Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektryk
  • Kwalifikacja: ELE.02 - Montaż, uruchamianie i konserwacja instalacji, maszyn i urządzeń elektrycznych
  • Data rozpoczęcia: 3 grudnia 2025 11:40
  • Data zakończenia: 3 grudnia 2025 11:55

Egzamin zdany!

Wynik: 25/40 punktów (62,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Którego silnika dotyczy przedstawiony schemat?

Ilustracja do pytania
A. Indukcyjnego.
B. Szeregowego.
C. Obcowzbudnego.
D. Jednofazowego.
Analiza schematu powinna jasno wskazywać, że nieprawidłowe odpowiedzi są wynikiem mylnego rozumienia konstrukcji silników elektrycznych. Silniki indukcyjne, w przeciwieństwie do obcowzbudnych, nie mają oddzielnych uzwojeń wzbudzenia; ich działanie opiera się na zjawisku indukcji elektromagnetycznej, gdzie pole magnetyczne jest generowane przez prąd płynący w uzwojeniu twornika. W silnikach szeregowych uzwojenie wzbudzenia jest połączone szeregowo z uzwojeniem twornika, co wpływa na charakterystykę pracy, ale nie jest to zgodne z konstrukcją przedstawioną w schemacie. Co więcej, silniki jednofazowe, typowo używane w aplikacjach domowych, nie mają komutatora i działają w oparciu o inne zasady fizyczne, co odróżnia je od silników prądu stałego. Typowe błędy myślowe polegają na pomijaniu kluczowych elementów takich jak komutator oraz struktura uzwojeń, co prowadzi do nieprawidłowych wniosków. Zrozumienie różnic w budowie i zasadzie działania tych silników jest kluczowe dla ich prawidłowego zastosowania, co powinno być priorytetem w nauce o elektrotechnice.

Pytanie 2

Podczas pomiarów kontrolnych, przed odbiorem mieszkania, wykryto usterkę w instalacji oświetleniowej. Na zdjęciu przedstawiono fragment pomieszczenia przed tynkowaniem i wykonaniem wylewek. W celu wymiany uszkodzonych przewodów typu DY 1,5 mm2, prowadzonych w rurach instalacyjnych giętkich, należy w pierwszej kolejności

Ilustracja do pytania
A. rozkuć ściany, wprowadzić nowe przewody w ścianach i listwach przypodłogowych.
B. do końców starych przewodów zamocować nowe i wyciągając stare wprowadzać do rur nowe przewody.
C. rozkuć ściany i podłogę oraz wymienić uszkodzone odcinki instalacji.
D. wyciągnąć stare przewody z rur i wciągnąć nowe za pomocą sprężystego drutu stalowego.
Podejście do rozkuwania ścian i podłóg w celu wymiany uszkodzonych odcinków instalacji elektrycznej jest nie tylko czasochłonne, ale również kosztowne i nieefektywne. Tego typu działanie może prowadzić do nadmiernych uszkodzeń w pomieszczeniu, co wymaga dodatkowych prac remontowych, takich jak tynkowanie i malowanie, co zwiększa całkowity koszt inwestycji. Ponadto, takie metody są wbrew zasadom dobrych praktyk budowlanych, które zalecają minimalizację prac demontażowych, aby uniknąć dodatkowych ryzyk związanych z remontami. Podejście polegające na wprowadzeniu nowych przewodów w ścianach i listwach przypodłogowych niesie ze sobą ryzyko uszkodzenia konstrukcji budowlanej oraz naruszenia istniejących instalacji, co może prowadzić do awarii. W przypadku wyciągania starych przewodów z rur, istnieje duże prawdopodobieństwo, że zapchają się one lub uszkodzą, co utrudni dalszą pracę. Takie metody nie tylko są nieefektywne, ale również mogą doprowadzić do poważnych problemów związanych z bezpieczeństwem instalacji elektrycznej, co jest szczególnie niebezpieczne w kontekście zagrożeń pożarowych. Dlatego kluczowe jest przyjęcie metody, która łączy efektywność z bezpieczeństwem i zgodnością z obowiązującymi standardami.

Pytanie 3

Który osprzęt przedstawiono na zdjęciu?

