Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektryk
  • Kwalifikacja: ELE.02 - Montaż, uruchamianie i konserwacja instalacji, maszyn i urządzeń elektrycznych
  • Data rozpoczęcia: 18 grudnia 2025 00:58
  • Data zakończenia: 18 grudnia 2025 01:17

Egzamin zdany!

Wynik: 29/40 punktów (72,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Które z przedstawionych narzędzi przeznaczone jest do zdejmowania izolacji z żył przewodów elektrycznych?

Ilustracja do pytania
A. Narzędzie 3.
B. Narzędzie 4.
C. Narzędzie 1.
D. Narzędzie 2.
Narzedzie 1 to kluczowy instrument w pracy z przewodami elektrycznymi, zwłaszcza w kontekście przygotowania ich do połączeń. Szczypce do ściągania izolacji, których użycie zaleca się w branży elektrycznej, są zaprojektowane tak, aby umożliwić precyzyjne usunięcie izolacji z żył bez ryzyka uszkodzenia samego przewodu. Dobrej jakości szczypce posiadają mechanizm regulacji głębokości ściągania, co pozwala na dostosowanie siły do rodzaju przewodu. W praktyce, zastosowanie tych narzędzi sprawia, że prace instalacyjne są nie tylko szybsze, ale także bezpieczniejsze, co jest zgodne z normami bezpieczeństwa elektrycznego. Używając szczypiec, można łatwo przygotować przewody do podłączenia terminali, co jest niezbędne w każdym projekcie elektrycznym. Ponadto, w kontekście dobrych praktyk, zaleca się regularne sprawdzanie stanu narzędzi, aby zapewnić ich efektywność i bezpieczeństwo użytkowania.

Pytanie 2

W jaki sposób powinna odbywać się wymiana nożowych wkładek topikowych w bezpiecznikach przemysłowych?

A. Uchwytem izolacyjnym bez obciążenia
B. Za pomocą kombinerek w braku napięcia
C. Przy użyciu kombinerek, pod napięciem
D. Uchwytem izolacyjnym pod obciążeniem
Wymiana nożowych wkładek topikowych bezpieczników przemysłowych powinna być przeprowadzana w sposób bezpieczny, najlepiej przy użyciu uchwytu izolacyjnego i tylko wtedy, gdy nie ma obciążenia na obwodzie. Taki sposób działania minimalizuje ryzyko porażenia prądem oraz uszkodzenia sprzętu. Uchwyt izolacyjny, wykonany z materiałów odpornych na działanie wysokich napięć, zapewnia, że osoba dokonująca wymiany nie ma kontaktu z przewodami pod napięciem. Przykładem zastosowania tej metody są procedury serwisowe w zakładach przemysłowych, gdzie kluczowe jest przestrzeganie zasad BHP oraz normy IEC 60947-3 dotyczącej bezpieczników. Dodatkowo, przed przystąpieniem do wymiany, ważne jest upewnienie się, że wyłączono zasilanie, co można zweryfikować przy pomocy wskaźników napięcia, a także zastosowanie blokad, aby zapobiec przypadkowemu włączeniu obwodu. Przestrzeganie tych zasad nie tylko chroni technika, ale również zapewnia, że prace serwisowe są wykonane w sposób efektywny i zgodny z normami branżowymi.

Pytanie 3

Przewód pokazany na zdjęciu ma symbol literowy

Ilustracja do pytania
A. YnDYo
B. YDYp
C. YDYo
D. YLYp
Odpowiedź YDYp jest poprawna, ponieważ oznaczenie to dokładnie opisuje charakterystykę przewodu, który możemy zaobserwować na zdjęciu. Litera 'Y' wskazuje na izolację wykonaną z polichlorku winylu (PVC), co jest powszechnie stosowane w przewodach elektrycznych dzięki swojej odporności na działanie chemikaliów i dobrej izolacyjności elektrycznej. Następnie litera 'D' informuje nas, że wewnątrz przewodu znajdują się żyły jednodrutowe, co jest istotne w kontekście zastosowania. Takie przewody są powszechnie stosowane w instalacjach elektrycznych, gdzie wymagana jest duża elastyczność i odporność na zginanie. Oznaczenie 'p' sugeruje, że przewód ma płaską konstrukcję, co może być korzystne przy instalacji w miejscach o ograniczonej przestrzeni. Zastosowanie przewodu YDYp możemy zaobserwować w domowych instalacjach elektrycznych, a także w różnych aplikacjach przemysłowych, gdzie wymagane są wysokie standardy bezpieczeństwa i niezawodności. Zgodność z normą PN-EN 50525-2-11 potwierdza wysoką jakość tego typu przewodów, czyniąc go odpowiednim wyborem w wielu zastosowaniach.

Pytanie 4

Która z wymienionych list czynności opisuje w jakiej kolejności demontuje się elementy stojana silnika indukcyjnego z uzwojeniem wsypywanym w celu jego przezwojenia?

1odcięcie połączeń czołowychodcięcie połączeń czołowychusunięcie izolacji żłobkowejusunięcie uzwojenia
2usunięcie izolacji żłobkowejusunięcie uzwojeniaodcięcie połączeń czołowychodcięcie połączeń czołowych
3usunięcie uzwojeniausunięcie izolacji żłobkowejusunięcie uzwojeniausunięcie izolacji żłobkowej
ABCD
A. D.
B. A.
C. B.
D. C.
Poprawna odpowiedź to B. Kolejność demontażu elementów stojana silnika indukcyjnego jest kluczowa dla zapewnienia bezpieczeństwa oraz efektywności podczas przezwojenia. Proces zaczyna się od odcięcia połączeń czołowych, co pozwala na bezpieczne wyłączenie zasilania i ograniczenie ryzyka porażenia prądem. Następnie przystępuje się do usunięcia uzwojenia, co jest istotne, aby uzyskać dostęp do wnętrza stojana. W tym etapie należy zachować ostrożność, aby nie uszkodzić struktury żłobka. Ostatnim krokiem jest usunięcie izolacji żłobkowej, co umożliwia dokładne oczyszczenie elementów i przygotowanie ich do ponownego nawinięcia. Przestrzeganie tej sekwencji demontażu jest zgodne z dobrymi praktykami w branży elektrycznej i mechaniczej, a także z normami bezpieczeństwa, co zapewnia, że proces przezwojenia będzie przeprowadzony w sposób profesjonalny i skuteczny. Właściwe podejście do tych czynności wpływa na wydajność i żywotność silnika.

Pytanie 5

Na rysunku przedstawiono schemat łącznika

Ilustracja do pytania
A. schodowego.
B. hotelowego.
C. dwubiegunowego.
D. jednobiegunowego.
Wybór odpowiedzi dotyczącej łącznika hotelowego jest nieprawidłowy ze względu na błędną interpretację schematu. Łącznik hotelowy służy do sterowania oświetleniem w sposób dostosowany do potrzeb gości, jednak jego charakterystyka różni się od łącznika schodowego. Odpowiedzi dotyczące łączników jednobiegunowych i dwubiegunowych również są błędne, ponieważ te typy łączników nie posiadają funkcji umożliwiającej sterowanie oświetleniem z wielu punktów. Łącznik jednobiegunowy jest przeznaczony do włączania lub wyłączania obwodu z jednego miejsca, co wyklucza możliwość sterowania z więcej niż jednego punktu. Z kolei łącznik dwubiegunowy, mimo że może kontrolować dwa różne obwody, nie jest zaprojektowany do wspólnej obsługi jednego źródła światła z różnych lokalizacji. Typowym błędem jest mylenie funkcji i zastosowań różnych typów łączników. Prawidłowe podejście do analizy schematów łączników elektrycznych wymaga znajomości ich funkcji oraz kontekstu, w jakim są stosowane. Ważne jest, aby przy wyborze odpowiedniego rozwiązania brać pod uwagę specyfikę instalacji oraz potrzeby użytkowników. Zgodnie z praktykami inżynieryjnymi, właściwe rozróżnienie typów łączników oraz ich zastosowań jest kluczowe dla zapewnienia efektywności i bezpieczeństwa instalacji elektrycznych.

