Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik budownictwa
  • Kwalifikacja: BUD.12 - Wykonywanie robót murarskich i tynkarskich
  • Data rozpoczęcia: 18 grudnia 2025 22:42
  • Data zakończenia: 18 grudnia 2025 22:44

Egzamin niezdany

Wynik: 10/40 punktów (25,0%)

Wymagane minimum: 20 punktów (50%)

Udostępnij swój wynik
Szczegółowe wyniki:
Pytanie 1

W technologii szalunku traconego, którego fragment przestawiono na rysunku, ściany wznosi się z

Ilustracja do pytania
A. kształtek styropianowych z rdzeniem żelbetowym.
B. bloczków silikatowych na zaprawie ciepłochronnej.
C. prefabrykatów żelbetowych w deskowaniach z tektury.
D. betonu komórkowego na cienkowarstwowej zaprawie klejącej.
W kontekście technologii szalunku traconego, odpowiedzi odwołujące się do bloczków silikatowych, prefabrykatów żelbetowych oraz betonu komórkowego nie oddają rzeczywistej istoty procesu budowlanego w tej metodzie. Bloczków silikatowych na zaprawie ciepłochronnej nie można stosować jako formy do wylania betonu, ponieważ wymagają one tradycyjnego podejścia do budowy, co wiąże się z dłuższym czasem realizacji i koniecznością późniejszego wykończenia. Prefabrykaty żelbetowe w deskowaniach z tektury również nie są zgodne z ideą szalunku traconego, ponieważ prefabrykaty są zazwyczaj używane w konwencjonalnych metodach budowlanych, gdzie ich montaż i demontaż zajmują znacznie więcej czasu i nie wykorzystują zalet jednoczesnej formy i izolacji. Z kolei beton komórkowy na cienkowarstwowej zaprawie klejącej, choć może być materiałem budowlanym, nie nadaje się do realizacji ścian w technologii szalunku traconego, ponieważ nie tworzy odpowiedniej konstrukcji nośnej ani nie zapewnia właściwej izolacji. Te błędne koncepcje wynikają z braku zrozumienia nowoczesnych metod budowlanych i ich zastosowania, co prowadzi do nieefektywności i nieoptymalności w budownictwie. Współczesne praktyki budowlane stawiają na integrację materiałów, które jednocześnie pełnią funkcję konstrukcyjną i izolacyjną, co sprawia, że kształtki styropianowe z rdzeniem żelbetowym są idealnym rozwiązaniem w tej dziedzinie.

Pytanie 2

Rodzaj rusztowania wykorzystywanego w pomieszczeniach, zbudowanego z dwóch podpór oraz pomostu roboczego, to rusztowanie

A. wspornikowe
B. stojakowe
C. modułowe
D. kozłowe
Wydaje mi się, że wybór innych typów rusztowań, jak wspornikowe czy modułowe, może wynikać z braku zrozumienia, do czego się je używa. Na przykład, rusztowanie wspornikowe opiera się na punktach podporowych na wysokości, co sprawia, że jest dobre do pracy na fasadach budynków, ale nie za bardzo nadaje się do wnętrz. Jego konstrukcja nie jest zbyt stabilna w małych przestrzeniach, a prace wewnątrz to nie jego bajka. Z kolei stojakowe rusztowanie jest bardziej skomplikowane i wymaga więcej elementów, co sprawia, że jego montaż trwa dłużej, a tak naprawdę rusztowanie kozłowe to lepsza opcja, bo można je szybko przestawiać. Modułowe rusztowanie, chociaż bardzo uniwersalne, często wykracza poza potrzeby typowych prac wewnętrznych, co może prowadzić do nieefektywnego wykorzystania czasu i zasobów. Ważne jest, żeby rozumieć te różnice, bo to wpływa na bezpieczeństwo i efektywność pracy w budowlance.

Pytanie 3

Jakie narzędzia są przeznaczone do demontażu ścian?

A. Strug, szpachla, wiertarka o niskich obrotach
B. Paca, młotek z gumowym zakończeniem
C. Kilof, oskard, młot pneumatyczny
D. Przecinak, kielnia, młotek do murowania
Kiedy mówimy o narzędziach do rozbiórki ścian, warto zwrócić uwagę, że wybór jest naprawdę ważny. Strug, szpachla i wiertarka wolnoobrotowa to narzędzia, które raczej używa się przy pracy z drewnem czy w instalacjach, a nie do demontażu ścian. Strug wygładza drewno, szpachla wypełnia ubytki, a wiertarka wolnoobrotowa to coś, co stosujesz do miękkich materiałów, co w rozbiórce nie ma wielkiego sensu. Paca i młotek gumowy mogą się przydać na wykończeniu, ale do demolki twardych materiałów, jak beton czy cegła, to niewiele dają. Paca to narzędzie do gładzenia tynku, a młotek gumowy to raczej coś do delikatnego wbijania. Przecinak, kielnia i młotek murarski też nie są najlepszymi pomocnikami do rozbiórki: przecinak tniesz materiały, kielnia kładzie zaprawę, a młotek murarski wkleja cegły. Często ludzie mylą funkcje narzędzi, co prowadzi do takich błędnych myśli. W każdym razie, w rozbiórce najważniejsze są narzędzia dostosowane do pracy z różnymi materiałami, bo to wpływa na bezpieczeństwo i efektywność.

Pytanie 4

Do jakich zastosowań należy używać zapraw szamotowych?

A. do wykonywania posadzek na gruncie
B. do mocowania izolacji termicznych w ścianach
C. do realizacji tynków w pomieszczeniach sanitarnych
D. do łączenia ceramicznych elementów palenisk
Zaprawy szamotowe są specjalistycznymi materiałami stosowanymi przede wszystkim w budowie pieców i kominków. Ich głównym zastosowaniem jest łączenie ceramicznych elementów palenisk, co jest kluczowe ze względu na wysokie temperatury, którym są one poddawane. Zaprawy te charakteryzują się doskonałą odpornością na działanie wysokich temperatur oraz na zmiany termiczne, co sprawia, że idealnie nadają się do stosowania w miejscach, gdzie występuje intensywne ciepło. W praktyce, zaprawy szamotowe często stosuje się w piecach kaflowych, gdzie łączą one elementy ceramiczne, zapewniając szczelność oraz trwałość konstrukcji. Dodatkowo, zgodnie z normami budowlanymi, zaprawy te muszą spełniać określone wymogi dotyczące odporności na ogień i trwałości, co czyni je niezastąpionymi w budownictwie kominkowym i piecowym. Warto również pamiętać, że stosując zaprawy szamotowe, należy przestrzegać zasad ich aplikacji, takich jak odpowiednie proporcje składników oraz techniki nakładania, co wpływa na ich efektywność i żywotność.

Pytanie 5

Tynki 1-warstwowe obejmują tynki

A. surowe
B. selektywne
C. powszechne
D. wytworne
Tynki pospolite, doborowe i szlachetne różnią się zasadniczo od tynków surowych, co wpływa na ich właściwości i zastosowanie. Tynki pospolite, najczęściej używane w budownictwie, są mieszanką różnych materiałów, co może prowadzić do ich zróżnicowanej jakości. Choć mogą być stosowane w różnych warunkach, ich skład chemiczny nie pozwala na uzyskanie takiej samej wydajności i trwałości jak w przypadku tynków surowych. Z kolei tynki doborowe to grupa, która stawia na precyzyjne dopasowanie składu do konkretnego zastosowania, co często wymaga specjalistycznych badań i kosztownych materiałów. To podejście jest korzystne, ale nie odpowiada na podstawowe potrzeby tynków 1-warstwowych. Tynki szlachetne, takie jak tynki dekoracyjne, skupiają się na estetyce i finiszu, co sprawia, że nie nadają się do zastosowań, gdzie wymagana jest prostota i efektywność w aplikacji. W praktyce, przy ich wykorzystaniu należy mieć na uwadze dodatkowe koszty i czas związany z przygotowaniem i aplikacją. Typowe błędy myślowe prowadzące do mylnych wniosków dotyczą często nieznajomości podstawowych różnic między rodzajami tynków, a także ich przeznaczeniem. Właściwy dobór tynków jest kluczowy dla zapewnienia trwałości i funkcjonalności budowli.