Ilustracja do pytania
A. Złączki skrętne.
B. Dławnice.
C. Mufy przelotowe.
D. Kapturki termokurczliwe.
Dławnice kablowe to naprawdę ważne elementy w instalacjach elektrycznych. Jak widać na zdjęciu, mają za zadanie chronić miejsce, gdzie przewód wchodzi do obudowy urządzenia. Dzięki nim przewody są mniej narażone na różne uszkodzenia mechaniczne czy na wpływ wilgoci i brudu. Wiele razy spotykam się z tym, że w trudnych warunkach, jak na przykład w przemyśle, bez dławnic byłoby ciężko zapewnić bezpieczeństwo. Dławnice są często wykorzystywane w silnikach elektrycznych i skrzynkach przyłączeniowych, żeby wszystko dobrze uszczelniało się i działało jak należy. Dobrze też wiedzieć, że są zgodne z normami IEC 62262 oraz IEC 60529, które mówią, jak powinno wyglądać zabezpieczenie przed ciałami obcymi i wilgocią. Także odpowiedni dobór tych elementów ma ogromne znaczenie, bo źle dobrana dławnica może nie spełniać swojego zadania. Warto o tym pamiętać, bo brak dławnic w kluczowych miejscach w instalacji może prowadzić do sporych problemów, a więc zawsze lepiej stosować je tam, gdzie to konieczne.

Pytanie 4

Którą rolę pełni w styczniku element wskazany na ilustracji czarną strzałką?

Ilustracja do pytania
A. Likwiduje drgania zwory.
B. Zmniejsza napięcie podtrzymania cewki.
C. Zmniejsza siłę docisku zwory.
D. Likwiduje magnetyzm szczątkowy.
Element wskazany na ilustracji czarną strzałką w styczniku rzeczywiście pełni rolę tłumika drgań. Jego głównym zadaniem jest eliminowanie drgań zwory, które mogą wystąpić podczas cykli załączania i wyłączania stycznika. Drgania zwory, jeśli nie są skutecznie kontrolowane, mogą prowadzić do problemów z kontaktami, takich jak drgające styki, co w konsekwencji może doprowadzić do uszkodzenia urządzenia lub zakłóceń w jego pracy. W praktyce, zastosowanie tłumika drgań ma kluczowe znaczenie w systemach automatyki, gdzie stabilność i niezawodność działania elementów wykonawczych są niezwykle istotne. Zgodnie z dobrymi praktykami branżowymi, stosowanie tłumików drgań jest standardem w projektowaniu nowoczesnych styczników. Tłumiki te mogą być również wykorzystywane w innych aplikacjach, takich jak siłowniki pneumatyczne czy hydrauliczne, gdzie drgania mogą negatywnie wpływać na wydajność sprzętu. Rekomenduje się regularne sprawdzanie stanu tłumików drgań w celu zapewnienia ich efektywności oraz poprawy ogólnej niezawodności systemu.

Pytanie 5

Na rysunku przedstawiono oprawę oświetlenia

Ilustracja do pytania
A. przeważnie bezpośredniego - klasy II.
B. bezpośredniego - klasy I.
C. przeważnie pośredniego - klasy IV.
D. pośredniego - klasy V.
Odpowiedź 'przeważnie pośredniego - klasy IV.' jest prawidłowa, ponieważ na przedstawionym rysunku widać, że światło jest emitowane głównie w sposób pośredni. Oprawy oświetleniowe, które emitują światło pośrednio, są projektowane w taki sposób, aby rozpraszać światło za pomocą elementów takich jak mleczne szkło czy matowe powierzchnie, co zapewnia równomierne oświetlenie przestrzeni. Takie podejście jest korzystne w zastosowaniach, gdzie niepożądane są silne cienie oraz oślepiające refleksy. W kontekście norm, oprawy oświetleniowe klasy IV mogą znaleźć zastosowanie w biurach, salach konferencyjnych oraz miejscach, gdzie zależy nam na komforcie wzrokowym użytkowników. Zgodnie z zasadami ergonomii oświetlenia, odpowiednia jakość światła pośredniego wpływa korzystnie na samopoczucie i wydajność pracy, co podkreślają standardy ISO 8995-1. Zrozumienie różnych klas opraw oraz ich sposobu emisji jest kluczowe dla projektowania efektywnych systemów oświetleniowych.

Pytanie 6

Która z wymienionych czynności zaliczana jest do prac konserwacyjnych w przypadku oprawy oświetleniowej przedstawionej na rysunku?