Pytanie 6

Jaki minimalny przekrój, ze względu na obciążalność długotrwałą, powinny mieć przewody DY ułożone w rurze izolacyjnej, zasilające odbiornik trójfazowy o mocy 10 kW z sieci trójfazowej o napięciu 400 V?

Ilustracja do pytania
A. 6 mm2
B. 1,5 mm2
C. 2,5 mm2
D. 4 mm2
Wybór przekroju przewodu w instalacjach elektrycznych jest kluczowym elementem projektowania układów zasilających. Odpowiedzi, które wskazują na większe przekroje, jak 6 mm2, 4 mm2 oraz 2,5 mm2, mogą sugerować nadmierne zabezpieczenie, jednak nie uwzględniają one rzeczywistych potrzeb obciążeniowych. Przykładowo, wybór 6 mm2 dla obciążenia 14,5 A jest nie tylko nieekonomiczny, ale i zbędny, ponieważ istnieją bardziej odpowiednie przekroje, które spełniają wymagania. Z kolei odpowiedź 2,5 mm2, choć jest bardziej zbliżona do właściwego przekroju, również nie jest zgodna z normami, ponieważ przy takiej obciążalności przewody 1,5 mm2 są wystarczające. Warto przypomnieć, że dobór przekroju przewodu powinien być oparty na rzeczywistym obciążeniu oraz warunkach ułożenia. W praktyce, przed podjęciem decyzji, należy przeanalizować obciążenie prądowe w kontekście całej instalacji oraz zastosować odpowiednie współczynniki korekcyjne. Niezastosowanie się do tych zasad może prowadzić do nieprawidłowości w funkcjonowaniu instalacji, co w dłuższym czasie może skutkować awariami lub niebezpiecznymi sytuacjami, takimi jak przegrzewanie się przewodów. Ostatecznie, kluczowe jest, aby decyzje o doborze przekroju przewodów były zgodne z obowiązującymi normami, co nie tylko zapewnia bezpieczeństwo, ale także przyczynia się do efektywności energetycznej systemów elektrycznych.

Pytanie 7

Jaki przewód na schemacie montażowym instalacji elektrycznej oznacza się symbolem przedstawionym na rysunku?

Ilustracja do pytania
A. Uziemiający.
B. Neutralny.
C. Wyrównawczy.
D. Ochronny.
Odpowiedź "Ochronny" jest prawidłowa, ponieważ symbol przedstawiony na rysunku odnosi się do przewodu ochronnego PE (Protective Earth). Przewód ten jest kluczowym elementem instalacji elektrycznej, mającym na celu zabezpieczenie użytkowników przed porażeniem prądem elektrycznym. W sytuacji awaryjnej, przewód ochronny odprowadza niebezpieczne napięcie do ziemi, co znacząco zmniejsza ryzyko porażenia. W standardach, takich jak Polska Norma PN-IEC 60445:2017, przewód ten powinien być jednoznacznie oznaczony w schematach montażowych, co ułatwia identyfikację i prawidłowy montaż instalacji. Przykładowo, w przypadku uszkodzenia izolacji urządzenia elektrycznego, prawidłowe podłączenie przewodu ochronnego zapewnia, że prąd nie przepłynie przez ciało użytkownika, lecz zostanie skierowany do ziemi. Dzięki temu, stosowanie przewodów ochronnych zgodnie z normami jest fundamentem bezpieczeństwa w każdej instalacji elektrycznej.

Pytanie 8

Na którym rysunku przedstawiono żarówkę z trzonkiem GU10?

Ilustracja do pytania
A. A.
B. D.
C. B.
D. C.
Żarówka z trzonkiem GU10 jest popularnym rozwiązaniem w oświetleniu, szczególnie w zastosowaniach domowych i komercyjnych. Trzonek GU10 ma charakterystyczne bolce, które umożliwiają łatwe i szybkie mocowanie żarówki w oprawie. W przypadku żarówki oznaczonej jako B na zdjęciu, widoczny jest podwójny bolec, co jednoznacznie wskazuje na typ GU10. Tego rodzaju żarówki są często stosowane w reflektorach sufitowych oraz oświetleniu akcentującym, co czyni je idealnym wyborem do różnych aranżacji wnętrz. Warto również zauważyć, że żarówki GU10 dostępne są w różnych wersjach, zarówno LED, jak i halogenowych, co daje większą elastyczność w doborze źródła światła odpowiedniego do danej przestrzeni. W kontekście dobrych praktyk, należy zawsze upewnić się, że dobieramy właściwe źródło światła do odpowiedniej oprawy, aby zapewnić optymalne warunki oświetleniowe oraz minimalizować ryzyko uszkodzenia sprzętu.

Pytanie 9

Jakie pomiary są wykonywane przy sprawdzaniu wyłącznika różnicowoprądowego?

A. napięcia sieciowego oraz prądu różnicowego
B. napięcia sieciowego oraz prądu obciążenia
C. prądu obciążenia oraz czasu jego działania
D. prądu różnicowego oraz czasu jego działania
Sprawdzanie wyłącznika różnicowoprądowego to naprawdę ważna sprawa, bo chodzi tu o nasze bezpieczeństwo. Mierzymy prąd różnicowy i czas, w jakim wyłącznik zadziała, bo to zapewnia, że wszystko działa jak należy w instalacjach elektrycznych. Prąd różnicowy to różnica pomiędzy prądem, który idzie do urządzenia, a tym, który wraca. W normalnych warunkach ta różnica powinna być mała. RCD działa w ten sposób, że jeśli ta różnica przekroczy pewien próg, najczęściej 30 mA dla ochrony osób, to odcina zasilanie. Regularne testy wyłączników pozwalają upewnić się, że są w porządku i że nas chronią przed porażeniem prądem. Moim zdaniem, dobrze jest testować to przynajmniej raz w roku, aby mieć pewność, że ochrona działa jak należy. Do testów można użyć specjalnych urządzeń, które naśladują prąd różnicowy i pokazują, w jakim czasie wyłącznik się włączy. Jest to naprawdę istotne, żeby się tym zajmować.

Pytanie 10

Na podstawie charakterystyki przedstawionej na rysunku określ przedział czasu, w którym może, lecz nie musi nastąpić zadziałanie wyzwalacza termobimetalowego wyłącznika S301 B10 1P 6 kA, przy przepływie przez niego prądu o wartości 25 A.

Ilustracja do pytania
A. 0,06 s ÷ 0,017 s
B. 60 s ÷ 10 000 s
C. 0 s ÷ 0,06 s
D. 10 s ÷ 60 s
Poprawna odpowiedź to 10 s ÷ 60 s, co wynika z charakterystyki wyzwalacza termobimetalowego wyłącznika S301 B10 1P 6 kA. Przy prądzie 25 A, który jest 2,5-krotnością prądu znamionowego wynoszącego 10 A, czas zadziałania wyzwalacza wynosi od 10 do 60 sekund. Tego typu wyłączniki są kluczowe w systemach zasilania, ponieważ chronią obwody przed przegrzaniem i potencjalnym uszkodzeniem spowodowanym nadmiernym prądem. W praktyce oznacza to, że wyzwalacz będzie działał w określonym czasie, co jest istotne dla zapewnienia bezpieczeństwa instalacji elektrycznej. Warto również zauważyć, że zgodność z normą IEC 60947-2, która reguluje wymagania dla wyłączników, potwierdza, że czas zadziałania w tym przedziale jest optymalny dla zachowania równowagi między bezpieczeństwem a funkcjonalnością. Dobrze zaprojektowane systemy powinny uwzględniać te parametry, aby skutecznie chronić przed skutkami przeciążeń.

