Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektryk
  • Kwalifikacja: ELE.02 - Montaż, uruchamianie i konserwacja instalacji, maszyn i urządzeń elektrycznych
  • Data rozpoczęcia: 9 grudnia 2025 14:16
  • Data zakończenia: 9 grudnia 2025 14:40

Egzamin niezdany

Wynik: 5/40 punktów (12,5%)

Wymagane minimum: 20 punktów (50%)

Udostępnij swój wynik
Szczegółowe wyniki:
Pytanie 1

Aby podłączyć metalowe rury gazowe do uziemionej instalacji ochronnej w budynku jednorodzinnym, konieczne jest

A. bezpośrednie podłączenie rur gazowych do systemu połączeń wyrównawczych
B. nałożenie na rurę gazową przyłączeniową otuliny izolacyjnej na długości co najmniej 15 m od obiektu
C. zainstalowanie wstawki izolacyjnej na przyłączu gazowym w odległości co najmniej 10 m od obiektu
D. zamontowanie odpowiedniej wstawki izolacyjnej pomiędzy miejscem przyłączenia przewodu wyrównawczego a miejscem wprowadzenia rurociągu do obiektu
Zainstalowanie wstawki izolacyjnej na przyłączu gazowym w odległości co najmniej 10 m od budynku jest podejściem, które nie uwzględnia specyfiki instalacji gazowych i ich interakcji z innymi systemami budowlanymi. Przede wszystkim, odległość 10 m nie ma uzasadnienia w kontekście ochrony przed porażeniem prądem elektrycznym, ponieważ izolacja powinna być stosowana bezpośrednio w miejscu, gdzie istnieje ryzyko pojawienia się napięcia na rurach gazowych. Instalowanie wstawki izolacyjnej zbyt daleko od punktu przyłączenia może prowadzić do niekontrolowanego przewodzenia prądu do systemu gazowego, co stwarza poważne zagrożenie. Przyłączenie bezpośrednio rur gazowych do systemu połączeń wyrównawczych jest również błędnym podejściem, ponieważ metalowe rury gazowe są przewodnikami prądu i ich bezpośrednie połączenie z systemem mogą prowadzić do niebezpiecznych sytuacji, takich jak korozja elektrochemiczna, co osłabia integralność strukturalną rur. Podobnie, zakładanie otuliny izolacyjnej na rurę gazową bez odpowiedniej wstawki izolacyjnej również nie zapewnia koniecznej ochrony, ponieważ sama otulina nie jest wystarczająca do eliminacji ryzyka przewodzenia prądu. W kontekście bezpieczeństwa instalacji gazowych, kluczowe jest przestrzeganie aktualnych norm i standardów, które podkreślają znaczenie właściwych praktyk w zakresie podłączeń i izolacji.

Pytanie 2

Który rodzaj źródła światła pokazano na rysunku?

Ilustracja do pytania
A. Fluorescencyjne.
B. Żarowe.
C. Wyładowcze.
D. Elektroluminescencyjne.
Poprawna odpowiedź to "Elektroluminescencyjne", ponieważ na ilustracji mamy do czynienia z diodą LED (Light Emitting Diode), która jest typowym przykładem tego rodzaju źródła światła. Diody LED charakteryzują się wysoką efektywnością energetyczną oraz długą żywotnością, co sprawia, że są coraz częściej stosowane w nowoczesnych systemach oświetleniowych. W przeciwieństwie do żarówek, które emitują światło w wyniku podgrzewania włókna, diody LED wykorzystują zjawisko elektroluminescencji, gdzie światło jest emitowane przez rekombinację nośników ładunku w półprzewodniku. Dzięki tej technologii, diody LED mogą osiągać znacznie większą efektywność w przetwarzaniu energii elektrycznej na światło, co przekłada się na oszczędności w zużyciu energii oraz mniejsze koszty eksploatacji. Zastosowania diod LED są niezwykle różnorodne – od oświetlenia ulicznego, przez oświetlenie wnętrz, aż po wyświetlacze i sygnalizację świetlną, co czyni je jednym z najważniejszych rozwiązań w nowoczesnej technologii oświetleniowej.

Pytanie 3

Instalacja elektryczna, której odbiorniki oznaczone są symbolem graficznym pokazanym na rysunku

Ilustracja do pytania
A. posiada podwójną lub wzmocnioną izolację.
B. nie posiada ochrony przed dotykiem pośrednim.
C. ma uziemione przewodzące obudowy odbiorników.
D. jest zasilana bardzo niskim napięciem.
Odpowiedź "jest zasilana bardzo niskim napięciem" jest prawidłowa, ponieważ symbol graficzny na rysunku oznacza urządzenie elektryczne klasy III. Urządzenia tej klasy są projektowane do pracy w systemach zasilanych bardzo niskim napięciem (SELV - Safety Extra Low Voltage), co znacząco zwiększa bezpieczeństwo użytkowania. Dzięki zastosowaniu niskiego napięcia, ryzyko wystąpienia porażenia elektrycznego jest minimalne, co czyni te urządzenia idealnymi do użytku w warunkach, gdzie występuje zwiększone ryzyko kontaktu z wodą lub wilgocią. W praktyce, urządzenia klasy III są szeroko stosowane w instalacjach, takich jak oświetlenie w łazienkach, zasilanie urządzeń w ogrodach czy w obiektach publicznych. Standardy elektrotechniczne, takie jak IEC 61140, definiują zasady bezpieczeństwa dla tego typu urządzeń, co potwierdza ich zaufanie w zastosowaniach na całym świecie.

Pytanie 4

Na rysunku przedstawiono symbol graficzny

Ilustracja do pytania
A. odgromnika wydmuchowego.
B. iskiernika.
C. warystora.
D. odgromnika zaworowego.
Wybór odpowiedzi 'wary stora' jest poprawny, ponieważ symbol graficzny przedstawiony na rysunku rzeczywiście reprezentuje warystor, który jest kluczowym elementem w systemach ochrony przed przepięciami. Warystor działa na zasadzie zmiany rezystancji w odpowiedzi na przyłożone napięcie, co pozwala na skuteczne odprowadzanie nadmiaru energii w sytuacjach awaryjnych. Jest on często stosowany w obwodach zasilających, aby chronić urządzenia elektroniczne przed uszkodzeniami spowodowanymi nagłymi wzrostami napięcia. Standardy takie jak IEC 61643-1 określają wymagania dla urządzeń ochronnych, w tym warystorów, co czyni je niezbędnymi w projektowaniu systemów zabezpieczeń. Warto również zauważyć, że warystory są często łączone z innymi elementami ochrony, takimi jak odgromniki czy bezpieczniki, aby zapewnić kompleksową ochronę. Zastosowanie warystorów w urządzeniach domowych oraz przemysłowych pomaga w zwiększeniu ich żywotności i niezawodności.