Ilustracja do pytania
A. Wykonanie pomiarów natężenia oświetlenia.
B. Wymiana oprawki.
C. Wymiana złączki.
D. Czyszczenie obudowy i styków.
Wybór odpowiedzi związanej z wymianą oprawki lub złączki wskazuje na pewne nieporozumienie w zakresie klasyfikacji czynności konserwacyjnych i naprawczych. Wymiana oprawki jest działaniem, które zazwyczaj następuje w momencie, gdy oprawka jest uszkodzona lub nie działa poprawnie, co klasyfikuje tę czynność jako naprawczą, a nie konserwacyjną. Podobnie, wymiana złączki dotyczy bardziej aspektów technicznych, które wymagają interwencji w przypadku awarii, a nie rutynowego utrzymania. Czynności te są niezbędne w sytuacjach kryzysowych, ale nie powinny być mylone z regularnym utrzymywaniem sprzętu w dobrym stanie. W kontekście wykonywania pomiarów natężenia oświetlenia, należy zauważyć, że jest to proces kontrolny, który służy do oceny jakości oświetlenia w danym obszarze, a nie do jego konserwacji. Mylne podejście do konserwacji opraw oświetleniowych oraz ich funkcjonalności często prowadzi do nieprawidłowego zarządzania zasobami i zwiększonych kosztów operacyjnych. Przykładem może być sytuacja, w której brak odpowiedniej konserwacji skutkuje koniecznością częstszych napraw, co znacząco podnosi wydatki związane z utrzymaniem systemu oświetleniowego. Dlatego istotne jest, aby zrozumieć różnicę między tymi pojęciami oraz zastosować odpowiednie praktyki konserwacyjne, które będą sprzyjały długotrwałemu i efektywnemu działaniu urządzeń.

Pytanie 7

Co oznacza oznaczenie IP00 widoczne na obudowie urządzenia elektrycznego?

A. Najwyższy poziom ochrony.
B. Wykorzystanie separacji ochronnej.
C. Brak ochrony przed wilgocią i pyłem.
D. Brak klasy ochronności przed porażeniem.
Napis IP00 na obudowie urządzenia elektrycznego oznacza brak ochrony przed wilgocią i kurzem. Klasyfikacja IP (Ingress Protection) jest standardem opracowanym przez Międzynarodową Organizację Normalizacyjną (IEC), który określa poziomy ochrony oferowane przez obudowy urządzeń elektrycznych. W przypadku IP00, brak jakiejkolwiek cyfry oznacza, że urządzenie nie jest chronione ani przed wnikaniem ciał stałych, ani przed wilgocią. W praktyce oznacza to, że takie urządzenia powinny być używane w suchych, czystych i kontrolowanych warunkach, przez co minimalizuje się ryzyko uszkodzenia komponentów w wyniku nadmiernego zapylenia lub kontaktu z wodą. Przykładem zastosowania urządzeń oznaczonych jako IP00 mogą być niektóre elementy wewnętrzne systemów elektronicznych, które są odpowiednio zabezpieczone w zamkniętych obudowach i nie są narażone na działanie czynników zewnętrznych.

Pytanie 8

Jaką rolę odgrywa wyzwalacz elektromagnetyczny w wyłączniku nadprądowym?

A. Identyfikuje przeciążenia
B. Rozpoznaje zwarcia
C. Napina sprężynę mechanizmu
D. Zatrzymuje łuk elektryczny
Wyzwalacz elektromagnetyczny w wyłączniku nadprądowym pełni kluczową rolę w detekcji zwarć w obwodach elektrycznych. Jego działanie opiera się na zasadzie pomiaru prądu płynącego przez obwód. W momencie wystąpienia zwarcia, prąd znacznie wzrasta, co prowadzi do aktywacji wyzwalacza. Przykładowo, w przypadku zwarcia doziemnego, występujące wartości prądu mogą przekroczyć normalne poziomy, co wyzwala mechanizm odłączający obwód i zabezpieczający instalację przed uszkodzeniami. Tego typu rozwiązania są zgodne z normami IEC 60947-2, które określają wymagania dotyczące sprzętu niskonapięciowego. Poprawne działanie wyzwalacza elektromagnetycznego jest zatem niezbędne dla zapewnienia bezpieczeństwa w instalacjach elektrycznych, minimalizując ryzyko pożaru czy uszkodzenia urządzeń. W praktyce, wyłączniki nadprądowe z wyzwalaczami elektromagnetycznymi są powszechnie stosowane w domach, biurach oraz przemysłowych środowiskach pracy, gdzie ochrona przed skutkami zwarć jest kluczowa.

Pytanie 9

Który element osprzętu łączeniowego przedstawiono na rysunku?