Pytanie 6

Która z wymienionych czynności nie jest częścią badań kontrolnych przeprowadzanych podczas odbioru tynków cienkowarstwowych?

A. Sprawdzenie przyczepności tynku do podłoża
B. Badanie nasiąkliwości tynku
C. Weryfikacja prawidłowości przygotowania podłoża
D. Pomiar grubości tynku
Badanie nasiąkliwości tynku nie jest zaliczane do badań kontrolnych wykonywanych podczas odbioru tynków pocienionych, ponieważ jego celem jest ocena zdolności tynku do wchłaniania wody, co ma większe znaczenie w kontekście tynków tradycyjnych. W przypadku tynków pocienionych, które charakteryzują się innymi właściwościami technicznymi, bardziej istotne są testy takie jak badanie przyczepności tynku do podłoża, które pozwala ocenić, czy tynk jest prawidłowo osadzony na podłożu, oraz badanie grubości tynku, które zapewnia zgodność z wymaganiami projektowymi. W praktyce, przeprowadzanie badań nasiąkliwości może nie przynieść użytecznych informacji, gdyż tynki pocienione mają na celu zmniejszenie nasłonecznienia, co wpływa na ich właściwości użytkowe. Standardy branżowe, takie jak PN-EN 998-1, wskazują na kluczowe parametry do oceny tynków, co potwierdza, że badanie nasiąkliwości nie jest priorytetowe w procesie odbioru tynków pocienionych.

Pytanie 7

Przed użyciem tynków akrylowych produkowanych w fabryce w pojemnikach, należy je

A. wymieszać bez dodatków
B. dodać utwardzacz
C. wymieszać z wodą
D. dodać pigment
W przypadku tynków akrylowych stosowanie dodatków, takich jak woda, pigmenty czy utwardzacze, może prowadzić do niepożądanych efektów w trakcie aplikacji oraz ograniczyć ich właściwości użytkowe. Dodanie wody do tynków akrylowych, które są już zapakowane w odpowiedniej konsystencji, może wpłynąć na ich lepkość i zdolność do przyczepności. Może to prowadzić do problemów z aplikacją, takich jak zbyt szybkie wysychanie, co z kolei może skutkować powstawaniem pęknięć. Wprowadzenie pigmentów również nie jest zalecane, ponieważ zmienia ono skład chemiczny tynku, co może wpłynąć na jego trwałość i odporność na czynniki atmosferyczne. Co więcej, dodanie utwardzacza, który jest typowy dla innych rodzajów materiałów budowlanych, może prowadzić do nieprawidłowego utwardzania oraz obniżenia właściwości tynku, takich jak elastyczność. Osoby przystępujące do pracy z tynkami akrylowymi powinny być świadome, że takie zmiany mogą prowadzić do błędnych założeń o ich zastosowaniu, co jest typowym błędem w rozumieniu właściwości materiału. Zaleca się, aby korzystać z tynków akrylowych zgodnie z ich przeznaczeniem i specyfikacją techniczną, co jest kluczowe dla osiągnięcia długotrwałych efektów estetycznych oraz funkcjonalnych.

Pytanie 8

Jeśli w murowanym obiekcie długość filarka międzyokiennego z zastosowaniem cegły ceramicznej pełnej wynosi 90 cm, to oznacza, że konieczne jest wymurowanie filarka o długości

A. 2,5 cegły
B. 3,5 cegły
C. 3,0 cegły
D. 4,0 cegły
Wybór niewłaściwej długości filarka międzyokiennego wskazuje na niezrozumienie podstawowych zasad dotyczących wymiarowania elementów murowanych. Opcje 3,0, 2,5 i 4,0 cegły zakładają błędne założenia co do wymagań projektowych. Na przykład, długość 3,0 cegły zakładałaby, że filarek o długości 90 cm mógłby być zbudowany z 3 cegieł, co jest niezgodne z rzeczywistością. Przyjęcie 2,5 cegły również mija się z celem, ponieważ nie można uzyskać takiej długości w standardowym murowaniu, a jakość i struktura muru mogłyby zostać poważnie naruszone. Wybór 4,0 cegły natomiast prowadziłby do nadmiernego zapasu materiału, co zwiększałoby koszty budowy i wpływało na efektywność wykorzystania zasobów. W praktyce wykorzystanie standardowych wymiarów cegły oraz uwzględnienie spoiny są kluczowe dla zapewnienia trwałości i stabilności konstrukcji. Zrozumienie tych aspektów jest fundamentalne dla każdego projektanta i wykonawcy w branży budowlanej, a merytoryczne podejście do obliczeń może znacząco wpłynąć na końcowy efekt budowlany.

Pytanie 9

Wszystkie techniczne wymagania związane z realizacją i odbiorem prac tynkarskich znajdują się w

A. dzienniku budowy
B. kosztorysie ofertowym
C. projekcie architektonicznym
D. specyfikacji technicznej
Dziennik budowy jest dokumentem administracyjnym, który służy do rejestrowania postępu prac budowlanych oraz wszelkich istotnych wydarzeń na budowie. Nie zawiera on jednak szczegółowych wymagań dotyczących wykonania robót, co prowadzi do błędnych wniosków dotyczących jego roli w procesie budowlanym. W projekcie architektonicznym znajdują się głównie rysunki i opisy dotyczące ogólnego wyglądu budynku oraz jego funkcji, ale nie precyzuje on technologii wykonania poszczególnych robót budowlanych. Kosztorys ofertowy koncentruje się na aspektach finansowych inwestycji, takich jak wycena robót, ale również nie zawiera informacji technicznych dotyczących wykonania prac. Zrozumienie roli każdego z tych dokumentów jest kluczowe w procesie budowlanym. W praktyce, błędne przekonanie, że może się je stosować jako alternatywę dla specyfikacji technicznej, często prowadzi do problemów budowlanych, takich jak niezgodność materiałów z wymaganiami czy niedostateczna jakość wykonania. Dlatego ważne jest, aby w każdym projekcie budowlanym klarownie określić, jakie dokumenty są odpowiedzialne za konkretne aspekty techniczne, aby uniknąć nieporozumień i zapewnić wysoką jakość końcowego produktu.

Pytanie 10

Na zdjęciu przedstawiono lico muru w wiązaniu

Ilustracja do pytania
A. polskim.
B. weneckim.
C. pospolitym.
D. amerykańskim.
Wybór innej odpowiedzi niż 'polskim' może wynikać z tego, że nie do końca rozumiesz, jak działają różne wiązania murarskie. Na przykład wiązanie weneckie to technika, w której cegły są przesunięte w każdym kolejnym rzędzie, co daje murze taki falisty efekt. To bardziej popularne w architekturze włoskiej, ale nie jest tak mocne jak polskie. A wiązanie pospolite, które często myli się z polskim, to w sumie prosta linia cegieł bez żadnych zmian w układzie, co sprawia, że mur jest mniej stabilny i gorzej wygląda. Z kolei wiązanie amerykańskie używane jest głównie w budownictwie przemysłowym i ma swój specyficzny styl, który nie pasuje do tradycyjnych konstrukcji. Jeśli wybierzesz złe wiązanie, mogą się pojawić poważne problemy, jak pęknięcia czy osuwiska. Dlatego ważne jest, żeby znać te różnice i umieć je stosować, żeby uniknąć błędów i zapewnić solidność oraz estetykę budynków.

Pytanie 11

Na podstawie przedstawionej instrukcji przygotowania gotowej zaprawy murarskiej podaj, ile wody należy przygotować do sporządzenia zaprawy z 4 opakowań?