Pytanie 5

Narzędzie przedstawione na ilustracji przeznaczone jest

Ilustracja do pytania
A. do zaciskania końcówek oczkowych.
B. do ściągania izolacji z żył przewodów.
C. do docinania przewodów.
D. do zaciskania końcówek tulejkowych.
Odpowiedź jest prawidłowa, ponieważ narzędzie przedstawione na ilustracji to szczypce do ściągania izolacji, które są specjalistycznym narzędziem używanym w elektryce do precyzyjnego usuwania izolacji z przewodów elektrycznych. Dzięki charakterystycznemu kształtowi ostrzy oraz zastosowanemu mechanizmowi regulacji, te szczypce umożliwiają bezpieczne usuwanie izolacji bez ryzyka uszkodzenia samej żyły przewodowej. W praktyce, umiejętność prawidłowego użycia tego narzędzia jest kluczowa w instalacjach elektrycznych, gdzie niezbędne jest zachowanie integralności przewodów. Standardy branżowe, takie jak IEC 60079 lub ANSI/NFPA 70E, podkreślają znaczenie stosowania odpowiednich narzędzi do zapewnienia bezpieczeństwa i efektywności pracy. W związku z tym, znajomość i umiejętność korzystania z narzędzi do ściągania izolacji przyczynia się do jakości i bezpieczeństwa wykonania instalacji elektrycznych.

Pytanie 6

Na którym rysunku przedstawiono szybkozłączkę do puszek instalacyjnych?

Ilustracja do pytania
A. D.
B. C.
C. A.
D. B.
Szybkozłączka do puszek instalacyjnych, jak pokazano w rysunku D, to kluczowy element w nowoczesnych instalacjach elektrycznych, umożliwiający szybkie i bezpieczne łączenie przewodów. Element ten charakteryzuje się przezroczystą obudową, co pozwala na wizualną kontrolę poprawności połączenia. Żółte dźwignie są przeznaczone do zaciskania przewodów, co eliminuje potrzebę użycia narzędzi i przyspiesza proces instalacji. Szybkozłączki tego typu znajdują zastosowanie w różnych aplikacjach, od domowych instalacji elektrycznych po bardziej skomplikowane systemy przemysłowe, gdzie czas montażu jest kluczowy. Warto zwrócić uwagę na normy IEC 60947-7-1, które regulują użycie takich połączeń w instalacjach, zapewniając bezpieczeństwo i niezawodność. Prawidłowe użycie szybkozłączek zmniejsza ryzyko błędów instalacyjnych oraz zapewnia łatwość konserwacji i rozbudowy instalacji.

Pytanie 7

Oblicz znamionowy współczynnik mocy silnika trójfazowego przy danych: Pn = 2,2 kW (moc mechaniczna), UN = 400 V, IN = 4,6 A, ηN = 0,84?

A. 0,82
B. 0,69
C. 0,99
D. 0,57
Aby zrozumieć, dlaczego pozostałe odpowiedzi są niewłaściwe, ważne jest, aby przeanalizować proces obliczania współczynnika mocy. Wiele osób myli pojęcia związane z mocą czynną, mocą bierną i mocą pozorną. Odpowiedzi takie jak 0,69, 0,99 czy 0,57 mogą wynikać z błędnych założeń dotyczących tego, co oznacza współczynnik mocy. Na przykład, wartość 0,99 sugeruje praktycznie idealny współczynnik mocy, co rzadko zdarza się w rzeczywistych aplikacjach przemysłowych, szczególnie w przypadku silników indukcyjnych, które nie osiągają tak wysokiej efektywności. Z kolei współczynnik mocy 0,57 wskazuje na słabe wykorzystanie energii, co prowadzi do wysokich strat w systemie. W praktyce, niskie wartości współczynnika mocy mogą skutkować koniecznością stosowania dodatkowych kondensatorów w celu poprawy jakości energii elektrycznej, co wiąże się z dodatkowymi kosztami. Typowym błędem myślowym w ocenie współczynnika mocy jest pomijanie wpływu obciążeń indukcyjnych oraz ich charakterystyki na całkowite zużycie energii. Ważnym aspektem jest także to, że obliczając współczynnik mocy, należy uwzględnić zarówno moc czynną, jak i moc bierną, co pozwala na bardziej precyzyjne zaplanowanie wymagań energetycznych dla danej instalacji. Dlatego też, zrozumienie i poprawne obliczenie współczynnika mocy jest kluczowe dla efektywności energetycznej i optymalizacji kosztów związanych z eksploatacją silników elektrycznych.

Pytanie 8

Który układ połączeń watomierza jest zgodny z przedstawionym schematem pomiarowym?

Ilustracja do pytania
A. A.
B. D.
C. B.
D. C.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź C jest dobra, bo pokazuje, jak dobrze podpiąć watomierz w obwodzie elektrycznym. W tym układzie przewód L (fazowy) jest podłączony do prądowego zacisku watomierza, co pozwala na zmierzenie prądu, a przewód N (neutralny) do zacisku napięciowego, co z kolei umożliwia pomiar napięcia. Dzięki temu nasz watomierz może obliczyć moc czynną, co jest mega ważne, gdy chcemy śledzić zużycie energii. Według normy PN-EN 62053-21, odpowiednie połączenie urządzeń pomiarowych to podstawa, żeby pomiary były dokładne. W praktyce, kiedy robimy coś jak analiza efektywności energetycznej czy audyt instalacji, prawidłowe podłączenie watomierza jest kluczowe, żeby uzyskać rzetelne dane. Jeśli coś jest źle podłączone, to może prowadzić do błędnych odczytów, co wpłynie na decyzje o zarządzaniu energią i efektywności działań.

Pytanie 9

Który z wymienionych zestyków pomocniczych układu przedstawionego na schemacie uległ uszkodzeniu, skoro nie da się załączyć stycznika Q2?

Ilustracja do pytania
A. NO stycznika Q2
B. NC stycznika Q2
C. NC stycznika Q1
D. NO stycznika Q1

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź "NC stycznika Q1" jest poprawna ponieważ w analizowanym układzie stycznik Q2 jest sterowany zarówno poprzez przycisk S4, jak i przez styk NO stycznika Q1. Aby styk NO stycznika Q1 mógł się zamknąć, musi być on w pozycji normalnie otwartej, co oznacza, że wcześniej musiał być aktywowany przez inny element obwodu. Jeśli stycznik Q1 jest uszkodzony, a jego styk NC (normalnie zamknięty) nie przełącza się na NO, to obwód zasilający stycznik Q2 nie zostanie zamknięty. W praktyce w takich układach automatyki przemysłowej, często zdarza się, że awarie styków w układach sterowania prowadzą do niemożności uruchomienia dalszych procesów, dlatego istotne jest systematyczne monitorowanie stanu tych elementów. Zgodnie z dobrymi praktykami, należy przeprowadzać regularne przeglądy i testy funkcjonalne takich obwodów, aby zapobiegać nieprzewidzianym zatrzymaniom. Zrozumienie działania styków oraz ich wpływu na całość układu jest kluczowe dla efektywnej diagnostyki i utrzymania ruchu w systemach automatyki.

Pytanie 10

Jakie właściwości definiują wyłącznik instalacyjny nadprądowy?

