Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektryk
  • Kwalifikacja: ELE.02 - Montaż, uruchamianie i konserwacja instalacji, maszyn i urządzeń elektrycznych
  • Data rozpoczęcia: 8 grudnia 2025 08:17
  • Data zakończenia: 8 grudnia 2025 08:32

Egzamin zdany!

Wynik: 30/40 punktów (75,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Gdzie powinny być umieszczone liczniki zużycia energii elektrycznej w budynkach wielorodzinnych?

A. poza lokalami mieszkalnymi jedynie w zamkniętych szafkach
B. w lokalach mieszkalnych w miejscach o łatwym dostępie
C. poza lokalami mieszkalnymi w miejscach o łatwym dostępie
D. w lokalach mieszkalnych tylko w zamkniętych szafkach
Odpowiedź wskazująca, że liczniki zużycia energii elektrycznej powinny znajdować się poza lokalami mieszkalnymi, wyłącznie w zamkniętych szafkach, jest prawidłowa z kilku powodów. Przede wszystkim, umiejscowienie liczników w lokalach mieszkalnych może prowadzić do utrudnionego dostępu dla personelu technicznego oraz stwarzać zagrożenie dla bezpieczeństwa mieszkańców. Zgodnie z normami branżowymi, takimi jak PN-EN 62053, liczniki powinny być instalowane w miejscach, które zapewniają ich łatwą eksploatację, ale nie mogą naruszać prywatności użytkowników lokali mieszkalnych. Zastosowanie zamkniętych szafek nie tylko zabezpiecza urządzenia przed zniszczeniem, ale także minimalizuje ryzyko nieautoryzowanego dostępu. Przykładowo, w wielu nowoczesnych budynkach mieszkalnych, liczniki są zlokalizowane w wydzielonych pomieszczeniach technicznych, co pozwala na efektywne zarządzanie energią oraz ułatwia przeprowadzanie niezbędnych pomiarów i konserwacji. Takie podejście jest zgodne z najlepszymi praktykami w zarządzaniu budynkami i zapewnia bezpieczeństwo oraz komfort mieszkańców.

Pytanie 2

Na podstawie tabeli określ znamionowy prąd wyłącznika nadprądowego do zabezpieczenia jednofazowego obwodu oświetlenia złożonego z dwunastu lamp 2×36 W z kompensacją mocy biernej.

Ilustracja do pytania
A. 10 A
B. 13 A
C. 4 A
D. 6 A
Odpowiedź 10 A jest prawidłowa, ponieważ w przypadku obwodu oświetleniowego składającego się z dwunastu lamp 2×36 W, całkowita moc wynosi 864 W. Aby obliczyć prąd znamionowy, stosujemy wzór: I = P / U, gdzie P to moc, a U to napięcie. Zakładając, że obwód jest zasilany napięciem 230 V, obliczamy: I = 864 W / 230 V, co daje około 3,76 A. Jednak ze względu na zasady doboru wyłączników nadprądowych i aby zapewnić odpowiedni margines bezpieczeństwa oraz uwzględnić kompensację mocy biernej, wybieramy wyłącznik o prądzie znamionowym 10 A. Taki wybór jest zgodny z normami instalacyjnymi, które zalecają stosowanie wyłączników o prądzie znamionowym nieprzekraczającym 125% obliczonego prądu znamionowego. W praktyce, wyłącznik 10 A sprawdzi się doskonale w zabezpieczaniu obwodu oświetleniowego, chroniąc instalację przed przeciążeniem oraz zwarciem, co jest kluczowe dla zapewnienia bezpieczeństwa użytkowników i trwałości instalacji.

Pytanie 3

Elementy którego silnika elektrycznego przedstawiono na rysunku?

Ilustracja do pytania
A. Indukcyjnego klatkowego.
B. Indukcyjnego pierścieniowego.
C. Komutatorowego prądu stałego.
D. Jednofazowego z kondensatorem pracy.
Odpowiedź wskazująca na silnik indukcyjny klatkowy jest poprawna, ponieważ na przedstawionym rysunku można zauważyć charakterystyczne cechy tego typu silnika. Wirnik klatkowy, który jest kluczowym elementem konstrukcyjnym, składa się z aluminiowych lub miedzianych prętów, które są połączone na obu końcach pierścieniami. Silniki indukcyjne klatkowe są powszechnie stosowane w przemyśle ze względu na swoją prostotę, trwałość oraz efektywność. Na przykład, znajdują zastosowanie w napędach mechanicznych, takich jak pompy, wentylatory czy taśmociągi. Ich zalety to niskie koszty eksploatacji i minimalna potrzeba konserwacji, co jest zgodne z najlepszymi praktykami w inżynierii elektrycznej, gdzie preferuje się rozwiązania wymagające jak najmniej interwencji serwisowych. Warto również zaznaczyć, że silniki te działają na zasadzie indukcji elektromagnetycznej, co czyni je bezpiecznymi oraz zdolnymi do pracy w różnych warunkach środowiskowych.

Pytanie 4

Który przewód oznacza symbol PE?

A. Uziemiający
B. Wyrównawczy
C. Ochronny
D. Ochronno-neutralny
Odpowiedź "Ochronny" jest prawidłowa, ponieważ przewód oznaczony symbolem PE (ang. Protective Earth) jest kluczowym elementem systemów ochrony przed porażeniem elektrycznym. Przewód PE ma za zadanie prowadzenie prądu doziemnego w przypadku awarii urządzenia, co minimalizuje ryzyko porażenia prądem użytkowników. W praktyce, przewód ten jest integralną częścią instalacji elektrycznych w budynkach, a jego właściwe podłączenie do uziemienia jest niezbędne dla zapewnienia bezpieczeństwa. Zgodnie z normami, takimi jak PN-IEC 60364, przewód PE powinien być stosowany w każdym obwodzie elektrycznym, w którym zainstalowane są urządzenia elektryczne. Jego zastosowanie obejmuje zarówno instalacje przemysłowe, jak i domowe, gdzie uziemienie urządzeń, takich jak lodówki czy pralki, jest niezbędne dla ochrony przed skutkami zwarcia. Warto również podkreślić, że stosowanie przewodu PE w instalacjach elektrycznych jest wymagane przez przepisy prawa budowlanego, co dodatkowo podkreśla jego znaczenie w kontekście bezpieczeństwa użytkowników.

Pytanie 5

Na którym rysunku przedstawiono pierścienie ślizgowe silnika?

Ilustracja do pytania
A. B.
B. C.
C. D.
D. A.
Rysunek oznaczony literą B. przedstawia pierścienie ślizgowe, które pełnią kluczową rolę w silnikach elektrycznych. Są to elementy, które umożliwiają przekazywanie prądu elektrycznego do wirnika, co jest niezbędne do jego prawidłowego funkcjonowania. Pierścienie te są wykonane z materiałów o wysokiej przewodności elektrycznej oraz odporności na zużycie, co pozwala im działać w warunkach dynamicznych, gdzie występują znaczne siły mechaniczne i elektryczne. W zastosowaniach przemysłowych, pierścienie ślizgowe są wykorzystywane w takich urządzeniach jak silniki asynchroniczne, generatory oraz różnego rodzaju maszyny wirujące. Użycie pierścieni ślizgowych jest zgodne z normami międzynarodowymi, takimi jak IEC 60034, które określają wymogi dla silników elektrycznych. Dzięki zastosowaniu tych elementów, zapewniona jest nie tylko efektywność działania, ale także bezpieczeństwo operacyjne urządzeń, co jest szczególnie istotne w przemyśle energetycznym i automatyce przemysłowej.

