Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektryk
  • Kwalifikacja: ELE.02 - Montaż, uruchamianie i konserwacja instalacji, maszyn i urządzeń elektrycznych
  • Data rozpoczęcia: 10 grudnia 2025 23:12
  • Data zakończenia: 10 grudnia 2025 23:27

Egzamin zdany!

Wynik: 26/40 punktów (65,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Która z podanych czynności jest częścią inspekcji wirnika maszyny komutatorowej?

A. Kontrola braku zwarć międzyzwojowych
B. Pomiar oporu izolacji
C. Wyważenie
D. Weryfikacja stanu szczelin komutatora
Pomiar rezystancji izolacji jest niezbędnym działaniem w utrzymaniu maszyn elektrycznych, jednak nie należy do oględzin wirnika maszyny komutatorowej w ścisłym tego słowa znaczeniu. Izolacja wirników ma na celu zabezpieczenie przed przebiciem i zwarciami, ale nie odnosi się bezpośrednio do stanu mechanicznego wirnika. Również sprawdzenie braku zwarć międzyzwojowych jest istotne, lecz odnosi się do analizy stanu uzwojeń wirnika, a nie do oględzin wycinków komutatora. W przypadku wirników komutatorowych, zwarcia międzyzwojowe mogą przyczynić się do uszkodzeń, jednak podczas oględzin kluczowym jest skupienie się na samym komutatorze, a zwłaszcza na jego wycinkach. Wyważenie wirnika dotyczy jego dynamicznej równowagi podczas pracy, co również nie jest bezpośrednio związane z oględzinami stanu komutatora. W praktyce, nieprawidłowe podejście do oceny stanu wirnika może prowadzić do niewłaściwych wniosków i potencjalnych awarii. Właściwa interpretacja czynności związanych z konserwacją i oględzinami wirnika jest kluczowa dla jego efektywnej pracy oraz długowieczności systemu, a zaniedbania w tym zakresie mogą prowadzić do kosztownych awarii.

Pytanie 2

Którego narzędzia należy użyć do demontażu w rozdzielnicy piętrowej uszkodzonego urządzenia pokazanego na rysunku?

Ilustracja do pytania
A. Szczypiec typu Segera.
B. Wkrętaka płaskiego.
C. Wkrętaka imbusowego.
D. Szczypiec uniwersalnych.
Poprawna odpowiedź to wkrętak płaski, który jest narzędziem niezbędnym do demontażu wyłącznika nadprądowego zamontowanego na szynie DIN w rozdzielnicy. Wyłączniki nadprądowe są zabezpieczeniami elektrycznymi, które chronią instalacje przed przeciążeniem i zwarciami. Aby skutecznie usunąć taki element, należy użyć wkrętaka płaskiego do odblokowania mechanizmu zatrzaskowego, który uniemożliwia swobodne wyjęcie wyłącznika. W przypadku użycia niewłaściwego narzędzia, jak szczypce uniwersalne czy wkrętak imbusowy, istnieje ryzyko uszkodzenia obudowy urządzenia lub samej rozdzielnicy. Stosowanie wkrętaka płaskiego jest zgodne z najlepszymi praktykami w branży elektrycznej, które podkreślają potrzebę użycia odpowiednich narzędzi do danej aplikacji, co zapewnia bezpieczeństwo i integralność instalacji. Dodatkowo, warto pamiętać o konieczności odłączenia zasilania przed rozpoczęciem jakichkolwiek prac, aby zapobiec porażeniu prądem. Zastosowanie wkrętaka płaskiego nie tylko ułatwia proces demontażu, ale również minimalizuje ryzyko uszkodzeń, co jest kluczowe w pracach konstruujących i serwisujących instalacje elektryczne.

Pytanie 3

Która z poniższych wartości wskazuje na najwyższy poziom precyzji narzędzia pomiarowego?

A. 1
B. 0,1
C. 5
D. 0,5
Odpowiedź 0,1 jest poprawna, ponieważ w kontekście narzędzi pomiarowych oznacza najwyższą klasę dokładności. Klasa dokładności narzędzia pomiarowego wskazuje, jak blisko pomiar może być rzeczywistej wartości mierzonych wielkości. W przypadku narzędzi pomiarowych, im mniejsza wartość podana w jednostce, tym wyższa ich dokładność. W praktyce, narzędzia o dokładności 0,1 stosowane są w sytuacjach wymagających precyzyjnych pomiarów, takich jak laboratoria badawcze, przemysł precyzyjny czy metrologia. Na przykład, w pomiarach długości, takie narzędzia mogą być wykorzystywane do pomiarów w konstrukcji maszyn, gdzie minimalne odchylenie może prowadzić do dużych błędów w finalnym produkcie. Klasyfikacja narzędzi pomiarowych opiera się na standardach ISO, które definiują wymagania dotyczące dokładności i precyzji pomiarów. W praktyce, wybór narzędzia pomiarowego powinien być dostosowany do specyfikacji zadania, aby zapewnić optymalne wyniki pomiarów.

Pytanie 4

Zmywarka, która jest na stałe zainstalowana, powinna być podłączona do obwodu

A. zasilającego gniazdka w łazience oraz kuchni
B. oddzielnego dla zmywarki
C. oddzielnego dla urządzeń gospodarstwa domowego
D. zasilającego gniazdka jedynie w kuchni
Zasilanie zmywarki z obwodu z gniazda w łazience i kuchni jest nieodpowiednie, ponieważ takie podejście może prowadzić do wielu problemów związanych z bezpieczeństwem oraz funkcjonalnością. Przede wszystkim, gniazda w łazience są zaprojektowane z myślą o niskiej mocy i specyficznych wymaganiach urządzeń, a ich użycie do zasilania zmywarki może skutkować przeciążeniem obwodu. Użycie wspólnego obwodu dla różnych urządzeń, zwłaszcza w kontekście sprzętu AGD, może prowadzić do nieprzewidywalnych sytuacji, takich jak wyzwolenie zabezpieczeń. Kolejnym problemem jest to, że gniazda w łazience muszą spełniać rygorystyczne normy ochrony przed porażeniem elektrycznym, co w przypadku zmywarki, która działa w wodzie, stwarza dodatkowe ryzyko. Zasilanie zmywarki z jednego obwodu z innym sprzętem gospodarstwa domowego, takim jak lodówka, również jest niewłaściwe, ponieważ może doprowadzić do przeciążeń, co w konsekwencji może skutkować uszkodzeniem urządzeń. Warto więc przestrzegać zasad dotyczących oddzielnych obwodów dla dużych urządzeń, co jest zgodne z normami bezpieczeństwa oraz praktyką instalatorską, aby zapewnić efektywne i bezpieczne działanie wszystkich urządzeń w domu.

Pytanie 5

Który parametr instalacji elektrycznej można sprawdzić za pomocą testera przedstawionego na rysunku?

Ilustracja do pytania
A. Ciągłość przewodów.
B. Prąd upływu.
C. Rezystancję uziemienia odbiornika.
D. Kolejność faz zasilających.
Dobra robota z wyborem odpowiedzi! To narzędzie, które widzisz na zdjęciu, to tester kolejności faz. Jest naprawdę ważny w elektryce, bo sprawdza, czy fazy są odpowiednio podłączone w instalacjach trójfazowych. Zrozumienie tej kolejności jest kluczowe, bo jak fazy się zamienią, to mogą być problemy z działaniem urządzeń, szczególnie silników. Bezpieczne uruchamianie nowych instalacji to podstawa, a ten tester naprawdę się przydaje. W branży elektrycznej normy mówią, że musimy pilnować tej kolejności, żeby uniknąć nieprawidłowości i niebezpieczeństw. Poza tym, jeśli w systemie jest nierównomierne obciążenie, to ten tester też może pomóc to zdiagnozować, a to ważne dla oszczędności energii.