Instrukcja przygotowania zaprawy
Suchą mieszankę należy zarobić z 3,5 litrami czystej i zimnej wody, mieszając mechanicznie przy użyciu wiertarki wolnoobrotowej.
Zawartość opakowania: 25 kg
A. 7,0 litrów
B. 3,5 litra
C. 14,0 litrów
D. 10,5 litra
Odpowiedź 14,0 litrów jest prawidłowa, ponieważ zgodnie z instrukcją na zdjęciu, do przygotowania zaprawy murarskiej z jednego opakowania potrzeba 3,5 litra wody. Aby obliczyć ilość wody potrzebną do sporządzenia zaprawy z czterech opakowań, należy pomnożyć tę wartość przez 4. Wykonując obliczenie: 4 x 3,5 litra = 14 litrów, otrzymujemy właściwą ilość wody. Przygotowanie odpowiedniej ilości wody jest kluczowe dla uzyskania właściwej konsystencji zaprawy, co wpływa na jej wytrzymałość i trwałość. Zbyt mała ilość wody może skutkować zbyt gęstą zaprawą, co utrudnia jej aplikację i obniża przyczepność do materiałów budowlanych. Z drugiej strony, nadmiar wody może osłabić zaprawę, prowadząc do pęknięć i degradacji w dłuższym czasie. Zastosowanie odpowiednich proporcji wody i zaprawy jest standardem w branży budowlanej, co potwierdzają zalecenia producentów materiałów budowlanych. Dbanie o precyzyjne przygotowanie mieszanki wpływa na jakość wykonywanych prac budowlanych oraz ich trwałość.

Pytanie 12

Cementową zaprawę wykorzystuje się do budowy ścian

A. nośnych wewnętrznych
B. fundamentowych
C. nośnych zewnętrznych
D. działowych
Murowanie ścian nośnych wewnętrznych, działowych oraz nośnych zewnętrznych, choć również ważne, wymaga zastosowania innych typów zapraw, które są dostosowane do specyficznych potrzeb tych konstrukcji. W przypadku ścian nośnych wewnętrznych, gdzie nie ma bezpośredniego kontaktu z wodą gruntową, można stosować zaprawy o mniejszej odporności na wilgoć, co może prowadzić do niewłaściwych praktyk w budownictwie. Ściany działowe, które często nie przenoszą obciążeń, mogą być murowane z użyciem zapraw lekkich, co wprowadza zamieszanie dotyczące stosowania zapraw cementowych. W przypadku ścian nośnych zewnętrznych, kluczowe jest zapewnienie izolacji, co może oznaczać konieczność użycia zapraw mrozoodpornych lub odpornych na działanie wody. Często mylone są różnice między zaprawami stosowanymi w konstrukcjach nośnych a tymi w fundamentach, co prowadzi do błędnych wyborów materiałowych. Zrozumienie, że zaprawa cementowa ma swoje właściwe miejsce w budowie fundamentów, a nie w innych typach murowania, jest kluczowe dla uzyskania trwałych i bezpiecznych konstrukcji. Niezrozumienie tego aspektu może prowadzić do osłabienia struktury budynku, co jest nieakceptowalne w profesjonalnym budownictwie.

Pytanie 13

Jaką ilość mieszanki betonowej wykorzystano do stworzenia 3 stóp fundamentowych o rozmiarach 1,4 x 1,4 m i wysokości 0,5 m, jeśli norma zużycia mieszanki betonowej do uzyskania 1 m3 betonu wynosi 1,015 m3?

A. 5,880 m3
B. 0,995 m3
C. 2,940 m3
D. 2,984 m3
Aby obliczyć ilość mieszanki betonowej potrzebnej do wykonania 3 stóp fundamentowych o wymiarach 1,4 x 1,4 m i wysokości 0,5 m, należy najpierw obliczyć objętość jednego stopy fundamentowej. Obliczenie objętości polega na pomnożeniu długości, szerokości i wysokości: 1,4 m * 1,4 m * 0,5 m = 0,98 m3 dla jednej stopy. Następnie, mnożymy tę wartość przez 3, aby uzyskać łączną objętość wszystkich trzech stóp: 0,98 m3 * 3 = 2,94 m3. Jednakże norma zużycia mieszanki betonowej do wykonania 1 m3 betonu wynosi 1,015 m3, co oznacza, że na każdy 1 m3 betonu potrzebujemy 1,015 m3 mieszanki. Aby znaleźć całkowitą ilość mieszanki, należy pomnożyć objętość betonu przez normę: 2,94 m3 * 1,015 m3 = 2,984 m3. To pokazuje, jak ważne jest uwzględnienie norm zużycia w obliczeniach budowlanych, co jest praktyką powszechnie stosowaną w branży budowlanej, aby uniknąć niedoborów materiałów oraz zapewnić odpowiednią jakość wykonania. Takie podejście jest zgodne z najlepszymi praktykami w zakresie planowania i oszacowania materiałów budowlanych.

Pytanie 14

Gdzie można wykorzystać zaprawy gipsowe?

A. do tynkowania elewacji budynków
B. do murowania ścian z gipsowych elementów w suchych pomieszczeniach
C. do tynkowania działowych ścian w pomieszczeniach o podwyższonej wilgotności
D. do murowania fundamentów z elementów betonowych
Stwierdzenie, że zaprawy gipsowe można stosować do tynkowania ścian zewnętrznych, jest nieprawidłowe, ponieważ gips nie jest materiałem odpornym na działanie warunków atmosferycznych, takich jak deszcz czy zmiany temperatury. Tynki gipsowe, ze względu na swoją strukturę i właściwości, nadają się jedynie do stosowania w pomieszczeniach zamkniętych, gdzie nie występuje duża wilgotność ani agresywne czynniki zewnętrzne. Podobnie, tynkowanie ścian działowych w pomieszczeniach wilgotnych również nie jest zalecane, gdyż gips w takim środowisku może ulegać degradacji, co prowadzi do uszkodzenia struktury i estetyki wykończenia. Co więcej, wykorzystanie zapraw gipsowych do murowania ścian fundamentowych z elementów betonowych jest błędne, ponieważ fundamenty wymagają materiałów o wysokiej wytrzymałości na ściskanie i odporności na wilgoć, a gips nie spełnia tych wymagań. Typowe błędy myślowe związane z tymi odpowiedziami to nieznajomość właściwości materiałów budowlanych oraz ich zastosowania w kontekście różnorodnych warunków środowiskowych. Rekomendacje dotyczące stosowania zapraw budowlanych powinny być oparte na ich specyfikacjach technicznych oraz na normach budowlanych, aby zapewnić trwałość i bezpieczeństwo konstrukcji.

Pytanie 15

Cementowa zaprawa wyróżnia się wysoką

A. higroskopijnością
B. kapilarnością
C. odpornością na skurcz
D. wytrzymałością na ściskanie
Wybór odpowiedzi dotyczącej odporności na skurcz, kapilarności lub higroskopijności zaprawy cementowej wskazuje na pewne nieporozumienia dotyczące właściwości tego materiału. Odporność na skurcz odnosi się do zdolności materiału do minimalizacji deformacji w wyniku wysychania. Choć zaprawy cementowe mogą wykazywać pewne właściwości skurczowe, ich głównym atutem jest wytrzymałość na ściskanie. Kapilarność to zdolność materiału do transportowania wody w mikroskalowych porach, co jest ważne, ale nierzadko niekorzystne, gdyż może prowadzić do wilgoci w strukturach budowlanych. W kontekście zapraw cementowych, ich projektowanie powinno minimalizować ten efekt, aby zredukować ryzyko uszkodzeń. Natomiast higroskopijność odnosi się do zdolności materiału do wchłaniania wilgoci z otoczenia, co jest istotne w niektórych zastosowaniach budowlanych, jednak nie jest kluczowym parametrem dla zapraw cementowych. Ponadto, warto zauważyć, że wybór niewłaściwych właściwości jako kluczowych dla zapraw cementowych może prowadzić do błędnych decyzji projektowych oraz wykonawczych, co w ostateczności może wpłynąć na trwałość i bezpieczeństwo konstrukcji. Dlatego zrozumienie różnorodnych właściwości materiałów budowlanych oraz ich praktycznych implikacji jest kluczowe dla inżynierów i architektów.