Ilustracja do pytania
A. Listwę zaciskową.
B. Szynę łączeniową.
C. Szynę montażową.
D. Listwę elektroinstalacyjną.
Szyna łączeniowa, którą rozpoznałeś na zdjęciu, pełni istotną rolę w systemach elektroinstalacyjnych. Jest to komponent, który umożliwia efektywne połączenie i dystrybucję energii elektrycznej pomiędzy różnymi urządzeniami w rozdzielnicy. Dzięki zastosowaniu szyny łączeniowej, możliwe jest zminimalizowanie oporów elektrycznych i zredukowanie strat energii, co jest kluczowe w projektowaniu nowoczesnych instalacji elektrycznych. W praktyce, takie szyny są często stosowane w obiektach komercyjnych oraz przemysłowych, gdzie wymagane jest jednoczesne podłączenie wielu urządzeń, takich jak wyłączniki, bezpieczniki czy urządzenia automatyki. Ponadto, zgodnie z normami IEC 61439, szyny łączeniowe muszą spełniać określone wymagania dotyczące przewodności oraz odporności na przeciążenia. Dzięki temu, ich stosowanie podnosi nie tylko efektywność, ale również bezpieczeństwo całej instalacji elektrycznej.

Pytanie 10

Którego z narzędzi należy użyć do wkręcenia przedstawionego elementu w nagwintowany otwór?

Ilustracja do pytania
A. Wkrętaka krzyżowego.
B. Klucza ampulowego.
C. Wkrętaka typu torks.
D. Klucza nasadowego.
Klucz ampulowy, znany także jako klucz imbusowy, jest narzędziem przeznaczonym do pracy z śrubami i wkrętami, które mają łeb sześciokątny wewnętrzny. W przypadku opisanej sytuacji, użycie klucza ampulowego jest kluczowe, ponieważ idealnie pasuje do profilu łba śruby, co zapewnia skuteczne i bezpieczne wkręcanie lub wykręcanie. Tego typu klucze są szeroko stosowane w różnych dziedzinach, takich jak mechanika, elektronika czy budownictwo, co czyni je niezastąpionym narzędziem w zestawie każdego profesjonalisty. W praktyce, klucz ampulowy pozwala na uzyskanie dużego momentu obrotowego przy niewielkim wysiłku, co jest szczególnie ważne przy pracy z metalowymi elementami, które mogą być narażone na korozję lub inne uszkodzenia. Dodatkowo, klucze te są dostępne w różnych rozmiarach, co umożliwia ich dopasowanie do różnych śrub, zgodnie z normami ISO i DIN. Użycie odpowiedniego narzędzia z pewnością przyczyni się do wydajności pracy oraz do ograniczenia ryzyka uszkodzeń elementów montażowych.

Pytanie 11

Do których zacisków przekaźnika zmierzchowego należy podłączyć czujkę światła?

Ilustracja do pytania
A. L i 10
B. N i 12
C. 7 i 9
D. 10 i 12
Odpowiedź 7 i 9 jest poprawna, ponieważ na schemacie przekaźnika zmierzchowego zaciski te są wyraźnie oznaczone jako miejsca podłączenia czujki światła. Czujka światła wykrywa poziom oświetlenia zewnętrznego, co jest kluczowe dla automatyzacji oświetlenia, zwłaszcza w zastosowaniach komercyjnych i mieszkalnych. Użycie odpowiednich zacisków zapewnia prawidłowe działanie systemu, co jest zgodne z najlepszymi praktykami w instalacjach elektrycznych. W momencie, gdy czujka wykryje spadek poziomu oświetlenia (np. o zmierzchu), przekaźnik aktywuje oświetlenie, a kontraproduktywne podłączenie do innych zacisków mogłoby prowadzić do nieprawidłowego działania systemu. Dobrze skonfigurowany przekaźnik zmierzchowy zwiększa komfort użytkowania oraz oszczędność energii, co jest istotne w kontekście zrównoważonego rozwoju.

Pytanie 12

W przypadku układu elektrycznego, w którym z jednego punktu zasilane są przynajmniej dwie wewnętrzne linie zasilające, konieczne jest zastosowanie

A. złącze
B. instalacje odbiorcze
C. przyłącze
D. rozdzielnicę główną
Złącze jest kluczowym elementem w instalacjach elektrycznych, gdyż umożliwia efektywne połączenie różnych linii zasilających w jednym punkcie. W przypadku, gdy jedna linia zasilająca rozdziela się na co najmniej dwie, złącze pozwala na zorganizowane i bezpieczne zarządzanie tymi połączeniami. Przykładowo, w budynkach mieszkalnych złącze jest często wykorzystywane do podłączenia linii zasilających do różnych sekcji obwodów, takich jak oświetlenie i gniazdka. Stosowanie złącz zgodnych z normami PN-IEC 60947-1, zapewnia, że instalacja będzie bezpieczna i zgodna z dobrymi praktykami branżowymi. Złącza powinny być również odpowiednio oznakowane i dostosowane do przewodów, co zwiększa bezpieczeństwo oraz ułatwia ewentualną konserwację lub modernizację instalacji. Warto podkreślić, że dobór odpowiednich złącz zgodnych z wymaganiami technicznymi znacznie redukuje ryzyko awarii oraz poprawia efektywność energetyczną całego systemu.