A. Prąd zwarciowy, typ zestyku, napięcie podtrzymania
B. Prąd obciążenia, rezystancja zestyku, czas wyłączenia
C. Napięcie znamionowe, prąd znamionowy, rodzaj charakterystyki
D. Napięcie dopuszczalne, prąd różnicowy, czas zadziałania

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wyłącznik instalacyjny nadprądowy jest kluczowym elementem zabezpieczeń w instalacjach elektrycznych. Parametry takie jak napięcie znamionowe, prąd znamionowy oraz rodzaj charakterystyki definiują jego właściwości i funkcjonalność. Napięcie znamionowe określa maksymalne napięcie, przy którym wyłącznik może pracować bezawaryjnie, co jest istotne w kontekście doboru urządzeń do konkretnej instalacji. Prąd znamionowy to wartość prądu, przy której wyłącznik powinien funkcjonować poprawnie, ale również powinien zareagować w przypadku przekroczenia tej wartości, co jest kluczowe dla ochrony instalacji przed przeciążeniem. Rodzaj charakterystyki (np. A, B, C, D) wskazuje na czas reakcji oraz sposób działania wyłącznika w obliczu przeciążeń oraz zwarć, co pozwala na optymalne dopasowanie do różnych aplikacji, takich jak domowe instalacje, przemysłowe czy zastosowania specjalistyczne. Przykładowo, charakterystyka typu B jest powszechnie stosowana w instalacjach domowych, gdzie występują małe prądy rozruchowe, natomiast typ C jest odpowiedni dla obciążeń z wyższymi prądami rozruchowymi, np. w urządzeniach elektrycznych. Stosowanie wyłączników zgodnie z tymi parametrami jest zgodne z normami IEC 60898 oraz IEC 60947, co zapewnia bezpieczeństwo i niezawodność instalacji elektrycznych.

Pytanie 11

Przed dokonaniem pomiaru rezystancji izolacji w instalacji elektrycznej najpierw należy odciąć napięcie zasilające, a potem

A. usunąć z opraw źródła światła, włączyć odbiorniki jednofazowe do gniazd wtyczkowych, odłączyć silniki trójfazowe
B. zamontować do opraw źródła światła, wyłączyć odbiorniki jednofazowe z gniazd wtyczkowych, włączyć silniki trójfazowe
C. zamontować do opraw źródła światła, włączyć odbiorniki jednofazowe do gniazd wtyczkowych, włączyć silniki trójfazowe
D. usunąć z opraw źródła światła, wyłączyć odbiorniki jednofazowe z gniazd wtyczkowych, odłączyć silniki trójfazowe

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Dobra robota z odpowiedzią! To, co napisałeś, dobrze pokazuje, jakie kroki warto podjąć przed pomiarem rezystancji izolacji w instalacji elektrycznej. Najpierw trzeba wymontować źródła światła z opraw – to naprawdę ważne, żeby nie ryzykować porażeniem prądem w trakcie pomiarów. Poza tym, wyłączenie jednofazowych odbiorników i silników trójfazowych jest konieczne, żeby nie zakłócały one wyników i nie zostały uszkodzone przez niewłaściwe napięcie. Te zasady są zgodne z przepisami, jak PN-EN 50110-1, które mówią, że trzeba wyłączyć zasilanie przed przeprowadzeniem testów izolacji. To, że stosujesz te procedury, nie tylko zwiększa bezpieczeństwo, ale też sprawia, że pomiary są dokładniejsze. A to jest bardzo istotne, żeby dobrze ocenić stan izolacji i upewnić się, że instalacja jest w dobrym stanie.

Pytanie 12

W jakim z podanych typów źródeł światła wykorzystuje się zapłonnik?

A. Żarówka halogenowa
B. Lampa rtęciowa
C. Świetlówka tradycyjna
D. Lampa sodowa

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wybór świetlówki tradycyjnej jako źródła światła, w którym stosuje się zapłonnik, jest poprawny z kilku powodów. Świetlówki, jako rodzaj lampy fluorescencyjnej, wymagają zapłonnika, aby uruchomić proces świecenia. Zapłonnik działa na zasadzie wytwarzania iskry, która inicjuje przepływ prądu przez gaz wewnątrz lampy, co jest niezbędne do emisji światła. W praktyce, zastosowanie świetlówek tradycyjnych jest szczególnie powszechne w biurach, szkołach oraz przestrzeniach komercyjnych, gdzie efektywność energetyczna jest kluczowa. Świetlówki zużywają znacznie mniej energii niż tradycyjne żarówki, a ich żywotność jest znacznie dłuższa, co czyni je bardziej ekologicznym oraz ekonomicznym rozwiązaniem. W branży oświetleniowej powszechnie uznaje się, że stosowanie odpowiednich zapłonników w świetlówkach jest standardem, co pozwala na optymalne działanie lamp oraz minimalizuje ryzyko awarii. Warto również zauważyć, że zapłonniki mogą być różne – od elektromagnetycznych po elektroniczne, co wpływa na wydajność i czas rozruchu lampy.

Pytanie 13

Do czego przeznaczone są kleszcze przedstawione na ilustracji?

Ilustracja do pytania
A. Do montażu zacisków zakleszczających.
B. Do formowania oczek na końcach żył jednodrutowych.
C. Do zaciskania końcówek tulejkowych na żyłach wielodrutowych.
D. Do zaprasowywania końców przewodów w połączeniach wsuwanych.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Te kleszcze, co są na obrazku, to narzędzie do robienia oczek na końcach żyłek, które mają tylko jeden drut. Mają takie stożkowe szczęki, które fajnie pozwalają wyprofilować drut, żeby dobrze się łączył z innymi częściami instalacji elektrycznej. Można je zobaczyć w akcji tam, gdzie trzeba zrobić mocne i trwałe połączenia, co jest ważne zarówno w przemyśle, jak i w domach. Te oczka pomagają przyczepić przewody do zacisków, a to jest zgodne z normami, które mówią, jak to wszystko powinno być robione, żeby było bezpiecznie i trwale. Dobrze używać takich narzędzi, bo w przeciwnym razie można łatwo uszkodzić drut. Gdy dobrze uformujemy drut kleszczami, zmniejszamy ryzyko zwarć i innych problemów technicznych, co ma duże znaczenie, gdy pracuje się z elektryką.

Pytanie 14

Która z wymienionych przyczyn może spowodować samoczynne wyłączenie wyłącznika nadprądowego obwodu gniazd wtyczkowych kuchni w przedstawionej instalacji?

Ilustracja do pytania
A. Jednoczesne podłączenie odbiorników o zbyt dużej mocy.
B. Zwarcie przewodu ochronnego z przewodem neutralnym.
C. Przerwa w przewodzie uziemiającym instalację.
D. Włączenie odbiornika drugiej klasy ochronności.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Jednoczesne podłączenie odbiorników o zbyt dużej mocy jest kluczowym czynnikiem, który może spowodować samoczynne wyłączenie wyłącznika nadprądowego. Wyłącznik nadprądowy, taki jak B16, jest zaprojektowany w celu ochrony obwodu przed przeciążeniem i zwarciem. Kiedy do obwodu podłączone są urządzenia o dużym zapotrzebowaniu na moc, ich łączny prąd może przekroczyć wartość znamionową wyłącznika, co automatycznie prowadzi do jego zadziałania. Przykładem może być jednoczesne włączenie kuchenki elektrycznej, piekarnika oraz zmywarki, co w wielu przypadkach przekracza 16 A, a tym samym powoduje wyłączenie. Zgodnie z normami PN-IEC 60898, każda instalacja elektryczna powinna być projektowana z uwzględnieniem maksymalnych obciążeń oraz odpowiednich zabezpieczeń, co jest kluczowe dla zapewnienia bezpieczeństwa użytkowników. W praktyce, aby uniknąć problemów z wyłącznikami, należy świadomie dobierać moc urządzeń oraz rozważać ich jednoczesne użycie.

