. Struganie jest często stosowane do wstępnej obróbki prowadnic, gdzie usuwana jest nadmiarowa materia, a następnie szlifowanie precyzyjnie dopasowuje wymiary i kształt. Skrobanie jest zaś techniką, która ma na celu poprawę jakości powierzchni oraz usunięcie ewentualnych niedoskonałości, co jest kluczowe dla zapewnienia niskiego tarcia i długiej żywotności prowadnic. Standardy branżowe, takie jak ISO 2768, określają tolerancje wymiarowe i wymagania jakości powierzchni, które powinny być spełniane podczas obróbki prowadnic, co podkreśla znaczenie tych procesów w praktyce inżynieryjnej.

Pytanie 34

Gumowe łączniki jako elementy elastyczne są wykorzystywane w celu

A. wzmocnienia amplitudy drgań przenoszonych wewnątrz urządzeń
B. ograniczenia drgań przekazywanych pomiędzy elementami maszyn
C. powiększenia amplitudy drgań komponentów maszyn oraz ich struktur nośnych
D. zwielokrotnienia drgań przenoszonych wewnątrz obudów maszyn
Nieprawidłowe podejście do roli łączników gumowych może prowadzić do istotnych nieporozumień. Twierdzenie, że łączniki gumowe zwiększają amplitudę drgań części maszyn, jest sprzeczne z ich podstawową funkcją. Celem stosowania tych elementów jest przede wszystkim redukcja wibracji, a nie ich intensyfikacja, co jest kluczowe dla zapewnienia stabilności operacyjnej urządzeń. Multiplikacja drgań przekazywanych wewnątrz korpusów maszyn to kolejna mylna koncepcja. Użycie łączników gumowych ma na celu tłumienie i ograniczanie drgań, co chroni inne komponenty przed nadmiernym zużyciem i uszkodzeniem. W kontekście wzmocnienia amplitudy drgań, można zauważyć, że niektóre mechanizmy mogą generować drgania o dużej amplitudzie, ale ich przenoszenie powinno być kontrolowane, a nie wzmacniane. Przykłady zastosowania łączników gumowych w różnych branżach pokazują, że ich rola polega na zapewnieniu izolacji akustycznej oraz ochronie przed mechanicznymi skutkami drgań. Ignorując te fundamentalne zasady, inżynierowie mogą wprowadzać w błąd przy projektowaniu systemów, co może prowadzić do awarii i zwiększonego ryzyka operacyjnego.

Pytanie 35

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 36

Materiały narzędziowe o dużej twardości znajdują zastosowanie w produkcji

A. korpusów maszyn
B. narzędzi skrawających
C. opakowań próżniowych
D. elementów wibroizolacyjnych
Supertwarde materiały narzędziowe, takie jak węglik tungstenowy czy azotek boru, są kluczowe w produkcji narzędzi skrawających, ponieważ ich wyjątkowe właściwości mechaniczne umożliwiają efektywne przekształcanie surowców w gotowe produkty. Narzędzia skrawające, takie jak wiertła, frezy czy noże tokarskie, muszą charakteryzować się wysoką twardością i odpornością na zużycie, aby sprostać wymaganiom przy skrawaniu różnych materiałów, w tym stali, aluminium oraz kompozytów. Przykładowo, narzędzia wykonane z węglika tungstenowego są w stanie pracować w wysokotemperaturowych warunkach, co jest kluczowe w przemyśle metalowym. Zastosowanie tych materiałów pozwala na zwiększenie wydajności produkcji oraz precyzji obróbczej, co jest zgodne z najlepszymi praktykami branżowymi, które skupiają się na optymalizacji procesów technologicznych. Wiedza na temat właściwości supertwardych materiałów narzędziowych jest niezwykle ważna dla inżynierów i technologów zajmujących się obróbką skrawaniem, ponieważ pozwala na dobór najodpowiedniejszych narzędzi do konkretnych zastosowań.

Pytanie 37

Guma to surowiec powszechnie wykorzystywany w produkcji

A. elektrod pokrytych.
B. wibroizolatorów
C. zębatek.
D. frezów cylindrycznych.
Guma jest materiałem o wyjątkowych właściwościach, które czynią ją idealnym do produkcji wibroizolatorów, czyli elementów służących do tłumienia drgań i redukcji hałasu. Wibroizolatory wykonane z gumy są powszechnie stosowane w różnych branżach, takich jak budownictwo, motoryzacja i przemysł, aby poprawić komfort i bezpieczeństwo. Dzięki elastyczności oraz zdolności do absorpcji energii, guma skutecznie minimalizuje przenoszenie drgań z maszyn na konstrukcje budowlane. Przykładem zastosowania wibroizolatorów gumowych może być ich użycie w fundamentach budynków czy w montażu maszyn przemysłowych, gdzie redukcja drgań wpływa na wydłużenie żywotności urządzeń oraz poprawę warunków pracy. Ponadto, zgodnie z normami ISO i dobrymi praktykami inżynieryjnymi, wibroizolatory z gumy powinny być odpowiednio zaprojektowane i przetestowane, aby zapewnić optymalną efektywność w danej aplikacji.

