Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektryk
  • Kwalifikacja: ELE.05 - Eksploatacja maszyn, urządzeń i instalacji elektrycznych
  • Data rozpoczęcia: 7 grudnia 2025 11:55
  • Data zakończenia: 7 grudnia 2025 12:22

Egzamin zdany!

Wynik: 27/40 punktów (67,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Uszkodzenie izolacji uzwojenia w działającym przekładniku może wystąpić na skutek rozłączenia zacisków jego strony

A. pierwotnej przekładnika napięciowego
B. wtórnej przekładnika napięciowego
C. wtórnej przekładnika prądowego
D. pierwotnej przekładnika prądowego
Odpowiedź 'wtórnej przekładnika prądowego' jest prawidłowa, ponieważ uszkodzenie izolacji uzwojenia może wystąpić na skutek rozwarcia obwodu wtórnego przekładnika prądowego, co prowadzi do znacznego wzrostu napięcia na zaciskach wtórnych. Przekładniki prądowe są zaprojektowane do pracy w obwodach zamkniętych, a ich wtórne uzwojenie powinno zawsze być obciążone, aby zapewnić stabilne warunki pracy. W przypadku rozwarcia, natężenie prądu w uzwojeniu pierwotnym nie zmienia się, natomiast napięcie wtórne może osiągnąć niebezpieczne wartości, co skutkuje uszkodzeniami izolacji. Dobre praktyki w instalacjach elektroenergetycznych obejmują stosowanie odpowiednich zabezpieczeń, takich jak wyłączniki nadprądowe i ograniczniki przepięć, które mogą chronić przed takimi uszkodzeniami. Warto również regularnie przeprowadzać inspekcje i testy, aby zminimalizować ryzyko uszkodzeń, co jest zgodne z normami IEC oraz zaleceniami branżowymi dotyczących konserwacji urządzeń elektrycznych.

Pytanie 2

Obroty silnika indukcyjnego klatkowego obciążonego nominalnym momentem znacząco spadły. Jakie mogą być tego przyczyny?

A. Zbyt wysoka temperatura uzwojeń
B. Zadziałanie przekaźnika termicznego
C. Przepalony bezpiecznik topikowy w jednej z faz
D. Zwarcie w obwodzie wirnika
Przepalony bezpiecznik topikowy w jednej fazie to jedna z najczęstszych przyczyn nagłego spadku obrotów silnika indukcyjnego klatkowego. Silnik tego typu działa na zasadzie zasilania trójfazowego, a każdy z obwodów fazowych jest kluczowy dla prawidłowego funkcjonowania całego układu. W przypadku przepalenia bezpiecznika w jednej z faz, silnik zostaje zasilany tylko z dwóch faz, co prowadzi do znacznego spadku momentu obrotowego i w konsekwencji obrotów. Gdy obciążenie silnika osiąga wartość znamionową, a jedna z faz jest wyłączona, silnik nie jest w stanie dostarczyć wymaganego momentu obrotowego. Przykładem zastosowania tej wiedzy jest regularne monitorowanie stanu bezpieczników w instalacjach przemysłowych oraz korzystanie z systemów detekcji, które mogą zasygnalizować spadek wydajności zasilania. Dobrym rozwiązaniem jest także wprowadzenie systemów automatycznego wyłączania urządzeń w przypadku wykrycia problemów z zasilaniem, co może zapobiec uszkodzeniom silnika.

Pytanie 3

Jakie znaczenie ma klasa izolacji (np. kl. B) na tabliczce znamionowej silnika elektrycznego?

A. Maksymalną temperaturę pracy uzwojeń
B. Minimalną temperaturę pracy uzwojeń
C. Maksymalne napięcie zasilania
D. Minimalne napięcie zasilania
Klasa izolacji silnika elektrycznego odnosi się do maksymalnej temperatury, jaką może osiągnąć uzwojenie silnika podczas normalnej pracy, bez ryzyka uszkodzenia izolacji. Klasa B oznacza, że maksymalna temperatura pracy uzwojeń nie powinna przekraczać 130°C. Użycie silnika z odpowiednią klasą izolacji jest kluczowe w aplikacjach przemysłowych, gdzie silniki są narażone na różne warunki termiczne. Przykładowo, w przypadku silników pracujących w przemyśle metalurgicznym, gdzie temperatura otoczenia może być wysoka, klasa izolacji B zapewnia, że silnik zachowa swoje właściwości elektryczne i mechaniczne. Ważne jest, aby dobierać silniki zgodnie z wymaganiami aplikacji, a także monitorować ich temperaturę pracy, aby uniknąć przegrzania, które mogłoby prowadzić do awarii. Dobre praktyki branżowe przewidują regularne przeglądy i pomiary temperatury, co przyczynia się do wydłużenia żywotności silników oraz zwiększenia efektywności energetycznej urządzeń.

Pytanie 4

Aby zapewnić ochronę przeciwporażeniową uzupełniającą do podstawowej, obwody zasilające gniazda wtyczkowe z prądem do 32 A powinny być chronione wyłącznikiem RCD o znamionowym prądzie różnicowym

A. 1 000 mA
B. 100 mA
C. 30 mA
D. 500 mA
Wybór wyłącznika różnicowoprądowego (RCD) o znamionowym prądzie różnicowym 30 mA jest zgodny z aktualnymi normami bezpieczeństwa, takimi jak PN-EN 61008, które rekomendują jego zastosowanie w instalacjach zasilających obwody gniazd wtyczkowych, szczególnie w przypadku narażenia na porażenie prądem. Wyłącznik RCD 30 mA skutecznie minimalizuje ryzyko porażenia prądem przez szybkie odłączenie zasilania w przypadku wykrycia różnicy prądów, co jest istotne w obwodach o napięciu 230 V, gdzie ochrona osób jest priorytetem. Przykładem zastosowania wyłączników o tym znamionowym prądzie różnicowym jest instalacja w pomieszczeniach, gdzie wykorzystuje się urządzenia elektryczne w pobliżu wody, takie jak kuchnie czy łazienki. W takich miejscach, zgodnie z normami, zastosowanie RCD 30 mA jest koniecznością, co znacząco zwiększa bezpieczeństwo użytkowników i ogranicza ryzyko wypadków. Regularna kontrola i testowanie RCD zapewnia jego prawidłowe działanie oraz podnosi świadomość użytkowników na temat znaczenia ochrony przeciwporażeniowej w instalacjach elektrycznych.

Pytanie 5

W instalacji trójfazowej natężenie prądu obciążenia przewodów fazowych Ib wynosi 21 A, a maksymalne dopuszczalne obciążenie tych przewodów Id to 30 A. Który z wymienionych wyłączników nadprądowych powinien być użyty do ochrony tej instalacji?

A. B20
B. B10
C. B16
D. B25
Dobra decyzja z tym wyłącznikiem B25! Wybierając go, postawiłeś na coś, co naprawdę pasuje do wartości prądu obciążenia, która wynosi 21 A. Z tego, co wiemy, wyłącznik powinien mieć wyższą wartość nominalną niż maksymalny prąd roboczy, ale nie może też za bardzo przekraczać obciążalności przewodów. Tu mamy 30 A dla przewodów, więc 25 A dla wyłącznika to świetny wybór. Dzięki temu nie tylko chronisz instalację przed przeciążeniem, ale też zmniejszasz ryzyko uszkodzenia przewodów. Gdybyś wybrał wyłącznik o wyższej wartości, mogłoby to prowadzić do niebezpiecznych sytuacji, w których obciążenia mogą przekraczać to, co jest dozwolone. Generalnie, wyłączniki B25 są dosyć popularne w instalacjach trójfazowych i dobrze się sprawdzają, bo utrzymują wartość prądu na odpowiednim poziomie. Ważne, żeby nie przekraczać 80% tej wartości nominalnej, co w twoim przypadku jest akurat spełnione.

Pytanie 6

W tabeli zamieszczono wyniki okresowych pomiarów impedancji pętli zwarcia instalacji elektrycznej budynku mieszkalnego wykonanej w układzie TN-S. Jaka jest najbardziej prawdopodobna przyczyna zwiększonej wartości Zs w sypialni?