Pytanie 11

Jakim narzędziem należy przeprowadzić demontaż oraz montaż połączeń kabli w puszce instalacyjnej rozgałęźnej z gwintowaną płytką?

A. Nożem monterskim
B. Neonowym wskaźnikiem napięcia
C. Kluczem płaskim
D. Wkrętakiem
Wybór wkrętaka jako narzędzia do demontażu i montażu połączeń przewodów w puszce instalacyjnej rozgałęźnej z płytką gwintowaną jest prawidłowy, ponieważ wkrętaki służą do pracy z różnymi typami śrub i wkrętów. W przypadku puszek instalacyjnych, często stosuje się śruby, które mocują przewody lub elementy w puszce. Wkrętak umożliwia precyzyjne i bezpieczne dokręcanie lub odkręcanie śrub, co jest kluczowe dla zapewnienia poprawności połączeń elektrycznych. Przykładem zastosowania wkrętaka może być instalacja gniazdka elektrycznego, gdzie wkrętak służy do montażu zacisków przewodów. Zgodnie z obowiązującymi normami, takich jak PN-IEC 60364, ważne jest, aby wszystkie połączenia były odpowiednio zabezpieczone i mocno trzymane, co można osiągnąć za pomocą właściwego wkrętaka. Warto również zwrócić uwagę na wybór odpowiedniego wkrętaka - płaski lub krzyżakowy, w zależności od rodzaju użytych śrub. Dobrą praktyką jest także stosowanie odpowiednich narzędzi do momentu dokręcania, aby uniknąć uszkodzenia elementów instalacji.

Pytanie 12

W jaki sposób można zweryfikować funkcjonowanie wyłącznika różnicowoprądowego?

A. Naciskając przycisk "TEST"
B. Zmieniając ustawienie dźwigni "ON-OFF"
C. Sprawdzając napięcie oraz prąd wyłącznika
D. Tworząc zwarcie w obwodzie zabezpieczonym
Wyłącznik różnicowoprądowy (RCD) jest kluczowym elementem systemów zabezpieczeń elektrycznych, który chroni przed porażeniem prądem elektrycznym oraz pożarami spowodowanymi prądami upływowymi. Aby sprawdzić jego działanie, należy wcisnąć przycisk 'TEST', co symuluje warunki, w których RCD powinien zareagować na różnicę między prądem wpływającym a wypływającym. Działanie tego przycisku uruchamia mechanizm w RCD, który odłącza zasilanie, jeżeli wykryje jakiekolwiek nieprawidłowości. Zgodnie z normą PN-EN 61008-1, regularne testowanie RCD jest zalecane, co najmniej raz na miesiąc, aby zapewnić ich prawidłowe funkcjonowanie. Przykładem zastosowania takiego testowania może być mieszkanie, w którym w przypadku uszkodzenia izolacji w przewodzie, RCD powinien wyłączyć obwód, zanim doprowadzi to do porażenia prądem. Regularne testowanie RCD, poprzez naciśnięcie przycisku 'TEST', upewnia użytkowników, że ich systemy zabezpieczeń są w pełni sprawne i gotowe do ochrony przed zagrożeniami.

Pytanie 13

W trakcie korzystania z instalacji elektrycznej często dochodzi do zadziałania wyłącznika różnicowoprądowego. Jakie mogą być przyczyny tej usterki?

A. Częściowe zwarcie w instalacji elektrycznej pomiędzy przewodem L a PE
B. Zwarcie w instalacji elektrycznej pomiędzy przewodem L a N
C. Użycie wyłącznika o zbyt długim czasie reakcji
D. Wykorzystywanie urządzeń o zbyt dużej mocy
Długi czas działania wyłącznika nie jest główną przyczyną częstego zadziałania RCD. Wyłączniki różnicowoprądowe są tak skonstruowane, żeby działały w określonym czasie, kiedy wykryją problemy z prądem upływowym. Więc długi czas zadziałania bardziej może dotyczyć innych zabezpieczeń, jak wyłączniki nadprądowe, które mają swoje własne parametry. Zwarcie między przewodem L a N w ogóle nie powoduje zadziałania RCD, bo nie wytwarza prądu upływowego do ziemi, co jest kluczowe do aktywacji RCD. Również używanie urządzeń o zbyt dużej mocy nie ma związku, bo RCD nie reaguje na przeciążenie, tylko na różnice w prądzie. Często błędne rozumowanie prowadzi do mylenia funkcji różnych zabezpieczeń elektrycznych i braku połączenia między rodzajem zwarcia a reakcją RCD, co może prowadzić do niewłaściwej diagnostyki i realnych zagrożeń.

Pytanie 14

Jakie czynności kontrolne nie są zaliczane do oględzin urządzeń napędowych podczas ich pracy?

A. Ocena poziomu drgań oraz funkcjonowania układu chłodzenia
B. Sprawdzenie stanu łożysk i przeprowadzenie pomiarów elektrycznych
C. Weryfikacja stanu przewodów ochronnych oraz ich połączeń
D. Kontrola zabezpieczeń i stanu osłon części wirujących
Odpowiedź "Sprawdzenie stanu łożysk i pomiary elektryczne" jest poprawna, ponieważ te czynności kontrolne są zazwyczaj przeprowadzane w trakcie przeglądów technicznych, a nie podczas bieżącej eksploatacji urządzeń napędowych. W czasie ruchu maszyny, kluczowe jest monitorowanie parametrów operacyjnych, takich jak poziom drgań, ponieważ mogą one wskazywać na potencjalne problemy z wydajnością lub uszkodzenia. Kontrola poziomu drgań i działania układu chłodzenia pozwala na szybką identyfikację nieprawidłowości, które mogą prowadzić do poważnych awarii. Ochrona przewodów i odpowiednie osłony części wirujących są również istotnymi aspektami bezpieczeństwa w czasie pracy urządzenia. Zgodnie z normami, takimi jak ISO 9001, monitoring w czasie rzeczywistym oraz regularne kontrole stanu technicznego są kluczowe dla zapewnienia efektywności i bezpieczeństwa operacji. Przykładem praktycznym może być zastosowanie systemów monitorowania drgań, które w czasie rzeczywistym informują operatorów o konieczności interwencji, co pozwala na minimalizację ryzyka awarii.

Pytanie 15

Na którym rysunku przedstawiono symbol graficzny przycisku zwiernego?

Ilustracja do pytania
A. A.
B. B.
C. C.
D. D.
Odpowiedzi, które nie wskazują na rysunek A, błędnie interpretują symbole graficzne związane z przyciskami i przełącznikami. Wielu użytkowników może pomylić symbol przycisku zwiernego z innymi rodzajami przycisków, takimi jak przyciski rozłączne, które są reprezentowane jako różne typy kontaktów. Na przykład rysunek B może przedstawiać przycisk rozłączny, który działa w przeciwny sposób – kontakt pozostaje otwarty, dopóki nie zostanie naciśnięty, co jest innym typem działania niż zamykanie obwodu. Rysunki C i D mogą również przedstawiać inne przełączniki, które nie są typowymi przyciskami zwiernymi. Typowym błędem myślowym w takich sytuacjach jest mylenie symboli, które mogą wyglądać podobnie, ale mają zupełnie różne zastosowania w praktyce. Kluczowe jest zrozumienie, że symbole w dokumentacji technicznej mają precyzyjne znaczenie, które wynika z norm i standardów branżowych. Zignorowanie tych różnic może prowadzić do błędów w projektach elektrycznych i nieprawidłowego działania urządzeń, co stanowi poważne zagrożenie w kontekście bezpieczeństwa instalacji. Warto więc zwrócić uwagę na szczegóły i nauczyć się interpretować te symbole zgodnie z obowiązującymi normami.