Pytanie 16

Jakie podłoże powinno być zabezpieczone stalową siatką podtynkową przed nałożeniem tynku?

A. Ceglane
B. Z betonu zwykłego
C. Z betonu komórkowego
D. Drewniane
Wybór innych podłoży, takich jak beton komórkowy, cegła czy beton zwykły, nie wymaga stosowania stalowej siatki podtynkowej, co może prowadzić do nieporozumień w zakresie technologii tynkarskich. Beton komórkowy, znany ze swojej lekkiej struktury i wysokiej izolacyjności, charakteryzuje się znacznie lepszą przyczepnością dla tynków niż drewno, co sprawia, że nie ma potrzeby wzmacniania tej powierzchni siatką. Cegła, z kolei, ma szorstką powierzchnię, która naturalnie sprzyja adhesion tynku, eliminując potrzebę stosowania dodatkowych środków. W przypadku betonu zwykłego, który jest gęsty i odporny na deformacje, również nie wymaga takiego wsparcia. Wybór siatki podtynkowej powinien być uzależniony od specyfiki podłoża, a nie ogólnych założeń. Powszechnym błędem jest mylenie właściwości różnych materiałów budowlanych, co prowadzi do nieprawidłowych decyzji dotyczących technologii wykończeniowych. Rozumienie tych różnic jest kluczowe dla uzyskania trwałych i estetycznych efektów w budownictwie. Właściwe podejście do tynków oraz materiałów budowlanych gwarantuje dłuższą żywotność konstrukcji i minimalizuje ryzyko defektów.

Pytanie 17

Warstwa styropianu umieszczona w wieńcach oraz nadprożach ścian zewnętrznych ma za zadanie izolację

A. akustyczną
B. ciepłochronnej
C. paroszczelnej
D. wodoszczelnej
Nieprawidłowe odpowiedzi dotyczące funkcji akustycznej, paroszczelnej i wodoszczelnej warstwy styropianu w wieńcach i nadprożach ścian zewnętrznych wynikają z niepełnego zrozumienia właściwości materiału i jego zastosowania w budownictwie. Styropian, będący materiałem sztucznym, charakteryzuje się przede wszystkim niską przewodnością cieplną, co czyni go idealnym izolatorem termicznym, a nie akustycznym. Choć może nieco tłumić dźwięki, jego właściwości akustyczne nie są wystarczające, aby skutecznie izolować hałas, dlatego w takich zastosowaniach konieczne są specjalistyczne materiały akustyczne. Ponadto, w kontekście paroszczelności, choć styropian może działać jako bariera dla pary wodnej, nie jest to jego główna funkcja. W budownictwie stosuje się również inne materiały, takie jak folia paroszczelna, które są bardziej efektywne w zapobieganiu migracji pary wodnej w strukturze budynku. Zastosowanie styropianu w kontekście wodoszczelności również jest nieadekwatne; nie jest on materiałem wodoodpornym, więc w przypadku zastosowań, gdzie wymagana jest pełna wodoszczelność, potrzebne są dodatkowe warstwy ochronne. Zrozumienie tych właściwości jest kluczowe dla prawidłowego projektowania i budowy, aby uniknąć problemów związanych z niewłaściwą izolacją, które mogą prowadzić do kondensacji, powstawania pleśni oraz innych problemów zdrowotnych i eksploatacyjnych w budynkach.

Pytanie 18

Na którym rysunku przedstawiono ścianę dwuwarstwową?

Ilustracja do pytania
A. C.
B. B.
C. A.
D. D.
Wybór innej odpowiedzi może wynikać z nieporozumień dotyczących różnicy między różnymi typami ścian. Rysunki A i D przedstawiają ściany wielowarstwowe, w których zastosowanie kilku warstw materiałów ma na celu osiągnięcie jeszcze lepszej izolacji i ochrony przed czynnikami zewnętrznymi. Takie konstrukcje często wykorzystują różnorodne materiały, które współpracują ze sobą, co może prowadzić do mylnego wrażenia, że są one jednorodne. Z kolei rysunek C pokazuje ścianę jednowarstwową, która składa się z jednego materiału budowlanego, co ogranicza jej właściwości izolacyjne i sprawia, że straty ciepła są wyższe. Wybierając jedną z tych odpowiedzi, można nie dostrzegać, że skuteczność energetyczna budynków jest kluczowym aspektem w nowoczesnym budownictwie, co stanowi podstawę wielu standardów, takich jak NF 26-43:2013. Zrozumienie tych różnic jest niezbędne dla prawidłowego projektowania i budowy budynków, które nie tylko spełniają wymagania użytkowników, ale również są zgodne z aktualnymi przepisami budowlanymi oraz standardami efektywności energetycznej. Warto również zaznaczyć, że odpowiednia konstrukcja ścian wpływa na trwałość i bezpieczeństwo całego obiektu, co czyni tę wiedzę kluczową dla każdego specjalisty w dziedzinie budownictwa.

Pytanie 19

Który z elementów budynku przedstawiono na zdjęciu?

Ilustracja do pytania
A. Nadproże.
B. Cokół.
C. Gzyms.
D. Wieniec.
Gzyms to naprawdę ważny element w architekturze. W sumie nie tylko ładnie wygląda, ale ma też swoje konkretne zadania. Na tym zdjęciu widać gzyms, który jest takim poziomym paskiem na krawędzi ściany. Może mieć różne kształty, na przykład prostokątne albo bardziej krągłe. Gzymsy nie tylko zdobią budynki, ale też chronią dolną część ściany przed deszczem, co jest kluczowe, żeby budynek był trwały. Często można je zobaczyć w starych i nowoczesnych budynkach, bo dodają charakteru. Ważne jest, żeby robić je z materiałów odpornych na pogodę, a projektując gzymsy, trzeba też myśleć o tym, jak będą chronić przed wodą. W architekturze gzymsy też wpływają na proporcje budynku i to, jak go postrzegamy - co ma znaczenie zwłaszcza w miastach.

Pytanie 20

Na podstawie danych zawartych w tabeli oblicz, ile cegieł pełnych potrzeba do wymurowania ściany na zaprawie cementowej o grubości 38 cm i wymiarach 4 × 3 m.

Nakłady na 1 m² ścianyFragment tablicy 0103 z KNR 2-02
Lp.WyszczególnienieJednostki miary,
oznaczenia
Ściany na zaprawie
wapiennej
lub
cementowo-wapiennej
cementowej
Symbole
eto
Rodzaje
materiałów
cyfroweliteroweGrubość w cegłach
111/22111/22
abcde010203040506
201800199Cegły budowlane
pełne
020szt.92,70139,90186,10100,10150,30200,60
211800200Cegły dziurawki
pojedyncze
020szt.(93,40)(140,80)(187,60)---
2223808099Zaprawa0600,0840,1300,1760,0660,1060,143
2323808099Zaprawa060(0,091)(0,143)(0,194)---
A. 1 690 szt.
B. 1 804 szt.
C. 2 408 szt.
D. 1 679 szt.
W przypadku odpowiedzi, które wskazują na błędnie obliczoną ilość cegieł, najczęściej występującym problemem jest niewłaściwe zrozumienie zasad obliczania zapotrzebowania na materiały budowlane. Często pomijane jest uwzględnienie grubości zaprawy, co prowadzi do zaniżania liczby potrzebnych cegieł. Obliczenia powinny zaczynać się od dokładnego określenia powierzchni do pokrycia, a następnie przeliczenia na podstawie danych dotyczących konkretnego typu cegły, która różni się wymiarami oraz ilością, jaką można użyć na 1 m². Często występuje również mylne założenie, że można po prostu przyjąć liczby z tabel bez ich odpowiedniego dopasowania do wymiarów projektu, co skutkuje znacznymi odchyleniami w wynikach. W praktyce budowlanej, ignorowanie takich detali nie tylko wpływa na jakość wykonania, ale również może prowadzić do przekroczenia budżetu oraz harmonogramu. Świadomość tych aspektów jest kluczowa dla każdego specjalisty w dziedzinie budownictwa, dlatego tak istotne jest rzetelne podejście do obliczeń i ich weryfikacja.