Pytanie 6

Jakie środki ochrony przed porażeniem zastosowano w systemie, gdzie zasilanie urządzeń pochodzi z transformatora bezpieczeństwa?

A. Izolację miejsca pracy
B. Podwójną lub wzmocnioną izolację
C. Ochronne obniżenie napięcia
D. Separację urządzeń
W kontekście ochrony przed porażeniem prądem elektrycznym, podwójna lub wzmocniona izolacja jest jedną z metod ochrony, jednak jej zastosowanie nie jest odpowiednie w każdym przypadku. Metoda ta polega na zastosowaniu dodatkowej izolacji poza standardową, co rzeczywiście może zwiększyć bezpieczeństwo urządzenia. Nie jest to jednak wystarczające rozwiązanie dla systemów zasilanych z transformatorów bezpieczeństwa, gdzie kluczowym czynnikiem jest niskie napięcie. Separacja odbiorników również nie jest najlepszym podejściem, mimo że ma swoje miejsce w projektowaniu systemów elektrycznych. Oznacza to oddzielenie obwodów elektrycznych w celu zwiększenia bezpieczeństwa, jednak nie eliminuje ryzyka porażenia, zwłaszcza w zastosowaniach niskonapięciowych. Izolacja stanowiska, czyli zabezpieczanie użytkowników przed dostępem do elementów czynnych, jest strategią bardziej stosowaną w kontekście obszarów roboczych, lecz nie adresuje podstawowego problemu związane z niskim napięciem, które jest kluczowe w przypadkach zasilania z transformatorów bezpieczeństwa. Ostatecznie, ochronne obniżenie napięcia jest najskuteczniejszym i rekomendowanym środkiem w takich sytuacjach, ponieważ obniża ryzyko porażenia do minimum poprzez stosowanie bezpiecznych wartości napięcia.", ""]

Pytanie 7

Jaki rodzaj złączki stosowanej w instalacjach elektrycznych przedstawiono na rysunku?

Ilustracja do pytania
A. Skrętną.
B. Gwintową.
C. Samozaciskową.
D. Śrubową.
Odpowiedź "Samozaciskową" jest poprawna, ponieważ przedstawiona złączka instalacyjna rzeczywiście jest złączką samozaciskową. Złączki tego typu charakteryzują się prostym mechanizmem, który umożliwia szybkie i wygodne połączenie przewodów bez konieczności używania narzędzi. Wystarczy włożyć przewód do otworu zaciskowego, a mechanizm samozaciskowy automatycznie zaciska przewód, co zapewnia stabilne połączenie. Tego rodzaju złączki są powszechnie stosowane w instalacjach elektrycznych, ponieważ przyspieszają proces montażu oraz eliminują ryzyko niewłaściwego użycia narzędzi, które mogą uszkodzić przewody. Złączki samozaciskowe znajdują zastosowanie w różnych obszarach, od instalacji domowych po przemysłowe systemy elektryczne. Warto zaznaczyć, że ich stosowanie jest zgodne z zasadami bezpieczeństwa, ponieważ zapewniają one solidne połączenia, które są niezbędne dla bezpiecznego funkcjonowania instalacji elektrycznych.

Pytanie 8

Na podstawie rysunku montażowego określ, na jakiej wysokości od podłogi należy zamontować dolną krawędź rozdzielnicy.

Ilustracja do pytania
A. 0,90 m
B. 1,4 m
C. 1,5 m
D. 0,80 m
Zgodnie z rysunkiem montażowym, dolna krawędź rozdzielnicy powinna być zamontowana na wysokości 1500 mm (1,5 m) od podłogi. Taki wymiar jest zgodny z normami branżowymi, które określają ergonomiczne i bezpieczne wysokości montażu rozdzielnic elektrycznych. Wysokość ta zapewnia wygodny dostęp do urządzeń oraz pozwala na swobodne prowadzenie prac serwisowych. Dodatkowo, montaż na tej wysokości minimalizuje ryzyko przypadkowego kontaktu z wodą oraz zanieczyszczeniami, co jest istotne w kontekście bezpieczeństwa elektrycznego. W praktyce, takie umiejscowienie rozdzielnicy ułatwia również korzystanie z niej w warunkach przemysłowych lub w budynkach użyteczności publicznej, gdzie użytkownicy mogą być różnego wzrostu. Warto pamiętać, że zgodność z obowiązującymi standardami oraz zasadami BHP jest kluczowym aspektem każdego projektu instalacji elektrycznych.

Pytanie 9

Wyznacz minimalny przekrój żył miedzianych przewodu, kierując się kryterium obciążalności długotrwałej, przy maksymalnej dopuszczalnej gęstości prądu wynoszącej 8 A/mm2, dla odbiornika o prądzie znamionowym 15,5 A.

A. 2,5 mm2
B. 6 mm2
C. 1,5 mm2
D. 4 mm2
Odpowiedź 2,5 mm² jest poprawna, ponieważ obciążalność długotrwała przewodów miedzianych powinna być dobrana na podstawie maksymalnej gęstości prądu, która wynosi 8 A/mm². Aby obliczyć minimalny wymagany przekrój żyły dla prądu znamionowego 15,5 A, należy podzielić ten prąd przez maksymalną gęstość prądu: 15,5 A / 8 A/mm² = 1,9375 mm². W praktyce zaokrąglamy wynik do najbliższego standardowego rozmiaru, co daje 2,5 mm². Zgodnie z normami, dobór odpowiedniego przekroju żyły jest kluczowy dla zapewnienia bezpieczeństwa i efektywności w instalacjach elektrycznych. Zbyt mały przekrój może prowadzić do przegrzewania się przewodów, co zwiększa ryzyko pożaru oraz uszkodzeń sprzętu. W zastosowaniach praktycznych, takich jak zasilanie urządzeń przemysłowych czy domowych, wybór właściwego przekroju żył jest niezbędny dla długotrwałej niezawodności systemu zasilania. Przykładem może być instalacja elektryczna w budynkach mieszkalnych, gdzie przewody muszą być odpowiednio dobrane do obciążenia, aby zapewnić komfort i bezpieczeństwo użytkowników.

Pytanie 10

Przygotowując się do wymiany uszkodzonego gniazda siłowego w instalacji elektrycznej, po odłączeniu zasilania w obwodzie tego gniazda, należy przede wszystkim

A. oznaczyć obszar roboczy
B. zabezpieczyć obwód przed przypadkowym włączeniem zasilania
C. rozłożyć dywanik izolacyjny w rejonie pracy
D. poinformować dostawcę energii
Zabezpieczenie obwodu przed przypadkowym załączeniem napięcia jest kluczowym krokiem w procesie wymiany gniazda siłowego. Po wyłączeniu napięcia, aby zapewnić bezpieczeństwo, należy zastosować odpowiednie środki, takie jak umieszczenie blokady na wyłączniku, co uniemożliwi jego przypadkowe włączenie. W przeciwnym razie, nieodpowiednie działanie lub nieuwaga mogą prowadzić do poważnych wypadków, takich jak porażenie prądem. Przykładem dobrych praktyk w branży elektrycznej jest stosowanie tabliczek informacyjnych ostrzegających, że obwód jest wyłączony i nie należy go włączać. Dodatkowo, w przypadku pracy w większych instalacjach, warto stosować procedury lockout/tagout (LOTO), które są standardem w zapobieganiu nieautoryzowanemu włączeniu urządzeń. Te praktyki są zgodne z normami bezpieczeństwa, co minimalizuje ryzyko wypadków w miejscu pracy.