Pomiar impedancji pętli zwarcia obwodów gniazd jednofazowych zabezpieczonych wyłącznikami nadprądowymi B16
Pomieszczenie:SalonSypialniaKuchniaPrzedpokójŁazienka
Wartość ZS:2,32 Ω6,84 Ω1,72 Ω1,39 Ω2,55 Ω
A. Niewłaściwie dobrany wyłącznik nadprądowy dla mierzonego obwodu.
B. Brak ciągłości przewodu neutralnego w mierzonym obwodzie.
C. Brak ciągłości przewodu ochronnego w mierzonym obwodzie.
D. Poluzowany przewód liniowy zasilający gniazda w mierzonym obwodzie.
Udzielona odpowiedź dotycząca braku ciągłości przewodu ochronnego w mierzonym obwodzie, choć może wydawać się zrozumiała, jest nieprawidłowa. Brak ciągłości przewodu ochronnego może prowadzić do poważnych zagrożeń związanych z bezpieczeństwem, jak na przykład porażenie prądem, ale nie wpływa bezpośrednio na wartość impedancji pętli zwarcia w taki sposób, jak poluzowany przewód zasilający. W przypadku braku ciągłości przewodu ochronnego, system może nie być w stanie skutecznie uziemić, co może zagrażać bezpieczeństwu użytkowników, jednak wartość Zs pozostanie na poziomie, który nie odzwierciedli rzeczywistego problemu w instalacji. Podobnie, brak ciągłości przewodu neutralnego, choć może wpływać na stabilność pracy urządzeń elektrycznych, nie przyczyni się do zwiększenia Zs w mierzonym obwodzie. Niewłaściwie dobrany wyłącznik nadprądowy, choć może prowadzić do nieefektywnego zabezpieczenia obwodu, również nie jest bezpośrednią przyczyną podwyższonej impedancji pętli zwarcia. To typowy błąd myślowy, który polega na pomyleniu konsekwencji z przyczynami; istotne jest, aby rozumieć, że zjawiska elektryczne są złożone i wymagają szczegółowej analizy poszczególnych elementów instalacji, aby skutecznie diagnozować problemy.

Pytanie 7

Podczas wymiany uszkodzonego przewodu PEN w instalacji o napięciu do 1 kV, która jest trwale zamontowana, należy pamiętać, aby nowy przewód miał przekrój co najmniej

A. 10 mm2 Cu lub 16 mm2 Al
B. 16 mm2 Cu lub 10 mm2 Al
C. 16 mm2 Cu lub 16 mm2 Al
D. 10 mm2 Cu lub 10 mm2 Al
Wybór odpowiedzi 10 mm2 Cu lub 16 mm2 Al jako minimalnego przekroju przewodu PEN w instalacji do 1 kV jest zgodny z obowiązującymi standardami oraz najlepszymi praktykami w zakresie instalacji elektrycznych. Przewód PEN, który łączy funkcje przewodu neutralnego i ochronnego, odgrywa kluczową rolę w zapewnieniu bezpieczeństwa instalacji. W przypadku zastosowania przewodów miedzianych, minimalny przekrój 10 mm2 jest zgodny z normą PN-IEC 60364, która określa wymagania dla instalacji elektrycznych. Przewody aluminiowe muszą mieć większy przekrój, 16 mm2, ze względu na niższą przewodność elektryczną w porównaniu do miedzi. W praktyce, zastosowanie przewodu o odpowiednim przekroju zapewnia właściwe odprowadzanie prądu oraz minimalizuje ryzyko przegrzewania się przewodów, co z kolei zmniejsza ryzyko wystąpienia awarii instalacji. Dodatkowo, dobranie odpowiedniego przekroju przewodów wpływa na efektywność energetyczną instalacji oraz na jej długowieczność.

Pytanie 8

Jaki jest maksymalny czas automatycznego wyłączenia zasilania w celu zapewnienia ochrony przed porażeniem elektrycznym w przypadku awarii w obwodach odbiorczych o prądzie nominalnym I < 32 A w jednofazowym układzie sieciowym TN przy napięciu 230 V?

A. 5,0 s
B. 0,4 s
C. 0,2 s
D. 0,1 s
Maksymalny czas samoczynnego wyłączenia zasilania w przypadku uszkodzenia w obwodach odbiorczych o prądzie znamionowym I < 32 A w układzie sieciowym TN jednofazowym przy napięciu 230 V wynosi 0,4 s. Zgodnie z normą PN-EN 61140, czas wyłączenia zasilania w przypadku wystąpienia uszkodzenia izolacji jest kluczowy dla zapewnienia ochrony przeciwporażeniowej. W obwodach jednofazowych z prądem znamionowym niższym niż 32 A wymóg ten został określony jako 0,4 s, co ma na celu minimalizację ryzyka porażenia prądem w przypadku awarii. Przykładem zastosowania tej zasady może być instalacja elektryczna w domach mieszkalnych, gdzie zabezpieczenia, takie jak wyłączniki różnicowoprądowe (RCD), muszą działać w określonym czasie, by zapewnić bezpieczeństwo użytkowników. Długotrwałe wystawienie na działanie prądu może prowadzić do poważnych obrażeń, dlatego tak ważne jest przestrzeganie tych norm. W praktyce oznacza to, że w przypadku uszkodzenia urządzenia lub przewodów, odcięcie zasilania musi nastąpić w krótkim czasie, aby zminimalizować ryzyko dla użytkowników.

Pytanie 9

Jakie oznaczenie ma elektryczny silnik, który jest przeznaczony do pracy cyklicznej w trybie: 4 minuty – działanie, 6 minut – przerwa?

A. S3 60%
B. S3 40%
C. S2 40
D. S2 60
Silnik elektryczny oznaczony jako S3 40% jest przeznaczony do pracy przerywanej, w której cykl składa się z fazy pracy i przerwy. W tym przypadku cykl trwa 10 minut, z czego 4 minuty to czas pracy, a 6 minut to przerwa. Oznaczenie S3 40% informuje, że silnik może pracować w tym trybie przez 40% swojego cyklu, co odpowiada 4 minutom pracy w ciągu 10 minut. To zastosowanie jest typowe dla silników, które nie muszą pracować ciągle, ale muszą być aktywne przez określony czas w cyklu. Przykładem zastosowania mogą być wentylatory, pompy czy inne maszyny, które nie wymagają stałej pracy. W praktyce wykorzystanie silników S3 znacząco wpływa na wydajność energetyczną oraz żywotność urządzenia, ponieważ zmniejsza obciążenie termiczne oraz zużycie komponentów silnika. Warto również zwrócić uwagę na normy IEC 60034-1, które regulują klasyfikację silników elektrycznych, co pozwala na lepsze zrozumienie ich przeznaczenia i możliwości.

Pytanie 10

Jaką wkładkę topikową bezpiecznikową powinno się wykorzystać do ochrony silnika indukcyjnego przed skutkami zwarć?

A. WT/NH DC
B. WT/NHaM
C. WT-2gTr
D. WT-00 gF
Wybór nieodpowiedniej wkładki topikowej do zabezpieczenia silnika indukcyjnego może prowadzić do poważnych skutków, w tym uszkodzenia silnika lub awarii całego systemu. Wybrane opcje, takie jak WT/NH DC, WT-2gTr oraz WT-00 gF, nie są optymalne w kontekście ochrony silników indukcyjnych. Wkładka WT/NH DC, przeznaczona głównie do systemów prądu stałego, nie jest przystosowana do warunków pracy, w jakich funkcjonują silniki indukcyjne zasilane prądem zmiennym, co może prowadzić do niewłaściwej reakcji na zwarcia. Z kolei WT-2gTr nie jest odpowiednia ze względu na swoje ograniczenia w obszarze prądów zwarciowych, mogących być znacznie wyższe w przypadku silników indukcyjnych. Wkładka WT-00 gF, mimo że może znaleźć zastosowanie w innych obszarach, również nie jest dedykowana do ochrony silników, bowiem nie zapewnia wymaganej charakterystyki prądowej oraz czasowej reakcji. Typowe błędy myślowe związane z tymi odpowiedziami mogą obejmować nieprawidłowe założenie, że każda wkładka bezpiecznikowa jest uniwersalna, co jest sprzeczne z zasadami inżynierii elektrycznej. Właściwy dobór ochrony nadprądowej powinien opierać się na specyfikacjach danego urządzenia oraz warunkach jego pracy, aby zapewnić maksymalną efektywność ochrony.

Pytanie 11

Która z poniższych czynności nie jest częścią badań eksploatacyjnych silnika elektrycznego?