Pytanie 6

Do realizacji układu przedstawionego na schemacie należy zastosować stycznik Q19 z następującą liczbą i rodzajem zestyków:

Ilustracja do pytania
A. 3NC + 2NO + 1NC
B. 3NO + 2NO + 1NC
C. 3NO + 1NO + 2NC
D. 3NC + 1NO + 2NC
Wybrana odpowiedź jest prawidłowa, ponieważ stycznik Q19 wymaga zastosowania trzech zestyków normalnie otwartych (3NO), jednego zestyków normalnie otwartego (1NO) oraz dwóch zestyków normalnie zamkniętych (2NC). W praktycznych zastosowaniach, takie zestawienie pozwala na skuteczne sterowanie obwodami, w których konieczne jest jednoczesne włączanie kilku urządzeń oraz realizacja funkcji zabezpieczających, takich jak odcięcie zasilania w przypadku awarii. W kontekście standardów branżowych, takie połączenie zestyków jest zgodne z normami IEC 60947, które definiują wymagania dla aparatów elektrycznych. Dobrą praktyką jest również regularne przeglądanie schematów układów oraz dobór odpowiednich elementów na podstawie ich charakterystyki oraz wymagań obciążeniowych. Dzięki starannej analizie schematu można uniknąć problemów związanych z niewłaściwym doborem zestyków, co jest kluczowe dla bezpieczeństwa i efektywności działania instalacji elektrycznych.

Pytanie 7

Które urządzenie oznacza się na schematach przedstawionym symbolem graficznym?

Ilustracja do pytania
A. Rozłącznik.
B. Wyłącznik.
C. Bezpiecznik.
D. Odłącznik.
Wybór odpowiedzi innej niż 'Wyłącznik' wskazuje na pewne nieporozumienia dotyczące funkcji i symboliki poszczególnych urządzeń elektrycznych. Bezpiecznik, będący urządzeniem zabezpieczającym, działa na zasadzie przerywania obwodu w momencie przekroczenia określonego prądu, a jego symbol różni się znacząco od symbolu wyłącznika. Odłącznik z kolei, choć również używany do rozłączania obwodów, jest zazwyczaj stosowany w sytuacjach, gdzie brak konieczności automatycznego działania jest kluczowy; jego symbol na schemacie jest inny, co może prowadzić do błędnej interpretacji. Rozłącznik, natomiast, służy do przerywania obwodu w sposób bardziej złożony, często w kontekście instalacji przemysłowych i zasilania w obiektach wysokiego napięcia, co również odzwierciedla inny symbol. Typowe błędy myślowe związane z tym pytaniem mogą wynikać z nieznajomości różnic pomiędzy tymi urządzeniami. W praktyce, znajomość symboli oraz funkcji wyłączników jest niezbędna dla zapewnienia bezpieczeństwa w pracy z instalacjami elektrycznymi oraz ich prawidłowego funkcjonowania zgodnie z obowiązującymi normami i standardami branżowymi.

Pytanie 8

Na którym rysunku przedstawiono schemat połączeń umożliwiający pomiar energii elektrycznej pobranej przez użytkownika?

Ilustracja do pytania
A. A.
B. B.
C. D.
D. C.
Błędne odpowiedzi mogą być wynikiem nieporozumień co do tego, jak działają liczniki energii i ich podłączenie w obwodach elektrycznych. Schematy A, B i D mogą mieć błędy w połączeniu przewodów fazowych i neutralnych, co prowadzi do złego pomiaru energii. Często myli się, że licznik może być podłączony równolegle do obciążenia, a to wcale nie działa, bo licznik wtedy nie zmierzy przepływu prądu. Właściwy pomiar wymaga szeregowego połączenia, żeby licznik był w torze prądowym. Dodatkowo, jeśli źle rozumie się rolę przewodów, można mieć problem z ich zidentyfikowaniem, co może być niebezpieczne. Warto zwrócić uwagę na normy i przepisy dotyczące instalacji elektrycznych, bo pokazują, jak ważne jest bezpieczeństwo i poprawność podłączeń. Zrozumienie zasad działania systemów pomiarowych oraz ich prawidłowego podłączenia jest kluczowe, żeby zapewnić bezpieczeństwo i efektywność energetyczną w codziennym użytkowaniu energii.

Pytanie 9

Którą wielkość fizyczną można zmierzyć przyrządem pokazanym na rysunku?

Ilustracja do pytania
A. Temperaturę barwową światła.
B. Światłość.
C. Luminancję.
D. Natężenie oświetlenia.
Poprawna odpowiedź to natężenie oświetlenia, które jest mierzonym parametrem przez luksomierz, przyrząd specjalistyczny zaprojektowany do oceny ilości światła padającego na określoną powierzchnię. Natężenie oświetlenia wyrażane jest w luksach (lx), co odnosi się do strumienia świetlnego padającego na powierzchnię jednego metra kwadratowego. W praktyce, luksomierze są używane w wielu dziedzinach, takich jak architektura, fotografia czy ergonomia, aby zapewnić odpowiednie warunki oświetleniowe, które wpływają na komfort oraz efektywność pracy. Na przykład, w biurach często normy dotyczące natężenia oświetlenia wynoszą od 300 do 500 luksów, co jest wystarczające do prowadzenia typowych prac biurowych. Użycie luksomierzy pozwala na optymalizację warunków oświetleniowych, co jest istotne dla zdrowia i wydajności pracowników. To narzędzie jest również kluczowe w budownictwie ekologicznym, gdzie odpowiednie oświetlenie wpływa na oszczędność energii.

Pytanie 10

Jak często należy przeprowadzać okresowe badania eksploatacyjne instalacji elektrycznej w budynku jednorodzinnym?

A. 6 lat
B. 5 lat
C. 8 lat
D. 4 lata
Okresowe badania eksploatacyjne sieci elektrycznej w domach jednorodzinnych powinny być przeprowadzane co 5 lat, co jest zgodne z obowiązującymi normami oraz przepisami prawa energetycznego. Regularne kontrole mają na celu zapewnienie bezpieczeństwa użytkowników oraz niezawodności systemu elektroenergetycznego. W trakcie takich badań ocenia się stan techniczny urządzeń, instalacji oraz ich zgodność z aktualnymi normami. Przykładem może być badanie rezystancji izolacji kabli, które pozwala wykryć potencjalne uszkodzenia mogące prowadzić do zwarć lub pożarów. Dzięki regularnym kontrolom można w porę zidentyfikować i usunąć usterki, co znacząco zwiększa bezpieczeństwo użytkowania instalacji. Dobrą praktyką w branży jest również prowadzenie dokumentacji z przeprowadzonych badań, co pozwala na monitorowanie stanu instalacji w czasie oraz podejmowanie odpowiednich działań prewencyjnych.

Pytanie 11

Którym symbolem graficznym oznacza się w dokumentacji sposób prowadzenia przewodów instalacji elektrycznej w listwach przypodłogowych?

Ilustracja do pytania
A. Symbolem 3.
B. Symbolem 1.
C. Symbolem 2.
D. Symbolem 4.
Odpowiedź oznaczona symbolem 3 jest poprawna, ponieważ ten symbol graficzny w dokumentacji technicznej jednoznacznie przedstawia sposób prowadzenia przewodów instalacji elektrycznej w listwach przypodłogowych. W polskich normach, jak PN-IEC 60617, szczegółowo opisano symbole graficzne, które powinny być stosowane w projektowaniu instalacji elektrycznych. Symbol 3 wskazuje na przewody prowadzone wzdłuż listwy przypodłogowej, co jest praktycznym rozwiązaniem dla zachowania estetyki oraz bezpieczeństwa instalacji. Przewody w listwach przypodłogowych są łatwe do instalacji i konserwacji, a ich zastosowanie zmniejsza ryzyko uszkodzeń w porównaniu do przewodów prowadzonych w innych miejscach. Warto także zwrócić uwagę, że stosowanie właściwych symboli graficznych jest zgodne z najlepszymi praktykami branżowymi, co ułatwia zrozumienie dokumentacji przez wykonawców oraz inspektorów. Dlatego znajomość i umiejętność interpretacji tych symboli jest kluczowym elementem w pracy każdego specjalisty zajmującego się instalacjami elektrycznymi.