Pytanie 11

Przygotowując się do wymiany uszkodzonego gniazda trójfazowego w systemie elektrycznym, po odłączeniu napięcia w obwodzie tego gniazda, należy przede wszystkim

A. oznaczyć miejsce pracy
B. poinformować dostawcę energii o zamiarze przeprowadzenia naprawy
C. zabezpieczyć obwód przed niezamierzonym włączeniem napięcia
D. rozłożyć dywanik elektroizolacyjny w obszarze roboczym
Zabezpieczenie obwodu przed przypadkowym załączeniem napięcia jest kluczowym krokiem w procesie wymiany gniazda trójfazowego, co wynika z podstawowych zasad bezpieczeństwa w pracy z instalacjami elektrycznymi. Po wyłączeniu napięcia, warto zastosować wyłącznik rozłączający lub blokadę, aby uniemożliwić przypadkowe włączenie zasilania. Dobrym przykładem praktycznym jest użycie blokady w systemach, w których dostęp do urządzeń jest wspólny, co minimalizuje ryzyko niebezpiecznych sytuacji. Dodatkowo, zgodnie z normami PN-IEC 60364, należy stosować odpowiednie procedury bezpieczeństwa, w tym oznaczenie obszaru pracy oraz zapewnienie, że osoba pracująca ma odpowiednie kwalifikacje. Takie działania nie tylko chronią pracowników, ale również klientów i innych osób znajdujących się w pobliżu. Warto również pamiętać o stosowaniu odpowiednich środków ochrony osobistej, takich jak rękawice izolacyjne oraz okulary ochronne, aby dodatkowo zminimalizować ryzyko wystąpienia wypadków.

Pytanie 12

Jakim oznaczeniem charakteryzuje się przewód jednożyłowy z żyłą wykonaną z aluminium, w izolacji z PVC, o przekroju 2,5 mm2, przeznaczony na napięcie znamionowe izolacji 500 V?

A. YLY 500 V 2,5 mm2
B. ALY 500 V 2,5 mm2
C. YDY 500 V 2,5 mm2
D. ADY 500 V 2,5 mm2
Odpowiedź ADY 500 V 2,5 mm2 jest jak najbardziej trafna. To standardowy symbol przewodu jednożyłowego wykonanego z aluminium, który ma izolację z PVC, czyli polichlorku winylu. W tej nazwie 'A' oznacza, że materiał żyły to aluminium, 'D' informuje nas, że mamy do czynienia z PVC, a 'Y' pokazuje, że to przewód jednożyłowy. Wiedza o takich oznaczeniach jest naprawdę ważna w inżynierii, bo dzięki temu można dobrze dobierać przewody do różnych zastosowań. To jest kluczowe dla bezpieczeństwa instalacji elektrycznych. Przewody o średnicy 2,5 mm2 są szeroko stosowane w budynkach mieszkalnych i przemysłowych, gdzie potrzebna jest odpowiednia wydolność prądowa. Napięcie 500 V oznacza maksymalne napięcie, które można stosować, co jest zgodne z normą PN-EN 60228 dotyczącą przewodów elektrycznych.

Pytanie 13

Jaka powinna być minimalna liczba przewodów w miejscach X oraz Y na schemacie instalacji, aby po jej wykonaniu możliwe było załączanie oświetlenia ze wszystkich łączników?

Ilustracja do pytania
A. X - 5 szt., Y - 5 szt.
B. X - 4 szt., Y - 5 szt.
C. X - 4 szt., Y - 4 szt.
D. X - 5 szt., Y - 4 szt.
Poprawna odpowiedź, czyli 4 przewody w miejscu X i 5 w miejscu Y, wynika z analizy struktury instalacji oświetleniowej z łącznikami schodowymi i krzyżowymi. W miejscu X, 4 przewody są niezbędne, aby umożliwić prawidłowe połączenie pomiędzy łącznikami schodowymi, gdzie wymagane są dwa przewody zwrotne, faza oraz przewód neutralny. Warto podkreślić, że stosowanie odpowiedniej liczby przewodów jest kluczowe dla bezpieczeństwa i funkcjonalności instalacji. W miejscu Y konieczność wykorzystania 5 przewodów wynika z tego, że wymaga ono połączeń między łącznikiem schodowym a krzyżowym. W tym przypadku również potrzebna jest faza, przewód neutralny, przewód zwrotny oraz dwa przewody do komunikacji między łącznikiem krzyżowym a pozostałymi. Praktyczne zastosowanie tych zasad znajduje potwierdzenie w normach IEC dotyczących instalacji elektrycznych, które zalecają stosowanie odpowiednich ilości przewodów w zależności od funkcji i układu łączników. Prawidłowe zrozumienie tych zasad jest niezbędne do projektowania bezpiecznych i efektywnych systemów oświetleniowych.

Pytanie 14

Który rodzaj źródła światła pokazano na rysunku?

Ilustracja do pytania
A. Żarowe.
B. Elektroluminescencyjne.
C. Wyładowcze.
D. Fluorescencyjne.
Poprawna odpowiedź to "Elektroluminescencyjne", ponieważ na ilustracji mamy do czynienia z diodą LED (Light Emitting Diode), która jest typowym przykładem tego rodzaju źródła światła. Diody LED charakteryzują się wysoką efektywnością energetyczną oraz długą żywotnością, co sprawia, że są coraz częściej stosowane w nowoczesnych systemach oświetleniowych. W przeciwieństwie do żarówek, które emitują światło w wyniku podgrzewania włókna, diody LED wykorzystują zjawisko elektroluminescencji, gdzie światło jest emitowane przez rekombinację nośników ładunku w półprzewodniku. Dzięki tej technologii, diody LED mogą osiągać znacznie większą efektywność w przetwarzaniu energii elektrycznej na światło, co przekłada się na oszczędności w zużyciu energii oraz mniejsze koszty eksploatacji. Zastosowania diod LED są niezwykle różnorodne – od oświetlenia ulicznego, przez oświetlenie wnętrz, aż po wyświetlacze i sygnalizację świetlną, co czyni je jednym z najważniejszych rozwiązań w nowoczesnej technologii oświetleniowej.

Pytanie 15

Oblicz znamionowy współczynnik mocy silnika trójfazowego przy danych: Pn = 2,2 kW (moc mechaniczna), UN = 400 V, IN = 4,6 A, ηN = 0,84?

A. 0,82
B. 0,69
C. 0,57
D. 0,99
Znamionowy współczynnik mocy silnika trójfazowego można obliczyć za pomocą wzoru: cos φ = Pn / (√3 * UN * IN), gdzie Pn to moc mechaniczna, UN to napięcie nominalne, a IN to prąd nominalny. Wstawiając nasze dane: Pn = 2,2 kW = 2200 W, UN = 400 V, IN = 4,6 A, otrzymujemy: cos φ = 2200 W / (√3 * 400 V * 4,6 A). Po obliczeniach uzyskujemy, że współczynnik mocy wynosi 0,82. Praktyczne znaczenie współczynnika mocy jest kluczowe w kontekście efektywności energetycznej. Wyższy współczynnik mocy oznacza, że silnik pracuje bardziej efektywnie, co przekłada się na niższe rachunki za energię oraz mniejsze straty w instalacji elektrycznej. Zgodnie z normami IEC, silniki trójfazowe powinny dążyć do współczynnika mocy powyżej 0,85, aby zminimalizować obciążenie systemu energetycznego. Obliczenie współczynnika mocy jest więc istotne przy projektowaniu systemów, aby zapewnić ich efektywność oraz spełnić wymagania dotyczące jakości energii elektrycznej.