A. Rozruch próbny urządzenia
B. Pomiar napięcia zasilania
C. Sprawdzenie stanu ochrony przeciwporażeniowej
D. Pomiar rezystancji uzwojeń stojana
W kontekście badań eksploatacyjnych silnika elektrycznego, każda z wymienionych czynności ma swoje znaczenie, ale nie wszystkie są klasyfikowane jako badania samych silników. Pomiar rezystancji uzwojeń stojana jest jednym z najważniejszych badań, które pozwala na ocenę stanu izolacji. Uszkodzenie izolacji może prowadzić do zwarć, co z kolei zagraża nie tylko funkcjonowaniu silnika, ale także bezpieczeństwu użytkowników. Rozruch próbny urządzenia jest kluczowy dla sprawdzenia, czy silnik działa zgodnie z jego specyfikacją i czy nie występują nieprawidłowości w jego pracy. Z kolei sprawdzenie stanu ochrony przeciwporażeniowej jest fundamentalne dla zapewnienia bezpieczeństwa elektrycznego, a jego pominięcie może prowadzić do poważnych wypadków. Wydaje się więc, że pomiar napięcia zasilania powinien być również postrzegany jako istotny, jednak poprzez skoncentrowanie się na nim, można przeoczyć istotne detale związane z samym stanem silnika. W rzeczywistości, badania eksploatacyjne skupiają się głównie na diagnostyce i analizie wewnętrznej stanu silnika, co oznacza, że pomiar napięcia, mimo że ważny w kontekście zasilania, nie dostarcza informacji o zdrowiu silnika. Właściwe podejście do badań eksploatacyjnych wymaga zrozumienia, które czynności mają kluczowe znaczenie dla oceny wewnętrznych komponentów silnika, a które są związane z jego zasilaniem i eksploatacją w kontekście zewnętrznym.

Pytanie 12

Który z podanych wyłączników nadprądowych powinien być użyty w obwodzie zasilającym tylko rezystancyjny grzejnik elektryczny z trzema grzałkami o mocy 3 kW każda, połączonymi w trójkąt i zasilanym z sieci 3/N/PE ~ 400/230 V 50 Hz?

A. CLS6-C16/1N
B. CLS6-B16/4
C. CLS6-B16/3
D. CLS6-B16/3N
Pozostałe odpowiedzi nie spełniają wymagań dotyczących ochrony obwodu zasilającego grzejnik elektryczny. Odpowiedź CLS6-C16/1N nie jest właściwa, ponieważ jest to wyłącznik jednofazowy, a obwód, w którym zainstalowany jest grzejnik, jest trójfazowy. Zastosowanie wyłącznika jednofazowego w obwodzie trójfazowym prowadziłoby do nieprawidłowej ochrony, a w przypadku awarii mogłoby to skutkować poważnymi uszkodzeniami instalacji. Odpowiedź CLS6-B16/4 jest także błędna ze względu na to, że wyłącznik ten ma cztery bieguny, co nie ma zastosowania w obwodach trójfazowych z przewodem neutralnym. W instalacjach trójfazowych wykorzystuje się zazwyczaj wyłączniki trójbiegowe, co czyni tę opcję niewłaściwą. Z kolei wyłącznik CLS6-B16/3N, mimo że teoretycznie mógłby być odpowiedni z uwagi na obecność przewodu neutralnego, nie jest optymalnym wyborem dla obwodu głównie rezystancyjnego, jakim jest grzejnik elektryczny. Obciążenia rezystancyjne charakteryzują się stabilnym prądem, co oznacza, że wyłączniki B są bardziej odpowiednie niż N, które są zaprojektowane do ochrony obwodów z obciążeniami nieliniowymi. Dlatego ważne jest, aby dobór wyłącznika nadprądowego był zgodny z charakterem obciążenia oraz wymaganiami normatywnymi, co zapewnia bezpieczeństwo oraz odpowiednią funkcjonalność instalacji elektrycznej.

Pytanie 13

Aby zapobiec przegrzewaniu uzwojeń silnika indukcyjnego, nie powinno się długotrwale

A. zwiększać oporu wirnika
B. przekraczać prądu znamionowego
C. zmniejszać współczynnika mocy
D. obniżać poślizgu
Przekraczanie prądu znamionowego silnika indukcyjnego prowadzi do jego przegrzewania, co może skutkować uszkodzeniem izolacji uzwojeń oraz skróceniem żywotności urządzenia. Prąd znamionowy to maksymalny prąd, który silnik może pobierać w normalnych warunkach pracy, zgodnie z jego specyfikacją. Przekroczenie tej wartości, na przykład podczas przeciążenia lub przy zbyt małym napięciu zasilającym, powoduje wzrost temperatury uzwojeń, co z kolei prowadzi do zwiększenia strat cieplnych i ryzyka awarii. W praktyce, zastosowanie odpowiednich zabezpieczeń, takich jak wyłączniki silnikowe lub przekaźniki termiczne, jest kluczowe dla ochrony silników przed skutkami przeciążeń. Dodatkowo, regularne monitorowanie stanu technicznego silnika oraz jego parametrów pracy, zgodnie z normą PN-EN 60034, pozwala na wczesne wykrywanie problemów i podejmowanie działań zapobiegawczych. Z tego względu, przy projektowaniu systemów zasilania należy uwzględnić odpowiednie marginesy dla prądu znamionowego, aby zapewnić długotrwałą i bezawaryjną pracę silników indukcyjnych.

Pytanie 14

W instalacjach oświetleniowych w mieszkaniach nie wolno używać opraw oświetleniowych stałych i regulowanych wykonanych w klasie ochronności

A. I
B. III
C. II
D. 0
Odpowiedź 0 jest ok, bo w mieszkaniach nie powinniśmy używać opraw oświetleniowych klasy ochronności 0. One nie mają żadnej dodatkowej izolacji, a to znaczy, że mogą być niebezpieczne, zwłaszcza gdy mówimy o kontaktach z prądem. Klasa ochronności 0 nie chroni przed prądami błądzącymi, a to niesie ryzyko, zwłaszcza tam, gdzie są wilgotne powierzchnie, jak w łazienkach. Z norm PN-IEC 61140 i PN-EN 60598 wynika, że najlepiej używać opraw przynajmniej klasy I, które mają uziemienie i dodatkowe zabezpieczenia. W praktyce, jeśli wybierzemy oprawy klasy I lub II, zwiększamy bezpieczeństwo, co w domowych warunkach jest bardzo ważne. W miejscach, gdzie może być woda, naprawdę warto postawić na oprawy odpowiedniej klasy, żeby zminimalizować ryzyko porażenia prądem.

Pytanie 15

Wirnik w szlifierce uległ uszkodzeniu. Na schemacie z dokumentacji techniczno-ruchowej jest on oznaczony numerem

A. 12
B. 9
C. 50
D. 35
Wybór odpowiedzi 12, 50 lub 35 jest błędny, ponieważ nie odpowiada rzeczywistemu oznaczeniu wirnika szlifierki zawartemu w dokumentacji techniczno-ruchowej. Często zdarza się, że technicy i operatorzy nie zwracają dostatecznej uwagi na szczegóły w dokumentacji, co prowadzi do identyfikacji niewłaściwych części. Na przykład, numer 12 może być związany z inną częścią maszyny, taką jak wałek napędowy, co jest typowym błędem myślowym przy zbyt szybkim przeszukiwaniu dokumentacji bez dokładnej analizy. Numer 50 mógłby odnosić się do innego modelu szlifierki lub odrębnego rodzaju obrabiarki, co pokazuje, jak ważne jest zrozumienie kontekstu oznaczeń w dokumentacji. Ponadto, numer 35 nie jest związany z wirnikiem, co może prowadzić do poważnych problemów w przypadku wymiany uszkodzonej części. W takich sytuacjach, nieodpowiednie oznaczenie może skutkować wykorzystaniem niewłaściwych komponentów, co z kolei wprowadza ryzyko awarii maszyny. Dlatego tak kluczowe jest przeszkolenie w zakresie czytania i interpretacji dokumentacji technicznej, aby unikać takich pomyłek. Znajomość standardów branżowych i dobrych praktyk jest istotna, aby zapewnić prawidłowe funkcjonowanie maszyn oraz bezpieczeństwo ich użytkowania.