Pytanie 13

Na podstawie zależności napięcia na zaciskach akumulatora od prądu i czasu rozładowywania przedstawionych na rysunku wskaż wartość napięcia akumulatora o pojemności C = 100 Ah, który przez 30 minut był obciążony prądem o wartości 60 A.

Ilustracja do pytania
A. 11,3 V
B. 12,0 V
C. 11,0 V
D. 12,4 V
Odpowiedzi 11,3 V, 12,4 V i 11,0 V nie są prawidłowe, bo całkowicie pomijają ważne rzeczy dotyczące, jak akumulatory się rozładowują. Z mojego doświadczenia, kluczowe jest zrozumienie, jak prąd obciążenia wpływa na napięcie, bo to mega ważne dla oceny, jak akumulatory się zachowują. Na przykład, 11,3 V może sugerować, że akumulator jest wyczerpany albo że coś jest nie tak z jego pojemnością. Z kolei 12,4 V może wynikać z błędnego zrozumienia wykresu, bo wysoka wartość napięcia nie jest normą przy dużym obciążeniu. Odpowiedź 11,0 V też nie pokazuje realnych wartości, które akumulator powinien mieć w takiej sytuacji. Często zdarzają się błędy w myśleniu, takie jak niepoprawne szacowanie wpływu czasu na napięcie, co prowadzi do mylnych wniosków na temat sprawności akumulatorów. Ważne, by wszyscy, którzy korzystają z akumulatorów, znali ich charakterystyki i potrafili dobrze interpretować dane z wykresów, co pomoże w lepszym ich wykorzystaniu w różnych sytuacjach.

Pytanie 14

W celu wyrównania potencjałów na elementach metalowych, występujących w budynku, które w normalnych warunkach nie są częścią obwodu elektrycznego, należy zainstalować element oznaczony cyfrą

Ilustracja do pytania
A. 1
B. 3
C. 7
D. 5
Podejście do wyboru odpowiedzi wskazanych w pozostałych opcjach, takich jak 3, 5 czy 7, jest mylące, ponieważ nie uwzględnia kluczowego aspektu wyrównania potencjałów w kontekście bezpieczeństwa elektrycznego. W praktyce, wiele osób może mylnie sądzić, że wystarczy zastosować jakiekolwiek połączenia metalowe, aby osiągnąć wyrównanie potencjałów, co jest nieprawidłowe. Połączenie wyrównawcze nie tylko musi być wykonane, ale także powinno być odpowiednio zaprojektowane. Wybór niewłaściwego elementu, jak wskazano w innych odpowiedziach, może prowadzić do sytuacji, w których nie zostaną spełnione normy bezpieczeństwa. Przykładowo, elementy takie jak rury czy obudowy urządzeń powinny być połączone w sposób zapewniający jednorodność potencjału, co jest osiągane właśnie przez szynę wyrównawczą. Inne opcje mogą sugerować, że wystarczyłoby używać istniejących elementów instalacji, co w rzeczywistości może zwiększyć ryzyko powstania niebezpiecznych różnic potencjałów. Wybór niewłaściwego podejścia, jak stosowanie izolowanych połączeń czy brak odpowiednich połączeń do uziemienia, może prowadzić do niebezpiecznych sytuacji, które są niezgodne z dobrą praktyką branżową oraz normami, takimi jak PN-IEC 60364 dotyczące instalacji elektrycznych w budynkach. Dlatego kluczowe jest zrozumienie, że tylko odpowiednio zaprojektowana i zainstalowana szyna wyrównawcza zapewnia bezpieczeństwo oraz minimalizuje ryzyko porażeń elektrycznych.

Pytanie 15

Którym symbolem graficznym oznacza się w dokumentacji sposób prowadzenia przewodów instalacji elektrycznej w listwach przypodłogowych?