Pytanie 12

Zdjęcie przedstawia

Ilustracja do pytania
A. drabinkę kablową.
B. listwę montażową.
C. szynę łączeniową.
D. płytkę zaciskową.
Szyna łączeniowa to kluczowy element w instalacjach elektrycznych, służący do łączenia przewodów neutralnych w rozdzielnicach. Odpowiedź jest poprawna, ponieważ zdjęcie przedstawia właśnie ten element. Szyny łączeniowe są wykorzystywane w celu zapewnienia efektywności i bezpieczeństwa instalacji, umożliwiając łatwe połączenie wielu przewodów w jednym punkcie. Dzięki nim, instalacje są bardziej uporządkowane, co pozwala na łatwiejszą konserwację i zarządzanie okablowaniem. W praktyce, szyny łączeniowe są projektowane zgodnie z normami IEC oraz PN-EN, co zapewnia ich wysoką jakość i bezpieczeństwo. Zastosowanie szyn łączeniowych jest szczególnie istotne w rozdzielnicach, gdzie konieczne jest zminimalizowanie ryzyka zwarcia i zapewnienie niezawodności działania systemu. Warto również zaznaczyć, że różne typy szyn mogą być dostosowane do specyficznych potrzeb instalacji, co czyni je niezwykle wszechstronnym rozwiązaniem.

Pytanie 13

Który z rodzajów kabli ma zewnętrzną osłonę wykonaną z polwinitu?

A. YADY
B. LgY
C. DYt
D. XzTKMXpw
Wybór innych typów przewodów, takich jak LgY, DYt czy XzTKMXpw, jest wynikiem niepełnego zrozumienia materiałów izolacyjnych i ich właściwości. Przewód LgY wyposażony jest zazwyczaj w powłokę z tworzywa sztucznego, ale nie jest to polwinit, co ogranicza jego zastosowanie w środowisku narażonym na działanie wysokich temperatur oraz agresywnych substancji chemicznych. Z kolei przewody DYt, które są stosowane w aplikacjach sygnalizacyjnych, również nie mają powłoki z polwinitu, co czyni je mniej odpowiednimi do zastosowań, gdzie wymagana jest duża odporność na czynniki zewnętrzne. Przewód XzTKMXpw jest natomiast typem, który może być używany w specyficznych warunkach, ale brak dokładnych informacji o jego zastosowaniach oraz materiałach izolacyjnych sprawia, że nie można go uznać za praktyczny wybór w kontekście powłoki z polwinitu. Wybór niewłaściwego typu przewodu wynika często z braku wiedzy na temat standardów branżowych oraz właściwych praktyk dotyczących instalacji elektrycznych, co może prowadzić do poważnych konsekwencji w zakresie bezpieczeństwa i efektywności energetycznej. Właściwy dobór przewodów jest kluczowy dla zapewnienia nieprzerwanego działania systemów elektrycznych oraz ochrony przed potencjalnymi awariami.

Pytanie 14

Na rysunkach przedstawiono kolejno typy końcówek źródeł światła

Ilustracja do pytania
A. E 14, GU 10, AR 111, MR 16
B. E 14, AR 111, GU 10, MR 16
C. E 14, AR 111, MR 16, GU 10
D. E 14, MR 16, GU 10, AR 111
Poprawna odpowiedź to "E 14, GU 10, AR 111, MR 16". Typy końcówek źródeł światła, które zostały przedstawione na zdjęciu, są kluczowe w zrozumieniu różnych zastosowań oświetleniowych. Końcówka E 14, znana jako mały gwint, jest powszechnie stosowana w lampach domowych, szczególnie w żarówkach LED i energooszczędnych, co czyni ją wszechstronnym rozwiązaniem do użytku przydomowego. Końcówka GU 10, z dwoma pinami i blokadą, jest używana w reflektorach sufitowych i halogenowych, co pozwala na łatwą wymianę żarówek, a jednocześnie zapewnia stabilne mocowanie. Końcówka AR 111, z reflektorem, jest często stosowana w oświetleniu profesjonalnym, na przykład w galeriach sztuki czy sklepach, gdzie istotna jest jakość i kierunek światła. Końcówka MR 16 to popularny wybór w systemach oświetleniowych niskonapięciowych, szczególnie w przypadku oświetlenia punktowego. Znajomość tych typów końcówek jest niezbędna dla każdego, kto zajmuje się projektowaniem i montażem systemów oświetleniowych, a także dla osób wybierających odpowiednie źródła światła do różnych aplikacji.

Pytanie 15

Którego osprzętu instalacyjnego dotyczy przedstawiony fragment opisu?

Fragment opisu osprzętu instalacyjnego
W celu zabezpieczenia przed porażeniem prądem elektrycznym małych dzieci instaluje się modele ze specjalnymi przesłonami torów prądowych. Konstrukcja mechaniczna przesłony uniemożliwia włożenie długopisu, kredki czy innego przewodnika do toru prądowego.

Do uzyskania pełnego bezpieczeństwa stosuje się przesłony torów prądowych wyposażone dodatkowo w tzw. klucz uprawniający, uchylający przesłony torów prądowych.
A. Gniazda wtykowego.
B. Wtyczki kabla zasilającego.
C. Puszki łączeniowej.
D. Oprawki źródła światła.
Gniazda wtykowe to naprawdę ważny element w każdej instalacji elektrycznej, zwłaszcza gdy mowa o bezpieczeństwie, szczególnie dla dzieci. Opisujesz modele gniazd, które mają specjalne przesłony na torach prądowych, co naprawdę chroni przed przypadkowym dotknięciem tych niebezpiecznych części. Te gniazda, które są zgodne z różnymi normami, są stworzone z myślą o tym, żeby minimalizować ryzyko porażenia prądem. Na przykład, gniazda z systemem przesłon pozwalają na wsunięcie wtyczki tylko w konkretnej pozycji, co znacznie ogranicza ryzyko kontaktu z prądem. Używanie takich gniazd jest super ważne w pomieszczeniach, gdzie bywają dzieci, a wiele standardów branżowych, jak np. normy IEC 60884, to potwierdza. To naprawdę praktyczne podejście do projektowania osprzętu zwiększa bezpieczeństwo w naszych domach i miejscach publicznych, gdzie kontakt z prądem może być poważnym zagrożeniem.

Pytanie 16

Podaj rodzaj i miejsce uszkodzenia w trójfazowym silniku indukcyjnym o uzwojeniach połączonych w gwiazdę, jeżeli wyniki pomiarów rezystancji jego uzwojeń przedstawione są w tabeli.

Rezystancja między zaciskamiWartość
U - V20,0 Ω
V - W15,0 Ω
W - U15,0 Ω
A. Przerwa w uzwojeniu fazy W
B. Zwarcie międzyzwojowe w fazie W
C. Przerwa w uzwojeniu fazy V
D. Zwarcie międzyzwojowe w fazie V
Odpowiedź "Zwarcie międzyzwojowe w fazie W" jest prawidłowa, ponieważ analiza wyników pomiarów rezystancji uzwojeń trójfazowego silnika indukcyjnego wskazuje na istotne różnice w wartościach rezystancji, które są kluczowym wskaźnikiem stanu uzwojeń. W przypadku uzwojenia W, wartość rezystancji wynosi 5,0 Ω, co jest znacznie niższe od wartości uzwojeń U i V, które wynoszą odpowiednio 20,0 Ω i 15,0 Ω. Taka różnica wskazuje na wystąpienie zwarcia międzyzwojowego. W praktyce, gdy rezystancja jednego z uzwojeń jest znacznie niższa, oznacza to, że w tym uzwojeniu doszło do nieprawidłowości, która prowadzi do utraty właściwości izolacyjnych. W przypadku silników indukcyjnych, regularne monitorowanie rezystancji uzwojeń jest kluczowe dla wczesnego wykrywania uszkodzeń, co pozwala na zapobieganie poważniejszym awariom. Standardy branżowe, takie jak IEC 60034, podkreślają znaczenie regularnych przeglądów oraz testów, by zapewnić niezawodność i efektywność pracy urządzeń elektrycznych. Dodatkowo, znajomość typowych uszkodzeń, takich jak zwarcia międzyzwojowe, jest niezbędna dla techników w celu szybkiej diagnozy i naprawy silników elektrycznych.