Pytanie 16

Przewód, który jest oznaczony symbolem SMYp, ma żyły

A. wielodrutowe
B. sektorowe
C. jednodrutowe
D. płaskie
Jeśli wybrałeś niewłaściwą odpowiedź na temat przewodów SMYp, to pewnie wynika to z niezrozumienia ich specyfikacji oraz zastosowań. Odpowiedzi dotyczące żył sektorowych, płaskich czy jednodrutowych nie pasują do przewodów SMYp. Żyły sektorowe są używane w kablach zasilających o większych przekrojach, często w instalacjach energetycznych, gdzie są wymagane specjalne parametry dotyczące rozkładu pola elektrycznego. Żyły płaskie też mają swoje miejsce w różnych aplikacjach, głównie w konstrukcji kabli instalacyjnych, ale nie spełniają wymagań przewodów SMYp. Co do żył jednodrutowych, to chociaż mogą być używane w prostych instalacjach, to niestety nie zapewniają elastyczności, która jest ważna w sytuacjach, gdzie przewody muszą się poruszać. Wiesz, błędne odpowiedzi mogą wynikać z pomylenia różnych typów przewodów elektrycznych i ich właściwości. Ważne jest, żeby dobrać odpowiednie przewody w instalacjach elektrycznych, bo to kluczowe dla bezpieczeństwa i efektywności energetycznej. Zrozumienie różnic między typami żył i ich stosowaniem powinno być podstawą przy planowaniu i realizacji instalacji elektrycznych.

Pytanie 17

Która zależność musi być spełniona podczas wymiany uszkodzonych przewodów instalacji elektrycznej i ewentualnej zmiany ich zabezpieczeń nadprądowych?

Iz – prąd obciążalności długotrwałej przewodu
Ib – prąd znamionowy zabezpieczenia przeciążeniowego
IB – prąd wynikający z przewidywanej mocy przesyłanej przewodem
A. IN ≤ IB ≤ IZ
B. IB ≤ IN ≤ IZ
C. IZ ≤ IN ≤ IB
D. IB ≤ IZ ≤ IN
Wybór odpowiedzi, która nie spełnia relacji IB ≤ IN ≤ IZ, prowadzi do nieprawidłowego rozumienia zasad projektowania instalacji elektrycznych. Niektóre z niepoprawnych odpowiedzi sugerują, że prąd obciążenia może być większy od prądu znamionowego zabezpieczenia, co jest fundamentalnym błędem. Taki błąd może prowadzić do sytuacji, w której zabezpieczenie nie zadziała w odpowiednim momencie, co z kolei skutkuje przegrzaniem przewodów i ich uszkodzeniem. Istotne jest, aby pamiętać, że prąd znamionowy zabezpieczenia powinien być zawsze dostosowany do przewidywanego obciążenia; w przeciwnym razie może dojść do ryzyka awarii. Ponadto, nieodpowiednie przypisanie wartości prądu obciążenia w stosunku do obciążalności przewodów prowadzi do nieefektywnego działania całej instalacji. Zgodnie z normami, przed przystąpieniem do wymiany przewodów lub zmiany zabezpieczeń, należy dokładnie obliczyć zarówno IB, jak i IZ oraz zrozumieć, jak te wartości wpływają na dobór IN. Ignorowanie tych zasad może prowadzić do kosztownych błędów w instalacji elektrycznej, które mogą zagrażać bezpieczeństwu użytkowników i mienia.

Pytanie 18

Jaką rolę pełni uzwojenie pomocnicze w silniku prądu stałego?

A. Generuje napięcie remanentu
B. Wytwarza pole magnetyczne wzbudzenia
C. Obniża rezystancję obwodu twornika
D. Eliminuje niekorzystne zjawiska oddziaływania wirnika
Uzwojenie pomocnicze w silniku prądu stałego to naprawdę ważny element. Dzięki niemu można lepiej kontrolować, jak silnik działa, a to pomaga w unikaniu różnych dziwnych problemów, jak wibracje czy drgania. To wszystko może wpłynąć na trwałość silnika, więc to nie jest mała sprawa. W praktyce uzwojenie pomocnicze działa trochę jak pomocnik, który sprawia, że moment obrotowy jest optymalizowany w różnych warunkach. Jak dobrze się nad tym zastanowić, to silniki z takim uzwojeniem są bardziej efektywne i mogą lepiej działać w sytuacjach, gdzie precyzja jest na wagę złota, jak w robotyce czy automatyce. Wiem, że to może wydawać się skomplikowane, ale standardy jak IEC 60034 pokazują, jak te rzeczy najlepiej zaprojektować, więc warto się z nimi zapoznać.

Pytanie 19

W celu sprawdzenia poprawności wykonania fragmentu instalacji oświetleniowej, przystosowanej do zasilania napięciem 230 V, zwarto łączniki P1 i P2 i zmierzono rezystancję obwodu. Schemat instalacji wraz z włączonym omomierzem pokazano na rysunku.

Ilustracja do pytania
A. w obwodzie zastosowano żarówki o napięciu znamionowym U = 24 V.
B. w obwodzie wykonano dodatkowe połączenia nieuwzględnione na schemacie.
C. obwód połączony jest prawidłowo.
D. nieprawidłowo odczytano wynik pomiaru.
Obwód został połączony tak, jak należy, co można łatwo zauważyć, analizując schemat instalacji oświetleniowej. Z mojego doświadczenia wynika, że każda żarówka powinna działać niezależnie, dlatego stosujemy połączenia równoległe. Dzięki temu, jak jedna żarówka padnie, reszta nadal świeci. Gdy łączniki P1 i P2 są zwarte, obwód zamyka się, co pozwala na mierzenie rezystancji. W domowych instalacjach standardowe napięcie to 230 V, i to jest całkiem zgodne z normami. Dobrze jest też regularnie sprawdzać instalację, żeby wyłapać ewentualne błędy wcześniej. A przy pomiarach rezystancji, pamiętaj, że wyniki zależą od tego, jakie elementy zastosowano i jak są one połączone, co w tym przypadku masz na właściwym poziomie.

Pytanie 20

Jaką liczbę klawiszy oraz zacisków ma typowy pojedynczy łącznik schodowy?

A. Dwa klawisze i cztery zaciski
B. Jeden klawisz i cztery zaciski
C. Dwa klawisze i trzy zaciski
D. Jeden klawisz i trzy zaciski
Klasyczny pojedynczy łącznik schodowy to urządzenie elektryczne, które służy do włączania i wyłączania oświetlenia w pomieszczeniach. Posiada jeden klawisz, który umożliwia obsługę światła oraz trzy zaciski. Zaciski te są niezbędne do prawidłowego podłączenia łącznika w obwodzie elektrycznym. W typowej konfiguracji, jeden z zacisków jest podłączony do źródła zasilania, a dwa pozostałe do obwodów oświetleniowych, co umożliwia kontrolę oświetlenia z jednego miejsca. Przykładowe zastosowanie to montaż łącznika w korytarzu, gdzie można włączać i wyłączać światło centralne. Zgodnie z normą PN-IEC 60669, stosowanie łączników schodowych powinno zapewniać bezpieczeństwo oraz wygodę użytkowania. Właściwe zrozumienie budowy łącznika pozwala na jego efektywne wykorzystanie w instalacjach elektrycznych, co jest kluczowe dla zapewnienia prawidłowego działania systemów oświetleniowych.

Pytanie 21

Jaki przewód na schemacie montażowym instalacji elektrycznej oznacza się symbolem przedstawionym na rysunku?