Pytanie 16

Przewód oznaczony symbolem PEN to przewód

A. uziemiający
B. ochronny
C. wyrównawczy
D. ochronno-neutralny
Symbol PEN (Protective Earth and Neutral) oznacza przewód ochronno-neutralny, który łączy w sobie funkcje przewodu neutralnego (N) oraz przewodu ochronnego (PE). Jest on stosowany w instalacjach elektrycznych, zwłaszcza w systemach TN-C, aby zapewnić zarówno przewodnictwo prądu roboczego, jak i ochronę przed porażeniem elektrycznym. W praktyce, przewód PEN odgrywa kluczową rolę w bezpieczeństwie instalacji, ponieważ umożliwia skuteczne uziemienie i jednocześnie zapewnia powrót prądu do źródła. W przypadku awarii, przewód ochronny automatycznie przejmuje funkcję przewodu neutralnego, co minimalizuje ryzyko porażenia prądem. Zgodnie z normami, takimi jak PN-IEC 60439, instalacje muszą być projektowane i wykonywane z uwzględnieniem zasady, że przewód ochronno-neutralny powinien być odpowiednio oznakowany oraz dobrze izolowany. Praktyczne zastosowanie przewodu PEN można zaobserwować w budynkach mieszkalnych, gdzie często łączy się go z systemami uziemiającymi dla zwiększenia bezpieczeństwa użytkowników.

Pytanie 17

Na którym schemacie połączeń przedstawiono zgodne z zamieszczonym planem instalacji podłączenie przewodów w puszce numer 3?

Ilustracja do pytania
A. A.
B. C.
C. B.
D. D.
Schemat D przedstawia poprawne podłączenie przewodów w puszce numer 3, zgodne z planem instalacji elektrycznej. W instalacjach elektrycznych kluczowe jest właściwe prowadzenie przewodów, aby zapewnić bezpieczeństwo oraz efektywność działania systemu. W tym schemacie przewód fazowy L jest poprowadzony przez łącznik, co umożliwia jego załączanie i wyłączanie. To zgodne z dobrymi praktykami, które nakazują, aby w obwodach oświetleniowych umieszczać łączniki w obwodzie fazowym, co minimalizuje ryzyko wystąpienia porażenia prądem. Dodatkowo, schemat D uwzględnia odpowiednie oznaczenia i kolorystykę przewodów, co jest zgodne z normami PN-IEC 60446. Przykładowo, przewód neutralny N powinien być niebieski, a przewód ochronny PE zielono-żółty. Użycie właściwych kolorów oraz odpowiednich połączeń zabezpiecza przed ewentualnymi awariami oraz błędami w instalacji, co jest kluczowe w każdej nowoczesnej instalacji elektrycznej.

Pytanie 18

W jakiego rodzaju instalacjach elektrycznych typowe jest stosowanie przewodów w karbowanych rurkach?

A. Wtynkowych
B. Napowietrznych
C. Nadtynkowych
D. Podtynkowych
Układanie przewodów w rurkach karbowanych jest charakterystyczne dla instalacji podtynkowych, ponieważ zapewnia to nie tylko estetykę, ale również dodatkową ochronę mechaniczną przewodów. Rurki karbowane, zwane również rurami osłonowymi, są elastyczne i łatwe w instalacji, co pozwala na dostosowanie ich do różnych kształtów i rozmiarów pomieszczeń. Przewody umieszczone w takich rurkach są chronione przed uszkodzeniami mechanicznymi, wilgocią oraz wpływem czynników zewnętrznych. W standardach instalacyjnych, takich jak norma PN-IEC 60364, zaleca się stosowanie rur karbowanych w miejscach, gdzie występuje ryzyko uszkodzeń przewodów, co zwiększa bezpieczeństwo całej instalacji. Przykładem zastosowania mogą być instalacje elektryczne w domach jednorodzinnych, gdzie przewody są układane w ścianach i sufitach, a ich estetyczne ukrycie wraz z ochroną jest kluczowe dla komfortu użytkowania. Warto również zauważyć, że odpowiednia instalacja zgodna z normami oraz zaleceniami producentów rur jest niezbędna do zapewnienia długotrwałej i bezawaryjnej pracy instalacji elektrycznej.

Pytanie 19

W lokalu, który jest zasilany napięciem 400 V (3/N/PE 50Hz), zainstalowano następujące urządzenia:
1. przepływowy podgrzewacz wody (12 kW) - obwód trójfazowy
2. zmywarka do naczyń (3,5 kW) - obwód jednofazowy
3. kuchenka elektryczna (9,5 kW) - obwód trójfazowy
4. pralka automatyczna (4,5 kW) - obwód jednofazowy

Odbiorniki jednofazowe i trójfazowe są zasilane z dwóch różnych obwodów. W celu zabezpieczenia wykorzystano wyłączniki instalacyjne. Jakie wartości prądu znamionowego powinny być zastosowane dla zabezpieczeń obwodu jedno- i trójfazowego?

A. 25 A, 40 A
B. 40 A, 25 A
C. 25 A, 25 A
D. 40 A, 40 A
Wartości prądów znamionowych w niepoprawnych odpowiedziach mogą wprowadzać w błąd, ponieważ nie uwzględniają one rzeczywistych wymagań technicznych związanych z mocą odbiorników. W przypadku, gdy dla obwodu trójfazowego zastosowano by zabezpieczenie o wartości 25 A, to byłoby to niewystarczające dla podgrzewacza wody, który wymaga przynajmniej 17,32 A, co w połączeniu z marginesem bezpieczeństwa powinno skutkować zabezpieczeniem 40 A. Ponadto, zastosowanie zabezpieczenia 25 A dla obwodu jednofazowego zmywarki również jest nieodpowiednie, ponieważ przy mocy 3,5 kW pobór prądu wynosi 15 A, co nie jest wystarczające w kontekście dodatkowych obciążeń, które mogą wystąpić w czasie pracy. Takie podejście ignoruje zasady dotyczące projektowania zabezpieczeń, które zalecają dobieranie wartości zabezpieczeń z uwzględnieniem maksymalnych obciążeń oraz ewentualnych skoków chwilowych poboru prądu. Zbyt niskie wartości zabezpieczeń mogą prowadzić do częstych wyłączeń, co wpłynie na komfort użytkowania oraz w dłuższej perspektywie może uszkodzić urządzenia. Wartości 40 A dla obu obwodów są zgodne z dobrymi praktykami branżowymi oraz uwzględniają zasady ochrony przed przeciążeniem, co jest kluczowe dla zapewnienia bezpieczeństwa i niezawodności instalacji elektrycznych.

Pytanie 20

Minimalny czas działania oświetlenia ewakuacyjnego powinien wynosić przynajmniej

A. 2 godziny
B. 3 godziny
C. 4 godziny
D. 1 godzinę
Czas, przez jaki działa oświetlenie ewakuacyjne, powinien wynosić co najmniej 2 godziny. To ważne, żeby ludzie w budynku mogli bezpiecznie się ewakuować, gdy coś się dzieje, na przykład, gdy zasilanie przestaje działać. Są różne normy, takie jak EN 1838 czy PN-EN 50172, które określają te kwestie. W praktyce to oznacza, że światło ewakuacyjne musi świecić przez wystarczająco długi czas, żeby każdy mógł dotrzeć do wyjścia, zwłaszcza w dużych budynkach, gdzie można sporo przejść. Przykładem może być biurowiec, w którym regularnie sprawdzają oświetlenie ewakuacyjne, by mieć pewność, że wszystko działa jak trzeba. Regularna konserwacja tych systemów jest naprawdę ważna dla bezpieczeństwa całego budynku.

Pytanie 21

Który z pomiarów służy do oceny efektywności zabezpieczenia przed dotykiem bezpośrednim w instalacjach do 1 kV?