Pytanie 17

Narzędzie przestawione na ilustracji przeznaczone jest do

Ilustracja do pytania
A. wciskania łożysk.
B. profilowania przewodów.
C. zaciskania złączek Wago.
D. zdejmowania pierścieni Segera.
Narzędzie przedstawione na ilustracji to specjalistyczne szczypce do pierścieni Segera, które odgrywają kluczową rolę w branży mechanicznej i motoryzacyjnej. Umożliwiają one szybki i efektywny montaż oraz demontaż pierścieni zabezpieczających, które są powszechnie stosowane do zabezpieczania elementów na wałach lub w otworach. Dzięki charakterystycznym końcówkom, które pasują do otworów w pierścieniach, użytkownik może łatwo rozszerzyć lub ściągnąć pierścień Segera bez ryzyka uszkodzenia zarówno narzędzia, jak i zamontowanych komponentów. W praktyce użycie szczypiec do pierścieni Segera znacznie zwiększa efektywność pracy, minimalizując czas potrzebny na wymianę elementów, co jest niezbędne w kontekście utrzymania ruchu czy serwisowania maszyn. Ponadto, stosowanie odpowiednich narzędzi, takich jak te szczypce, wpisuje się w dobre praktyki inżynieryjne, które zalecają korzystanie z dedykowanych narzędzi do specyficznych zadań, co pozwala na uniknięcie błędów związanych z używaniem nieodpowiednich rozwiązań. Dlatego też, znajomość i umiejętność posługiwania się szczypcami do pierścieni Segera jest nie tylko korzystna, ale wręcz niezbędna w wielu dziedzinach techniki.

Pytanie 18

Na której ilustracji przedstawiono kabel przeznaczony do wykonania trójfazowego przyłącza ziemnego do budynku jednorodzinnego w sieci TN-S?

Ilustracja do pytania
A. Na ilustracji 3.
B. Na ilustracji 2.
C. Na ilustracji 1.
D. Na ilustracji 4.
Wybór nieprawidłowej ilustracji może wynikać z nieporozumienia co do podstawowych wymagań dotyczących kabli stosowanych w trójfazowych przyłączeniach ziemnych. Kable, które nie mają odpowiedniej liczby przewodów fazowych, nie są w stanie dostarczyć wymaganej mocy do budynków jednorodzinnych, co jest kluczowe w systemach TN-S. Przykładowo, ilustracja 1 może przedstawiać kabel jednożyłowy lub dwużyłowy, co jest niewystarczające dla trójfazowego przyłącza, ponieważ nie zapewni trzech niezależnych strumieni prądowych. Ilustracja 2 lub 4 mogą z kolei prezentować niepoprawne ułożenie przewodów, co może prowadzić do problemów z bezpieczeństwem i stabilnością działania instalacji. Wiele osób może mylnie zakładać, że jakieś inne połączenie również spełnia wymagania, co jest typowym błędem w zrozumieniu funkcji przewodów w systemie TN-S. Kluczowe jest, aby pamiętać, że zgodność z normami elektrycznymi, takimi jak PN-IEC 60364, jest niezbędna dla zapewnienia zarówno efektywności, jak i bezpieczeństwa instalacji elektrycznych. Zastosowanie niewłaściwego kabla może prowadzić do znacznych ograniczeń w dostępie do energii, a także do ryzykownych sytuacji, które mogą zagrażać bezpieczeństwu użytkowników.

Pytanie 19

Którą z funkcji umożliwia układ zasilania silnika elektrycznego przedstawiony na schemacie?

Ilustracja do pytania
A. Przełączanie uzwojeń z gwiazdy na trójkąt.
B. Pracę ze zmiennym kierunkiem obrotów.
C. Hamowanie dynamiczne.
D. Rozruch za pomocą rozrusznika rezystorowego.
Rozruch silnika elektrycznego z użyciem rozrusznika rezystorowego to jedna z popularnych metod w przemyśle. Jak to wygląda w praktyce? No, na schemacie widzimy styczniki K1M, K2M, K3M oraz rezystory R1 i R2, które współpracują, żeby stopniowo podnosić napięcie do silnika M1. Na początku rozruchu te rezystory ograniczają prąd, co zmniejsza ryzyko przeciążenia i udaru. Dzięki temu silnik osiąga pełną prędkość w kontrolowany sposób. Z mojego doświadczenia wiem, że to ważne dla trwałości maszyn. Rozruszniki rezystorowe są zgodne z normami IEC i są dobrym rozwiązaniem, bo ograniczają zakłócenia w sieci energetycznej i zwiększają bezpieczeństwo. Przy dużych mocach, taki układ to wręcz konieczność, by utrzymać integralność elektryczną i mechaniczną urządzenia.

Pytanie 20

W celu wykrycia przerw w instalacji elektrycznej obciążonej grzejnikiem jednofazowym, której schemat przedstawiono na rysunku, dokonano pomiarów rezystancji między jej odpowiednimi zaciskami przy wyłączonych F1 i F2. Na podstawie wyników pomiarów przedstawionych w tabeli określ, który przewód w tej instalacji posiada przerwę.

Pomiar rezystancji
między zaciskami
Wartość rezystancji
w Ω
F2:2 – 10,4
F1:N2 – 2
PE – 30,4
1 – 218
1 – 3
2 – 3
F2:2 – F1:N2
F2:2 – PE
F1:N2 – PE
Ilustracja do pytania
A. Neutralny między zaciskami F1:N2 i 2
B. Fazowy między zaciskami F1:2 i F2:1
C. Fazowy między zaciskami F2:2 i 1
D. Neutralny między zaciskami N i F1:N1
Wybór odpowiedzi dotyczącej neutralnego przewodu między zaciskami F1:N2 i 2 jest prawidłowy, ponieważ pomiar rezystancji wykazał nieskończoną wartość, co jednoznacznie wskazuje na przerwę w instalacji elektrycznej. W praktyce, zrozumienie zasadności takich pomiarów jest kluczowe dla bezpieczeństwa i prawidłowej pracy urządzeń elektrycznych. Przerwy w przewodach neutralnych są szczególnie niebezpieczne, ponieważ mogą prowadzić do nieprawidłowego funkcjonowania obwodów. Warto pamiętać, że w instalacjach jednofazowych neutralny przewód pełni rolę powrotną i każda jego przerwa może zaburzyć równowagę obwodu, prowadząc do przegrzewania się innych przewodów lub nawet uszkodzenia urządzeń. Zgodnie z normami PN-IEC 60364, zapewnienie ciągłości przewodów neutralnych jest kluczowe dla bezpieczeństwa użytkowników oraz prawidłowego działania instalacji. Warto również regularnie przeprowadzać pomiary rezystancji w instalacjach elektrycznych, aby szybko wykrywać ewentualne uszkodzenia i zapobiegać awariom.

Pytanie 21

Jakiego przyrządu należy użyć, aby zmierzyć moc bierną w obwodzie?