Pytanie 16

Zgodnie z aktualnymi regulacjami, czas pomiędzy następnymi kontrolami skuteczności ochrony przed porażeniem prądem dla instalacji elektrycznych w pomieszczeniach z wyziewami żrącymi, w strefach zagrożonych wybuchem oraz na terenie otwartym nie może przekraczać

A. dwa lata
B. pięć lat
C. pół roku
D. jeden rok
Wybór odpowiedzi "dwa lata", "pół roku" lub "pięć lat" wynika z niepełnego zrozumienia przepisów dotyczących ochrony przeciwporażeniowej w specyficznych warunkach. Okres dwóch lat jest zbyt długi w kontekście pomieszczeń, gdzie ryzyko uszkodzeń instalacji elektrycznych jest znacznie wyższe z powodu obecności substancji żrących lub innych czynników zewnętrznych. W takich środowiskach, gdzie instalacje są narażone na korozję, kontrola powinna być przeprowadzana co najmniej raz w roku, aby zminimalizować ryzyko awarii. Z drugiej strony, okres pół roku, mimo że krótszy, może być niewystarczający w kontekście zmieniającego się stanu technicznego instalacji w trudnych warunkach eksploatacji. Wybór pięcioletniego okresu kontroli jest rażąco nieodpowiedni, ponieważ nie uwzględnia specyfiki miejsc, gdzie komponenty elektryczne mogą szybko ulegać degradacji. Każdy z tych błędnych wyborów nie uwzględnia także przepisów prawa budowlanego oraz norm branżowych, które jasno wskazują na wymóg rocznych kontroli jako standard bezpieczeństwa. Niezrozumienie tych regulacji oraz potencjalnych konsekwencji związanych z rzadkimi kontrolami może prowadzić do poważnych incydentów, które mogą być kosztowne zarówno w aspekcie finansowym, jak i bezpieczeństwa ludzi. Dlatego kluczowe jest dokładne zapoznanie się z przepisami oraz standardami pracy w danym środowisku, aby podejmować świadome decyzje dotyczące bezpieczeństwa instalacji elektrycznych.

Pytanie 17

Jakie urządzenie jest wykorzystywane do ochrony przewodów instalacyjnych przed skutkami przeciążeń?

A. Przekaźnik cieplny
B. Wyłącznik nadprądowy
C. Izolacyjny rozłącznik
D. Ochrona przeciwprzepięciowa
Wyłącznik nadprądowy jest kluczowym urządzeniem stosowanym w instalacjach elektrycznych do ochrony przewodów instalacyjnych przed skutkami przeciążeń oraz zwarć. Działa on na zasadzie monitorowania prądu przepływającego przez obwód i automatycznie odłącza zasilanie w przypadku, gdy wartość prądu przekroczy ustaloną wartość nominalną. Dzięki temu zapobiega przegrzewaniu się przewodów oraz ryzyku pożaru. Przykładowo, w domowej instalacji elektrycznej, wyłącznik nadprądowy może chronić obwód, na którym znajduje się sprzęt AGD, co jest zgodne z normą PN-EN 60898. Często stosuje się go w połączeniu z innymi zabezpieczeniami, tworząc kompleksowy system ochrony. W przypadku nadmiernego obciążenia, wyłącznik nadprądowy zadziała w ułamku sekundy, co jest kluczowe dla bezpieczeństwa użytkowników. Dążąc do zapewnienia wysokiego poziomu bezpieczeństwa w instalacjach, należy regularnie kontrolować stan wyłączników nadprądowych oraz dostosowywać ich parametry do wymagań obciążeniowych danego obwodu.

Pytanie 18

W którym z poniższych miejsc podczas pracy z urządzeniami elektrycznymi nie wolno stosować izolacji stanowiska jako zabezpieczenia przed dotykiem pośrednim?

A. Laboratorium
B. Warsztat sprzętu RTV
C. Plac budowy
D. Pracownia szkolna
Plac budowy to miejsce, gdzie występują szczególne warunki pracy, które wymagają szczegółowych zasad bezpieczeństwa. Izolowanie stanowiska jako ochrona przed dotykiem pośrednim, choć teoretycznie może być stosowane, w praktyce nie jest wystarczające ze względu na dynamiczny charakter tego środowiska. Na placu budowy często występują zagrożenia związane z wilgocią, zmiennymi warunkami atmosferycznymi oraz możliwością uszkodzenia izolacji przez inne urządzenia lub materiały budowlane. Dlatego w takich miejscach kluczowe jest stosowanie bardziej zaawansowanych systemów ochronnych, takich jak urządzenia różnicowoprądowe oraz odpowiednie uziemienie, które zapewniają znacznie większą ochronę przed porażeniem prądem elektrycznym. Dodatkowo, zgodnie z normami PN-IEC 60364, na placach budowy należy stosować zabezpieczenia, które są dostosowane do specyfiki tego typu pracy, co podkreśla istotność stosowania wielowarstwowych metod ochrony, a nie tylko polegania na izolacji.

Pytanie 19

Którą z poniższych czynności pracownik ma prawo wykonać bez zlecenia osób nadzorujących jego pracę?

A. Zamiana izolatora na linii napowietrznej nn
B. Zlokalizowanie uszkodzeń w linii kablowej nn
C. Gaszenie pożaru urządzenia elektrycznego
D. Renowacja rozdzielnicy po likwidacji pożaru
Gaszenie pożaru urządzenia elektrycznego jest jedyną czynnością, którą pracownik może wykonać bez wcześniejszego polecenia osób dozorujących, gdyż w sytuacjach awaryjnych priorytetem jest ochrona życia oraz mienia. Standardy BHP wskazują, że w razie pożaru, każdy pracownik ma prawo i obowiązek podjąć działania mające na celu jego ugaszenie, o ile to możliwe i bezpieczne. W praktyce, jeśli pracownik zauważy pożar, powinien niezwłocznie podjąć próbę ugaszenia go przy użyciu odpowiednich środków gaśniczych, takich jak gaśnice lub urządzenia automatycznego gaszenia. Tego rodzaju działanie jest zgodne z zasadą „zatrzymaj ogień, zanim on się rozprzestrzeni”, co jest kluczowe w minimalizowaniu szkód i zagrożeń. Zwracając uwagę na procedury zawarte w przepisach, takich jak Rozporządzenie Ministra Spraw Wewnętrznych i Administracji w sprawie ochrony przeciwpożarowej, można zauważyć, że pracownicy są odpowiednio szkoleni i przygotowani do działania w sytuacjach kryzysowych.

Pytanie 20

Określ prawidłową sekwencję działań przy wymianie uszkodzonego łącznika świecznikowego w instalacji elektrycznej.
włączenie napięcia, sprawdzenie prawidłowości działania.

A. Wyłączenie napięcia, demontaż łącznika, montaż łącznika, sprawdzenie prawidłowości działania, stwierdzenie braku napięcia, włączenie napięcia
B. Sprawdzenie prawidłowości działania, włączenie napięcia, stwierdzenie braku napięcia, demontaż łącznika, montaż łącznika, wyłączenie napięcia
C. Stwierdzenie braku napięcia, wyłączenie napięcia, demontaż łącznika, montaż łącznika, sprawdzenie
D. Wyłączenie napięcia, stwierdzenie braku napięcia, demontaż łącznika, montaż łącznika, włączenie napięcia, sprawdzenie prawidłowości działania
Kiedy zabierasz się za wymianę uszkodzonego łącznika świecznikowego, najważniejsze to zacząć od wyłączenia napięcia. Bez tego krok nie tylko porażka może się wydarzyć, ale coś gorszego. Potem, zanim zaczniesz grzebać w instalacji, dobrze jest upewnić się, że naprawdę nie ma napięcia w obwodzie. To trochę jak dobre nawyki, które mogą uratować życie. Jak już to masz za sobą, możesz zająć się demontażem starego łącznika, ale pamiętaj, żeby być ostrożnym – nigdy nie wiadomo, co może się zdarzyć. Po włożeniu nowego łącznika, dopiero wtedy możesz włączyć napięcie i sprawdzić, czy wszystko działa. Taka kolejność jest super ważna i zgadza się z normami bezpieczeństwa, jak PN-IEC 60364, które mówią, jak robić to bezpiecznie. W sumie, w domowym warsztacie to przydatna wiedza, bo często coś się psuje i warto wiedzieć, jak to zrobić porządnie i bezpiecznie.

Pytanie 21

W celu oceny stanu technicznego silnika prądu stałego dokonano jego oględzin i pomiarów. Na podstawie wyników pomiarów zamieszczonych w tabeli określ stan techniczny tego silnika.