A. Rezystancji uziemienia
B. Impedancji zwarciowej
C. Rezystancji izolacji
D. Napięcia dotykowego
Pomiar rezystancji izolacji jest kluczowym elementem oceny skuteczności ochrony przed dotykiem bezpośrednim w instalacjach elektrycznych do 1 kV. W przypadku takich systemów, odpowiednia izolacja jest niezbędna do zapewnienia bezpieczeństwa użytkowników oraz niezawodności działania instalacji. Rezystancja izolacji wskazuje na zdolność materiału do odseparowania prądu elektrycznego od części dostępnych dla użytkowników, co jest kluczowe w kontekście ochrony przed porażeniem elektrycznym. Przykładowo, normy IEC 60364 dotyczące instalacji elektrycznych wymagają, aby pomiar rezystancji izolacji wynosił co najmniej 1 MΩ. W praktyce oznacza to, że przed oddaniem do użytku nowej instalacji, a także podczas jej regularnej konserwacji, wykonuje się pomiary rezystancji izolacji, co pozwala na identyfikację potencjalnych uszkodzeń oraz degradacji materiałów izolacyjnych. W przypadku wykrycia niskiej rezystancji należy niezwłocznie podjąć działania naprawcze, aby zapewnić bezpieczeństwo użytkowników oraz zgodność z obowiązującymi normami.

Pytanie 22

Przed dokonaniem pomiaru rezystancji izolacji w instalacji elektrycznej najpierw należy odciąć napięcie zasilające, a potem

A. usunąć z opraw źródła światła, włączyć odbiorniki jednofazowe do gniazd wtyczkowych, odłączyć silniki trójfazowe
B. zamontować do opraw źródła światła, włączyć odbiorniki jednofazowe do gniazd wtyczkowych, włączyć silniki trójfazowe
C. zamontować do opraw źródła światła, wyłączyć odbiorniki jednofazowe z gniazd wtyczkowych, włączyć silniki trójfazowe
D. usunąć z opraw źródła światła, wyłączyć odbiorniki jednofazowe z gniazd wtyczkowych, odłączyć silniki trójfazowe
Dobra robota z odpowiedzią! To, co napisałeś, dobrze pokazuje, jakie kroki warto podjąć przed pomiarem rezystancji izolacji w instalacji elektrycznej. Najpierw trzeba wymontować źródła światła z opraw – to naprawdę ważne, żeby nie ryzykować porażeniem prądem w trakcie pomiarów. Poza tym, wyłączenie jednofazowych odbiorników i silników trójfazowych jest konieczne, żeby nie zakłócały one wyników i nie zostały uszkodzone przez niewłaściwe napięcie. Te zasady są zgodne z przepisami, jak PN-EN 50110-1, które mówią, że trzeba wyłączyć zasilanie przed przeprowadzeniem testów izolacji. To, że stosujesz te procedury, nie tylko zwiększa bezpieczeństwo, ale też sprawia, że pomiary są dokładniejsze. A to jest bardzo istotne, żeby dobrze ocenić stan izolacji i upewnić się, że instalacja jest w dobrym stanie.

Pytanie 23

Przyrząd przedstawiony na rysunku służy do

Ilustracja do pytania
A. szacowania długości przewodów.
B. pomiaru rezystancji żył przewodów.
C. wyznaczania trasy przewodów.
D. sprawdzania ciągłości żył przewodów.
Odpowiedź, która wskazuje na sprawdzanie ciągłości żył przewodów, jest prawidłowa z uwagi na specyfikę przyrządu przedstawionego na rysunku. Tester ciągłości obwodu, zwany również multimetrem w trybie testowania ciągłości, jest nieocenionym narzędziem w pracy elektryków oraz techników zajmujących się instalacjami elektrycznymi. Jego podstawową funkcją jest wykrywanie przerw w obwodzie, co jest kluczowe podczas diagnostyki usterek. Przykładowo, w sytuacji, gdy zasilanie nie dociera do określonego urządzenia, tester pozwala na szybkie sprawdzenie, czy przewody są w pełni sprawne. Gdy obwód jest zamknięty, tester zazwyczaj sygnalizuje to zapaleniem diody LED, co jest bardzo pomocne w identyfikacji problemów. Zgodnie z zasadami BHP oraz normami IEC 61010, stosowanie takich przyrządów w pracy pozwala zminimalizować ryzyko porażenia prądem oraz innych niebezpieczeństw związanych z niewłaściwym działaniem instalacji elektrycznych.

Pytanie 24

Przygotowując się do wymiany uszkodzonego gniazda siłowego w instalacji elektrycznej, po odłączeniu zasilania w obwodzie tego gniazda, należy przede wszystkim

A. oznaczyć obszar roboczy
B. zabezpieczyć obwód przed przypadkowym włączeniem zasilania
C. rozłożyć dywanik izolacyjny w rejonie pracy
D. poinformować dostawcę energii
Zabezpieczenie obwodu przed przypadkowym załączeniem napięcia jest kluczowym krokiem w procesie wymiany gniazda siłowego. Po wyłączeniu napięcia, aby zapewnić bezpieczeństwo, należy zastosować odpowiednie środki, takie jak umieszczenie blokady na wyłączniku, co uniemożliwi jego przypadkowe włączenie. W przeciwnym razie, nieodpowiednie działanie lub nieuwaga mogą prowadzić do poważnych wypadków, takich jak porażenie prądem. Przykładem dobrych praktyk w branży elektrycznej jest stosowanie tabliczek informacyjnych ostrzegających, że obwód jest wyłączony i nie należy go włączać. Dodatkowo, w przypadku pracy w większych instalacjach, warto stosować procedury lockout/tagout (LOTO), które są standardem w zapobieganiu nieautoryzowanemu włączeniu urządzeń. Te praktyki są zgodne z normami bezpieczeństwa, co minimalizuje ryzyko wypadków w miejscu pracy.

Pytanie 25

W instalacji elektrycznej wykorzystującej przekaźnik priorytetowy, po osiągnięciu ustawionej w tym przekaźniku wartości natężenia prądu w obwodzie

A. niepriorytetowym, zostaje wyłączony obwód niepriorytetowy
B. priorytetowym, zostaje wyłączony obwód priorytetowy
C. niepriorytetowym, zostaje wyłączony obwód priorytetowy
D. priorytetowym, zostaje wyłączony obwód niepriorytetowy
Wyjątkowo istotne jest zrozumienie, jak działają przekaźniki priorytetowe i jakie mają zastosowanie w instalacjach elektrycznych. Nieprawidłowe odpowiedzi sugerują, że obwód priorytetowy może być wyłączany lub że obwód niepriorytetowy nie jest wyłączany w odpowiedzi na przekroczenie natężenia prądu. Te koncepcje są mylne, ponieważ przekaźniki priorytetowe zostały zaprojektowane właśnie po to, aby chronić obwody priorytetowe przed opróżnieniem z energii lub przeciążeniem, co mogłoby prowadzić do poważnych awarii. Zamiast tego, w momencie, gdy prąd w obwodzie priorytetowym wzrasta, przekaźnik powinien odciąć zasilanie z obwodu, który nie jest kluczowy dla działania systemu. Wiele osób myli tę funkcję, zakładając, że priorytetowe obwody są te, które zawsze muszą być zasilane, co nie jest zgodne z rzeczywistością. Typowy błąd myślowy polega na nazywaniu obwodu priorytetowego jako tego, który w każdej sytuacji powinien mieć dostęp do energii, co jest niezgodne z zasadami zarządzania energią. W rzeczywistości, kluczowym celem przekaźników priorytetowych jest ochrona zasobów i ich racjonalne zarządzanie, co oznacza, że w sytuacji zagrożenia ważniejsze staje się odłączenie obwodu niepriorytetowego. W instalacjach elektrycznych, szczególnie w kontekście norm branżowych i dobrych praktyk, zrozumienie hierarchii obwodów jest kluczowe dla zapewnienia efektywności energetycznej i bezpieczeństwa systemów.

Pytanie 26

Który z wymienionych zestyków pomocniczych układu przedstawionego na schemacie uległ uszkodzeniu, skoro nie da się załączyć stycznika Q2?