Pytanie 21

Na fotografii przedstawiono narzędzie przeznaczone do ręcznego

Ilustracja do pytania
A. wygładzania powierzchni ściany z betonu komórkowego.
B. wykonywania bruzd instalacyjnych w ścianie z betonu komórkowego.
C. wyrównywania powierzchni bloczków z betonu komórkowego.
D. przycinania bloczków z betonu komórkowego.
Wybór odpowiedzi niewłaściwej to częsty problem w interpretacji narzędzi i ich zastosowań w budownictwie. Na przykład, wyrównywanie powierzchni bloczków z betonu komórkowego oraz wygładzanie powierzchni ściany z betonu komórkowego są działaniami, które mają zupełnie inne cele. Wyrównywanie odnosi się do uzyskiwania gładkiej i równej powierzchni, co można osiągnąć za pomocą narzędzi takich jak poziomice czy szlifierki, a nie drutu do cięcia. Z kolei wygładzanie powierzchni ściany zakłada eliminację nierówności i defektów, co również nie jest funkcją drutu do cięcia, który nie jest przystosowany do tego typu pracy. Zastosowanie drutu w takich kontekstach jest nieefektywne i może prowadzić do uszkodzeń materiałów. Odpowiedzi związane z przycinaniem bloczków również nie uwzględniają specyfiki tego narzędzia, ponieważ przycinanie zazwyczaj odnosi się do narzędzi takich jak piły, które są bardziej odpowiednie do tego typu zadań. Kluczowym błędem jest nieprzypisanie funkcji narzędzia do jego rzeczywistego zastosowania w praktyce budowlanej. Dobrą praktyką jest zawsze analizowanie, jakie konkretne zadanie narzędzie ma wykonywać, aby zapewnić prawidłowe wykorzystanie w trakcie budowy, co przekłada się na ogólną jakość wykonania oraz bezpieczeństwo instalacji.

Pytanie 22

Jakie narzędzia wykorzystuje się do demontażu murowanych części konstrukcyjnych budynku?

A. wkrętarki
B. wiertarki obrotowe
C. piły tarczowe
D. młoty udarowe
Wybór pił tarczowych, wkrętarek czy wiertarek obrotowych do rozbiórki murowych elementów konstrukcyjnych jest błędny, ponieważ każde z tych narzędzi ma określone zastosowanie, które nie obejmuje efektywnej rozbiórki twardych materiałów budowlanych. Piły tarczowe, mimo że są przydatne w cięciu drewna oraz niektórych materiałów kompozytowych, nie są wystarczająco mocne, aby skutecznie radzić sobie z murem czy betonem. Ich zastosowanie w kontekście rozbiórki murowanej struktury może prowadzić do uszkodzenia narzędzia oraz spowolnienia pracy. Wkrętarki są przeznaczone głównie do wkręcania i wykręcania wkrętów, co nie ma zastosowania w rozbiórce konstrukcji murowych, a ich użycie może być ograniczone do prost

Pytanie 23

Proces naprawy wilgotnego tynku powinien rozpocząć się od

A. zlikwidowania nalotów pleśni
B. osuchania powierzchni tynku
C. nałożenia środka gruntującego
D. eliminacji źródła zawilgocenia
W przypadku podejmowania działań w celu naprawy zawilgoconego tynku, wybór pierwszego kroku jest kluczowy, a wprowadzenie nieefektywnych metod może prowadzić do długotrwałych problemów. Osuszenie powierzchni tynku jako pierwsza reakcja jest często mylone z rzeczywistym rozwiązaniem problemu. Choć usunięcie widocznej wilgoci może przynieść chwilową ulgę, to nie eliminuje ono źródła problemu, co może prowadzić do dalszych uszkodzeń i ponownego zawilgocenia. Pokrycie środkiem gruntującym również nie jest odpowiednią strategią, ponieważ takie działanie nie adresuje przyczyny wilgoci, a jedynie maskuje objawy. Zastosowanie gruntów w sytuacji, gdy przyczyna zawilgocenia nie została usunięta, może spowodować, że wilgoć zostanie uwięziona w tynku, co prowadzi do powstawania pleśni i grzybów, a także innego rodzaju uszkodzeń strukturalnych. Usuwanie nalotów pleśni może być krokiem koniecznym, ale powinno być traktowane jako działanie wspierające, a nie zastępujące fundamentalną konieczność wyeliminowania źródła wilgoci. Innymi słowy, kluczowym błędem jest skupienie się na powierzchownych rozwiązaniach, które nie prowadzą do długotrwałej poprawy sytuacji, co jest sprzeczne z najlepszymi praktykami w zakresie konserwacji budynków.

Pytanie 24

Podczas budowy ściany o wysokości do 2,5 m konieczne jest użycie rusztowania

A. ramowego
B. na wysuwnicach
C. wiszącego
D. na kozłach
Odpowiedzi 'wiszącego', 'na wysuwnicach' oraz 'ramowego' są niewłaściwe w kontekście murowania ściany o wysokości do 2,5 m. Użycie rusztowania wiszącego w takiej sytuacji jest niepraktyczne, ponieważ jego zastosowanie ogranicza się głównie do elewacji budynków oraz prac, gdzie dostęp z poziomu terenu jest utrudniony. Tego typu rusztowania nie zapewniają wystarczającej stabilności przy pracy z ciężkimi materiałami budowlanymi, co może prowadzić do niebezpiecznych sytuacji. Z kolei rusztowania na wysuwnicach, choć przydatne w określonych zastosowaniach, nie są rekomendowane do standardowego murowania ścian, ponieważ ich mechanizm ruchu może być nieodpowiedni dla prac wymagających precyzji. Wreszcie, rusztowania ramowe, mimo że znajdują zastosowanie w wielu sytuacjach budowlanych, w przypadku ścian o wysokości do 2,5 m są często mniej elastyczne i trudniejsze w montażu niż kozły. Często błędnie zakłada się, że bardziej skomplikowane rusztowania są zawsze lepszym rozwiązaniem, jednak w praktyce przy prostych pracach budowlanych, takich jak murowanie, prostota i stabilność kozłów są kluczowe dla bezpieczeństwa i efektywności pracy.

Pytanie 25

Oblicz całkowity koszt realizacji tynku mozaikowego na ścianie o powierzchni 30 m2, przy założeniu, że koszt robocizny wynosi 25,00 zł/m2, a wydatki na materiały to 20,00 zł/m2?

A. 1 350,00 zł
B. 600,00 zł
C. 1 500,00 zł
D. 750,00 zł
Często wybór błędnej odpowiedzi bierze się stąd, że nie do końca rozumie się, jak liczyć koszty w budownictwie. Odpowiedzi takie jak 750 zł albo 600 zł sugerują, że spojrzano tylko na jeden z kosztów – robociznę albo materiały, a nie na oba razem. Całkowity koszt to coś więcej, trzeba połączyć wszystkie elementy, a nie tylko wypisać pojedyncze kwoty. Odpowiedź 1 500 zł jest błędna, bo dodano oba koszty w sposób, który nie uwzględnia rzeczywistości. W budowlance ważne jest, żeby znać koszty jednostkowe, które są ustalane według standardów. Przykładowo, trzeba zsumować koszty po przeliczeniu na odpowiednią powierzchnię, w tym przypadku 30 m². Dlatego ważne, żeby dokładnie obliczyć wydatki, by dobrze zarządzać budżetem. Zrozumienie tych rzeczy to podstawa dla każdego w tej branży.

Pytanie 26

Na podstawie danych z tabeli oblicz ilość piasku potrzebnego do wykonania 0,5 m3 zaprawy cementowo-wapiennej M2.