Wartość rezystancji pomiędzy zaciskami:
A1-A2D1-D2E1-E2A1-PED1-PEE1-PE
0,8 Ω0,9 Ω4,7 Ω123,1 MΩ102,5 MΩ166,6 MΩ
A. Przebicie izolacji uzwojenia bocznikowego do obudowy.
B. Pogorszony stan izolacji między uzwojeniem szeregowym, a obudową.
C. Zwarcie międzyzwojowe w uzwojeniu bocznikowym.
D. Pogorszony stan połączeń uzwojenia twornika w tabliczce zaciskowej.
Zwarcie międzyzwojowe w uzwojeniu bocznikowym to sytuacja, w której dwa lub więcej zwojów w tym samym uzwojeniu stykają się ze sobą, co prowadzi do zmiany odpowiednich parametrów elektrycznych silnika. W analizowanym przypadku, niskie wartości rezystancji między zaciskami A1-A2 oraz D1-D2 sugerują, że uzwojenia te są sprawne i nie mają problemów z połączeniami. Jednak podwyższona rezystancja E1-E2, wynosząca 4,7 Ω, wskazuje na potencjalny problem. W praktyce, zwarcia międzyzwojowe mogą prowadzić do przegrzewania się silnika, co w efekcie skraca jego żywotność oraz wpływa na wydajność. W standardach dotyczących konserwacji silników prądu stałego, takich jak IEC 60034-1, podkreśla się konieczność regularnych pomiarów rezystancji oraz analizy wyników, aby zapobiegać poważniejszym uszkodzeniom. Zrozumienie i identyfikacja zwarć międzyzwojowych to kluczowy element w zarządzaniu stanem technicznym silników elektrycznych, co pozwala na wczesne wykrycie problemów i ich skuteczne usunięcie.

Pytanie 22

Jakie maksymalne napięcie elektryczne należy wykorzystać do zasilania lampy oświetleniowej zlokalizowanej w łazience w strefie 0?

A. 12 V AC
B. 230 V AC
C. 50 V AC
D. 110 V DC
Zasilanie lampy oświetleniowej w łazience, szczególnie w strefie 0, musi być zgodne z zasadami bezpieczeństwa, które mają na celu minimalizację ryzyka porażenia prądem elektrycznym. Maksymalna wartość napięcia, która jest bezpieczna do zastosowania w tym obszarze, wynosi 12 V AC. Tego rodzaju zasilanie jest skuteczne w eliminacji ryzyka niebezpiecznych sytuacji, jakie mogą wystąpić w wilgotnym środowisku. Przykładem zastosowania 12 V AC może być instalacja oświetlenia LED w kabinie prysznicowej lub nad wanną, gdzie bezpośredni kontakt z wodą stwarza dodatkowe zagrożenie. Zgodnie z normami IEC 60364, stosowanie niskiego napięcia, takiego jak 12 V, w obszarach o podwyższonym ryzyku, jest kluczowe dla zapewnienia bezpieczeństwa użytkowników. Oprócz tego, systemy oświetleniowe zasilane niskim napięciem są często bardziej energooszczędne i umożliwiają zastosowanie rozwiązań z zakresu inteligentnego budownictwa, takich jak zdalne sterowanie oświetleniem.

Pytanie 23

Który przekrój przewodu jest najczęściej używany do tworzenia obwodów gniazd wtyczkowych w podtynkowych instalacjach mieszkaniowych?

A. 2,5 mm2
B. 4 mm2
C. 1,5 mm2
D. 1 mm2
Przewód o przekroju 2,5 mm2 jest standardowo stosowany w obwodach gniazd wtyczkowych w instalacjach elektroenergetycznych w budownictwie mieszkaniowym. Taki przekrój zapewnia odpowiednią przewodność elektryczną oraz bezpieczeństwo użytkowania, co jest niezwykle istotne, biorąc pod uwagę maksymalne obciążenia, które mogą wystąpić w codziennym użytkowaniu. Przykładowo, w przypadku podłączenia urządzeń elektrycznych, takich jak odkurzacze czy piekarniki, które mogą wymagać wyższego poboru prądu, przewód 2,5 mm2 spełnia normy bezpieczeństwa i nie doprowadza do przegrzewania się instalacji. Zgodnie z normami PN-IEC 60364, stosowanie przewodów o mniejszym przekroju może prowadzić do nieefektywności energetycznej i zwiększonego ryzyka pożaru. Ważne jest również, aby pamiętać o odpowiednim doborze zabezpieczeń, takich jak bezpieczniki, które powinny być dostosowane do przekroju przewodu oraz przewidywanego obciążenia.

Pytanie 24

Która z poniższych informacji powinna być wyeksponowana na elektrycznym urządzeniu napędowym?

A. Termin kolejnego przeglądu technicznego
B. Strzałka wskazująca wymagany kierunek obrotu
C. Poziom odchylenia napięcia zasilającego
D. Typ zastosowanych zabezpieczeń przeciwzwarciowych
Strzałka oznaczająca wymagany kierunek wirowania jest kluczowym elementem oznaczenia elektrycznego urządzenia napędowego, który musi być widoczny dla operatorów i personelu technicznego. Oznaczenie to jest niezbędne, aby zapewnić poprawne uruchomienie i eksploatację maszyny. W przypadku napędów elektrycznych, niewłaściwy kierunek wirowania może prowadzić do poważnych uszkodzeń mechanicznych, zwiększonego zużycia energii oraz zagrożeń dla bezpieczeństwa pracowników. W praktyce oznaczenie kierunku wirowania powinno być zgodne z obowiązującymi standardami, takimi jak norma PN-EN 60204-1 dotycząca bezpieczeństwa maszyn oraz prawidłowej obsługi urządzeń elektrycznych. Przykładowo, w przypadku silników elektrycznych, strzałka na obudowie silnika wskazuje, w którą stronę wirnik powinien się obracać podczas pracy. Niezastosowanie się do tych oznaczeń może skutkować błędami w procesu produkcji, a także prowadzić do znacznych kosztów napraw i przestojów.

Pytanie 25

Trójfazowy silnik indukcyjny jest przystosowany do uruchamiania z wykorzystaniem przełącznika gwiazda-trójkąt. Jaką mocą, w porównaniu do mocy znamionowej, można go obciążyć przy połączeniu uzwojeń w konfiguracji gwiazdy?

A. Dwukrotnie mniejszą
B. Trzykrotnie mniejszą
C. Dwukrotnie większą
D. Trzykrotnie większą
Odpowiedź, że silnik indukcyjny trójfazowy można obciążyć trzykrotnie mniejszą mocą przy połączeniu uzwojeń w gwiazdę, jest poprawna z technicznego punktu widzenia. W układzie gwiazda napięcie zasilające na każdym uzwojeniu wynosi 1/√3 napięcia fazowego, co wpływa na moc, jaką silnik może wygenerować. W momencie rozruchu w trybie gwiazdy, silnik może dostarczyć jedynie 1/3 mocy znamionowej, co jest kluczowe, aby uniknąć przeciążenia uzwojeń i nadmiernych prądów rozruchowych, które mogłyby prowadzić do uszkodzenia silnika. W praktyce, stosowanie przełącznika gwiazda-trójkąt w dużych silnikach indukcyjnych pozwala na zredukowanie prądów rozruchowych, co jest zgodne z dobrymi praktykami w inżynierii elektrycznej. Przykładem zastosowania tej metody są silniki napędzające duże wentylatory, pompy czy sprężarki, w których istotne jest kontrolowanie momentu rozruchowego oraz ograniczenie obciążeń mechanicznych w początkowej fazie pracy.

Pytanie 26

W jakim schemacie sieciowym nie można używać wyłączników różnicowoprądowych jako zabezpieczeń przed porażeniem w przypadku uszkodzenia?

A. W systemie IT
B. W systemie TT
C. W systemie TN-C
D. W systemie TN-S
Układ TN-C (z ang. Terre Neutral Combined) charakteryzuje się tym, że neutralny przewód (N) i przewód ochronny (PE) są połączone w jednym przewodzie (PEN) na całej długości instalacji. Z tego powodu, wyłączniki różnicowoprądowe (RCD) nie mogą być stosowane jako elementy ochrony przeciwporażeniowej, ponieważ w przypadku uszkodzenia nie ma możliwości prawidłowego pomiaru prądów różnicowych. W układach TN-C, uszkodzenie przewodu PEN może prowadzić do niebezpiecznej sytuacji, gdzie brak separacji przewodów ochronnych i neutralnych utrudnia detekcję nieprawidłowości. Przykładem stosowania wyłączników różnicowoprądowych są układy TN-S, gdzie przewody N i PE są oddzielone, co umożliwia skuteczne monitorowanie prądów różnicowych. Warto również zaznaczyć, że w kontekście przepisów, zgodnie z normą PN-EN 61008-1, RCD powinny być używane w odpowiednich układach, aby zapewnić skuteczną ochronę przed porażeniem elektrycznym, co w układzie TN-C nie jest możliwe.