Ilustracja do pytania
A. NO stycznika Q2
B. NC stycznika Q2
C. NC stycznika Q1
D. NO stycznika Q1
Wybór błędnych odpowiedzi może wynikać z niepełnego zrozumienia funkcji poszczególnych elementów w analizowanym układzie. W przypadku odpowiedzi wskazujących na NC stycznika Q2, czy NO stycznika Q2, można zauważyć typowy błąd myślowy związany z nieprawidłowym przypisaniem roli poszczególnych styków. Styk NC stycznika Q2 nie ma bezpośredniego wpływu na możliwość załączenia tego stycznika, gdyż jego działanie uzależnione jest od aktywacji innych elementów sterujących. Z kolei styk NO stycznika Q1, mimo że może wydawać się istotny, nie może aktywować Q2, jeśli sam Q1 nie jest w stanie przełączyć się do pozycji NO. To wskazuje na uwagę do relacji pomiędzy różnymi elementami w obwodzie. Niezrozumienie zasady działania styku NO i NC oraz ich wpływu na całkowity obwód często prowadzi do błędnych wniosków i wyborów. W praktyce, dobrym nawykiem jest analizowanie całej ścieżki sygnałowej oraz zależności pomiędzy poszczególnymi elementami w systemach automatyki, co pozwala na szybszą identyfikację potencjalnych problemów oraz ich źródeł. Prawidłowa analiza obwodu wymaga zrozumienia, że uszkodzenie jednego elementu może wpływać na działanie całego systemu, co jest kluczowe w kontekście bezpieczeństwa i niezawodności operacji w automatyce przemysłowej.

Pytanie 27

Wystąpienie prądu doziemienia o wartości 2,5 A w fazie L3 obwodu jednofazowych gniazd wtyczkowych przedstawionej instalacji spowoduje zadziałanie wyłącznika oznaczonego symbolem

Ilustracja do pytania
A. P301 40A
B. S304 C25
C. P301 25A
D. S301 B16
Odpowiedź P301 40A jest poprawna, ponieważ dotyczy wyłącznika różnicowoprądowego, który jest kluczowym elementem ochrony instalacji elektrycznych. W przypadku wykrycia prądu różnicowego, który przekracza 30 mA, wyłącznik ten natychmiast odłącza zasilanie, minimalizując ryzyko porażenia prądem elektrycznym. W sytuacji wystąpienia prądu doziemienia o wartości 2,5 A, znacznie przekraczającego wartość progową 30 mA, wyłącznik zadziała, co potwierdza jego skuteczność w ochronie użytkowników. Zastosowanie wyłączników różnicowoprądowych jest standardem w nowoczesnych instalacjach elektrycznych, zgodnym z normami PN-EN 61008 oraz PN-EN 60947. Dzięki nim możemy znacznie zwiększyć bezpieczeństwo w obiektach mieszkalnych i przemysłowych, chroniąc przed skutkami niewłaściwego działania urządzeń elektrycznych oraz wad w instalacji. W praktyce, regularne testowanie wyłączników różnicowoprądowych powinno być praktykowane, aby zapewnić ich niezawodność i skuteczność w sytuacjach awaryjnych.

Pytanie 28

Jaka jest minimalna wartość napięcia probierczego, która jest wymagana podczas pomiarów rezystancji izolacji przewodów w obwodach SELV oraz PELV?

A. 100 V
B. 250 V
C. 500 V
D. 1000 V
Minimalna wymagana wartość napięcia probierczego przy pomiarach rezystancji izolacji w obwodach SELV i PELV wynosi 250 V. Tego rodzaju obwody są projektowane z myślą o bezpieczeństwie użytkowników, a ich izolacja musi spełniać określone standardy jakości. Przeprowadzenie pomiaru rezystancji izolacji z użyciem napięcia 250 V pozwala na skuteczne zidentyfikowanie ewentualnych uszkodzeń izolacji, które mogą prowadzić do niebezpieczeństwa porażenia prądem elektrycznym. W praktyce, przy pomiarach tego typu, wartość 250 V jest uznawana za wystarczającą do zbadania jakości izolacji, a także zapewnia odpowiedni margines bezpieczeństwa. Na przykład, w przypadku instalacji elektrycznych w budynkach mieszkalnych, stosowanie tego napięcia probierczego pozwala na wykrycie nieprawidłowości, które mogą powstać w wyniku starzenia się materiałów lub niewłaściwego montażu. Warto również zauważyć, że normy międzynarodowe, takie jak IEC 60364, wskazują na konieczność przeprowadzania pomiarów izolacji przy odpowiednich wartościach napięcia, aby zapewnić bezpieczeństwo użytkowania elektrycznych urządzeń i instalacji.

Pytanie 29

W obwodzie odbiorczym zastosowano wyłącznik typu CLS6 o prądzie znamionowym 13 A i charakterystyce B. Jaki najmniejszy prąd znamionowy powinna mieć wkładka bezpiecznikowa typu gL/gG w zabezpieczeniu poprzedzającym wyłącznik, jeżeli prąd zwarcia jest nie większy niż 1 kA?

Ilustracja do pytania
A. 20 A
B. 16 A
C. 25 A
D. 35 A
Odpowiedzi 20 A, 25 A i 16 A nie są odpowiednie, ponieważ nie spełniają kryteriów selektywności w kontekście podanego wyłącznika CLS6. Wybierając niższy prąd znamionowy, taki jak 20 A czy 16 A, ryzykuje się, że w przypadku zwarcia zadziała wkładka bezpiecznikowa zamiast wyłącznika, co może prowadzić do wyłączenia całego obwodu zamiast jedynie usunięcia awarii. Taka sytuacja jest niepożądana, zwłaszcza w instalacjach, w których ciągłość zasilania jest kluczowa. Z kolei wybór 25 A również jest niewłaściwy, ponieważ jest to wartość zbyt bliska prądu znamionowego wyłącznika, co skutkowałoby problemami z selektywnością. W praktyce, warto stosować wkładki bezpiecznikowe o znacznie wyższym prądzie znamionowym niż prąd znamionowy wyłącznika, aby zapewnić, że w przypadku zwarcia najpierw reaguje wyłącznik, co jest zgodne z zasadą selektywności przyjętą w standardach branżowych. Wybór niewłaściwego prądu znamionowego może również prowadzić do zwiększonego ryzyka uszkodzenia urządzeń, co w dłuższej perspektywie pociąga za sobą straty finansowe związane z naprawami oraz przestojami produkcyjnymi.

Pytanie 30

Który z wymienionych parametrów można zmierzyć przyrządem przedstawionym na ilustracji?

Ilustracja do pytania
A. Rezystancję izolacji.
B. Impedancję pętli zwarcia.
C. Chwilową moc obciążenia.
D. Prąd upływu.
Rezystancja izolacji jest kluczowym parametrem, który można zmierzyć przy pomocy miernika izolacji, znanego również jako megomierz. Urządzenie to jest wykorzystywane do oceny stanu izolacji elektrycznej w instalacjach i urządzeniach elektrycznych. Pomiar ten jest niezwykle istotny, ponieważ odpowiednia rezystancja izolacji zapewnia bezpieczeństwo użytkowania i zapobiega porażeniom prądem, a także minimalizuje ryzyko awarii. Miernik izolacji generuje wysokie napięcie, które powoduje, że prąd przepływa przez izolację. Na podstawie zmierzonego prądu można obliczyć rezystancję, która jest wyrażana w megaomach (MΩ). W praktyce, normy takie jak PN-EN 61557-2 określają wymagania dotyczące pomiarów rezystancji izolacji. Regularne pomiary rezystancji izolacji są zalecane w ramach działań prewencyjnych, szczególnie w przemyśle, gdzie eksploatacja urządzeń elektrycznych odbywa się w trudnych warunkach. Dbanie o odpowiednie wartości rezystancji izolacyjnej to nie tylko wymóg prawny, ale również dobra praktyka, która przyczynia się do zapewnienia długotrwałej i bezawaryjnej pracy instalacji.