A. Waromierza
B. Woltomierza
C. Watomierza
D. Reflektometru
Pomiar mocy w układach elektrycznych można przeprowadzać za pomocą różnych mierników, jednak nie wszystkie z nich są odpowiednie do pomiaru mocy biernej. Reflektometr jest urządzeniem, które służy do analizy odbicia sygnału w liniach transmisyjnych, a jego zastosowanie ogranicza się do problematyki związanej z impedancją i stratami sygnału, co nie ma związku z pomiarem mocy biernej. Watomierz, z drugiej strony, mierzy moc czynną, a jego działanie opiera się na pomiarze napięcia i prądu, a następnie obliczaniu mocy czynnej, co oznacza, że nie jest w stanie dostarczyć informacji na temat mocy biernej, która jest miarą energii niezużywanej. Woltomierz jest urządzeniem do pomiaru napięcia, a jedynie mierząc napięcie nie można określić mocy biernej, gdyż nie uwzględnia on parametrów prądu oraz fazy między nimi. Typowym błędem myślowym jest zatem utożsamianie różnych rodzajów mocy i mylenie ich pomiaru, co prowadzi do nieprawidłowych wniosków i decyzji w zakresie projektowania oraz eksploatacji systemów elektrycznych. Zrozumienie różnic pomiędzy mocą czynną, bierną i pozorną oraz umiejętność zastosowania odpowiednich narzędzi pomiarowych jest kluczowe dla efektywności energetycznej.

Pytanie 22

Przy sprawdzaniu kabla wykonano dwie serie pomiarów rezystancji pomiędzy końcami żył na jednym z jego końców. Na drugim końcu kabla w pierwszej serii zwarto wszystkie żyły ze sobą, a w drugiej serii żyły pozostały rozwarte. Wyniki pomiarów zapisano w tabeli. Jakie wnioski można wyciągnąć na podstawie tych wyników?

Ilustracja do pytania
A. Żyły c i a są zwarte ze sobą.
B. Żyły a i b są przerwane.
C. Żyły a i b są zwarte ze sobą.
D. Żyły c i a są przerwane.
Wnioski wyciągnięte z pomiarów rezystancji są kluczowe dla właściwego diagnozowania stanu kabli. Nieprawidłowe interpretacje mogą prowadzić do fałszywych diagnoz, co z kolei może skutkować nieefektywnym użytkowaniem sprzętu lub nawet poważnymi awariami. Na przykład, uznanie, że żyły c i a są przerwane, pomija fakt, że w pierwszej serii pomiarów rezystancja była niska, co wskazuje na ich sprawność. Takie wnioski mogą wynikać z niepełnego zrozumienia zasad działania rezystancji i wpływu zwarcia na pomiary. Z kolei założenie, że żyły a i b są przerwane, jest również błędne, ponieważ ich rezystancja w drugiej serii była zbliżona do wartości ze pierwszej serii, co sugeruje ich zwarte połączenie. Dlatego kluczowe jest, aby technicy byli świadomi różnicy między pomiarami w trybie zwarcia i rozłączenia oraz umieli prawidłowo interpretować otrzymane wyniki. Używanie standardowych procedur pomiarowych, takich jak te określone w normach branżowych, może znacznie zwiększyć dokładność diagnoz. Należy unikać pułapek, w które wpadali technicy, którzy, zamiast analizować dane w kontekście całości, skupili się jedynie na fragmentarycznych wynikach, co prowadzi do błędnych konkluzji.

Pytanie 23

Którą wstawkę kalibrową należy zastosować w bezpieczniku o wkładce topikowej pokazanej na rysunku?

Ilustracja do pytania
A. B.
B. C.
C. D.
D. A.
Odpowiedź C jest prawidłowa, ponieważ wstawka kalibrowa posiada oznaczenie zgodne z parametrami wkładki topikowej bezpiecznika, która wynosi 25A przy napięciu 500V. W przypadku bezpieczników, kluczowe jest, aby zastosowana wstawka kalibrowa odpowiadała nominalnym wartościom prądu i napięcia. W przeciwnym razie, może to prowadzić do niewłaściwego działania obwodu elektrycznego, co w konsekwencji może spowodować uszkodzenie urządzeń lub stanowić zagrożenie dla bezpieczeństwa. Stosując odpowiednią wkładkę, zapewniamy, że obwód będzie chroniony przed przeciążeniami oraz zwarciami, co jest zgodne z normami bezpieczeństwa elektrycznego. Wiedza na temat doboru odpowiednich wkładek kalibrowych jest niezbędna w każdej instalacji elektrycznej; pozwala to na zminimalizowanie ryzyka awarii oraz zapewnienie długotrwałej i stabilnej pracy urządzeń elektrycznych.

Pytanie 24

Która z wymienionych list czynności opisuje w jakiej kolejności demontuje się elementy stojana silnika indukcyjnego z uzwojeniem wsypywanym w celu jego przezwojenia?

1odcięcie połączeń czołowychodcięcie połączeń czołowychusunięcie izolacji żłobkowejusunięcie uzwojenia
2usunięcie izolacji żłobkowejusunięcie uzwojeniaodcięcie połączeń czołowychodcięcie połączeń czołowych
3usunięcie uzwojeniausunięcie izolacji żłobkowejusunięcie uzwojeniausunięcie izolacji żłobkowej
ABCD
A. A.
B. B.
C. C.
D. D.
Poprawna odpowiedź to B. Kolejność demontażu elementów stojana silnika indukcyjnego jest kluczowa dla zapewnienia bezpieczeństwa oraz efektywności podczas przezwojenia. Proces zaczyna się od odcięcia połączeń czołowych, co pozwala na bezpieczne wyłączenie zasilania i ograniczenie ryzyka porażenia prądem. Następnie przystępuje się do usunięcia uzwojenia, co jest istotne, aby uzyskać dostęp do wnętrza stojana. W tym etapie należy zachować ostrożność, aby nie uszkodzić struktury żłobka. Ostatnim krokiem jest usunięcie izolacji żłobkowej, co umożliwia dokładne oczyszczenie elementów i przygotowanie ich do ponownego nawinięcia. Przestrzeganie tej sekwencji demontażu jest zgodne z dobrymi praktykami w branży elektrycznej i mechaniczej, a także z normami bezpieczeństwa, co zapewnia, że proces przezwojenia będzie przeprowadzony w sposób profesjonalny i skuteczny. Właściwe podejście do tych czynności wpływa na wydajność i żywotność silnika.

Pytanie 25

Co może być przyczyną usterki na przedstawionym schemacie, jeżeli: żarówka E2 świeci się, a żarówka E1 nie świeci się, obie żarówki są sprawne, zmierzone napięcie U12 = 228 V, oprawy E1 i E2 są sprawne?

Ilustracja do pytania
A. Uszkodzone przewody pomiędzy W2 a W3
B. Uszkodzony przewód pomiędzy W1 a S191B10
C. Uszkodzony przewód pomiędzy W3 a E1
D. Uszkodzone przewody pomiędzy W1 a W2
Odpowiedź wskazująca na uszkodzony przewód pomiędzy W3 a E1 jest poprawna, ponieważ analizując sytuację, w której żarówka E2 świeci, a E1 nie, można wywnioskować, że obwód dostarczający prąd do E1 jest przerwany. Pomimo iż napięcie U12 wynosi 228 V, co sugeruje prawidłowe działanie obwodu pomiędzy W1 a W2, to brak świecenia żarówki E1 wskazuje na problem w dalszej części obwodu. W przypadku, gdyby przewody pomiędzy W1 a W2 lub W2 a W3 były uszkodzone, to również E2 nie mogłoby świecić. Praktyczne zastosowanie tej wiedzy odnosi się do diagnostyki usterek w instalacjach elektrycznych, gdzie kluczowym krokiem jest analiza obwodów oraz sprawdzanie, w którym miejscu prąd nie dociera do założonych punktów. W obiektach przemysłowych oraz mieszkalnych, stosowanie schematów połączeń i przeprowadzanie pomiarów napięcia jest niezbędne dla efektywnej diagnostyki i konserwacji. Zgodnie z normami bezpieczeństwa, każdy elektryk powinien być w stanie szybko zidentyfikować potencjalne problemy w obwodach, co prowadzi do oszczędności czasu oraz zasobów.