Orientacyjna ilość składników na 1 m³ zaprawy cementowo-wapiennej o konsystencji plastycznej
Proporcje
cement : wapno : piasek
Marka
zaprawy
Cement
portlandzki CEM I
[kg]
Wapno
hydratyzowane
[kg]
Piasek
[m³]
Woda
[dm³]
1 : 2,5 : 10,5M21071240,94316
1 : 1,25 : 6,75M5165970,85304
1 : 0,25 : 3,75M20293340,93284
A. 0,45 m3
B. 0,93 m3
C. 0,95 m3
D. 0,47 m3
Poprawna odpowiedź to 0,47 m3, co wynika z zastosowania odpowiedniej proporcji do obliczenia ilości piasku potrzebnego do wykonania 0,5 m3 zaprawy cementowo-wapiennej M2. W praktyce, aby uzyskać dokładne wyniki, należy najpierw zrozumieć, jakie są standardowe proporcje składników w zaprawie. Zazwyczaj zaprawy cementowo-wapienne są tworzone w proporcji cementu, wapna i piasku. W przypadku zaprawy M2, tabela danego producenta może wskazywać, ile piasku przypada na 1 m3 zaprawy. Przyjmując, że na 1 m3 zaprawy M2 potrzeba na przykład 0,94 m3 piasku, obliczamy ilość piasku dla 0,5 m3, wykonując mnożenie: 0,94 m3 x 0,5 = 0,47 m3. Ta metoda obliczeń jest kluczowa w budownictwie, ponieważ zapewnia właściwe proporcje materiałów, co wpływa na jakość i trwałość zaprawy. Prawidłowe obliczenia są nie tylko zgodne z normami budowlanymi, ale także istotne dla efektywności ekonomicznej projektu budowlanego.

Pytanie 27

Na podstawie fragmentu instrukcji producenta oblicz, ile bloczków gazobetonowych o wymiarach
240×240×590 mm potrzeba do wymurowania ściany grubości 24 cm, długości 12 m i wysokości 4 m.

Fragment instrukcji producenta
Wymiary bloczków
[mm]
Zużycie bloczków
[szt./m²]
240×240×5907
120×240×5907
A. 8064 szt.
B. 336 szt.
C. 80 szt.
D. 672 szt.
Dobrze, że obliczyłeś ilość bloczków gazobetonowych, które potrzebujesz na ścianę. Z tego co widzę, wykorzystałeś dane wymiary ściany i bloczków. Ściana 12 m długości i 4 m wysokości daje nam 48 m² powierzchni. Potem ładnie obliczyłeś powierzchnię bloczka, która wynosi 0,0576 m². Jeżeli podzielisz 1 m² przez tę wartość, otrzymasz coś koło 17,36 bloczków na m². To oznacza, że do pokrycia całej ściany potrzebujesz około 833 bloczków. Ale pamiętaj, że zazwyczaj warto doliczyć trochę więcej na wszelki wypadek, żeby uniknąć problemów na budowie. W końcu w praktyce budowlanej to nie tylko liczby, ale też umiejętność przewidywania strat materiałowych, więc dobrze, że wziąłeś to pod uwagę!

Pytanie 28

Który rysunek przedstawia schemat wiązania blokowego?

Ilustracja do pytania
A. B.
B. D.
C. A.
D. C.
Wybór nieprawidłowej odpowiedzi może wynikać z niepełnego zrozumienia zasad wiązania blokowego. Każdy z pozostałych rysunków przedstawia inne rodzaje wiązań, które nie spełniają kryteriów charakterystycznych dla wiązania blokowego. Na przykład, możliwe, że rysunki A, B, lub D ukazują wiązania w innych konfiguracjach, takich jak wiązanie w styk, które polega na układaniu cegieł w bezpośrednim sąsiedztwie, co może prowadzić do koncentracji obciążeń w miejscach styku. Taki sposób układania cegieł jest mniej stabilny i narażony na pęknięcia, co jest sprzeczne z zasadami dobrego budownictwa. Często podczas nauki o różnych rodzajach wiązań cegieł, nie zwraca się uwagi na praktyczne konsekwencje ich wyboru, co prowadzi do błędnych wniosków. Ważne jest, aby pamiętać, że każde wiązanie ma swoje specyficzne zastosowania oraz ograniczenia, a ich stosowanie powinno być zgodne z obowiązującymi normami budowlanymi. Zrozumienie tych różnic jest kluczowe dla właściwego projektowania i wykonawstwa, a także dla zapewnienia trwałości i bezpieczeństwa konstrukcji. Warto zatem zgłębić temat różnych rodzajów wiązań, aby umiejętnie je stosować w praktyce budowlanej, przyczyniając się tym samym do podniesienia jakości realizowanych projektów.

Pytanie 29

Jaki sposób wiązania cegieł w murze przedstawiono na rysunku?

Ilustracja do pytania
A. Wiązanie gotyckie.
B. Wiązanie flamandzkie.
C. Wiązanie holenderskie.
D. Wiązanie śląskie.
Wiązanie flamandzkie, które zostało przedstawione na rysunku, charakteryzuje się specyficznym układem cegieł, gdzie na każdej warstwie cegły pełne i połówki są układane na przemian. Taki sposób wiązania zapewnia nie tylko estetyczne wykończenie, ale również znaczną stabilność całej konstrukcji. Praktyczne zastosowanie wiązania flamandzkiego występuje w budynkach o dużych wymaganiach nośnych, gdzie istotne jest równomierne rozłożenie obciążeń. Zastosowanie tej techniki jest zgodne z najlepszymi praktykami w budownictwie, które kładą nacisk na trwałość i efektywność materiałową. Cegły, w zależności od ich rodzaju, mogą mieć różne właściwości, co wpływa na wybór konkretnego rozwiązania w projekcie budowlanym. Warto również zauważyć, że wiązanie flamandzkie jest często wykorzystywane w architekturze historycznej, co świadczy o jego popularności i funkcjonalności od wieków.

Pytanie 30

Aby przygotować zaprawę cementowo-wapienną w proporcjach objętościowych 1 : 2 : 6, należy zastosować odpowiednio

A. 1 część wapna, 2 części cementu oraz 6 części wody
B. 1 część cementu, 2 części wapna i 6 części piasku
C. 1 część wapna, 2 części cementu oraz 6 części piasku
D. 1 część cementu, 2 części wapna oraz 6 części wody
Wszystkie błędne odpowiedzi opierają się na nieprawidłowym rozumieniu proporcji w zaprawie cementowo-wapiennej. Na przykład w jednym z przypadków podano, że należy użyć 1 części cementu, 2 części wapna i 6 części wody. Taki skład jest całkowicie nieodpowiedni, ponieważ nadmiar wody w zaprawie prowadzi do rozcieńczenia cementu, co negatywnie wpływa na jego zdolność do wiązania. W konsekwencji zaprawa staje się słaba, nietrwała i mniej odporna na czynniki zewnętrzne. W innym przypadku zaproponowano skład, który sugeruje użycie 1 części wapna, 2 części cementu i 6 części piasku. Taka proporcja zmienia równowagę składników, co obniża elastyczność i może prowadzić do problemów z przyczepnością. Jest to typowy błąd, polegający na niewłaściwym przypisaniu roli poszczególnych komponentów zaprawy; w tym przypadku cement nie pełniłby swojej funkcji jako podstawowe spoiwo. Ponadto, odpowiedzi wskazujące na użycie wody zamiast piasku są wysoce nieodpowiednie i mogą prowadzić do poważnych problemów w trakcie budowy. Użycie wody w nadmiarze niszczy strukturę zaprawy, co skutkuje ryzykiem uszkodzeń konstrukcyjnych w przyszłości. W kontekście budownictwa kluczowe jest przestrzeganie standardów jakości i właściwych proporcji, które zapewniają wytrzymałość oraz trwałość konstrukcji.