Pytanie 31

Który z przedstawionych na rysunkach zestawów narzędzi należy dobrać do montażu elementów mieszkaniowych instalacji elektrycznych?

Ilustracja do pytania
A. A.
B. B.
C. C.
D. D.
Zestaw narzędzi oznaczony literą C to właściwy wybór do montażu elementów mieszkaniowych instalacji elektrycznych, ponieważ zawiera narzędzia izolowane. Narzędzia te mają specjalną powłokę, która minimalizuje ryzyko porażenia prądem, co jest kluczowe, gdy pracujemy z instalacjami elektrycznymi. Przykładowo, obcęgi i szczypce izolowane pozwalają na precyzyjne manipulowanie przewodami bez obawy o kontakt z napięciem. Standardy bezpieczeństwa, takie jak normy IEC 60900, definiują wymagania dotyczące narzędzi używanych w środowiskach elektrycznych, w tym wymagania dotyczące izolacji. Ponadto, dobór narzędzi zgodnych z tymi normami jest często wymogiem w profesjonalnych pracach elektrycznych, co zapewnia nie tylko bezpieczeństwo, ale również efektywność pracy. Zastosowanie odpowiednich narzędzi może znacząco zwiększyć komfort oraz bezpieczeństwo w trakcie realizacji zadań montażowych.

Pytanie 32

Silnika klatkowego, którego fragment tabliczki znamionowej przedstawiono na ilustracji, nie należy zasilać napięciem międzyfazowym o wysokości

Ilustracja do pytania
A. 400 V, gdy jego uzwojenia skojarzy się w trójkąt.
B. 400 V, gdy jego uzwojenia skojarzy się w gwiazdę.
C. 230 V, gdy jego uzwojenia skojarzy się w gwiazdę.
D. 230 V, gdy jego uzwojenia skojarzy się w trójkąt.
Odpowiedź 400 V, gdy jego uzwojenia skojarzy się w trójkąt jest poprawna, ponieważ w przypadku silników klatkowych, tabliczka znamionowa dostarcza istotnych informacji na temat dopuszczalnych warunków zasilania. W sytuacji, gdy uzwojenia są połączone w trójkąt (Δ), zasilanie napięciem 400 V może prowadzić do uszkodzenia silnika, gdyż jest to napięcie przeznaczone do połączenia w gwiazdę (Y). Warto zauważyć, że przy połączeniu w gwiazdę, napięcie zasilające wynosi 400 V, natomiast przy połączeniu w trójkąt napięcie to wynosi 230 V, co oznacza, że silnik musi być zasilany odpowiednim napięciem, aby pracować bezawaryjnie. Przestrzeganie tych zasad jest kluczowe, aby uniknąć przegrzania uzwojeń oraz innych poważnych uszkodzeń, które mogą prowadzić do znacznych kosztów napraw oraz przestojów w pracy maszyn. Dlatego ważne jest, aby technicy i inżynierowie dobrze rozumieli różnice w połączeniach uzwojeń i ich wpływ na parametry pracy silników.

Pytanie 33

Czy na obudowie urządzenia elektrycznego oznaczenie IP00 wskazuje na

A. zerową klasę ochrony przed porażeniem
B. stosowanie separacji ochronnej
C. brak zabezpieczenia przed kurzem i wilgocią
D. najwyższy poziom ochronności
Oznaczenie IP00 zgodnie z normą IEC 60529 wskazuje na brak ochrony przed pyłem oraz wilgocią. Pierwsza cyfra '0' oznacza, że urządzenie nie oferuje żadnej ochrony przed wnikaniem ciał stałych, co może prowadzić do uszkodzeń mechanicznych lub zanieczyszczenia wewnętrznych komponentów. Druga cyfra również '0' informuje użytkownika, że urządzenie nie jest odporne na działanie cieczy. W praktyce oznacza to, że takie urządzenia powinny być używane wyłącznie w suchych i czystych środowiskach, gdzie nie ma ryzyka kontaktu z wodą lub pyłem. Przykładem mogą być niektóre urządzenia biurowe, które są projektowane do pracy w kontrolowanych warunkach. Zastosowanie tych informacji w praktyce jest kluczowe dla zapewnienia długowieczności i bezpieczeństwa użytkowania urządzeń elektrycznych, dlatego zaleca się, aby przed zakupem sprawdzić stopień ochrony IP urządzenia, aby dobrać je odpowiednio do warunków pracy.

Pytanie 34

W oprawie oświetleniowej pokazanej na zdjęciu została zamontowana żarówka

Ilustracja do pytania
A. halogenowa.
B. żarowa.
C. rtęciowa.
D. sodowa.
Żarówka halogenowa, którą rozpoznajemy na zdjęciu, charakteryzuje się specyficzną budową i właściwościami, które czynią ją popularnym wyborem w oświetleniu. Jej mała bańka zawiera gaz halogenowy, który zwiększa efektywność energetyczną źródła światła oraz wydłuża jego żywotność w porównaniu do tradycyjnych żarówek żarowych. Warto zauważyć, że halogeny emitują światło o wysokiej jakości, co sprawia, że są często stosowane w zastosowaniach wymagających precyzyjnego oświetlenia, takich jak oświetlenie wystawowe czy architektoniczne. Ponadto, ich zdolność do renderowania kolorów oraz natychmiastowego osiągania pełnej jasności sprawia, że są idealnym rozwiązaniem dla pomieszczeń, które potrzebują szybkiej zmiany oświetlenia. W branży oświetleniowej halogeny rekomendowane są zgodnie z normami EN 60598, które definiują bezpieczne użytkowanie i właściwe zastosowanie tych źródeł światła.

Pytanie 35

Jakiego narzędzia należy użyć, aby zweryfikować, czy nie ma napięcia w instalacji elektrycznej 230 V, przed przystąpieniem do prac konserwacyjnych?

A. Neonowego wskaźnika napięcia
B. Omomierza cyfrowego
C. Czujnika zaniku fazy
D. Miernika parametrów instalacji
Neonowy wskaźnik napięcia to urządzenie, które pozwala na szybkie i skuteczne sprawdzenie obecności napięcia w instalacjach elektrycznych. Działa na zasadzie świecenia diody neonowej, gdy napięcie przekracza określony próg. Jest to podstawowe narzędzie, które powinno być używane przed rozpoczęciem jakichkolwiek prac konserwacyjnych, aby zapewnić bezpieczeństwo techników. W praktyce, po podłączeniu wskaźnika do przewodów, jego świecenie sygnalizuje, że w instalacji występuje napięcie, co oznacza, że nie powinno się przystępować do prac. Zgodnie z ogólnymi zasadami BHP, każda osoba pracująca w branży elektrycznej powinna posiadać odpowiednie narzędzia do pomiaru, a neonowy wskaźnik jest jednym z najprostszych i najtańszych. Przykładem może być sytuacja, gdy elektryk musi wymienić gniazdko – przed rozpoczęciem wymiany, zawsze powinien skontrolować, czy w obwodzie nie ma napięcia, używając neonowego wskaźnika. Tego rodzaju praktyki są zgodne z normami PN-IEC 61010, które regulują kwestie bezpieczeństwa urządzeń elektrycznych.

Pytanie 36

W jakiej kolejności nastąpi zadziałanie styczników i przekaźników podczas rozruchu silnika pierścieniowego w układzie, którego schemat połączeń przedstawiono na rysunkach, po załączeniu wyłączników Q i Q1 oraz przycisku sterującego S1?