Pytanie 15

Której piły należy użyć do przycięcia korytka instalacyjnego?

Ilustracja do pytania
A. D.
B. C.
C. A.
D. B.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Okej, to piła oznaczona jako C to taka specyficzna piła do metalu. Ma cienkie ostrze i drobne zęby, więc idealnie nadaje się do precyzyjnego cięcia korytek instalacyjnych, zwłaszcza tych metalowych. Widziałem, że często używa się takich korytek w elektryce lub hydraulice, gdzie ważne jest, żeby wszystko ładnie wyglądało i było poukładane. Jak użyjesz tej piły, to cięcia będą równe, co naprawdę ma znaczenie, bo to pozwala uniknąć deformacji materiału. W budownictwie mówi się, że trzeba używać odpowiednich narzędzi do rodzaju materiału, bo to zmniejsza ryzyko, że coś się uszkodzi. Przykładowo, można precyzyjnie przyciąć korytka do odpowiedniej długości, żeby dopasować je do różnych instalacji, co jest super ważne.

Pytanie 16

Jaką cechę materiału izolacyjnego wskazuje ostatnia litera w oznaczeniu kabla LYc?

A. Odporność na ciepło
B. Odporność na olej
C. Niepalność
D. Zwiększenie wytrzymałości mechanicznej

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Oznaczenie przewodu LYc wskazuje, że materiał izolacyjny jest odporny na wysoką temperaturę. To jest mega ważne, szczególnie w zastosowaniach, gdzie przewody pracują w trudnych warunkach, jak w przemyśle czy podczas budowy. Przykładowo, przewody w piecach przemysłowych muszą wytrzymać naprawdę duże temperatury, bo inaczej izolacja może się uszkodzić. Dlatego dobrze jest wybierać przewody, które mają dużą odporność na ciepło, zgodne z normami, jak IEC czy EN. Z mojego doświadczenia, zwracanie uwagi na klasyfikację materiałów izolacyjnych jest kluczowe. Muszą one spełniać normy dotyczące temperatury pracy i bezpieczeństwa pożarowego, to ważne dla ochrony budynków i sprzętu.

Pytanie 17

Który schemat przestawia poprawny i zgodny ze sztuką monterską sposób podłączenia instalacji oświetleniowej?

Ilustracja do pytania
A. Schemat 3.
B. Schemat 2.
C. Schemat 1.
D. Schemat 4.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Schemat 3 przedstawia prawidłowe podłączenie instalacji oświetleniowej, w której przewód fazowy (L1) łączy się z wyłącznikiem, a następnie z żarówką. Taki układ zapewnia prawidłowe sterowanie oświetleniem, a także minimalizuje ryzyko porażenia prądem. Przewód neutralny (N) jest podłączony bezpośrednio do żarówki, co jest zgodne z zasadami instalacji elektrycznych. Przewód ochronny (PE) powinien być zawsze podłączony do punktu ochronnego, aby zapewnić bezpieczeństwo użytkowników. Zastosowanie właściwych schematów podłączenia jest szczególnie ważne w kontekście standardów PN-IEC 60364, które definiują wymagania dotyczące bezpieczeństwa instalacji elektrycznych. W praktyce, stosując ten schemat, można być pewnym, że instalacja spełnia normy bezpieczeństwa i funkcjonalności, co jest kluczowe w codziennym użytkowaniu. Umożliwia to również łatwiejszy dostęp do konserwacji i napraw, co jest istotne w kontekście eksploatacyjnym.

Pytanie 18

Który z podanych łączników instalacyjnych dysponuje dwoma klawiszami i trzema zaciskami przyłączeniowymi?

A. Łącznik schodowy podwójny
B. Łącznik świecznikowy
C. Łącznik schodowy pojedynczy
D. Łącznik krzyżowy

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Łącznik świecznikowy to element instalacji elektrycznej, który rzeczywiście ma dwa klawisze i trzy zaciski przyłączeniowe. Jest to kluczowy komponent w systemach oświetleniowych, który umożliwia włączenie i wyłączenie oświetlenia z jednego miejsca. Dzięki posiadaniu dwóch klawiszy, użytkownik może kontrolować dwa różne źródła światła z jednego łącznika, co jest szczególnie przydatne w pomieszczeniach, gdzie zastosowane są różne rodzaje oświetlenia. W praktyce, łącznik świecznikowy często stosuje się w salonach, gdzie można regulować intensywność światła przy użyciu dwóch różnych żarówek lub opraw. Dodatkowo, zgodnie z normami IEC, instalacje elektryczne powinny być projektowane w sposób umożliwiający ich późniejsze rozszerzanie lub modyfikacje. Użycie łącznika świecznikowego w połączeniu z innymi typami łączników, takimi jak schodowe czy krzyżowe, pozwala na stworzenie bardziej elastycznego systemu oświetleniowego, dostosowanego do indywidualnych potrzeb użytkowników.

Pytanie 19

Co oznacza oznaczenie IP00 widoczne na obudowie urządzenia elektrycznego?

A. Brak klasy ochronności przed porażeniem.
B. Wykorzystanie separacji ochronnej.
C. Brak ochrony przed wilgocią i pyłem.
D. Najwyższy poziom ochrony.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Napis IP00 na obudowie urządzenia elektrycznego oznacza brak ochrony przed wilgocią i kurzem. Klasyfikacja IP (Ingress Protection) jest standardem opracowanym przez Międzynarodową Organizację Normalizacyjną (IEC), który określa poziomy ochrony oferowane przez obudowy urządzeń elektrycznych. W przypadku IP00, brak jakiejkolwiek cyfry oznacza, że urządzenie nie jest chronione ani przed wnikaniem ciał stałych, ani przed wilgocią. W praktyce oznacza to, że takie urządzenia powinny być używane w suchych, czystych i kontrolowanych warunkach, przez co minimalizuje się ryzyko uszkodzenia komponentów w wyniku nadmiernego zapylenia lub kontaktu z wodą. Przykładem zastosowania urządzeń oznaczonych jako IP00 mogą być niektóre elementy wewnętrzne systemów elektronicznych, które są odpowiednio zabezpieczone w zamkniętych obudowach i nie są narażone na działanie czynników zewnętrznych.

Pytanie 20

Zdjęcie przedstawia

Ilustracja do pytania
A. Techniczny mostek pomiarowy
B. Woltomierz.
C. Megaomomierz.
D. Woltomierz probierczy.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Megaomomierz jest specjalistycznym przyrządem pomiarowym używanym do określenia rezystancji w zakresie megaomów. Jego konstrukcja, w tym duża skala oraz pokrętło do wyboru zakresu pomiaru, są charakterystyczne dla tego typu urządzeń. Megaomomierze są często wykorzystywane w przemyśle elektrycznym i elektronicznym do testowania izolacji przewodów oraz komponentów, co jest kluczowe dla zapewnienia bezpieczeństwa i niezawodności systemów elektrycznych. Na przykład, podczas przeprowadzania testów izolacji w instalacjach elektrycznych, megaomomierz pozwala na wykrycie ewentualnych przecieków prądu, co może zapobiec poważnym awariom. Stosowanie megaomomierzy jest zgodne z normami branżowymi, takimi jak IEC 61557, które regulują wymagania dotyczące pomiarów parametrów elektrycznych w instalacjach. Dzięki właściwemu doborowi przyrządów i umiejętnemu przeprowadzaniu testów, można znacznie zwiększyć bezpieczeństwo oraz trwałość instalacji.