Ilustracja do pytania
A. Neutralny.
B. Wyrównawczy.
C. Ochronny.
D. Uziemiający.
Odpowiedź "Ochronny" jest prawidłowa, ponieważ symbol przedstawiony na rysunku odnosi się do przewodu ochronnego PE (Protective Earth). Przewód ten jest kluczowym elementem instalacji elektrycznej, mającym na celu zabezpieczenie użytkowników przed porażeniem prądem elektrycznym. W sytuacji awaryjnej, przewód ochronny odprowadza niebezpieczne napięcie do ziemi, co znacząco zmniejsza ryzyko porażenia. W standardach, takich jak Polska Norma PN-IEC 60445:2017, przewód ten powinien być jednoznacznie oznaczony w schematach montażowych, co ułatwia identyfikację i prawidłowy montaż instalacji. Przykładowo, w przypadku uszkodzenia izolacji urządzenia elektrycznego, prawidłowe podłączenie przewodu ochronnego zapewnia, że prąd nie przepłynie przez ciało użytkownika, lecz zostanie skierowany do ziemi. Dzięki temu, stosowanie przewodów ochronnych zgodnie z normami jest fundamentem bezpieczeństwa w każdej instalacji elektrycznej.

Pytanie 22

Który typ źródła światła przedstawiono na rysunku?

Ilustracja do pytania
A. Halogenowe.
B. Wolframowe.
C. Rtęciowe.
D. Diodowe.
Wybór jednego z pozostałych typów źródła światła, takich jak wolframowe, rtęciowe czy halogenowe, jest wynikiem nieporozumienia dotyczącego charakterystyki i konstrukcji żarówek. Źródła wolframowe, na przykład, działają na zasadzie podgrzewania włókna wolframowego, co prowadzi do emisji światła, ale ich efektywność energetyczna jest znacznie niższa niż w przypadku diod LED. Oprócz tego, żarówki te mają krótszą żywotność, wynoszącą średnio tylko około 1 000 godzin. Odpowiedzi oparte na żarówkach rtęciowych również są mylne, ponieważ choć te źródła światła charakteryzują się wysoką sprawnością, ich użycie jest ograniczone ze względu na obecność szkodliwej rtęci, co stawia je w niekorzystnej pozycji w kontekście ochrony środowiska. Wreszcie, żarówki halogenowe, będące wariantem żarówek wolframowych, oferują lepszą wydajność, ale wciąż nie dorównują LED-om pod względem efektywności i trwałości. Często myślenie o tych tradycyjnych źródłach światła jako bardziej znajomych i sprawdzonych powoduje, że użytkownicy mogą nie dostrzegać korzyści płynących z nowoczesnych rozwiązań, jakimi są diody LED. Zrozumienie różnic między tymi technologiami jest kluczowe dla dokonania świadomego wyboru, który nie tylko wpłynie na oszczędności, ale także na jakość oświetlenia w codziennym życiu.

Pytanie 23

W celu wyrównania potencjałów na elementach metalowych, występujących w budynku, które w normalnych warunkach nie są częścią obwodu elektrycznego, należy zainstalować element oznaczony cyfrą

Ilustracja do pytania
A. 3
B. 7
C. 5
D. 1
Podejście do wyboru odpowiedzi wskazanych w pozostałych opcjach, takich jak 3, 5 czy 7, jest mylące, ponieważ nie uwzględnia kluczowego aspektu wyrównania potencjałów w kontekście bezpieczeństwa elektrycznego. W praktyce, wiele osób może mylnie sądzić, że wystarczy zastosować jakiekolwiek połączenia metalowe, aby osiągnąć wyrównanie potencjałów, co jest nieprawidłowe. Połączenie wyrównawcze nie tylko musi być wykonane, ale także powinno być odpowiednio zaprojektowane. Wybór niewłaściwego elementu, jak wskazano w innych odpowiedziach, może prowadzić do sytuacji, w których nie zostaną spełnione normy bezpieczeństwa. Przykładowo, elementy takie jak rury czy obudowy urządzeń powinny być połączone w sposób zapewniający jednorodność potencjału, co jest osiągane właśnie przez szynę wyrównawczą. Inne opcje mogą sugerować, że wystarczyłoby używać istniejących elementów instalacji, co w rzeczywistości może zwiększyć ryzyko powstania niebezpiecznych różnic potencjałów. Wybór niewłaściwego podejścia, jak stosowanie izolowanych połączeń czy brak odpowiednich połączeń do uziemienia, może prowadzić do niebezpiecznych sytuacji, które są niezgodne z dobrą praktyką branżową oraz normami, takimi jak PN-IEC 60364 dotyczące instalacji elektrycznych w budynkach. Dlatego kluczowe jest zrozumienie, że tylko odpowiednio zaprojektowana i zainstalowana szyna wyrównawcza zapewnia bezpieczeństwo oraz minimalizuje ryzyko porażeń elektrycznych.

Pytanie 24

Na podstawie zależności napięcia na zaciskach akumulatora od prądu i czasu rozładowywania przedstawionych na rysunku wskaż wartość napięcia akumulatora o pojemności C = 100 Ah, który przez 30 minut był obciążony prądem o wartości 60 A.

Ilustracja do pytania
A. 12,4 V
B. 11,3 V
C. 11,0 V
D. 12,0 V
No więc, odpowiedź 12,0 V jest jak najbardziej trafna. Można to zobaczyć, analizując wykres, który pokazuje, jak napięcie akumulatora zmienia się w zależności od prądu i czasu rozładowywania. Jak obciążamy akumulator prądem 60 A przez 30 minut, to napięcie wynosi właśnie 12,0 V, co jest zgodne z tym, co powinno być zgodnie z normami. Wartość ta pokazuje, że akumulator działa tak, jak się tego spodziewaliśmy. Moim zdaniem, zrozumienie tej zależności jest mega ważne, zwłaszcza przy projektowaniu systemów zasilania dla różnych urządzeń. No i w odnawialnej energii, gdzie pojemność akumulatora ma ogromny wpływ na wydajność. Fajnie też wiedzieć, że w praktyce, jak np. w systemach fotowoltaicznych czy zasilaniu awaryjnym, znajomość charakterystyki rozładowania akumulatorów pomaga w ich optymalnym wykorzystaniu oraz w wydłużeniu żywotności przez unikanie nadmiernego rozładowania.

Pytanie 25

Jaka jest minimalna wartość napięcia probierczego, która jest wymagana podczas pomiarów rezystancji izolacji przewodów w obwodach SELV oraz PELV?

A. 100 V
B. 500 V
C. 1000 V
D. 250 V
Wybór niewłaściwego napięcia probierczego przy pomiarach rezystancji izolacji może wynikać z niepełnego zrozumienia zasad bezpieczeństwa oraz specyfiki obwodów SELV i PELV. Użycie napięcia 100 V, na przykład, może być niewystarczające do skutecznego zdiagnozowania stanu izolacji. Praktyka pokazuje, że takie niskie napięcie nie jest w stanie ujawnić potencjalnych usterek, które są krytyczne dla bezpieczeństwa. W przypadku obwodów o napięciu roboczym, które wymagają wyższego poziomu izolacji, napięcie probiercze powinno być dostosowane do tych wymagań, co w przypadku SELV i PELV oznacza wartość nie mniejszą niż 250 V. Użycie napięcia 500 V lub 1000 V, z kolei, może prowadzić do uszkodzenia bardzo wrażliwych podzespołów w niektórych zastosowaniach, co jest szczególnie ważne w obwodach niskonapięciowych. Właściwe dobieranie napięcia probierczego to kluczowy element w zapewnieniu bezpieczeństwa systemów elektrycznych, a nieprzestrzeganie tych zasad może prowadzić do poważnych konsekwencji. Wiele osób błędnie zakłada, że wyższe napięcia są zawsze lepsze, jednak w rzeczywistości należy kierować się normami oraz zaleceniami producentów, aby zminimalizować ryzyko uszkodzeń oraz zapewnić bezpieczeństwo eksploatacyjne obwodów elektrycznych.