Ilustracja do pytania
A. K1, K5, K4, K6, K3, K7, K2
B. K7, K2, K3, K6, K4, K5, K1
C. K1, K5, K4, K6, K3, K2, K7
D. K1, K2, K3, K4, K5, K6, K7
Podczas analizy niepoprawnych odpowiedzi można zauważyć kilka kluczowych błędów myślowych, które mogą prowadzić do nieporozumień w kontekście działania styczników i przekaźników. Odpowiedzi takie jak K7, K2, K3, K6, K4, K5, K1 czy inne sekwencje z pominięciem K1 jako pierwszego stycznika pokazują, że użytkownik nie uwzględnił podstawowej zasady działania obwodów elektrycznych – aktywacja elementów musi być logiczna i zgodna z kolejnością zaprogramowaną w obwodzie. Prawidłowe sterowanie stycznikami zapewnia, że każdy kolejne element jest aktywowany w odpowiednim momencie, co jest niezbędne dla właściwego rozruchu silnika. W przypadku przedstawionych odpowiedzi brakuje zrozumienia, jak styk pomocniczy K1 wpływa na działanie K5. Ignorowanie tego faktu może prowadzić do nieefektywnego rozruchu silnika, co może skutkować uszkodzeniem sprzętu lub nawet zagrożeniem dla bezpieczeństwa. Kluczowym jest zrozumienie, dlaczego takie sekwencje są istotne w praktycznych zastosowaniach, zwłaszcza w kontekście norm i standardów branżowych. Właściwe zrozumienie logiki działania styczników oraz ich połączeń jest fundamentem w automatyce i elektrotechnice, a nieprzestrzeganie tych zasad może prowadzić do błędnych wniosków w projektowaniu układów rozruchowych.

Pytanie 37

Która z wymienionych czynności należy do konserwacji elektrycznej w mieszkaniach?

A. Zamiana wszystkich źródeł oświetlenia w oprawach
B. Zmiana wszystkich końcówek śrubowych w puszkach rozgałęźnych
C. Sprawdzenie stanu izolacji oraz powłok przewodów
D. Weryfikacja czasu działania zabezpieczenia przeciwzwarciowego
Wymiana wszystkich źródeł światła w oprawach nie jest bezpośrednio związana z konserwacją instalacji elektrycznej, lecz dotyczy czynności eksploatacyjnych. Choć wymiana żarówek jest konieczna, nie wpływa na ogólny stan instalacji ani nie zaspokaja wymogów przepisów dotyczących bezpieczeństwa. Z kolei sprawdzenie czasu zadziałania zabezpieczenia zwarciowego, mimo iż istotne, koncentruje się na aspektach ochronnych, a nie na konserwacji samej instalacji. Praktyka ta nie obejmuje analizy stanu izolacji przewodów, co jest fundamentalne dla długoterminowej funkcjonalności systemu. Wymiana wszystkich zacisków śrubowych w puszkach rozgałęźnych również nie stanowi konserwacji w rozumieniu stanu technicznego instalacji, a raczej działania prewencyjnego, które powinno być realizowane w odpowiednich interwałach czasowych. Konserwacja instalacji elektrycznej wymaga całościowego podejścia, które skupia się na ocenie i utrzymaniu integralności systemu, a nie tylko na pojedynczych elementach. Zrozumienie, że konserwacja to znacznie więcej niż proste działania eksploatacyjne, jest kluczowe dla zapewnienia bezpieczeństwa i niezawodności instalacji elektrycznych w mieszkaniach.

Pytanie 38

Na podstawie przedstawionych na rysunku zależności napięcia na zaciskach akumulatora od prądu i czasu rozładowywania wskaż wartość napięcia akumulatora o pojemności C = 100 Ah, który przez 30 minut był obciążony prądem o wartości 60 A.

Ilustracja do pytania
A. 11,3 V
B. 11,0 V
C. 12,0 V
D. 12,4 V
Odpowiedź 12,0 V jest poprawna, ponieważ przy analizie wykresu zależności napięcia na zaciskach akumulatora od prądu i czasu rozładowywania, można stwierdzić, że dla akumulatora o pojemności 100 Ah, który przez 30 minut był obciążony prądem 60 A, rzeczywiście napięcie wynosi około 12,0 V. W praktyce, akumulatory kwasowo-ołowiowe, które najczęściej są używane w zastosowaniach motoryzacyjnych i przemysłowych, charakteryzują się spadkiem napięcia w trakcie rozładowania, co jest uzależnione od wielu czynników, takich jak temperatura czy stopień naładowania. Zrozumienie tych zależności jest kluczowe w kontekście zapewnienia optymalnej pracy urządzeń zasilanych akumulatorami, a także w trakcie ich konserwacji i wymiany. Dobrą praktyką jest regularne monitorowanie stanu napięcia akumulatora, co pozwala na wczesne wykrywanie problemów i uniknięcie nieprzewidzianych awarii.

Pytanie 39

Który z przedstawionych na rysunkach elementów osprzętu należy zastosować do ułożenia dwóch przewodów DY 1,5 mm2 pod tynkiem w pomieszczeniu mieszkalnym?

Ilustracja do pytania
A. A.
B. D.
C. B.
D. C.
Odpowiedź A jest spoko, bo jak chcesz ułożyć dwa przewody DY 1,5 mm² pod tynkiem w mieszkaniu, to musisz użyć rurki falistej o odpowiedniej średnicy. W tym przypadku rurka o średnicy 18 mm, którą masz w opcji A, jest zgodna z zasadami bezpieczeństwa i normami, które mówią, jak trzeba układać przewody elektryczne. Te przewody muszą być chronione przed uszkodzeniami, a rurki faliste świetnie się w tym sprawdzają. Z doświadczenia wiem, że takie rozwiązanie daje też większą elastyczność przy zmianach w instalacji. Zgodnie z normą PN-IEC 60364, ważne jest, żeby zapewnić wentylację i unikać przegrzewania przewodów. Dlatego rurki faliste są fajne, bo poprawiają trwałość całej instalacji. Dobrze dobrana średnica rurki jest kluczowa, żeby nie było zwarć ani innych problemów z prądem.

Pytanie 40

Kontrolując warunek automatycznego wyłączenia zasilania jako element ochrony przed porażeniem w systemach TN-S, realizowanego przez nadprądowy wyłącznik instalacyjny, oprócz pomiaru impedancji pętli zwarcia konieczne jest określenie dla zastosowanego wyłącznika

A. wartości prądu wyłączającego
B. czasu działania wyzwalacza zwarciowego
C. progu zadziałania wyzwalacza przeciążeniowego
D. maksymalnej wielkości prądu zwarciowego
Analizując inne dostępne odpowiedzi, dostrzegamy pewne nieprawidłowości w podejściu do tematu sprawdzania warunków samoczynnego wyłączenia zasilania. Maksymalna wartość prądu zwarciowego jest istotnym parametrem, lecz nie jest bezpośrednio związana z prawidłowym funkcjonowaniem wyłącznika w kontekście ochrony przeciwporażeniowej. O ile znajomość wartości zwarciowych jest przydatna w doborze wyłącznika, sama maksymalna wartość nie określa, czy dany wyłącznik zadziała w odpowiednim czasie. Próg zadziałania wyzwalacza przeciążeniowego również nie ma zastosowania w przypadku wyłącznika, którego główną funkcją jest ochrona przed zwarciem, a nie przeciążeniem. W kontekście warunków samoczynnego wyłączenia zasilania kluczowym parametrem pozostaje wartość prądu wyłączającego, który musi być niższy niż wartość prądu zwarciowego, aby zrealizować efektywne odcięcie zasilania. Ostatnia z propozycji, dotycząca czasu zadziałania wyzwalacza zwarciowego, również nie odnosi się bezpośrednio do wymaganego pomiaru. Choć czas reakcji wyzwalacza jest istotny dla bezpieczeństwa, to jednak w kontekście samoczynnego wyłączenia zasilania bardziej kluczowe jest przynajmniej zrozumienie i pomiar wartości prądu wyłączającego, aby zapewnić odpowiednią reakcję w przypadku awarii. Ignorowanie tych zasad i niezrozumienie funkcji poszczególnych parametrów może prowadzić do błędów w doborze urządzenia ochronnego oraz, co gorsza, do sytuacji narażających użytkowników na ryzyko porażenia elektrycznego.