Ilustracja do pytania
A. Symbolem 3.
B. Symbolem 4.
C. Symbolem 1.
D. Symbolem 2.
Wybór błędnych symboli graficznych w dokumentacji instalacji elektrycznych może prowadzić do poważnych nieporozumień i problemów w realizacji projektów. Symbole 1, 2 oraz 4 nie są zgodne z normą PN-IEC 60617 odnoszącą się do oznaczeń w dokumentacji elektrycznej. Wybór symbolu 1 może sugerować zupełnie inną metodę prowadzenia przewodów, co nie odpowiada rzeczywistości w kontekście instalacji w listwach przypodłogowych. Z kolei symbole 2 i 4 mogą być używane w innych kontekstach, jednak nie mają zastosowania w sytuacji, gdy przewody muszą być zabezpieczone oraz estetycznie zamaskowane wzdłuż ścian. Takie błędne wybory mogą wynikać z pomyłek w zapamiętywaniu symboli, co podkreśla znaczenie znajomości standardów oraz umiejętności ich prawidłowej interpretacji. Ważne jest, aby projektanci instalacji elektrycznych oraz ich wykonawcy przestrzegali ustalonych norm i wytycznych w celu zapewnienia nie tylko funkcjonalności, ale również bezpieczeństwa instalacji. Prawidłowe oznaczenie przewodów jest niezbędne dla późniejszej konserwacji oraz diagnozowania ewentualnych usterek. Właściwe symbole graficzne powinny być integralną częścią każdej dokumentacji technicznej, aby zapewnić prawidłowe zrozumienie i wykonanie instalacji zgodnie z najlepszymi praktykami branżowymi.

Pytanie 16

Do czego przeznaczone są szczypce przedstawione na ilustracji?

Ilustracja do pytania
A. Do zaprasowywania końców przewodów w połączeniach wsuwanych.
B. Do formowania oczek na końcach żył jednodrutowych.
C. Do montażu zacisków zakleszczających.
D. Do zaciskania końcówek tulejkowych na żyłach wielodrutowych.
Niepoprawne odpowiedzi dotyczą różnych zastosowań szczypiec, które nie są związane z formowaniem oczek na końcach żył jednodrutowych. Zaciskanie końcówek tulejkowych na żyłach wielodrutowych wymaga zupełnie innego typu narzędzi, które są przeznaczone do pracy z końcówkami o specyficznych średnicach i kształtach, co nie ma zastosowania w przypadku żył jednodrutowych. Podobnie, montaż zacisków zakleszczających wymaga narzędzi o odmiennym profilu, które są w stanie zapewnić odpowiednią siłę i dokładność przy zakleszczaniu, co jest kluczowe dla bezpieczeństwa połączeń. Z kolei zaprasowywanie końców przewodów w połączeniach wsuwanych zazwyczaj odbywa się przy użyciu specjalistycznych narzędzi zaprasowujących, które charakteryzują się innym mechanizmem działania niż szczypce okrągłe. Dlatego też, mylenie tych narzędzi i ich funkcji może prowadzić do nieefektywności w pracy oraz potencjalnych zagrożeń związanych z niewłaściwymi połączeniami. Ważne jest, aby dobrze rozumieć różnice między tymi rodzajami narzędzi i ich zastosowaniami, aby uniknąć błędnych interpretacji i zapewnić wysoką jakość wykonania w każdej instalacji elektrycznej.

Pytanie 17

Na podstawie rysunku określ kolejność zamontowanych aparatów elektrycznych w rozdzielnicy.