Pytanie 26

Ogranicznik przepięć klasy D, który można zainstalować w systemie elektrycznym o maksymalnym napięciu 1000 V, instaluje się w

A. złączach oraz miejscach, gdzie instalacja wchodzi do budynku z systemem piorunochronnym, zasilanego z linii napowietrznej.
B. niskonapięciowych liniach elektroenergetycznych.
C. rozgałęzieniach systemu elektrycznego w budynku oraz w rozdzielnicach dla mieszkań.
D. gniazdach elektrycznych, puszkach w instalacji oraz bezpośrednio w urządzeniach.
Wybór montażu ogranicznika przepięć w rozgałęzieniach instalacji elektrycznej czy w rozdzielnicach nie jest optymalnym rozwiązaniem, gdyż te miejsca są zbyt daleko od rzeczywistych punktów użycia urządzeń, które wymagają ochrony. Oczywiście, ważne jest zabezpieczenie całej instalacji, ale ograniczniki powinny być stosowane tam, gdzie mogą efektywnie działać, czyli blisko urządzeń. Linia elektroenergetyczna niskiego napięcia to również niewłaściwe miejsce dla ograniczników klasy D, ponieważ ich zadaniem jest ochrona konkretnych urządzeń, a nie samej infrastruktury zasilającej. Wprowadzenie ich do gniazd wtyczkowych, puszek w instalacji czy urządzeń bezpośrednio zapewnia ochronę przed przepięciami w momencie ich wystąpienia, co jest kluczowe w kontekście współczesnych instalacji elektrycznych, które często zasilają wrażliwe na zakłócenia elektroniki. Instalowanie ograniczników w złączach i miejscach wprowadzenia instalacji do budynku, szczególnie w obiektach z instalacją piorunochronną, może nie zapewnić wystarczającej ochrony, gdyż wyładowania atmosferyczne mogą zjawiskowo obciążać instalację. Z tego względu przy planowaniu i wykonaniu instalacji elektrycznych kluczowe jest dobre rozumienie zasad działania ograniczników przepięć oraz ich prawidłowe umiejscowienie zgodnie z normami i zaleceniami branżowymi.

Pytanie 27

Jaką z wymienionych czynności kontrolnych należy przeprowadzić po zainstalowaniu trójfazowego silnika elektrycznego?

A. Mierzenie temperatury stojana
B. Sprawdzenie kierunku obrotów wału silnika
C. Weryfikacja symetrii napięcia zasilającego
D. Mierzenie prędkości obrotowej
Sprawdzenie kierunku obrotów wału silnika elektrycznego jest kluczowym krokiem po jego montażu, ponieważ niewłaściwy kierunek obrotów może prowadzić do uszkodzenia silnika oraz urządzeń, z którymi jest połączony. W praktyce, wiele aplikacji wymaga, aby silnik obracał się w określonym kierunku, co jest szczególnie ważne w systemach napędowych, takich jak pompy, wentylatory czy maszyny robocze. Warto również pamiętać, że w przypadku silników trójfazowych zmiana kierunku obrotów jest możliwa poprzez zamianę miejscami dwóch dowolnych przewodów zasilających. Zgodnie z normami branżowymi, przed uruchomieniem silnika należy zawsze sprawdzić jego kierunek obrotów, aby zagwarantować prawidłowe działanie i uniknąć potencjalnych awarii. Dodatkowo, sprawdzenie kierunku obrotów może być dokumentowane w protokole uruchomieniowym, co jest zgodne z najlepszymi praktykami w zakresie zarządzania jakością oraz bezpieczeństwem w pracy. Warto także wspomnieć, że w przypadku silników używanych w automatyce przemysłowej, kierunek obrotów jest często monitowany przez systemy kontrolne, które mogą automatycznie reagować na nieprawidłowości.

Pytanie 28

Na podstawie rysunku określ kolejność zamontowanych aparatów elektrycznych w rozdzielnicy.

Ilustracja do pytania
A. Wyłącznik różnicowoprądowy, wyłącznik nadprądowy, lampka kontrolna, przekaźnik bistabilny.
B. Ochronnik przeciwprzepięciowy, wyłącznik nadprądowy, automat schodowy, przekaźnik bistabilny.
C. Ochronnik przeciwprzepięciowy, przekaźnik bistabilny, lampka kontrolna, automat schodowy.
D. Wyłącznik różnicowoprądowy, przekaźnik bistabilny, lampka kontrolna, automat schodowy.
Wybrana odpowiedź jest poprawna, ponieważ prawidłowo odzwierciedla kolejność zamontowanych aparatów elektrycznych w rozdzielnicy. Wyłącznik różnicowoprądowy, umieszczony jako pierwszy, ma kluczowe znaczenie dla ochrony użytkowników przed porażeniem prądem, wykrywając różnicę w prądzie między przewodami fazowymi a neutralnym. Następnie, wyłącznik nadprądowy chroni instalację przed przeciążeniem i zwarciami. Lampka kontrolna, jako trzeci element, pełni funkcję sygnalizacyjną, informując o stanie działania urządzeń. Na końcu znajduje się przekaźnik bistabilny, który służy do sterowania obwodami z wykorzystaniem małej mocy. Taka sekwencja jest zgodna z najlepszymi praktykami przy projektowaniu rozdzielnic, gdzie bezpieczeństwo i efektywność są priorytetem. Przy projektowaniu instalacji elektrycznych warto uwzględniać normy PN-IEC 60364, które regulują zasady projektowania i wykonania instalacji elektrycznych. Wiedza na temat rozmieszczenia aparatów w rozdzielnicach jest kluczowa dla zapewnienia niezawodności oraz bezpieczeństwa systemów elektrycznych.

Pytanie 29

Według przedstawionego schematu instalacji elektrycznej ochronnik przeciwprzepięciowy powinien być włączony między uziemienie oraz

Ilustracja do pytania
A. wyłącznie przewody fazowe.
B. wyłącznie przewód neutralny.
C. przewody fazowe i przewód neutralny.
D. przewód fazowy i przewód neutralny.
Wybór opcji ograniczającej włączenie ochronnika przeciwprzepięciowego wyłącznie między uziemieniem a przewodem neutralnym jest niewłaściwy, ponieważ nie uwzględnia pełnego zakresu zagrożeń, jakie mogą wystąpić w instalacjach elektrycznych. Ochronniki przeciwprzepięciowe są projektowane w taki sposób, aby chronić zarówno przewody fazowe, jak i neutralne, które mogą być narażone na przepięcia. Włączenie ochronnika tylko w relacji do przewodu neutralnego powoduje, że nie zabezpieczamy efektywnie pozostałych przewodów fazowych przed nadmiernymi napięciami. Podobnie, sugerowanie wyłącznie przewodów fazowych nie uwzględnia roli przewodu neutralnego, który również może doświadczać przepięć. Taka konfiguracja może prowadzić do poważnych uszkodzeń urządzeń, ponieważ energia z przepięcia nie zostanie odprowadzona w sposób bezpieczny, a sprzęt będzie narażony na awarie, co jest sprzeczne z zasadami projektowania instalacji elektrycznych oraz normami bezpieczeństwa. Właściwe włączenie ochronnika w sposób opisany w poprawnej odpowiedzi pozwala na zminimalizowanie ryzyka uszkodzeń oraz zapewnia zgodność z dobrymi praktykami branżowymi, co jest kluczowe w każdej instalacji elektrycznej.

Pytanie 30

Którą klasę ochronności posiada oprawa oświetleniowa opatrzona przedstawionym symbolem graficznym?