Pytanie 31

Sprzętu przedstawionego na rysunku używa się do transportu

Ilustracja do pytania
A. drogowych mas bitumicznych.
B. suchych mieszanek zapraw tynkarskich.
C. mieszanki betonowej.
D. cementu luzem.
Betonomieszarka, przedstawiona na zdjęciu, jest specjalistycznym urządzeniem wykorzystywanym do transportu i przygotowania mieszanki betonowej na placu budowy. Jej konstrukcja pozwala na efektywne mieszanie składników, takich jak cement, piasek i kruszywo, co zapewnia uzyskanie jednorodnej mieszanki. To zagadnienie jest kluczowe w budownictwie, ponieważ jakość betonu determinowana jest zarówno przez proporcje składników, jak i przez sposób ich mieszania. Betonomieszarki są standardowo używane w dużych projektach budowlanych, gdzie ilość betonu potrzebna do realizacji robót budowlanych jest znaczna. Istotnym atutem tego sprzętu jest mobilność – betonomieszarki mogą być przetransportowane blisko miejsca użycia, co minimalizuje czas potrzebny na dowóz materiału oraz zwiększa efektywność prac budowlanych. W praktyce, korzystając z betonomieszarek, można również dostosować recepturę betonu w zależności od wymagań projektu, co jest zgodne z aktualnymi normami budowlanymi i dobrymi praktykami w branży.

Pytanie 32

W celu przygotowania zapraw cementowo-wapiennych zimą, zaleca się wykorzystanie jako spoiwa

A. cementu hutniczego
B. wapna hydraulicznego
C. wapna hydratyzowanego
D. cementu portlandzkiego
Wybór wapna hydraulicznego jako spoiwa do zapraw cementowo-wapiennych w warunkach zimowych nie jest właściwy, gdyż tego typu wapno, mimo że posiada zdolność do twardnienia w wodzie, nie radzi sobie dobrze w niskich temperaturach. Wapno hydrauliczne wymaga określonej temperatury i wilgotności do skutecznego wiązania, a w zimowych warunkach może prowadzić do osłabienia struktury zaprawy. Z kolei cement hutniczy, który jest produktem ubocznym przemysłu stalowego, ma zastosowanie głównie w specjalistycznych konstrukcjach, ale jego użycie w standardowych zaprawach cementowo-wapiennych jest rzadkie i wymaga szczegółowych badań wytrzymałościowych, co czyni go niewłaściwym wyborem na zimę. Cement portlandzki, choć powszechnie stosowany w budownictwie, również nie jest idealnym rozwiązaniem na zimę, ponieważ jego proces schnięcia i twardnienia jest uzależniony od temperatury otoczenia, co w zimnych warunkach może prowadzić do problemów z utwardzeniem i trwałością. W praktyce błędne wnioski mogą wynikać z mylnego przekonania, że wszystkie rodzaje wapna i cementu mogą być stosowane zamiennie, co prowadzi do niedoceniania ich specyficznych właściwości oraz wpływu temperatury na procesy chemiczne zachodzące w zaprawach.

Pytanie 33

Przedstawioną na ilustracji łatę tynkarską typu H stosuje się do

Ilustracja do pytania
A. wyznaczania powierzchni tynku.
B. zaciągania tynku bezpośrednio po nałożeniu zaprawy.
C. nakładania poszczególnych warstw tynku.
D. wyrównywania tynku po lekkim związaniu.
Wybór odpowiedzi dotyczącej nakładania poszczególnych warstw tynku jest mylny, ponieważ łata tynkarska nie jest narzędziem używanym do tego celu. Nakładanie tynku polega na precyzyjnym rozkładaniu zaprawy na powierzchni, a łata służy raczej do wygładzania i zaciągania już nałożonego tynku. Podobnie, odpowiedź dotycząca wyrównywania tynku po lekkim związaniu jest nieprecyzyjna, ponieważ łata tynkarska jest stosowana w momencie, gdy zaprawa jest jeszcze świeża, co pozwala na uzyskanie odpowiedniej gładkości. Jeśli tynk jest już związany, to jego wygładzanie wymaga innych narzędzi i technik, które nie zapewnią właściwego efektu. Co więcej, wyznaczanie powierzchni tynku to czynność, która nie jest bezpośrednio związana z funkcją łaty tynkarskiej tego typu. Może to prowadzić do typowych błędów w myśleniu, gdzie użytkownicy mylą różne etapy procesu tynkarskiego, nie doceniając znaczenia odpowiednich narzędzi i ich zastosowania w określonych momentach pracy. Właściwe zrozumienie tych różnic jest kluczowe dla wykonawców, aby uniknąć nieefektywności, błędów w aplikacji tynku oraz uzyskać pożądane efekty estetyczne i funkcjonalne w budownictwie.

Pytanie 34

W celu skonstruowania jednowarstwowych ścian zewnętrznych, ze względu na potrzebę osiągnięcia właściwej izolacji cieplnej, najczęściej wykorzystuje się

A. cegły ceramiczne pełne lub bloczki wykonane z betonu kruszywowego
B. bloczki z betonu komórkowego lub pustaki ceramiczne poryzowane
C. bloczki silikatowe bądź płyty gipsowo-kartonowe
D. cegły ceramiczne klinkierowe bądź cegły ceramiczne dziurawki
Wybór materiałów budowlanych do konstrukcji jednowarstwowych ścian zewnętrznych powinien być uzależniony od ich właściwości izolacyjnych, co niestety nie jest brane pod uwagę w przypadku bloczków silikatowych czy płyty gipsowo-kartonowej. Bloczki silikatowe nie są powszechnie stosowane w ścianach zewnętrznych ze względu na ich ograniczone parametry izolacyjne i większą gęstość, co skutkuje wyższym współczynnikiem przewodzenia ciepła. Płyty gipsowo-kartonowe, choć wykorzystywane w budownictwie, są materiałem przeznaczonym głównie do budowy ścian działowych oraz wykończeniowych, a nie do konstrukcji nośnych ścian zewnętrznych. Cegły ceramiczne pełne również mają ograniczenia w zakresie izolacyjności, a ich duża masa sprawia, że nie są optymalnym rozwiązaniem dla budynków wymagających odpowiedniej efektywności energetycznej. Z kolei cegły klinkierowe i cegły ceramiczne dziurawki oferują lepsze parametry, ale nadal nie dorównują właściwościom izolacyjnym betonu komórkowego i pustaków poryzowanych. Warto również zauważyć, że materiały budowlane muszą spełniać określone normy i standardy, które regulują ich zastosowanie w kontekście izolacyjności cieplnej. Ignorowanie tych aspektów może prowadzić do nieefektywności energetycznej budynku, co w dłuższej perspektywie skutkuje wyższymi kosztami eksploatacyjnymi i negatywnym wpływem na środowisko.

Pytanie 35

Na podstawie fragmentu instrukcji producenta oblicz, ile palet bloczków gazobetonowych o wymiarach
24×24×59 cm potrzeba do wymurowania dwóch ścian wysokości 2,75 m, długości 6 m i grubości 24 cm każda.

Informacje producenta bloczków betonu komórkowego
Wymiary bloczka
[cm]
Zużycie
[szt./m²]
Masa
[kg]
Liczba na palecie
[szt.]
24×24×59722,448
12×24×59712,296
8×24×5979,2144
A. 58 palet.
B. 116 palet.
C. 3 palety.
D. 5 palet.
Wybierając inną odpowiedź niż 5 palet, można napotkać na kilka typowych błędów obliczeniowych. Na przykład, wybierając 3 palety, można zakładać, że wystarczająca ilość bloczków zmieści się w tej liczbie, co jest mylne. Obliczenia wskazują, że potrzeba znacznie więcej bloczków, ponieważ 3 palety zapewniłyby jedynie 144 bloczki, co jest niewystarczające dla zapotrzebowania. Z kolei wybór 58 lub 116 palet wskazuje na dramatyczne przeszacowanie ilości potrzebnych materiałów. Obydwie te odpowiedzi mogą wynikać z błędów w założeniach dotyczących objętości lub niewłaściwego zrozumienia liczby bloczków na paletę. Brak dokładnego obliczenia objętości ścian oraz objętości bloczków może prowadzić do takich nieporozumień. Zrozumienie objętości to kluczowy element w budownictwie, ponieważ wpływa na planowanie, zarządzanie budżetem oraz harmonogramem. Właściwe zrozumienie procesu obliczeń materiałowych oraz znajomość standardów dotyczących wielkości paczek materiałów budowlanych są kluczowe w codziennej pracy inżynierów i projektantów. Ignorując te zasady, można znacząco opóźnić projekt oraz zwiększyć koszty, co jest sprzeczne z najlepszymi praktykami branżowymi.