Pytanie 21

Jaka jest minimalna wartość rezystancji izolacji przewodu, gdy mierzymy induktorem w sieci o napięciu znamionowym badanego obwodu U < 500 V?

A. ≥ 0,25 MΩ
B. ≥ 0,5 MΩ
C. < 0,25 MΩ
D. < 0,5 MΩ

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź z wartością ≥ 0,5 MΩ jest całkiem w porządku. Zgodnie z normami, jak PN-EN 61557-1, dla przewodów w sieciach do 500 V, ta minimalna wartość rezystancji izolacji wynosi właśnie 0,5 MΩ. To ważne, bo pomaga utrzymać bezpieczeństwo i zmniejsza ryzyko porażenia prądem czy zwarć w instalacjach elektrycznych. W praktyce, zanim technicy zaczną pracować przy instalacjach, zawsze wykonują pomiary rezystancji, żeby sprawdzić, czy wszystko jest w porządku. Jakby okazało się, że wartość jest niższa niż 0,5 MΩ, to trzeba działać, na przykład wymienić uszkodzone przewody lub poprawić izolację. Regularne sprawdzanie rezystancji izolacji to też dobry sposób na konserwację, co jest całkiem zgodne z najlepszymi praktykami w branży.

Pytanie 22

Przy jakiej wartości prądu różnicowego zmiennego sinusoidalnie nie powinien zadziałać sprawny wyłącznik różnicowoprądowy typu AC o prądzie IΔN = 30 mA?

A. IΔ = 10 mA
B. IΔ = 40 mA
C. IΔ = 30 mA
D. IΔ = 20 mA

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź IΔ = 10 mA jest poprawna, ponieważ sprawny wyłącznik różnicowoprądowy typu AC o prądzie IΔN = 30 mA nie powinien zadziałać przy prądzie różnicowym mniejszym od jego nominalnej wartości. Wartości prądu różnicowego, które są poniżej tego poziomu, nie powinny aktywować mechanizmu wyłączającego. Na przykład, jeżeli w instalacji elektrycznej wystąpi niewielki prąd upływowy spowodowany np. wilgocią lub wadliwym urządzeniem, to przy prądzie 10 mA wyłącznik nie zareaguje, co oznacza, że urządzenie może dalej działać. Wyłączniki różnicowoprądowe są kluczowym elementem w systemach zabezpieczeń, a zgodnie z normami IEC 61008-1, powinny być stosowane w instalacjach, aby zapewnić bezpieczeństwo użytkowników przed porażeniem prądem elektrycznym. Odpowiednia konfiguracja takich wyłączników jest istotna w kontekście ochrony zdrowia i życia, a ich prawidłowe działanie powinno być regularnie kontrolowane.

Pytanie 23

Który rodzaj żarówki przedstawiono na ilustracji?

Ilustracja do pytania
A. Ledowy.
B. Halogenowy.
C. Rtęciowy.
D. Wolframowy.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Żarówka LED, którą przedstawiono na ilustracji, jest doskonałym przykładem nowoczesnych rozwiązań oświetleniowych. Charakteryzuje się ona nie tylko wysoką efektywnością energetyczną, ale także długą żywotnością, sięgającą nawet 25 000 godzin. Diody LED, umieszczone na żółtych paskach wewnątrz szklanej bańki, zapewniają równomierne rozproszenie światła, co wpływa na komfort użytkowania. W przeciwieństwie do tradycyjnych żarówek wolframowych, które emitują dużą ilość ciepła, żarówki LED pozostają chłodne podczas pracy, co zwiększa bezpieczeństwo i zmniejsza ryzyko pożaru. Ponadto, żarówki LED są dostępne w różnych temperaturach barwowych, co pozwala na dostosowanie oświetlenia do indywidualnych potrzeb użytkownika. Przykładem zastosowania żarówek LED mogą być systemy oświetleniowe w biurach, gdzie ich wysoka efektywność przekłada się na zmniejszenie kosztów energii oraz poprawę jakości pracy dzięki lepszemu oświetleniu. Warto również zauważyć, że według norm unijnych i standardów efektywności energetycznej, stosowanie żarówek LED jest promowane jako sposób na ograniczenie emisji CO2 oraz zmniejszenie wpływu na środowisko.

Pytanie 24

Przedstawiony na rysunku zrzut ekranu miernika zawiera między innymi wyświetlaną w trakcie pomiaru wartość

Ilustracja do pytania
A. spodziewanego prądu zwarcia.
B. znamionowego prądu instalacji.
C. prądu zadziałania zabezpieczenia.
D. maksymalnego prądu obciążenia.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Dobra robota z odpowiedzią "spodziewany prąd zwarcia"! Na zrzucie ekranu widzimy, że wartość "Ik=17,79A" to rzeczywiście prąd zwarcia. To jest bardzo ważne w kontekście bezpieczeństwa instalacji elektrycznych, bo to pozwala określić, jakie mogą wystąpić przeciążenia w razie zwarcia. Moim zdaniem, znajomość tego prądu jest kluczowa, aby prawidłowo dobrać zabezpieczenia, takie jak wyłączniki nadprądowe czy różnicowoprądowe. Wiesz, zgodnie z normą PN-EN 60947-2, projektanci muszą brać pod uwagę, żeby zabezpieczenia były odpowiednio dobrane do spodziewanych wartości prądów zwarciowych. To pomaga uniknąć uszkodzeń instalacji i chroni przed porażeniem prądem. Wiedza o prądzie zwarcia przyda się też przy pomiarach impedancji pętli zwarcia, co z kolei pozwala ocenić, jak skuteczne są te zabezpieczenia. Zredukowanie wartości prądu zwarcia to dobry pomysł, dlatego ważne jest, by projektować instalacje z odpowiednimi parametrami. To zwiększa bezpieczeństwo i trwałość całej instalacji.

Pytanie 25

Określ sposób podłączenia łącznika przedstawionego na fotografii, aby w układzie, którego schemat przedstawiono na rysunku, zapewnione było sterowanie oświetleniem z trzech niezależnych miejsc.