Pytanie 27

Podczas użytkowania instalacji elektrycznych w pobliżu urządzeń elektrycznych znajdujących się pod napięciem niedozwolone są prace (z wyłączeniem prac określonych w instrukcji eksploatacji dotyczących obsługi)?

A. związane z konserwacją i renowacjami instalacji oraz odbiorników elektrycznych
B. przy użyciu specjalnych środków wskazanych w szczegółowych instrukcjach stanowiskowych, zapewniających bezpieczne wykonanie pracy
C. przy realizacji prób i pomiarów zgodnie z instrukcjami lub wskazówkami bhp na poszczególnych stanowiskach pracy
D. dotyczące wymiany wkładek bezpiecznikowych oraz żarówek lub świetlówek w nienaruszonej obudowie i oprawie
Odpowiedź, którą zaznaczyłeś, jest w porządku. Przy pracach nad konserwacją i remontem instalacji elektrycznych rzeczywiście trzeba zawsze wyłączać zasilanie. Bezpieczeństwo jest najważniejsze, a prąd potrafi być groźny, więc lepiej nie ryzykować. Zawsze przed wymianą jakiejkolwiek części warto upewnić się, że napięcie nie płynie. Na przykład, jeśli zmieniasz uszkodzoną instalację, to najlepszym pomysłem jest wyłączenie odpowiednich obwodów. No i procedura Lockout-Tagout (LOTO) jest po prostu kluczowa! Dzięki niej nie ma szans, że ktoś przez przypadek włączy prąd, gdy ty akurat pracujesz. Wydaje mi się, że trzymanie się tych zasad nie tylko chroni ludzi, ale także sprawia, że wszystko jest zgodne z BHP i normami bezpieczeństwa, które są naprawdę ważne w tej branży.

Pytanie 28

Które z poniższych rozwiązań gwarantuje podstawową ochronę przed porażeniem w grzejniku elektrycznym działającym w systemie TN-S?

A. Podłączenie obudowy do uziemienia ochronnego
B. Zastosowanie wyłącznika instalacyjnego nadprądowego w obwodzie zasilania
C. Izolacja robocza
D. Zastosowanie wyłącznika różnicowoprądowego w obwodzie zasilania
Podłączenie obudowy do uziemienia ochronnego jest często mylone z podstawową ochroną przeciwporażeniową, jednak w przypadku grzejnika elektrycznego pracującego w sieci TN-S to podejście nie jest wystarczające. Uziemienie ma na celu zabezpieczenie przed skutkami awarii w sytuacji, gdy izolacja robocza zawiedzie, jednak nie eliminuje konieczności stosowania izolacji jako pierwszej linii obrony. Uziemienie chroni użytkownika w przypadku, gdy obudowa urządzenia staje się naładowana wskutek uszkodzenia, ale nie chroni przed porażeniem w sytuacji, gdy elementy elektryczne są w kontakcie z użytkownikiem, zanim dojdzie do zadziałania systemu uziemiającego. Izolacja robocza zapewnia, że nawet w przypadku uszkodzenia, nie dojdzie do sytuacji, w której prąd elektryczny może przepłynąć przez obudowę grzejnika. Ponadto zastosowanie wyłącznika różnicowoprądowego lub instalacyjnego nadprądowego to metody zabezpieczające, które działają w momencie wykrycia nieprawidłowości, ale nie eliminują ryzyka podczas normalnej pracy urządzenia. Błędem może być zatem postrzeganie uziemienia lub wyłączników jako samodzielnych rozwiązań ochronnych, zamiast traktowania ich jako uzupełniających elementów systemu ochrony, który powinien zawsze obejmować odpowiednią izolację roboczą, jako fundamentalny wymóg bezpieczeństwa w instalacjach elektrycznych.

Pytanie 29

Tabela zawiera zalecane okresy pomiarów eksploatacyjnych urządzeń i instalacji elektrycznych pracujących w różnych warunkach środowiskowych. Jak często należy dokonywać pomiaru wyłącznika RCD oraz rezystancji izolacji instalacji zasilającej piec chlebowy w piekarni?

Rodzaj pomieszczeniaOkres pomiędzy kolejnymi sprawdzeniami
skuteczności ochrony przeciwporażeniowejrezystancji izolacji instalacji
O wyziewach żrącychnie rzadziej niż co 1 roknie rzadziej niż co 1 rok
Zagrożone wybuchemnie rzadziej niż co 1 roknie rzadziej niż co 1 rok
Otwarta przestrzeńnie rzadziej niż co 1 roknie rzadziej niż co 5 lat
Bardzo wilgotne o wilgotności ok. 100% i wilgotne przejściowo od 75% do 100%nie rzadziej niż co 1 roknie rzadziej niż co 5 lat
Gorące o temperaturze powietrza ponad 35 °Cnie rzadziej niż co 1 roknie rzadziej niż co 5 lat
Zagrożone pożaremnie rzadziej niż co 5 latnie rzadziej niż co 1 rok
Stwarzające zagrożenie dla ludzi (ZL I, ZL II, ZL III)nie rzadziej niż co 5 latnie rzadziej niż co 1 rok
Zapylonenie rzadziej niż co 5 latnie rzadziej niż co 5 lat
A. Wyłącznik RCD co 1 rok; rezystancja izolacji co 5 lat.
B. Wyłącznik RCD co 1 rok; rezystancja izolacji co 1 rok.
C. Wyłącznik RCD co 5 lat; rezystancja izolacji co 5 lat.
D. Wyłącznik RCD co 5 lat; rezystancja izolacji co 1 rok.
Kontrola wyłącznika RCD to naprawdę ważna sprawa, szczególnie w miejscach, gdzie jest sporo wilgoci, jak w piekarni. Z tego co wiem, powinna być przeprowadzana co roku, bo to może pomóc uniknąć porażenia prądem. RCD ma za zadanie wychwytywać różnice prądów, które mogą wskazywać na problemy z izolacją. A jeśli chodzi o sprawdzanie rezystancji izolacji pieca chlebowego, to przynajmniej co 5 lat to dobry pomysł. Takie coś jest zgodne z normami jak PN-IEC 60364, które mówią, jak często trzeba robić pomiary, żeby było bezpiecznie. W piekarni, gdzie wilgotność osiąga prawie 100%, regularne badania izolacji są niezbędne, żeby unikać kłopotów. To nie tylko spełnia wymagania, ale też chroni pracowników oraz sprzęt przed niebezpieczeństwami związanymi z uszkodzoną izolacją elektryczną.

Pytanie 30

W tabeli przedstawiono parametry znamionowe silnika jednofazowego. Uruchomienie tego silnika bez kondensatora rozruchowego spowoduje

Typ silnikaSEh 80-2BF
Moc1,1 kW
Prędkość obrotowa2780 obr/min
Sprawność72%
Napięcie zasilania230 V, 50 Hz
Stopień ochronyIP 54
Rodzaj pracyS1
Współczynnik mocy0,97
Pojemność kondensatora pracy25 μF
Pojemność kondensatora rozruchowego70 μF
A. uszkodzenie silnika.
B. zmniejszenie momentu rozruchowego.
C. zmniejszenie mocy silnika.
D. zadziałanie wyłącznika różnicowoprądowego.
Wybór odpowiedzi, że uruchomienie silnika jednofazowego bez kondensatora rozruchowego skutkuje zmniejszeniem mocy silnika, jest oparty na nieporozumieniu dotyczących zasad działania silników jednofazowych. Przede wszystkim, moc silnika jest zdefiniowana jako iloczyn momentu obrotowego i prędkości kątowej. Zmniejszenie mocy nie jest bezpośrednim skutkiem braku kondensatora, ale raczej niewłaściwego momentu obrotowego, który uniemożliwia start silnika. W pozostałych odpowiedziach również pojawiają się nieprawidłowe rozumowania. Na przykład, stwierdzenie, że brak kondensatora spowoduje zadziałanie wyłącznika różnicowoprądowego, jest mylne, ponieważ wyłączniki te działają w odpowiedzi na różnice prądów między przewodami, co nie ma związku z momentem rozruchowym silnika. Ostatnia odpowiedź sugerująca uszkodzenie silnika również jest nieprecyzyjna, ponieważ sam fakt braku kondensatora niekoniecznie prowadzi do uszkodzenia, lecz do niezdolności do uruchomienia. W praktyce, ważne jest zrozumienie, że silnik jednofazowy działający bez kondensatora może nie zacząć pracować, co w dłuższym okresie może prowadzić do jego uszkodzenia, ale samo w sobie nie jest to natychmiastowym skutkiem działania. Błędne odpowiedzi często wynikają z nieznajomości podstawowych zasad elektrotechniki oraz mechaniki ruchu obrotowego, dlatego kluczowe jest zapoznanie się z literaturą fachową oraz standardami, które dokładnie opisują zasady działania silników elektrycznych.