Pytanie 36

Na rysunku przedstawiono układ cegieł

Ilustracja do pytania
A. w narożniku murów o grubości 2.5 i 1.5 cegły.
B. w przenikających się murach o grubości 1.5 i 1.5 cegły.
C. w narożniku murów o grubości 1.5 i 1.5 cegły.
D. w przenikających się murach o grubości 2.5 i 1.5 cegły.
Dobra robota! Zaznaczenie narożnika murów o grubości 2.5 i 1.5 cegły pokazuje, że dobrze analizujesz, co widać na rysunku. Wiedza o grubości murów jest naprawdę kluczowa w budownictwie, bo to wpływa na stabilność całej konstrukcji. Lewy mur, cieńszy (1.5 cegły), to typowa praktyka, żeby zaoszczędzić materiały, a grubszy (2.5 cegły) rzeczywiście daje więcej nośności. Spotkasz to w różnych projektach, od domków jednorodzinnych po hale przemysłowe. Pamiętaj, że w narożnikach często stosuje się wzmocnienia, żeby wszystko trzymało się kupy. Mówiąc prościej, wykonawcy często dodają stalowe zbrojenia i różne technologie łączenia cegieł, żeby uniknąć pęknięć. To wszystko jest mega ważne, zwłaszcza dla inżynierów i architektów, którzy projektują i budują różne obiekty.

Pytanie 37

Na rysunku przedstawiono

Ilustracja do pytania
A. przekrój budynku.
B. widok budynku.
C. elewację budynku.
D. rzut budynku.
Wybór odpowiedzi, który wskazuje na rzut budynku, widok budynku lub elewację budynku, odzwierciedla typowe nieporozumienia związane z interpretacją rysunków technicznych. Rzut budynku jest to przedstawienie obiektu z góry, które nie ujawnia jego wewnętrznego układu. Jego celem jest pokazanie rozmieszczenia pomieszczeń oraz elementów zewnętrznych, co jest zupełnie innym podejściem niż analiza przekroju. Widok budynku, z kolei, koncentruje się głównie na jego elewacjach, czyli zewnętrznych fasadach, co również nie dostarcza informacji o wewnętrznej strukturze. Elewacja budynku to przedstawienie zewnętrzne, które pokazuje detale architektoniczne, ale nie wyraża informacji dotyczących elementów wewnętrznych, co jest kluczowe w kontekście przekroju. Potencjalne błędy myślowe związane z tymi odpowiedziami mogą wynikać z braku zrozumienia funkcji poszczególnych rysunków technicznych w architekturze i inżynierii. Zrozumienie różnicy między tymi rodzajami rysunków jest fundamentalne dla prawidłowej interpretacji dokumentacji budowlanej oraz efektywnego projektowania zgodnie z obowiązującymi normami i standardami w branży budowlanej.

Pytanie 38

Gładź tynków zewnętrznych można uzyskać z mieszanki

A. wapiennej
B. anhydrytowej
C. cementowo-wapiennej
D. wapienno-gipsowej
Wybór innych zapraw, takich jak wapienne, anhydrytowe czy wapienno-gipsowe, nie jest odpowiedni do gładzi tynków zewnętrznych. Zaprawa wapienna, choć ma swoje zalety, nie oferuje wystarczającej wytrzymałości mechanicznej i odporności na czynniki atmosferyczne w porównaniu do zaprawy cementowo-wapiennej. Wapno ma tendencję do łuszczenia się i kruszenia pod wpływem deszczu i wiatru, co sprawia, że nie nadaje się do stosowania jako główna warstwa wykończeniowa na elewacjach. Z kolei zaprawa anhydrytowa, będąca materiałem na bazie siarczanu wapnia, jest stosunkowo nowym rozwiązaniem, które znajduje swoje miejsce w budownictwie wnętrz, ale nie sprawdza się w warunkach zewnętrznych, ponieważ może ulegać degradacji pod wpływem wilgoci. Ostatnią z analizowanych opcji, zaprawa wapienno-gipsowa, nie jest również zalecana do zastosowań zewnętrznych, gdyż gips, mimo że jest materiałem łatwym w obróbce, ma niską odporność na wodę, co prowadzi do jego szybkiego zniszczenia pod wpływem deszczu. W przypadku gładzi tynków zewnętrznych kluczowe jest, aby materiał charakteryzował się odpowiednią odpornością na warunki atmosferyczne oraz zdolnością do regulacji wilgotności, dlatego zaprawa cementowo-wapienna jest najbardziej rekomendowaną opcją w tej dziedzinie.

Pytanie 39

Jakim preparatem powinno się pokryć powierzchnię pylistego tynku, aby zwiększyć jego wytrzymałość?

A. Barwiącym
B. Penetrującym
C. Gruntującym
D. Antyadhezyjnym
Jeżeli wybierzesz zły preparat do pokrycia powierzchni pylącego tynku, to mogą się pojawić różne problemy. Preparaty barwiące niby poprawiają estetykę, ale nie wzmacniają tynku. Zwykle zawierają pigmenty i inne substancje, które wcale nie poprawiają przyczepności ani nie zmniejszają pylenia. No i to może prowadzić do odpadania farby czy tynku w krótkim czasie. Stosowanie preparatów antyadhezyjnych, które mają zmniejszyć przyczepność, jest totalnie nie na miejscu, bo do wzmacniania tynku potrzebne są substancje, które zwiększają adhezję, a nie ją osłabiają. Nawiasem mówiąc, preparaty penetrujące mogą mieć jakieś właściwości ochronne, ale nie poprawią struktury tynku tak, jak grunt. Często myślimy, że każdy preparat, który wnika w materiał, będzie go poprawiał, ale to jest błędne. Dobre praktyki budowlane jednoznacznie pokazują, że gruntowanie jest konieczne, aby przygotować powierzchnię, co jest kluczowe dla uzyskania trwałego i ładnego efektu końcowego.

Pytanie 40

Izolację poziomą w budynku bez piwnicy powinno się wykonać

A. pod fundamentem i na poziomie podłogi na gruncie
B. na górnej powierzchni fundamentu i na górnej powierzchni ściany fundamentowej
C. pod fundamentem i na górnej powierzchni ściany fundamentowej
D. na górnej powierzchni fundamentu i na poziomie terenu
Realizacja izolacji na poziomie ławy fundamentowej jest kluczowym elementem zapewnienia właściwej ochrony budynku przed skutkami działania wód gruntowych. Wybór niewłaściwego miejsca dla wykonania izolacji, tak jak sugeruje pierwsza odpowiedź, może prowadzić do nieefektywnej ochrony. Izolacja pod ławą fundamentową nie jest wystarczająca, aby zablokować przenikanie wilgoci, ponieważ woda może gromadzić się w innych obszarach fundamentu, co prowadzi do zjawisk takich jak podsiąkanie wody. Z kolei umiejscowienie izolacji na wysokości poziomu terenu, jak w przypadku trzeciej odpowiedzi, stwarza ryzyko, że woda opadowa lub gruntowa z łatwością przedostanie się do wnętrza budynku, powodując uszkodzenia konstrukcji i problemy z wilgocią. Odpowiedź dotycząca izolacji na wysokości podłogi na gruncie jest również błędna, ponieważ nie uwzględnia praktyczne aspekty zarządzania wodami gruntowymi w danym miejscu. Właściwe podejście powinno opierać się na zasadach hydroizolacji fundamentów, które wskazują na konieczność zabezpieczenia zarówno ławy, jak i ścian fundamentowych w celu stworzenia skutecznej bariery przed wodą. Zrozumienie tych zasad jest kluczowe dla zachowania trwałości budynku oraz bezpieczeństwa jego użytkowników.