Pytanie 26

Jaką maksymalną rezystancję uziemienia należy zastosować dla odbiornika w sieci TT, aby wyłącznik różnicowoprądowy o prądzie różnicowym 300 mA zapewniał skuteczną ochronę przed porażeniem w przypadku uszkodzenia izolacji, przy założeniu, że dopuszczalne napięcie dotykowe wynosi 50 V?

A. 766,7 Ω
B. 6,0 Ω
C. 166,7 Ω
D. 1,3 Ω
Odpowiedź 166,7 Ω jest prawidłowa, ponieważ określa maksymalną wartość rezystancji uziemienia, która zapewnia skuteczną ochronę przed porażeniem elektrycznym w systemie TT. W układzie tym, przy zastosowaniu wyłącznika różnicowoprądowego o znamionowym prądzie różnicowym 300 mA oraz długotrwale dopuszczalnym napięciu dotykowym wynoszącym 50 V, stosuje się wzór: Rmax = U / I, gdzie U to wartość napięcia dotykowego, a I to prąd różnicowy. Podstawiając wartości, otrzymujemy Rmax = 50 V / 0,3 A = 166,67 Ω, co zaokrąglamy do 166,7 Ω. W praktyce, przestrzeganie tego ograniczenia pozwala na zminimalizowanie ryzyka wystąpienia niebezpiecznych napięć dotykowych w przypadku uszkodzenia izolacji. Wiele norm, takich jak PN-EN 61008 i PN-EN 61140, wskazuje na konieczność przeprowadzania takich obliczeń, co potwierdza ich znaczenie w pracy projektantów instalacji elektrycznych. W związku z tym, odpowiednia wartość rezystancji uziemienia w systemie TT jest kluczowa dla zapewnienia bezpieczeństwa użytkowników i ochrony przed skutkami porażenia elektrycznego.

Pytanie 27

Oblicz znamionowy współczynnik mocy silnika trójfazowego przy danych: Pn = 2,2 kW (moc mechaniczna), UN = 400 V, IN = 4,6 A, ηN = 0,84?

A. 0,82
B. 0,57
C. 0,99
D. 0,69
Znamionowy współczynnik mocy silnika trójfazowego można obliczyć za pomocą wzoru: cos φ = Pn / (√3 * UN * IN), gdzie Pn to moc mechaniczna, UN to napięcie nominalne, a IN to prąd nominalny. Wstawiając nasze dane: Pn = 2,2 kW = 2200 W, UN = 400 V, IN = 4,6 A, otrzymujemy: cos φ = 2200 W / (√3 * 400 V * 4,6 A). Po obliczeniach uzyskujemy, że współczynnik mocy wynosi 0,82. Praktyczne znaczenie współczynnika mocy jest kluczowe w kontekście efektywności energetycznej. Wyższy współczynnik mocy oznacza, że silnik pracuje bardziej efektywnie, co przekłada się na niższe rachunki za energię oraz mniejsze straty w instalacji elektrycznej. Zgodnie z normami IEC, silniki trójfazowe powinny dążyć do współczynnika mocy powyżej 0,85, aby zminimalizować obciążenie systemu energetycznego. Obliczenie współczynnika mocy jest więc istotne przy projektowaniu systemów, aby zapewnić ich efektywność oraz spełnić wymagania dotyczące jakości energii elektrycznej.

Pytanie 28

Którym narzędziem należy wkręcać śrubę przedstawioną na rysunku?

Ilustracja do pytania
A. Kluczem imbusowym.
B. Wkrętakiem z nacięciem Torx.
C. Wkrętakiem z nacięciem Phillips.
D. Kluczem nasadowym.
Klucz imbusowy, nazywany również kluczem sześciokątnym, jest idealnym narzędziem do wkręcania śrub z sześciokątnym wewnętrznym nacięciem, co można zauważyć na przedstawionym na rysunku elemencie. Użycie klucza imbusowego pozwala na efektywne przeniesienie momentu obrotowego, co jest istotne w wielu aplikacjach, zarówno w mechanice, jak i w elektronice. Klucze imbusowe są dostępne w różnych rozmiarach, co umożliwia dopasowanie ich do różnych średnic śrub. Ważne jest również, aby stosować klucz imbusowy w odpowiednim rozmiarze, ponieważ nieodpowiedni klucz może uszkodzić nacięcie śruby, co utrudnia jej dalsze wkręcanie lub wykręcanie. W standardach branżowych klucz imbusowy jest często stosowany w konstrukcjach meblowych oraz w przemyśle motoryzacyjnym, gdzie wymagana jest wysoka precyzja i niezawodność. Dobrze dobrany klucz imbusowy ułatwia konserwację i montaż, a także zmniejsza ryzyko uszkodzenia śrub i komponentów.

Pytanie 29

Które z poniższych elementów nie są częścią dokumentacji technicznej urządzeń elektrycznych?

A. Rysunek ogólny urządzenia wraz ze schematami obwodów zasilających
B. Opis metod użytych do eliminacji zagrożeń stwarzanych przez urządzenie
C. Szczegółowe rysunki techniczne poszczególnych elementów urządzenia
D. Instrukcja obsługi urządzenia
Szczegółowe rysunki techniczne poszczególnych elementów urządzenia nie są częścią dokumentacji technicznej zgodnej z normami branżowymi, które definiują zakres wymaganej dokumentacji. Właściwa dokumentacja techniczna urządzeń elektrycznych powinna obejmować rysunki ogólne oraz schematy obwodów zasilania, które ilustrują ogólną architekturę i funkcjonalność urządzenia. Dodatkowo, instrukcja obsługi jest kluczowym elementem, który zapewnia użytkownikom informacje na temat prawidłowego użytkowania i konserwacji urządzenia. Opis metod eliminacji zagrożeń jest również istotny, ponieważ odnosi się do bezpieczeństwa użytkowania urządzenia oraz spełnienia norm bezpieczeństwa, takich jak dyrektywy CE czy normy IEC. W praktyce, posiadanie kompleksowej dokumentacji technicznej jest niezbędne dla zapewnienia efektywnego zarządzania cyklem życia urządzenia, od projektowania po serwisowanie, co jest zgodne z najlepszymi praktykami inżynieryjnymi.

Pytanie 30

Miernikiem, którego przełącznik zakresów przedstawiono na rysunku, nie można zmierzyć

Ilustracja do pytania
A. parametrów wyłączników RCD.
B. ciągłości połączeń.
C. impedancji pętli zwarcia.
D. rezystancji izolacji.
Wszystkie pozostałe odpowiedzi mogą być mylone z rzeczywistymi możliwościami miernika, co prowadzi do nieporozumień w zakresie jego zastosowania. Pomiar parametrów wyłączników RCD, ciągłości połączeń oraz impedancji pętli zwarcia jest możliwy dzięki odpowiednim zakresom, które są dostępne w większości nowoczesnych mierników elektrycznych. Ważne jest zrozumienie, że wyłączniki RCD, czyli różnicowoprądowe, wymagają pomiaru impedancji, aby ocenić ich skuteczność w ochronie przed porażeniem prądem. Ciągłość połączeń jest również istotna, ponieważ zapewnia, że prąd elektryczny prawidłowo przepływa przez układ, co jest niezbędne dla bezpieczeństwa i wydajności instalacji. Jednakże, pomiar rezystancji izolacji nie można wykonać na tym mierniku, co może prowadzić do błędnych wniosków o stanie izolacji w instalacjach elektrycznych. Często, użytkownicy zastanawiają się, dlaczego ich mierniki nie oferują pomiaru rezystancji izolacji, co może prowadzić do przekonania, że urządzenie jest niewłaściwe lub wadliwe. W rzeczywistości, kluczowe jest, aby posiadać odpowiednie narzędzia, takie jak mierniki izolacji, które są specjalnie zaprojektowane do przeprowadzania tego rodzaju pomiarów, zgodnie z normami bezpieczeństwa oraz najlepszymi praktykami przemysłowymi.