Pytanie 31

Podczas badania transformatora średniej mocy stwierdzono, że jego temperatura wzrosła ponad normę. Co może być tego przyczyną?

A. Przerwa w uzwojeniu
B. Przeciążenie transformatora
C. Uszkodzenie rdzenia
D. Zwarcie międzyzwojowe
Uszkodzenie rdzenia transformatora może wprawdzie prowadzić do problemów z przenoszeniem mocy, ale nie jest bezpośrednią przyczyną wzrostu temperatury ponad normę. Rdzeń, zbudowany z cienkich, izolowanych blach, jest zaprojektowany tak, aby minimalizować straty mocy i uniknąć przegrzewania. Jeśli jednak rdzeń jest uszkodzony, np. przez mechaniczne zniekształcenia lub korozję, może to wpływać na sprawność transformatora, ale zwykle nie powoduje natychmiastowego wzrostu temperatury. Przerwa w uzwojeniu z kolei skutkuje całkowitym brakiem przepływu prądu przez uszkodzone uzwojenie, co zazwyczaj prowadzi do wyłączenia transformatora. W takim przypadku transformator nie będzie pracował prawidłowo, ale samo uszkodzenie nie podnosi jego temperatury. Zwarcie międzyzwojowe w uzwojeniach transformatora jest poważnym problemem, który może prowadzić do lokalnego wzrostu temperatury. Jednakże, w porównaniu do przeciążenia całego transformatora, zwarcie międzyzwojowe zwykle prowadzi do szybkiego uszkodzenia i wyłączenia się transformatora z eksploatacji. Jest to bardziej katastrofalne uszkodzenie wymagające natychmiastowej naprawy. Warto pamiętać, że wszystkie te problemy wymagają regularnych przeglądów technicznych, aby w porę wykrywać potencjalne usterki i zapobiegać poważnym awariom.

Pytanie 32

Wybierz najmniejszy przekrój głównego przewodu wyrównawczego, który jest wykonany z miedzi, mając na uwadze, że maksymalny wymagany przekrój przewodu ochronnego w całej instalacji wynosi S = 16 mm2.

A. 10 mm2
B. 4 mm2
C. 16 mm2
D. 6 mm2
Wybór przewodu wyrównawczego głównego o przekroju 10 mm² jest uzasadniony normami oraz praktycznymi wymaganiami w zakresie ochrony przed porażeniem prądem elektrycznym. Zgodnie z normą PN-IEC 60364-5-54, minimalny przekrój przewodu wyrównawczego głównego powinien być dostosowany do największego przekroju przewodu ochronnego w instalacji, co w tym przypadku wynosi 16 mm². Przewód wyrównawczy ma kluczowe znaczenie w zapewnieniu efektywnej ochrony przed różnymi rodzajami awarii, w tym zwarciami, co może prowadzić do niebezpiecznych sytuacji. Przekrój 10 mm² jest odpowiedni, gdyż umożliwia efektywne prowadzenie prądów zwarciowych, a jednocześnie jest wystarczająco elastyczny do zastosowań w praktyce, gdzie przewody muszą być dostosowane do warunków montażowych. Zastosowanie tego przekroju zapewnia także odpowiednią odporność na przegrzewanie, co jest kluczowe w kontekście bezpieczeństwa instalacji elektrycznych. W przypadku większych instalacji lub w miejscach o zwiększonym ryzyku, dodatkowe czynniki, takie jak temperatura otoczenia i sposób prowadzenia przewodów, powinny być brane pod uwagę przy dalszym doborze przekroju.

Pytanie 33

W którym obwodzie powinno się odłączyć zasilanie, aby bezpiecznie przeprowadzić wymianę cewki stycznika w obwodzie sterującym silnikiem znajdującym się w hali maszyn?

A. Wyłącznie w obwodzie sterującym silnikiem
B. W rozdzielnicy stanowiskowej, z której zasilany jest silnik
C. Tylko w obwodzie głównym silnika
D. W głównej rozdzielnicy zasilającej całą halę maszyn
Musisz koniecznie wyłączyć napięcie w rozdzielnicy stanowiskowej, zanim zaczniesz wymieniać cewkę stycznika. To naprawdę ważne dla Twojego bezpieczeństwa. Rozdzielnica ta to miejsce, które zarządza zasilaniem dla silnika, a z tego co pamiętam, takie podejście jest zgodne z normami bezpieczeństwa, jak np. PN-EN 50110-1. Operatorzy powinni wyłączać napięcie w obwodzie zasilającym urządzenie, które konserwują, żeby uniknąć porażenia prądem. Podczas wymiany cewki ważne jest, by nie tylko Twoje bezpieczeństwo było na pierwszym miejscu, ale też żeby sprzęt nie ucierpiał przez przypadkowe włączenie. Przykład? W zakładach produkcyjnych przed każdym przeglądem trzeba ustalić, które obwody trzeba deenergizować, żeby ryzyko wypadków było jak najmniejsze. Warto też prowadzić dokumentację i etykietować rozdzielnice, żeby łatwiej było zidentyfikować, które obwody są aktywne. To na pewno zwiększa bezpieczeństwo podczas prac konserwacyjnych.

Pytanie 34

Jaki przyrząd jest wykorzystywany do pomiaru rezystancji izolacji kabli?

A. Waromierz
B. Megaomomierz
C. Sonometr
D. Pirometr
Megaomomierz jest urządzeniem służącym do pomiaru rezystancji izolacji, które jest niezwykle istotne w kontekście bezpieczeństwa elektrycznego. Jego zastosowanie polega na sprawdzaniu jakości izolacji przewodów oraz urządzeń elektrycznych, co pozwala na wykrycie ewentualnych uszkodzeń izolacji, które mogą prowadzić do awarii lub zagrożeń, takich jak porażenie prądem. Dzięki pomiarom wykonywanym przy użyciu megaomomierza, można ocenić stan izolacji w instalacjach elektrycznych, co jest zgodne z normami takimi jak PN-EN 61557-2, które określają procedury testowania urządzeń elektrycznych. W praktyce, megaomomierz jest używany podczas regularnych przeglądów instalacji elektrycznych w budynkach, co ma na celu zapewnienie odpowiedniego poziomu bezpieczeństwa i zgodności z obowiązującymi przepisami. Użycie tego narzędzia pozwala na wczesne wykrywanie problemów, co przyczynia się do minimalizacji ryzyka wystąpienia awarii oraz zwiększa trwałość systemów elektrycznych.

Pytanie 35

Istotnym czynnikiem wpływającym na skuteczność chłodzenia indukcyjnego silnika elektrycznego jest

A. koło pasowe
B. czujnik temperatury
C. wlot powietrza
D. klatka wirnika
Wlot powietrza odgrywa kluczową rolę w efektywności chłodzenia indukcyjnego silnika elektrycznego. Odpowiednia wentylacja jest niezbędna do odprowadzania ciepła generowanego podczas pracy silnika, co wpływa na jego wydajność i żywotność. Wlot powietrza umożliwia cyrkulację chłodnego powietrza do wnętrza silnika, co przyczynia się do obniżenia temperatury komponentów, takich jak stator i wirnik. Zastosowanie odpowiednio zaprojektowanych kanałów wentylacyjnych, zgodnych z normami IEC 60034, pozwala na optymalne chłodzenie silnika, minimalizując ryzyko przegrzania. W praktyce, wloty powietrza powinny być regularnie kontrolowane oraz wentylowane, aby zapewnić właściwe odprowadzanie ciepła. Przykładem skutecznego zastosowania jest użycie wentylatorów chłodzących, które wspomagają naturalną cyrkulację powietrza w silnikach o dużej mocy, co znacząco poprawia ich efektywność energetyczną i wydajność operacyjną.

Pytanie 36

W trakcie naprawy części instalacji elektrycznej zasilającej silnik indukcyjny, uszkodzone przewody aluminiowe zamieniono na przewody H07V-R o przekroju żyły 50 mm2. Jaki powinien być minimalny przekrój przewodu PE, aby warunek samoczynnego wyłączenia zasilania został spełniony?