Ilustracja do pytania
A. I-1, II-2, III-3, IV-4
B. I-1, II-4, III-2, IV-3
C. I-4, II-3, III-2, IV-1
D. I-2, II-4, III-1, IV-3

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Poprawne podłączenie łącznika krzyżowego oznaczone jako I-1, II-4, III-2, IV-3 wynika z analizy schematu elektrycznego oraz właściwego oznaczenia wejść i wyjść łącznika. Wejścia 1 i 4 są odpowiedzialne za przyjmowanie sygnałów z dwóch niezależnych punktów sterujących, co pozwala na ich połączenie w systemie wielopunktowego sterowania oświetleniem. Dobrze skonstruowany układ umożliwia użytkownikowi włączanie i wyłączanie źródła światła z trzech różnych punktów, co jest szczególnie przydatne w dużych pomieszczeniach lub korytarzach. Tego typu rozwiązanie jest zgodne z normami instalacji elektrycznych oraz zaleceniami dotyczącymi ergonomii w projektowaniu przestrzeni. Ponadto, zastosowanie łącznika krzyżowego zwiększa elastyczność w zakresie zarządzania oświetleniem, co przyczynia się do oszczędności energii i poprawy komfortu użytkowania, spełniając standardy zrównoważonego rozwoju.

Pytanie 26

Gniazdo trójfazowe pokazane na rysunku może zasilić odbiornik z sieci

Ilustracja do pytania
A. TN-S i TN-C
B. IT i TN-S
C. TT i TN-S
D. TT i TN-C

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Zgadza się, chodzi o TN-S i TN-C! To gniazdo trójfazowe, które widzimy na rysunku, działa w tych systemach. W TN-S przewód neutralny (N) i przewód ochronny (PE) są oddzielone, co jest fajne, bo zmniejsza ryzyko problemów z pętlą masy i ogólnie poprawia bezpieczeństwo. Współczesne instalacje elektryczne często korzystają z tego rozwiązania, bo daje dobre zasilanie. Z kolei TN-C łączy oba przewody w jeden, czyli PEN, i jest też stosowane, szczególnie w starszych budynkach. Ważne, żeby znać oba systemy, bo wybór zależy od konkretnego miejsca i wymagań przepisów. W praktyce, inżynierowie muszą mieć to na uwadze, żeby wszystko było bezpieczne i działało jak należy.

Pytanie 27

Który z wymienionych parametrów elementów instalacji elektrycznej można zmierzyć przyrządem, którego fragment pokazano na rysunku?

Ilustracja do pytania
A. Czas wyłączenia wyłącznika nadprądowego.
B. Rezystancję uziemienia.
C. Rezystancję izolacji.
D. Impedancję pętli zwarcia.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź "Impedancja pętli zwarcia" jest jak najbardziej na miejscu. Miernik z zdjęcia jest zaprojektowany właśnie do takich pomiarów w instalacjach elektrycznych. Ten miernik wielofunkcyjny, oznaczony jako "ZL-PE", wskazuje na to, że można nim zmierzyć impedancję pętli zwarcia, co jest mega ważne dla bezpieczeństwa systemów elektrycznych. Wartość impedancji wpływa na to, jak szybko i skutecznie działają zabezpieczenia, na przykład wyłączniki nadprądowe. Jak dojdzie do zwarcia, niska impedancja sprawia, że zabezpieczenie zadziała szybko, co zmniejsza ryzyko uszkodzenia instalacji. Zgodnie z normami PN-IEC 60364, regularne pomiary impedancji pętli zwarcia to standard w utrzymaniu i audytach instalacji elektrycznych, co naprawdę chroni ludzi i mienie. Osobiście uważam, że znajomość przeszłych pomiarów i umiejętność ich interpretacji to klucz do optymalizacji zabezpieczeń.

Pytanie 28

W jakim układzie sieciowym punkt neutralny transformatora zasilającego sieć nie jest metalicznie połączony z ziemią?

A. TN-S
B. TN-C
C. TT
D. IT

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Układ sieciowy IT jest charakterystyczny tym, że punkt neutralny transformatora nie jest połączony metalicznie z ziemią. W systemie tym, w przypadku awarii, nie występuje bezpośredni kontakt z ziemią, co minimalizuje ryzyko porażenia prądem. Zastosowanie układu IT ma istotne znaczenie w obiektach, gdzie wymagana jest wysoka niezawodność zasilania, takich jak szpitale czy obiekty przemysłowe. Dzięki temu, w przypadku uszkodzenia izolacji, prąd płynący do ziemi jest ograniczony, co pozwala na kontynuację pracy urządzeń. Praktyczne zastosowanie tego typu układu można zauważyć w sieciach niskiego napięcia, gdzie większy poziom bezpieczeństwa i ciągłość zasilania są priorytetem. Zgodnie z normami IEC 60364, system IT jest zalecany w środowiskach, gdzie awarie mogą prowadzić do poważnych konsekwencji, ponieważ zapewnia on możliwość pracy w warunkach awarii bez ryzyka porażenia."

Pytanie 29

Który z wymienionych typów instalacji elektrycznych jest używany w lokalach mieszkalnych?

A. W kanałach podłogowych
B. W listwach przypodłogowych
C. Wykonana przewodami szynowymi
D. Prowadzona na drabinkach

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wybór listw przypodłogowych jako rodzaju instalacji elektrycznej stosowanej w pomieszczeniach mieszkalnych jest jak najbardziej trafny. Listwy przypodłogowe są popularnym rozwiązaniem, ponieważ łączą w sobie funkcje estetyczne i użytkowe. Umożliwiają one ukrycie przewodów elektrycznych, co przyczynia się do uporządkowanego wyglądu wnętrza. W praktyce, listwy te mogą być wyposażone w gniazda zasilające, co zwiększa ich funkcjonalność, a także zapewnia łatwy dostęp do energii elektrycznej w pobliżu ścian, gdzie najczęściej znajdują się urządzenia elektryczne. Zgodnie z normami, instalacje elektryczne w pomieszczeniach mieszkalnych powinny być wykonywane z zachowaniem odpowiednich środków bezpieczeństwa oraz zgodnie z lokalnymi przepisami budowlanymi. Użycie listw przypodłogowych w tym kontekście jest zgodne z zasadami ergonomii i praktyczności. Dodatkowo, wykorzystanie tego rozwiązania pozwala na łatwiejszą konserwację i ewentualne modyfikacje instalacji bez konieczności przeprowadzania skomplikowanych prac budowlanych.

Pytanie 30

Którym symbolem graficznym należy oznaczyć łącznik świecznikowy w schemacie ideowym instalacji elektrycznej?

Ilustracja do pytania
A. Symbolem 2.
B. Symbolem 3.
C. Symbolem 4.
D. Symbolem 1.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź oznaczona symbolem 4 jest poprawna, ponieważ w schematach ideowych instalacji elektrycznych stosuje się ściśle określone symbole graficzne. Łącznik świecznikowy, będący kluczowym elementem w instalacjach oświetleniowych, posiada swój specyficzny symbol, który wyróżnia go spośród innych urządzeń. W kontekście norm, takich jak PN-EN 60617, symbol ten jest przedstawiany jako wyłącznik z dodatkowym oznaczeniem, co sugeruje możliwość regulacji oświetlenia. Przykładowo, w praktyce instalacyjnej, łącznik świecznikowy jest często stosowany w pomieszczeniach mieszkalnych, gdzie użytkownik ma potrzebę łatwego włączania i wyłączania oświetlenia, a także jego przyciemniania. Prawidłowe rozpoznanie symboli w schematach ideowych jest kluczowe dla właściwego montażu i późniejszej eksploatacji instalacji elektrycznej, co z kolei ma wpływ na bezpieczeństwo użytkowników oraz efektywność energetyczną budynku.