Pytanie 31

Na podstawie opisu określ, jaką puszkę instalacyjną przedstawiono na rysunku.

Ilustracja do pytania
A. Podtynkową hermetyczną.
B. Do montażu gniazd i wyłączników.
C. Przeciwogniową.
D. Natynkową hermetyczną.
Wybór innych opcji jest związany z pewnymi nieporozumieniami dotyczącymi klasyfikacji puszek instalacyjnych oraz ich zastosowania. Przede wszystkim, puszki przeciwogniowe są projektowane z myślą o ochronie przed ogniem i nie spełniają wymogów hermetyczności, które są kluczowe w kontekście opisanego produktu. Puszki natynkowe hermetyczne, które są prawidłową odpowiedzią, różnią się od typowych puszek podtynkowych, które są instalowane w ścianach i nie są dostosowane do pracy w warunkach narażających na działanie wody i ciał stałych. Wybierając opcję "Do montażu gniazd i wyłączników", można zrozumieć, że nie wszystkie puszki spełniają tę funkcję, a w kontekście danego opisu, nie jest to wystarczająco precyzyjne. Typowe błędy myślowe, które prowadzą do takich wyborów, to brak zrozumienia różnic w konstrukcji i przeznaczeniu różnych typów puszek. Kluczowe jest, aby pamiętać, że dobór odpowiedniego elementu instalacyjnego powinien uwzględniać nie tylko jego funkcję, ale także warunki środowiskowe, w jakich będzie pracować. Używanie puszek, które nie spełniają standardów IP może prowadzić do poważnych problemów, takich jak zwarcia czy uszkodzenia urządzeń elektrycznych, co w rezultacie stanowi zagrożenie dla bezpieczeństwa użytkowników.

Pytanie 32

Na którym rysunku pokazano jednofazowy wyłącznik różnicowoprądowy?

Ilustracja do pytania
A. D.
B. B.
C. A.
D. C.
Jednofazowy wyłącznik różnicowoprądowy, przedstawiony na rysunku A, pełni kluczową rolę w ochronie instalacji elektrycznych przed porażeniem prądem oraz w zapobieganiu pożarom spowodowanym przez prądy upływowe. Główną cechą wyróżniającą to urządzenie są dwa zaciski przyłączeniowe, które odpowiadają za podłączenie przewodów fazowego i neutralnego, a także charakterystyczny przycisk testowy oznaczony literą 'T', który pozwala na sprawdzenie poprawności działania wyłącznika. W praktyce, jednofazowe wyłączniki różnicowoprądowe są powszechnie stosowane w domowych instalacjach elektrycznych, zwłaszcza w obwodach z gniazdami, aby zabezpieczyć użytkowników przed potencjalnymi zagrożeniami. Zgodnie z normami branżowymi, takie urządzenia powinny być montowane w każdym nowym budynku, co znacząco zwiększa poziom bezpieczeństwa użytkowników. Dodatkowo, regularne testowanie tych wyłączników jest kluczowe dla zapewnienia ich sprawności, dlatego rekomenduje się przeprowadzanie testów co najmniej raz na trzy miesiące.

Pytanie 33

Jakie oznaczenie, zgodnie z normą zharmonizowaną, odpowiada polskiemu oznaczeniu kabla DY 300/500 V?

A. H03W-F
B. H05V-K
C. H05V-U
D. H03VH-H
Oznaczenie H05V-U odnosi się do przewodów elektrycznych, które są zgodne z europejską normą harmonizowaną. Oznaczenie to oznacza przewody o napięciu roboczym 300/500 V, przeznaczone do instalacji w budynkach, które charakteryzują się dużą elastycznością oraz odpornością na działanie olejów i wysokiej temperatury. Przewody te są powszechnie stosowane w różnorodnych aplikacjach, takich jak instalacje oświetleniowe, sprzęt AGD oraz urządzenia przenośne. Dzięki zastosowaniu odpowiednich materiałów izolacyjnych, przewody H05V-U wykazują doskonałe właściwości dielektryczne, co zapewnia ich wysoką niezawodność i bezpieczeństwo użytkowania. Dodatkowo, norma ta podkreśla znaczenie stosowania przewodów, które spełniają rygorystyczne wymogi dotyczące ochrony przed zwarciami i przeciążeniami, co jest kluczowe w zapewnieniu bezpieczeństwa instalacji elektrycznych. W praktyce, wybór przewodów zgodnych z oznaczeniem H05V-U gwarantuje wysoką jakość wykonania i długowieczność instalacji elektrycznych oraz minimalizuje ryzyko wystąpienia awarii.

Pytanie 34

W układzie przedstawionym na rysunku, po podłączeniu odbiornika, zadziałał wyłącznik różnicowoprądowy. Przyczyną tego jest

Ilustracja do pytania
A. nieprawidłowe połączenie przewodu neutralnego i ochronnego.
B. dotyk bezpośredni przewodu pod napięciem.
C. pojawienie się napięcia na części metalowej normalnie nie przewodzącej.
D. zwarcie między przewodem neutralnym i ochronnym.
Nieprawidłowe połączenie przewodu neutralnego (N) z przewodem ochronnym (PE) jest kluczowym czynnikiem, który spowodował zadziałanie wyłącznika różnicowoprądowego. W momencie, gdy te dwa przewody są połączone, wyłącznik różnicowoprądowy wykrywa różnicę w prądzie, co prowadzi do jego zadziałania w celu ochrony użytkowników przed porażeniem prądem. Przykładowo, w przypadku instalacji elektrycznych w budynkach mieszkalnych, zaleca się stosowanie wyłączników różnicowoprądowych w obwodach zasilających gniazda, co zwiększa bezpieczeństwo użytkowników. W praktyce, aby zapewnić prawidłowe działanie wyłączników, konieczne jest przestrzeganie standardów, takich jak norma PN-EN 61008-1, która określa wymagania dla różnicowoprądowych wyłączników nadprądowych. Dobre praktyki obejmują regularne testowanie tych urządzeń, aby upewnić się, że działają prawidłowo i mogą skutecznie chronić przed zagrożeniami elektrycznymi.

Pytanie 35

Który z wymienionych elementów chroni nakrętki przed poluzowaniem?

A. Tuleja redukcyjna
B. Tuleja kołnierzowa
C. Podkładka sprężysta
D. Podkładka dystansowa
Podkładka sprężysta, znana również jako podkładka naciskowa, to element konstrukcyjny stosowany w wielu zastosowaniach inżynieryjnych, którego głównym celem jest zapewnienie odpowiedniego docisku oraz zabezpieczenie połączeń gwintowych przed luzowaniem. Działa ona poprzez wytworzenie siły sprężystej, która przeciwdziała odkręcaniu się nakrętek, co jest szczególnie istotne w aplikacjach narażonych na wibracje. W praktyce, podkładki sprężyste są powszechnie stosowane w motoryzacji, budownictwie, a także w produkcji maszyn. Zgodnie z normami DIN, takich jak DIN 127 i DIN 137, podkładki te powinny być odpowiednio dobrane do zastosowań, co wpływa na ich efektywność w zapobieganiu luzowaniu. Należy również zwrócić uwagę na materiał, z którego podkładki są wykonane. Na przykład, podkładki ze stali nierdzewnej są odporne na korozję i sprawdzają się w trudnych warunkach atmosferycznych, co znacząco przedłuża żywotność połączenia. Użycie podkładek sprężystych jest wskazane w przypadku połączeń, gdzie występują zmienne obciążenia i wstrząsy, co czyni je niezastąpionymi w nowoczesnej inżynierii.

Pytanie 36

Jaki minimalny przekrój, ze względu na obciążalność długotrwałą, powinny mieć przewody DY ułożone w rurze izolacyjnej, zasilające odbiornik trójfazowy o mocy 10 kW z sieci trójfazowej o napięciu 400 V?