A. 20 mm2
B. 50 mm2
C. 35 mm2
D. 25 mm2
Odpowiedź 25 mm2 jest poprawna, ponieważ zgodnie z normami PN-IEC 60364-5-54, minimalny przekrój przewodu ochronnego (PE) powinien być co najmniej równy 1,5 mm2 dla instalacji o maksymalnym prądzie znamionowym do 32 A. W przypadku instalacji z przewodami zasilającymi o znacznych przekrojach, takich jak 50 mm2 w przypadku przewodów H07V-R, wymagana jest zasada, że przekrój przewodu PE powinien wynosić co najmniej 50% przekroju przewodu fazowego w przypadku aluminium lub 25% w przypadku miedzi. Tutaj mamy do czynienia z przewodami aluminiowymi, więc obliczając 50% z 50 mm2, otrzymujemy 25 mm2. Taki przekrój zapewnia odpowiednią zdolność przewodu PE do przewodzenia prądu w przypadku awarii, co jest kluczowe dla ochrony ludzi oraz urządzeń. Przykładem zastosowania tej zasady może być instalacja elektryczna w przemyśle, gdzie wymagania bezpieczeństwa są szczególnie restrykcyjne.

Pytanie 37

Jakie prace są dozwolone w instalacjach elektrycznych, które nie są wyłączone spod napięcia w sieci TN?

A. Wymiana wkładek bezpiecznikowych.
B. Wykonywanie pomiaru rezystancji izolacji instalacji.
C. Zamiana gniazdek.
D. Dokręcanie przewodów w złączach.
Wymiana gniazd wtyczkowych oraz dokręcanie przewodów w zaciskach są czynnościami, które w przypadku instalacji niewyłączonych spod napięcia stanowią poważne ryzyko. Gniazda wtyczkowe są częścią obwodu, który jest pod napięciem, a ich wymiana może prowadzić do niekontrolowanego dostępu do elementów pod napięciem, co z kolei zwiększa ryzyko porażenia prądem. Normy PN-IEC 60364 jasno określają, że wszelkie prace wymagające dostępu do takich elementów powinny być przeprowadzane po wyłączeniu zasilania, aby zapewnić bezpieczeństwo pracowników. Dokręcanie przewodów w zaciskach, zwłaszcza w układzie TN, również stwarza potencjalne zagrożenie, gdyż może prowadzić do niezamierzonego zwarcia lub uszkodzenia izolacji przewodów, co w efekcie może spowodować pożar lub inne poważne incydenty elektryczne. Pomiar rezystancji izolacji instalacji to kolejna czynność, która nie powinna być przeprowadzana w warunkach, gdy instalacja jest pod napięciem, ponieważ nie tylko zagraża to bezpieczeństwu osoby wykonującej pomiar, ale także może prowadzić do uszkodzenia sprzętu pomiarowego. Wszelkie prace elektryczne powinny być prowadzone zgodnie z zasadami bezpieczeństwa i normami branżowymi, co wymaga dezaktywacji zasilania przed przystąpieniem do jakiejkolwiek interwencji w instalacji elektrycznej.

Pytanie 38

Korzystając z danych zamieszczonych w tabeli wyznacz, wartość rezystancji jednej żyły przewodu YDY 3×2,5 mm2 o długości 100 m.

Dane techniczne przewodu YDY
Ilość i przekrój znamionowy żyłGrubość znamionowa izolacjiMax. rezystancja żyłOrientacyjna masa przewodu o długości 1 km
mm²mmΩ/kmkg/km
2x10,818,181
2x1,50,812,197
2x2,50,87,41125
2x40,94,61176
2x60,93,08228
3x10,918,196
3x1,50,912,1116
3x2,50,97,41153
A. 7,410 Ω
B. 741,0 Ω
C. 0,741 Ω
D. 74,10 Ω
No, tu trzeba przyznać, że coś poszło nie tak. Jak wybierasz 7,410 Ω czy 741,0 Ω, to widać, że jest tu jakiś zgrzyt z rozumieniem obliczeń. Te odpowiedzi pewnie wynikają z błędnego przeliczenia jednostek albo pomylenia długości z rezystancją. Przewód o długości 100 m wymaga, żeby przeliczyć rezystancję na 1 km, a nie brać to na sztywno. Na przykład, 7,410 Ω to rezystancja na 1 km, a to nie zadziała w Twoim przypadku. Podobnie 74,10 Ω to już całkiem złe obliczenia. W inżynierii elektrycznej takie błędy mogą prowadzić do większych strat energii, co z kolei może spowodować przegrzewanie się przewodów i inne problemy. Chociaż może się wydawać to skomplikowane, poprawne obliczenie rezystancji jest naprawdę ważne, żeby wszystko działało jak należy.

Pytanie 39

Podczas eksploatacji trójfazowego silnika indukcyjnego, który był obciążony momentem znamionowym, doszło do nagłego spadku prędkości obrotowej silnika, a jednocześnie zwiększyła się głośność jego pracy. Najbardziej prawdopodobną przyczyną tego zjawiska jest

A. zadziałanie zabezpieczenia termicznego
B. zanik napięcia w jednej fazie
C. zadziałanie wyłącznika różnicowoprądowego
D. wzrost częstotliwości napięcia sieci
Zadziałanie zabezpieczenia termicznego nie jest przyczyną nagłego zmniejszenia prędkości obrotowej silnika w opisywanej sytuacji. Zabezpieczenia termiczne działają w oparciu o temperaturę uzwojeń silnika; ich zadaniem jest ochrona silnika przed przegrzaniem spowodowanym nadmiernym prądem, co może być wynikiem długotrwałego przeciążenia. W momencie, gdy zabezpieczenie termiczne zadziała, silnik zostaje wyłączony, co nie prowadzi do stopniowego zmniejszenia prędkości, a do całkowitego zatrzymania. Zadziałanie wyłącznika różnicowoprądowego również nie odpowiada opisanej sytuacji, ponieważ jego głównym zadaniem jest ochrona przed porażeniem prądem elektrycznym, a nie przed spadkiem prędkości. Wzrost częstotliwości napięcia sieci, chociaż może wpłynąć na prędkość obrotową silnika, nie jest przyczyną nagłego zwiększenia hałasu. Silniki indukcyjne działałyby w takim przypadku na wyższych obrotach, a nie spowalniałyby. Typowe błędy myślowe, które prowadzą do tych błędnych wniosków, zakładają, że wszelkie nieprawidłowości w pracy silnika są wynikiem problemów z zabezpieczeniami, co nie jest zawsze prawdą. Kluczowe jest zrozumienie, że zanik fazy ma najbardziej bezpośredni wpływ na moment obrotowy i stabilność pracy silnika.

Pytanie 40

Ile maksymalnie gniazd wtykowych można zainstalować w jednym obwodzie w instalacjach elektrycznych w budynkach mieszkalnych?

A. 4
B. 12
C. 6
D. 10
Wybór liczby 4, 6 lub 12 gniazd wtyczkowych do jednego obwodu w instalacji elektrycznej jest oparty na mylnych założeniach dotyczących bezpieczeństwa i funkcjonalności. Niska liczba gniazd, jak 4 lub 6, może wydawać się bezpiecznym wyborem, jednak w praktyce prowadzi do znacznych ograniczeń w użytkowaniu, co może być niepraktyczne w dzisiejszych czasach, gdy wiele urządzeń wymaga zasilania. Z drugiej strony, wybór 12 gniazd opiera się na przeświadczeniu, że zwiększenie ich liczby nie wpływa na bezpieczeństwo obwodu. Taka liczba jest nadmierna i stwarza ryzyko przeciążenia instalacji. Bezpieczne projektowanie obwodów wymaga uwzględnienia maksymalnego poboru mocy wszystkich podłączonych urządzeń. W przypadku, gdy przekroczona zostanie wartość znamionowa obwodu, może dojść do przegrzewania się przewodów, co zagraża zarówno sprzętowi, jak i osobom w pomieszczeniu. Istnieją także normy, które precyzują dopuszczalny pobór mocy oraz sposób ich rozdzielania w instalacjach elektrycznych, co powinno być wzięte pod uwagę przy projektowaniu systemu. Warto zatem kierować się obowiązującymi standardami i wytycznymi branżowymi, aby zapewnić nie tylko funkcjonalność, ale przede wszystkim bezpieczeństwo użytkowników.