Pytanie 31

Na którym rysunku przedstawiono żarówkę halogenową?

Ilustracja do pytania
A. C.
B. A.
C. D.
D. B.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Żarówka halogenowa, przedstawiona na rysunku B, jest jedną z najczęściej stosowanych źródeł światła w zastosowaniach, gdzie istotna jest jakość oświetlenia oraz jego efektywność. Charakteryzuje się specyficznym kształtem, gdzie szklana bańka jest często kulista, a w jej wnętrzu znajduje się mały żarnik. Dzięki zastosowaniu halogenów, żarówki te są w stanie osiągnąć wyższą temperaturę, co z kolei przekłada się na lepszą jakość emitowanego światła oraz dłuższą żywotność. Przykładem zastosowania żarówek halogenowych są reflektory w domach oraz w oświetleniu samochodowym, gdzie ważne jest uzyskanie intensywnego, a zarazem przyjemnego dla oka światła. Warto również zauważyć, że żarówki te spełniają wiele standardów wydajności energetycznej, co czyni je dobrym wyborem w kontekście zrównoważonego rozwoju i oszczędności energii.

Pytanie 32

Na wyłączniku różnicowoprądowym są następujące oznaczenia:

CIF-6 30/4/003
IΔn= 0,03 A
In=30 A
~230/400 V
Prąd różnicowy i znamionowy tego wyłącznika wynoszą odpowiednio
A. 0,03 A i 30 A
B. 3 A i 0,03 A
C. 0,003 A i 30 A
D. 30 A i 0,03 A

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Poprawna odpowiedź to 0,03 A i 30 A, co jest zgodne z oznaczeniami przedstawionymi na wyłączniku różnicowoprądowym. Prąd różnicowy, oznaczany jako IΔn, wynoszący 0,03 A, jest kluczowy dla ochrony przed porażeniem elektrycznym, gdyż wykrywa niewielkie różnice w prądzie między przewodami fazowymi a neutralnym. Taki wyłącznik jest stosowany w obwodach z urządzeniami narażonymi na kontakt z wodą, co zwiększa ryzyko porażenia. Z kolei prąd znamionowy In, wynoszący 30 A, definiuje maksymalne obciążenie, jakie wyłącznik może bezpiecznie obsłużyć. Dobre praktyki branżowe zalecają stosowanie wyłączników różnicowoprądowych o prądzie różnicowym 0,03 A w obwodach z urządzeniami wrażliwymi, takimi jak łazienki czy kuchnie, aby zapewnić odpowiednią ochronę. Ważne jest, aby przed instalacją wyłącznika sprawdzić, czy jego parametry są zgodne z wymaganiami określonymi w normach, takich jak PN-EN 61008-1, co gwarantuje wysoką jakość i bezpieczeństwo instalacji.

Pytanie 33

Jaka maksymalna wartość impedancji pętli zwarcia może występować w trójfazowym obwodzie elektrycznym o napięciu nominalnym 230/400 V, aby ochrona przed porażeniem była skuteczna w przypadku uszkodzenia izolacji, wiedząc, że zasilanie tego obwodu powinien wyłączyć instalacyjny wyłącznik nadprądowy C10?

A. 4,6 Ω
B. 2,3 Ω
C. 8,0 Ω
D. 7,7 Ω

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź 2,3 Ω jest poprawna, ponieważ jest zgodna z wymaganiami dotyczącymi impedancji pętli zwarcia w trójfazowych obwodach elektrycznych. W takich systemach, aby zapewnić skuteczną ochronę przeciwporażeniową, impedancja pętli zwarcia powinna być na tyle niska, aby wyłącznik nadprądowy mógł szybko zareagować na zwarcie. Wyłącznik C10, który ma prąd znamionowy 10 A, wymaga maksymalnej impedancji pętli zwarcia równej 2,3 Ω, aby przy zwarciu wyzwolił się w czasie nieprzekraczającym 0,4 s. Przykładem zastosowania tej zasady jest instalacja w budynkach mieszkalnych, gdzie ochrona przed porażeniem prądem jest kluczowa. W praktyce, aby uzyskać odpowiednią impedancję, projektanci instalacji elektrycznych muszą uwzględnić odpowiednie przekroje przewodów oraz ich długość, a także zainstalować zabezpieczenia, które umożliwią szybkie odcięcie zasilania w przypadku uszkodzenia izolacji. W kontekście norm, można przywołać normę PN-EN 60364, która szczegółowo opisuje wymagania dotyczące ochrony osób i mienia przed skutkami działania prądu elektrycznego.

Pytanie 34

Na podstawie przedstawionego schematu połączeń określ, kiedy nastąpi zadziałanie wyłącznika różnicowoprądowego?

Ilustracja do pytania
A. Po załączeniu wyłącznika w obwodzie gniazd pokoi.
B. Po załączeniu wyłącznika w obwodzie łazienki i podłączeniu odbiornika.
C. Po załączeniu wyłącznika w obwodzie łazienki.
D. Po załączeniu wyłącznika w obwodzie gniazd pokoi i podłączeniu odbiornika.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wyłącznik różnicowoprądowy (RCD) ma kluczową rolę w zapewnieniu bezpieczeństwa w obwodach elektrycznych, szczególnie w obszarach o dużym ryzyku, jak łazienki czy kuchnie. Prawidłowa odpowiedź wskazuje, że wyłącznik zadziała po załączeniu wyłącznika w obwodzie gniazd pokoi i podłączeniu odbiornika. RCD działa na zasadzie pomiaru różnicy prądów, które przepływają przez przewody fazowy i neutralny. Gdy różnica przekracza określony próg (najczęściej 30 mA), wyłącznik natychmiast przerywa obwód, co zapobiega porażeniu prądem. Na schemacie widać, że przewody fazowe są zamienione miejscami, co zwiększa ryzyko wystąpienia upływu prądu, zwłaszcza przy podłączeniu odbiornika. Zastosowanie RCD jest zgodne z normami, takimi jak PN-EN 61008, które regulują zasady zabezpieczeń w instalacjach elektrycznych. Dlatego kluczowe jest, by każdy użytkownik instalacji elektrycznej miał świadomość, jak ważne jest ich prawidłowe działanie oraz regularne testowanie ich sprawności.

Pytanie 35

Na którym schemacie przedstawiono prawidłowy sposób połączenia rozdzielnicy mieszkaniowej z wewnętrzną linią zasilającą?

Ilustracja do pytania
A. C.
B. D.
C. B.
D. A.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź D jest faktycznie na miejscu. Pokazuje, jak powinno się podłączać przewody w rozdzielnicy, co jest naprawdę ważne z perspektywy bezpieczeństwa w instalacjach elektrycznych. Przewód neutralny (N) i ochronny (PE) są dobrze połączone, co jest kluczowe dla ochrony użytkowników. Dzięki temu zabezpieczenia nadmiarowoprądowe działają jak należy, więc w razie awarii odcinają prąd, a to chroni całą instalację przed uszkodzeniem. Dodatkowo, umiejscowienie licznika energii elektrycznej (kWh) przed zabezpieczeniem to zgodne z zasadami podejście, które ułatwia kontrolowanie zużycia energii. Właściwe materiały i przestrzeganie norm, takich jak PN-IEC 60364, to podstawa. Z mojego doświadczenia, dobre podłączenie w rozdzielnicy wpływa na całą instalację, co przekłada się na jej niezawodność i bezpieczeństwo.