Ilustracja do pytania
A. 1,5 mm2
B. 4 mm2
C. 6 mm2
D. 2,5 mm2
Wybór przekroju przewodu w instalacjach elektrycznych jest kluczowym elementem projektowania układów zasilających. Odpowiedzi, które wskazują na większe przekroje, jak 6 mm2, 4 mm2 oraz 2,5 mm2, mogą sugerować nadmierne zabezpieczenie, jednak nie uwzględniają one rzeczywistych potrzeb obciążeniowych. Przykładowo, wybór 6 mm2 dla obciążenia 14,5 A jest nie tylko nieekonomiczny, ale i zbędny, ponieważ istnieją bardziej odpowiednie przekroje, które spełniają wymagania. Z kolei odpowiedź 2,5 mm2, choć jest bardziej zbliżona do właściwego przekroju, również nie jest zgodna z normami, ponieważ przy takiej obciążalności przewody 1,5 mm2 są wystarczające. Warto przypomnieć, że dobór przekroju przewodu powinien być oparty na rzeczywistym obciążeniu oraz warunkach ułożenia. W praktyce, przed podjęciem decyzji, należy przeanalizować obciążenie prądowe w kontekście całej instalacji oraz zastosować odpowiednie współczynniki korekcyjne. Niezastosowanie się do tych zasad może prowadzić do nieprawidłowości w funkcjonowaniu instalacji, co w dłuższym czasie może skutkować awariami lub niebezpiecznymi sytuacjami, takimi jak przegrzewanie się przewodów. Ostatecznie, kluczowe jest, aby decyzje o doborze przekroju przewodów były zgodne z obowiązującymi normami, co nie tylko zapewnia bezpieczeństwo, ale także przyczynia się do efektywności energetycznej systemów elektrycznych.

Pytanie 37

W układzie instalacji mieszkaniowej przedstawionej na rysunku, ochrona wyłącznikiem różnicowoprądowym RCD nie obejmuje gniazd w

Ilustracja do pytania
A. pokoju 1 i pokoju 2
B. łazience i pokoju 1
C. kuchni i pokoju 2
D. łazience i pokoju 2
Odpowiedź, w której zaznaczyłeś "pokoju 1 i pokoju 2", jest rzeczywiście trafna. W schemacie instalacji elektrycznej widać, że obwody gniazd w tych pomieszczeniach nie mają ochrony wyłącznika różnicowoprądowego (RCD). To ważne, bo RCD powinno się stosować w miejscach, gdzie ryzyko porażenia prądem jest większe, jak w łazienkach czy kuchniach, gdzie woda może być problemem. Normy mówią, że tam, gdzie może wystąpić kontakt z wodą, trzeba mieć RCD, żeby zapewnić bezpieczeństwo. W pokojach 1 i 2 brakuje tej ochrony, co oznacza, że gniazda nie są tak dobrze zabezpieczone. Dobrze zaprojektowana instalacja powinna zawsze brać to pod uwagę, zwłaszcza przy układzie gniazd w miejscach, gdzie może być wilgoć. Jakbyś planował przerobić te pomieszczenia lub dodać nowe urządzenia elektryczne, warto by było przemyśleć, czy nie trzeba coś zmienić w systemie ochrony.

Pytanie 38

W którym z wymienionych miejsc można zainstalować oprawę oświetleniową posiadającą w karcie katalogowej następujące oznaczenia?

Ilustracja do pytania
A. Na dnie basenu o głębokości 4 m.
B. W pomieszczeniu zagrożonym wybuchem.
C. Na zewnątrz, do oświetlenia placu budowy.
D. W pomieszczeniach z łatwopalnymi oparami.
Wybór lokalizacji dla oprawy oświetleniowej o oznaczeniu IP65 w nieodpowiednich miejscach, takich jak dno basenu o głębokości 4 m, pomieszczenia zagrożone wybuchem, czy w przestrzeniach z łatwopalnymi oparami, wskazuje na istotne nieporozumienia dotyczące zastosowania opraw oświetleniowych. Oprawa z oznaczeniem IP65 nie jest przystosowana do pracy pod wodą, co wynika z braku certyfikacji umożliwiającej jej działanie w takich warunkach. W przypadku instalacji na dnie basenu, konieczne są urządzenia przystosowane do pracy w wodzie, często posiadające oznaczenie IP68, które zapewnia pełną ochronę przed wodą na dużą głębokość. Instalacja w pomieszczeniu zagrożonym wybuchem wymaga stosowania opraw specjalistycznych, które są certyfikowane zgodnie z normą ATEX lub innymi odpowiednimi regulacjami. W takich środowiskach używane są oprawy, które minimalizują ryzyko zapłonu i są dostosowane do specyfikacji chemicznych obecnych w danym pomieszczeniu. Z kolei miejsca z łatwopalnymi oparami wymagają zastosowania dodatkowych zabezpieczeń, aby uniknąć ryzyka pożaru. Wybierając miejsce instalacji oprawy oświetleniowej, istotne jest, aby dokładnie zapoznać się ze specyfikacją techniczną urządzenia oraz z odpowiednimi normami, co pozwoli na zapewnienie bezpieczeństwa i prawidłowego funkcjonowania oświetlenia w każdych warunkach.

Pytanie 39

Które oznaczenie literowe ma przewód o przekroju przedstawionym na rysunku?

Ilustracja do pytania
A. LgY
B. DY
C. YDYp
D. YDY
Odpowiedź YDY jest poprawna, ponieważ oznaczenie to dotyczy przewodów miedzianych, które są izolowane polwinitiem i posiadają ekran zewnętrzny. Przewody te znajdują zastosowanie w instalacjach elektrycznych, gdzie wymagane jest zabezpieczenie przed zakłóceniami elektromagnetycznymi oraz ochrona przed wpływem warunków atmosferycznych. W praktyce, przewody YDY są często stosowane w budynkach mieszkalnych i użyteczności publicznej do zasilania urządzeń elektrycznych, a także w obiektach przemysłowych. Dzięki zastosowaniu ekranu, przewody te charakteryzują się wysoką odpornością na zakłócenia, co jest kluczowe dla utrzymania stabilności i jakości sygnałów. Oznaczenie to jest zgodne z normami PN-EN 50525-2-51, które określają wymagania dla przewodów w instalacjach niskiego napięcia. Znajomość tych oznaczeń jest niezbędna dla każdej osoby zajmującej się projektowaniem lub wykonawstwem instalacji elektrycznych.

Pytanie 40

Wskaż symbol graficzny monostabilnego łącznika przyciskowego z zestykiem NO.

Ilustracja do pytania
A. Symbol 2.
B. Symbol 1.
C. Symbol 4.
D. Symbol 3.
Monostabilny łącznik przyciskowy z zestykiem NO (normalnie otwartym) jest kluczowym elementem w wielu systemach elektrycznych i automatyce. Symbol 1 przedstawia ten łącznik, ilustrując otwarty styk, który zamyka się po naciśnięciu przycisku, co jest zgodne z zasadami oznaczania w normach IEC 60617. W praktyce, tego rodzaju łączniki są powszechnie używane w urządzeniach, które wymagają chwilowego włączenia obwodu, jak na przykład w urządzeniach sterujących, alarmach czy systemach oświetleniowych. Dzięki swojej konstrukcji, monostabilne przyciski są bardziej energooszczędne, ponieważ nie wymagają stałego zasilania do utrzymania stanu włączenia. Zrozumienie tego symbolu i funkcji jest kluczowe dla właściwego projektowania i implementacji systemów elektrycznych. Używanie poprawnych symboli graficznych w dokumentacji technicznej jest istotne dla komunikacji między inżynierami i technikami, co wpływa na jakość i bezpieczeństwo instalacji elektrycznych.