Ilustracja do pytania
A. Wyłącznik różnicowoprądowy, przekaźnik bistabilny, lampka kontrolna, automat schodowy.
B. Ochronnik przeciwprzepięciowy, wyłącznik nadprądowy, automat schodowy, przekaźnik bistabilny.
C. Wyłącznik różnicowoprądowy, wyłącznik nadprądowy, lampka kontrolna, przekaźnik bistabilny.
D. Ochronnik przeciwprzepięciowy, przekaźnik bistabilny, lampka kontrolna, automat schodowy.
Wybierając jedną z niepoprawnych odpowiedzi, można dostrzec kilka kluczowych nieporozumień związanych z kolejnością zamontowanych elementów w rozdzielnicy. Na przykład, w odpowiedzi, w której jako pierwszy wymieniony jest przekaźnik bistabilny, brakuje zrozumienia podstawowych zasad ochrony elektrycznej. Wyłącznik różnicowoprądowy powinien znajdować się na początku, ponieważ jego funkcją jest ochrona przed porażeniem prądem, a nie sterowanie obwodami. Umiejscowienie go na końcu systemu naraża użytkowników na niebezpieczeństwo. Kolejnym błędem jest pominięcie wyłącznika nadprądowego, który jest kluczowy w przypadku zwarcia. W odpowiedziach, w których pojawiają się automaty schodowe lub ochronniki przeciwprzepięciowe na początku listy, wprowadza się zamieszanie w hierarchii zabezpieczeń. Automaty schodowe pełnią inną funkcję, polegającą na sterowaniu oświetleniem w miejscach przejść, a nie na zabezpieczaniu instalacji. Ochronniki przeciwprzepięciowe powinny być umieszczane w późniejszej kolejności, jako dodatkowe zabezpieczenie, a nie jako pierwszy element w rozdzielnicy. Właściwe zrozumienie i kolejność tych urządzeń jest niezbędna do zapewnienia efektywności oraz bezpieczeństwa instalacji elektrycznych, zgodnie z normami branżowymi. Typowe błędy myślowe, takie jak niewłaściwe przypisanie funkcji poszczególnym elementom, mogą prowadzić do niebezpiecznych sytuacji oraz awarii w instalacjach, dlatego tak ważne jest przyswojenie sobie tej wiedzy.

Pytanie 18

Do których zacisków przekaźnika zmierzchowego przedstawionego na schemacie należy podłączyć czujnik światła?

Ilustracja do pytania
A. N i 12
B. L i 10
C. 10 i 12
D. 7 i 9
Czujnik światła powinien być podłączony do zacisków 7 i 9 przekaźnika zmierzchowego, ponieważ te zaciski są przeznaczone do podłączenia zewnętrznych czujników. W praktyce, gdy zmierzchowy przekaźnik wykryje spadek natężenia światła, czujnik ten aktywuje przekaźnik, co pozwala na automatyczne włączanie lub wyłączanie oświetlenia w zależności od warunków oświetleniowych. Zgodnie z normami branżowymi, podłączanie czujników do właściwych zacisków jest kluczowe dla zapewnienia prawidłowego działania systemu. W przypadku zastosowań w inteligentnych domach, poprawne podłączenie czujnika światła do właściwych zacisków pozwala na efektywne zarządzanie energią, co jest zgodne z ideą zrównoważonego rozwoju. W praktyce, użytkownik może ustawić czujnik w odpowiedniej lokalizacji, aby optymalizować jego działanie, co z kolei wpływa na komfort i oszczędności energii.

Pytanie 19

Jakie oznaczenia oraz jaka minimalna wartość prądu znamionowego powinna mieć wkładka topikowa do ochrony przewodów przed skutkami zwarć i przeciążeń w obwodzie jednofazowego grzejnika rezystancyjnego o danych znamionowych: Pₙ = 3 kW, Uₙ = 230 V?

A. gG 16 A
B. aM 20 A
C. aR 16 A
D. gB 20 A
Wkładka topikowa gG 16 A jest odpowiednia dla obwodu jednofazowego grzejnika rezystancyjnego o mocy 3 kW przy napięciu znamionowym 230 V. Obliczając wartość prądu znamionowego, stosujemy wzór: I = P / U, gdzie P to moc, a U to napięcie. W tym przypadku: I = 3000 W / 230 V ≈ 13 A. Wybór wkładki gG 16 A jest uzasadniony, ponieważ jest ona przeznaczona do zabezpieczania obwodów przed przeciążeniem oraz zwarciem, a jej wartość znamionowa (16 A) zapewnia odpowiednią margines dla ewentualnych chwilowych wzrostów prądu, które mogą wystąpić przy rozruchu grzejnika. Zastosowanie wkładek gG w instalacjach domowych jest zgodne z normami IEC 60269, które podkreślają ich właściwości ochronne i dostosowanie do obciążeń rezystancyjnych. W praktyce wkładki gG są często stosowane w systemach zasilania urządzeń grzewczych, co czyni je idealnym wyborem w tym przypadku.

Pytanie 20

Który z urządzeń elektrycznych, zainstalowany w obwodzie systemu zasilania elektrycznego kuchenki trójfazowej, jest w stanie zidentyfikować przerwę w ciągłości przewodów jednej z faz?