Pytanie 36

Do jakiej kategorii zaliczają się kable współosiowe?

A. Kabelkowych
B. Telekomunikacyjnych
C. Oponowych
D. Grzewczych

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Przewody współosiowe, znane również jako kable koncentryczne, są kluczowym elementem w systemach telekomunikacyjnych. Ich budowa składa się z centralnego przewodu, który jest otoczony dielektrykiem, a następnie metalową osłoną. Taka konstrukcja pozwala na przesyłanie sygnałów radiowych i telewizyjnych z minimalnymi zakłóceniami, co jest szczególnie ważne w telekomunikacji. Przewody współosiowe są powszechnie wykorzystywane w instalacjach telewizyjnych, sieciach komputerowych oraz w systemach audio, gdzie istotna jest jakość przesyłanych danych. Zgodnie z normami branżowymi, takie jak ANSI/TIA-568, przewody te muszą spełniać określone standardy dotyczące tłumienia sygnału i zakłóceń elektromagnetycznych, co gwarantuje ich niezawodność. Stosowanie przewodów współosiowych w telekomunikacji jest także uzasadnione ich łatwością w instalacji oraz dużą odpornością na uszkodzenia mechaniczne, co czyni je preferowanym rozwiązaniem w wielu aplikacjach.

Pytanie 37

Którym zestawem przyrządów pomiarowych można w przypadku braku watomierza wyznaczyć moc czynną pobieraną przez silnik elektryczny zasilany z instalacji jednofazowej?

Amperomierz
Częstościomierz
Waromierz
Amperomierz
Częstościomierz
Woltomierz
Omomierz
Waromierz
Woltomierz
Amperomierz
Waromierz
Woltomierz
ABCD
A. C.
B. A.
C. D.
D. B.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź D jest prawidłowa, ponieważ zestaw przyrządów składający się z amperomierza i woltomierza jest wystarczający do pomiaru mocy czynnej silnika elektrycznego zasilanego z instalacji jednofazowej. W obwodach jednofazowych moc czynna obliczana jest na podstawie wzoru P = U * I * cos(φ), gdzie U to napięcie, I to natężenie prądu, a cos(φ) to współczynnik mocy. Amperomierz umożliwia pomiar natężenia prądu, natomiast woltomierz pozwala na pomiar napięcia. Znajomość wartości obu tych parametrów pozwala na obliczenie mocy czynnej silnika. Przykładowo, jeśli zmierzymy napięcie w obwodzie jako 230 V i natężenie prądu jako 10 A, a współczynnik mocy ustalimy na 0,8, moc czynna wyniesie P = 230 * 10 * 0,8 = 1840 W. Taka metoda jest zgodna z praktykami stosowanymi w elektrotechnice i jest szeroko akceptowana w branży.

Pytanie 38

W jakim układzie sieciowym znajduje się bezpiecznik iskiernikowy podłączony pomiędzy punkt neutralny strony wtórnej transformatora, który zasila ten układ, a uziom roboczy?

A. TN-C
B. TN-S
C. IT
D. TT

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź 'IT' jest prawidłowa, ponieważ w układzie IT, system neutralny nie jest bezpośrednio uziemiony, co oznacza, że wszystkie części przewodzące, z wyjątkiem punktu neutralnego, są uziemione. Bezpiecznik iskiernikowy, który jest włączony między punkt neutralny transformatora a uziom roboczy, działa jako mechanizm zabezpieczający przed niebezpiecznymi przepięciami i wyładowaniami elektrycznymi. W praktyce, układ IT jest często stosowany w obiektach, gdzie ciągłość zasilania jest kluczowa, takich jak szpitale czy centra danych. Zgodnie z normą IEC 60364, zaleca się stosowanie tego typu systemów w celu minimalizacji ryzyka porażenia prądem elektrycznym, co czyni je bardziej bezpiecznymi w porównaniu do układów z uziemionym punktem neutralnym. Dodatkowo, zastosowanie bezpiecznika iskiernikowego w tym kontekście zapewnia ochronę przed przepięciami, co może być kluczowe dla bezpieczeństwa sprzętu oraz ludzi.

Pytanie 39

Jaki jest minimalny dopuszczalny przekrój przewodów miedzianych stosowanych w budynkach jako wewnętrzne linie zasilające (WLZ)?

A. 16 mm2
B. 10 mm2
C. 4 mm2
D. 6 mm2

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Minimalny dopuszczalny przekrój przewodów miedzianych stosowanych w wewnętrznych liniach zasilających (WLZ) wynosi 10 mm2. Ta wartość jest określona przez normy dotyczące instalacji elektrycznych, takie jak PN-IEC 60364, które wskazują na konieczność zabezpieczenia przewodów przed przegrzewaniem oraz zapewnienia odpowiedniej nośności prądowej. Przekrój 10 mm2 jest stosowany, aby zminimalizować straty mocy i zapewnić bezpieczeństwo eksploatacji. Przykładowo, w budynkach jednorodzinnych, gdzie przewody te muszą obsługiwać różnorodne urządzenia elektryczne, zastosowanie przewodów o odpowiednio dużym przekroju pozwala na uniknięcie przeciążeń i potencjalnych zagrożeń pożarowych. W praktyce, stosowanie przewodów o zbyt małym przekroju może prowadzić do ich przegrzewania, co z kolei zwiększa ryzyko awarii systemu zasilania oraz uszkodzenia urządzeń elektrycznych.

Pytanie 40

Jakie narzędzia trzeba przygotować do wyznaczenia miejsca na zainstalowanie rozdzielnicy podtynkowej w ścianie murowanej?

A. Sznurek traserski, młotek, punktak
B. Rysik, kątownik, punktak, młotek
C. Przymiar taśmowy, poziomnica, ołówek traserski
D. Przymiar kreskowy, ołówek traserski, rysik

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Poprawna odpowiedź to przymiar taśmowy, poziomnica oraz ołówek traserski. Te narzędzia są kluczowe w procesie trasowania, ponieważ zapewniają precyzję oraz dokładność wymagane przy montażu rozdzielnicy podtynkowej. Przymiar taśmowy pozwala na dokładne mierzenie odległości i wyznaczanie miejsca, gdzie rozdzielnica powinna być umiejscowiona. Poziomnica jest niezbędna do sprawdzenia, czy zamontowana rozdzielnica jest w idealnej pozycji, co ma kluczowe znaczenie dla dalszych prac instalacyjnych. Ołówek traserski umożliwia zaznaczenie punktów na ścianie, co ułatwia przeniesienie wymiarów na materiał budowlany. Standardy branżowe podkreślają znaczenie precyzyjnego pomiaru w instalacjach elektrycznych, co bezpośrednio przekłada się na bezpieczeństwo oraz funkcjonalność całego systemu. Użycie tych narzędzi w odpowiednich technikach trasowania, takich jak wyznaczanie pionów i poziomów, zapewnia, że instalacja będzie zgodna z normami budowlanymi i elektrycznymi, co jest kluczowe dla zachowania bezpieczeństwa użytkowania.