Ilustracja do pytania
A. 0
B. II
C. I
D. III
Oprawa oświetleniowa oznaczona symbolem klasy ochronności I zapewnia wysoki poziom bezpieczeństwa w użytkowaniu. Klasa ta charakteryzuje się posiadaniem podstawowej izolacji oraz dodatkowym przewodem ochronnym, co pozwala na skuteczne odprowadzenie ewentualnych prądów upływowych do ziemi. Dzięki temu, w przypadku uszkodzenia izolacji, metalowe elementy oprawy nie stają się źródłem zagrożenia dla użytkowników. Przykładem zastosowania tej klasy są oprawy stosowane w miejscach narażonych na wilgoć, takich jak łazienki czy zewnętrzne oświetlenie ogrodowe. Zgodnie z normami PN-EN 60598-1, urządzenia oznaczone klasą I muszą być również regularnie kontrolowane pod kątem stanu przewodu ochronnego oraz integralności izolacji. Takie działania pomagają w utrzymaniu bezpieczeństwa i zgodności z przepisami BHP, co jest kluczowe w każdej instalacji elektrycznej.

Pytanie 31

Który rodzaj źródła światła przedstawiono na ilustracji?

Ilustracja do pytania
A. Półprzewodnikowe.
B. Żarowe.
C. Wyładowcze niskoprężne.
D. Wyładowcze wysokoprężne.
Odpowiedź "półprzewodnikowe" jest prawidłowa, ponieważ na ilustracji można zauważyć źródło światła LED, które jest typowym przykładem tego typu technologii. Źródła światła półprzewodnikowego charakteryzują się wysoką efektywnością energetyczną, długą żywotnością oraz różnorodnością kolorów emitowanego światła. Diody LED znajdują szerokie zastosowanie, od oświetlenia wnętrz, przez oświetlenie zewnętrzne, aż po zastosowania w elektronice, takie jak podświetlenie ekranów. W wielu branżach, takich jak motoryzacja czy architektura, stosowanie LED-ów stało się standardem ze względu na ich niskie zużycie energii oraz możliwość dostosowywania intensywności światła. Standardy dotyczące oświetlenia, takie jak ANSI czy CIE, podkreślają znaczenie efektywności i jakości światła w kontekście ochrony środowiska oraz oszczędności energii, co czyni diody LED doskonałym wyborem dla zrównoważonego rozwoju.

Pytanie 32

Na którym rysunku zamieszczono gniazdo wtyczkowe bryzgoszczelne?

Ilustracja do pytania
A. A.
B. D.
C. B.
D. C.
Gniazdo wtyczkowe bryzgoszczelne, które widzisz na zdjęciu C, zostało zaprojektowane tak, żeby dobrze chronić przed wilgocią i wodą. To znaczy, że nadaje się do miejsc, gdzie warunki atmosferyczne mogą być naprawdę trudne. Jest zgodne z normami PN-EN 60670-1, które mówią, jakie powinny być wymagania dla takich gniazd. Często mają dodatkowe uszczelki i osłony, które blokują wodę przed dostaniem się do wnętrza połączenia elektrycznego. W praktyce, gniazda bryzgoszczelne stosuje się w ogrodach, na tarasach albo w pobliżu basenów, gdzie zwykłe gniazda mogłyby się łatwo zepsuć. Fajnie jest też zwracać uwagę na oznaczenia IP, które mówią, jak to gniazdo jest chronione przed wodą i pyłem. Używanie takich gniazd to lepsze bezpieczeństwo dla użytkowników i dłuższa żywotność naszej instalacji elektrycznej.

Pytanie 33

Podczas przeprowadzania inspekcji instalacji elektrycznej w budynku mieszkalnym nie jest wymagane sprawdzanie

A. nastaw urządzeń zabezpieczających w instalacji
B. wartości rezystancji izolacji przewodów
C. poprawności działania wyłącznika różnicowoprądowego
D. stanu obudów wszystkich elementów instalacji
Wiesz, przy ocenie bezpieczeństwa instalacji elektrycznej często pojawiają się nieporozumienia co do tego, co trzeba sprawdzać. Więc jeśli myślisz, że stan obudów, wyłączniki różnicowoprądowe czy urządzenia zabezpieczające nie są ważne, to musisz to przemyśleć. Sprawdzanie stanu obudów jest mega istotne, żeby nie zdarzył się przypadkowy kontakt z prądem. Jak wyłączniki różnicowoprądowe nie działają, to może być niebezpiecznie. Regularne weryfikowanie ich działania to polecana praktyka. Do tego ustawienia urządzeń zabezpieczających też są kluczowe, bo jak są źle ustawione, to może to doprowadzić do problemów. Ignorowanie takich rzeczy jest ryzykowne, zresztą to może prowadzić do poważnych sytuacji, jak pożary czy porażenia. Każdy z tych elementów to część systemu ochrony, który ma na celu bezpieczne użytkowanie instalacji elektrycznej. Wiedza na ten temat to podstawa dla każdego, kto zajmuje się elektryką.

Pytanie 34

Rysunek przedstawia sposób zainstalowania urządzenia ochronnego różnicowoprądowego w sieci typu

Ilustracja do pytania
A. TN-S
B. TT
C. TN-C-S
D. IT
Wybór odpowiedzi spośród pozostałych typów sieci może prowadzić do nieporozumień związanych z zasadami ich działania. Sieci TN-S charakteryzują się tym, że przewód neutralny i przewód ochronny są oddzielone, co jest zupełnie inną koncepcją niż izolacja stosowana w sieciach IT. Użytkownicy mogą błędnie myśleć, że w sieci TN-S urządzenia różnicowoprądowe są tak samo efektywne jak w IT, jednak w przypadku awarii izolacji, prąd upływowy w sieci TN-S może spowodować poważniejsze konsekwencje. Podobnie sieci TN-C-S, które łączą funkcję przewodów neutralnych i ochronnych, są bardziej narażone na zjawiska związane z prądami upływowymi, co stawia pod znakiem zapytania ich bezpieczeństwo. Z kolei w sieciach TT, gdzie przewód neutralny i ochronny są oddzielne, istnieje większe ryzyko wystąpienia różnicy potencjałów między ziemią a neutralnym przewodem, co może prowadzić do niebezpiecznych sytuacji. Błędem jest zakładanie, że wszystkie te systemy zapewniają taki sam poziom ochrony jak sieci IT; każdy typ ma swoje unikalne właściwości i zastosowania, które powinny być starannie rozważane w kontekście wymagań bezpieczeństwa. W przypadku sieci IT, kluczowe jest zrozumienie ich struktury oraz właściwego zastosowania, aby uniknąć niebezpieczeństw związanych z awariami. Warto również zaznaczyć, że w sieciach TN i TT instalacje różnicowoprądowe są często mniej skuteczne w detekcji uszkodzeń, co może prowadzić do większych zagrożeń dla użytkowników i urządzeń.

Pytanie 35

Który symbol graficzny w ideowym schemacie jednoliniowym instalacji elektrycznej obrazuje łącznik ze schematu wieloliniowego pokazany na rysunku?

Ilustracja do pytania
A. B.
B. A.
C. D.
D. C.
Odpowiedź A jest prawidłowa, ponieważ symbol graficzny przedstawiony w tej opcji najdokładniej odwzorowuje łącznik ze schematu wieloliniowego. W standardach dotyczących projektowania instalacji elektrycznych, takich jak norma PN-EN 60617, łącznik jest reprezentowany w sposób, który zapewnia jasność i jednoznaczność w interpretacji schematów. W tym przypadku, symbol składający się z okręgu z przecinającą go linią pod kątem jest powszechnie akceptowanym sposobem graficznej reprezentacji łącznika. Zastosowanie takich symboli w praktyce inżynierskiej ułatwia komunikację pomiędzy projektantami, wykonawcami i inspektorami. Przy projektowaniu instalacji elektrycznych, znajomość tych symboli jest kluczowa dla zapewnienia bezpieczeństwa i efektywności działania systemów. Dobre praktyki wskazują, że każdy projektant powinien nie tylko znać te symbole, ale także rozumieć ich znaczenie i kontekst, w którym są używane.