Pytanie 38

Aby stworzyć rurę okrągłą, powinno się użyć

A. frezarki poziomej
B. walcarki
C. wytaczarki
D. prasy hydrauliczej
Wybór walcarki jako narzędzia do produkcji rur okrągłych jest uzasadniony ze względu na jej zdolność do formowania metalu poprzez walcowanie, co jest kluczowym procesem w obróbce blach i profili. Walcarki są zaprojektowane do przekształcania płaskich arkuszy metalu w cylindryczne formy, co jest niezbędne w produkcji rur. Proces walcowania umożliwia uzyskanie jednorodnej struktury i wymiarów, co jest istotne z punktu widzenia wytrzymałości i trwałości finalnego produktu. Przykładowo, w przemyśle budowlanym i motoryzacyjnym, rury okrągłe są powszechnie stosowane i ich produkcja na walcarce zapewnia wysoką jakość oraz precyzyjne parametry techniczne. Dobre praktyki w tym zakresie uwzględniają również optymalizację procesu walcowania, co może prowadzić do zwiększenia wydajności i redukcji odpadów materiałowych. W przypadku walcowania na zimno, technologie te pozwalają na osiągnięcie lepszych właściwości mechanicznych materiału, co jest korzystne w wielu aplikacjach inżynieryjnych.

Pytanie 39

Rozwiercanie stosuje się w celu

A. poprawy precyzji wymiarowej otworów po procesie wiercenia
B. zwiększenia szorstkości powierzchni otworów wierconych
C. umożliwienia wykorzystania docieraków płaskich w otworach
D. zmniejszenia precyzji wymiarowej otworów nawiercanych
Chociaż poprawa dokładności wymiarowej otworów po procesie wiercenia jest kluczowym celem rozwiercania, inne odpowiedzi wskazują na fundamentalne nieporozumienia dotyczące procesu obróbczy. Na przykład, zwiększenie chropowatości powierzchni otworów wierconych jest sprzeczne z celem rozwiercania, które dąży do wygładzenia i precyzji. W rzeczywistości, rozwiercanie działa w przeciwnym kierunku, eliminując nadmiar materiału i poprawiając jakość powierzchni w obrębie otworów. Tak samo, zmniejszenie dokładności wymiarowej otworów nawiercanych jest niezgodne z ideą tego procesu; rozwiercanie jest stosowane w celu osiągnięcia większej precyzji, a nie jej pogorszenia. Podobnie, stwierdzenie, że rozwiercanie umożliwia zastosowanie docieraków płaskich w otworach, ignoruje zasadniczą funkcję rozwiercania, która koncentruje się na precyzyjnym formowaniu otworów. Docieraki płaskie są przeznaczone do innych operacji, takich jak szlifowanie powierzchni, a ich użycie w kontekście rozwiercania nie jest praktyczne. W rezultacie, kluczowe jest, aby zrozumieć, że rozwiercanie jest ukierunkowane na poprawę precyzji i jakości wymiarowej, co jest potwierdzone przez standardy branżowe i dobre praktyki inżynieryjne.

Pytanie 40

Przy realizacji którego rodzaju połączenia wykorzystuje się efekt rozszerzalności cieplnej metali?

A. Spawane
B. Skurczowe
C. Zgrzewane
D. Kołkowe
Odpowiedź skurczowa jest właściwa, ponieważ to połączenie wykorzystuje zjawisko rozszerzalności cieplnej metali. Proces polega na podgrzewaniu elementów, co powoduje ich tymczasowe rozszerzenie, a następnie ich połączeniu, gdy elementy są jeszcze gorące. Po schłodzeniu, metale kurczą się, co skutkuje bardzo mocnym i trwałym połączeniem. Przykładem zastosowania połączeń skurczowych są wały w maszynach, gdzie elementy muszą być trwale połączone w sposób, który wytrzyma dużą siłę roboczą. W praktyce, technologia ta jest stosowana w produkcji wielu precyzyjnych komponentów, zwłaszcza w przemyśle motoryzacyjnym oraz lotniczym, gdzie niezawodność połączeń jest kluczowa. Połączenia skurczowe są także zgodne z najlepszymi praktykami inżynieryjnymi, jako że pozwalają na minimalizację luzów w połączeniach, co jest istotne dla zachowania precyzji w działaniu maszyn.