Pytanie 36

Która z poniższych czynności jest częścią oględzin przy konserwacji wirnika silnika komutatorowego?

A. Sprawdzenie kondycji wycinków komutatora
B. Weryfikacja braku zwarć międzyzwojowych
C. Pomiar rezystancji izolacji
D. Wyważanie
Sprawdzenie stanu wycinków komutatora jest kluczowym działaniem podczas oględzin wirnika silnika komutatorowego, ponieważ komutator pełni istotną rolę w zapewnieniu właściwego funkcjonowania silnika. Wycinki komutatora, będące elementami stykowymi, muszą mieć odpowiednią jakość powierzchni, aby zapewnić dobre połączenie elektryczne z węglowymi szczotkami. Ich zużycie, pęknięcia czy zanieczyszczenia mogą prowadzić do zwiększonego oporu elektrycznego, co w efekcie może powodować przegrzewanie się silnika oraz obniżenie jego wydajności. Kontrola stanu wycinków powinna obejmować ocenę ich grubości, stanu powierzchni oraz ewentualnych uszkodzeń. W przypadku stwierdzenia jakichkolwiek nieprawidłowości, zaleca się wymianę wycinków komutatora, co jest zgodne z dobrymi praktykami branżowymi. Działania te pomagają utrzymać silnik w dobrej kondycji i wydłużają jego żywotność, dlatego regularne przeglądy są niezwykle istotne w kontekście konserwacji maszyn elektrycznych.

Pytanie 37

Podczas ponownej próby załączenia urządzenia przedstawionego na rysunku po około 40 s następuje jego samoczynne wyłączenie. Określ najbardziej prawdopodobną przyczynę zadziałania urządzenia.

Ilustracja do pytania
A. Upływ prądu do uziemienia.
B. Przeciążenie w obwodzie.
C. Zwarcie przewodów L i PE.
D. Zwarcie przewodów L i N.
Niepoprawne odpowiedzi często wynikają z niepełnego zrozumienia zasady działania wyłączników różnicowoprądowych oraz ich funkcji w systemach elektrycznych. Na przykład, zwarcie przewodów L i N nie prowadziłoby do samoczynnego wyłączenia urządzenia po pewnym czasie, ale raczej do natychmiastowego zadziałania zabezpieczenia. Zwarcie to powoduje bezpośredni przepływ prądu, co skutkuje dużym wzrostem prądu, ale nie jest zgodne z zachowaniem, które obserwujemy w przypadku przeciążenia. Upływ prądu do uziemienia także nie jest przyczyną opóźnionego wyłączenia, jako że wyłączniki różnicowoprądowe działają w oparciu o różnicę prądów między przewodami roboczymi, a nie na zasadzie wykrywania przeciążeń. Natomiast zwarcie przewodów L i PE wskazuje na błędne połączenie, które również nie prowadzi do zjawiska opóźnionego wyłączenia. Typowe błędy myślowe w takich przypadkach to mylenie sygnatury zjawisk elektrycznych oraz braku zrozumienia, w jaki sposób wyłączniki zabezpieczają instalacje. Zgodnie z normami bezpieczeństwa, wiedza o charakterystyce działania zabezpieczeń nadprądowych jest niezbędna do prawidłowego projektowania i eksploatacji systemów elektrycznych.

Pytanie 38

W instalacji elektrycznej, której schemat przedstawiono na rysunku, po wykonanym montażu włączono pierwszy klawisz łącznika i wszystkie żarówki się tylko żarzyły, natomiast po włączeniu drugiego klawisza, przy włączonym pierwszym, zaświeciły się cztery żarówki. W celu ustalenia przyczyny nieprawidłowego działania instalacji należy sprawdzić poprawność połączeń przewodów do zacisków

Ilustracja do pytania
A. gniazda wtyczkowego.
B. łącznika.
C. żyrandola.
D. puszki zasilającej.
Błędne podejście do analizy problemu może prowadzić do mylnych wniosków i nieefektywnego rozwiązania problemów w instalacji elektrycznej. Wskazanie na łącznik jako źródło problemu z pewnością jest nieprecyzyjne, ponieważ działanie łącznika powinno być zgodne z jego przeznaczeniem, a ewentualne usterki w tym obszarze zazwyczaj objawiają się innym rodzajem awarii, np. brakiem działania całej instalacji. Podobnie, puszka zasilająca czy gniazdo wtyczkowe pełnią kluczowe funkcje w instalacji, ale w omawianym przypadku, ich poprawność działania nie jest wystarczającym wyjaśnieniem. Oparcie się na tych elementach w kontekście problemu nieprawidłowego działania żarówek jest błędne, ponieważ nie uwzględnia specyfiki obwodu, który powinien być analizowany jako całość. Typowym błędem rozumowania jest przenoszenie odpowiedzialności na elementy, które w rzeczywistości nie mają wpływu na zaobserwowane zjawisko. Właściwa diagnoza problemu wymaga szczegółowego zrozumienia interakcji pomiędzy poszczególnymi komponentami instalacji, co w tym przypadku jednoznacznie wskazuje na żyrandol jako miejsce potencjalnych usterek, a nie na elementy zasilające czy łączące.

Pytanie 39

Na ilustracji przedstawiony jest

Ilustracja do pytania
A. kabel elektroenergetyczny.
B. przewód sterowniczy.
C. przewód spawalniczy.
D. kabel telekomunikacyjny.
Kabel elektroenergetyczny, który został przedstawiony na ilustracji, charakteryzuje się specyficzną budową oraz solidną izolacją, co jest kluczowe dla jego funkcji w systemach elektroenergetycznych. Te kable są zaprojektowane do przesyłania dużych ilości energii elektrycznej i zazwyczaj mają grubszą średnicę oraz wytrzymałe materiały izolacyjne, które chronią je przed uszkodzeniami mechanicznymi i wpływem warunków atmosferycznych. W kontekście standardów branżowych, kable elektroenergetyczne muszą spełniać rygorystyczne normy, takie jak normy IEC (Międzynarodowa Komisja Elektrotechniczna) czy EN (Europejskie Normy). W praktyce, ich zastosowanie obejmuje przesył energii do budynków, instalacji przemysłowych i infrastruktury miejskiej, co czyni je fundamentalnym elementem w systemach energetycznych. Wiedza na temat różnic między kablami energetycznymi, telekomunikacyjnymi a innymi przewodami jest istotna dla każdego inżyniera elektryka, aby zapewnić odpowiedni dobór materiałów i bezpieczeństwo instalacji.

Pytanie 40

Do której czynności przeznaczone jest narzędzie przedstawione na ilustracji?

Ilustracja do pytania
A. Do zaciskania końcówek tulejkowych.
B. Do zaciskania końcówek oczkowych.
C. Do ściągania izolacji z żył przewodów.
D. Do docinania przewodów.
To, co widzisz na obrazku, to szczypce do ściągania izolacji. To naprawdę ważne narzędzie, jeśli pracujesz z kablami elektrycznymi. Mają one fajną budowę, bo mają regulowany ogranicznik, dzięki czemu możesz dokładnie ściągnąć izolację i nie uszkodzić samego przewodu. Jak już wiesz, do podłączania przewodów elektrycznych trzeba dobrze przygotować te kable, dlatego te szczypce są wręcz niezbędne. W elektryce bezpieczeństwo jest priorytetem, więc robienie tego z dużą uwagą zmniejsza ryzyko zwarć i innych problemów. Kiedy wszystko jest dobrze połączone, to znaczy, że instalacja będzie trwała i bezpieczna. No i nie można zapomnieć, że używając takich szczypiec, oszczędzasz czas, co na budowie albo przy modernizacji instalacji jest super ważne.