A. Czujnik zaniku fazy
B. Odgromnik
C. Stycznik elektromagnetyczny
D. Przekaźnik priorytetowy
Czujnik zaniku fazy to urządzenie, którego głównym zadaniem jest monitorowanie i wykrywanie ewentualnych przerw w zasilaniu w poszczególnych fazach obwodu elektrycznego. W kontekście kuchenek trójfazowych, które wymagają stabilnego zasilania z trzech faz, czujnik ten odgrywa kluczową rolę w zapewnieniu bezpieczeństwa oraz sprawnego funkcjonowania urządzenia. Gdy zachodzi przerwa w jednej z faz, czujnik natychmiast wykrywa ten stan i może zainicjować odpowiednie działania, takie jak odłączenie urządzenia od zasilania, co zapobiega jego uszkodzeniu. Przykładowo, w kuchniach przemysłowych, gdzie kuchenki trójfazowe są wykorzystywane na dużą skalę, zastosowanie czujników zaniku fazy jest standardem, co wpływa na zwiększenie niezawodności i bezpieczeństwa operacji. Zgodnie z normami branżowymi, takie jak PN-EN 61439, zaleca się stosowanie czujników do monitorowania ciągłości zasilania w instalacjach elektrycznych, co w praktyce przekłada się na wyższą efektywność i minimalizację ryzyka awarii.

Pytanie 21

Jak powinno się przeprowadzać zalecane przez producenta okresowe testy działania wyłącznika różnicowoprądowego?

A. Naciskając przycisk "TEST"
B. Mierząc czas reakcji przy wymuszeniu prądu upływu wynoszącego IΔn
C. Określając minimalny prąd upływu, który powoduje zadziałanie wyłącznika
D. Wykonując kontrolne doziemienie
Naciskanie przycisku 'TEST' na wyłączniku różnicowoprądowym (RCD) jest zalecaną metodą przeprowadzania okresowego sprawdzenia jego działania. To działanie symuluje sytuację, w której dochodzi do prądu upływu, co powinno spowodować natychmiastowe zadziałanie urządzenia. Dzięki temu można zweryfikować, czy wyłącznik działa prawidłowo i czy jest w stanie skutecznie chronić przed porażeniem prądem elektrycznym. Warto podkreślić, że producenci urządzeń elektrycznych oraz normy takie jak PN-EN 61008-1 zalecają regularne testowanie RCD co najmniej raz w miesiącu. Przykład praktycznego zastosowania to wykonanie testu przed rozpoczęciem sezonu letniego, kiedy to wiele osób korzysta z urządzeń elektrycznych na świeżym powietrzu, co zwiększa ryzyko wystąpienia porażenia prądem. Regularne testowanie wyłączników różnicowoprądowych nie tylko zapewnia bezpieczeństwo, ale również może zaoszczędzić koszty związane z naprawami czy stratami energoelektrycznymi wynikającymi z niewłaściwego działania instalacji elektrycznej.

Pytanie 22

Na którym rysunku przedstawiono przyrząd do lokalizowania trasy przebiegu przewodów instalacyjnych pod tynkiem?

Ilustracja do pytania
A. A.
B. B.
C. D.
D. C.
Odpowiedź C jest w porządku, bo na tym rysunku widzimy detektor przewodów, który jest super ważnym narzędziem w elektryce. Detektory, takie jak te od Boscha, pomagają znaleźć ukryte kable pod tynkiem, co jest mega przydatne, gdy robimy remonty lub zakładamy nowe systemy elektryczne. Dzięki detektorowi możemy uniknąć uszkodzenia już istniejących instalacji, co może prowadzić do naprawdę poważnych problemów, jak zwarcia czy uszkodzenie sprzętu. W branży ważne jest, żeby dokładnie lokalizować przewody, co mówi norma IEC 60364. Poza tym, te urządzenia potrafią też rozpoznać różne typy przewodów, co bardzo ułatwia planowanie prac budowlanych i remontowych, moim zdaniem to spora oszczędność czasu.

Pytanie 23

Na ilustracji przedstawiony jest

Ilustracja do pytania
A. przewód spawalniczy.
B. kabel telekomunikacyjny.
C. przewód sterowniczy.
D. kabel elektroenergetyczny.
Wybór nieprawidłowej odpowiedzi może wynikać z mylenia różnych typów kabli, które mają odmienną budowę oraz zastosowanie. Kable telekomunikacyjne, na przykład, są zazwyczaj cieńsze i mają inną konstrukcję, która jest dostosowana do przesyłania sygnałów danych, a nie energii elektrycznej. Charakteryzują się one często wieloma cienkimi parami przewodów, które są osłonięte w sposób zapewniający minimalne zakłócenia sygnałów. Z kolei przewody sterownicze, stosowane w automatyce i systemach kontrolnych, są projektowane do niskonapięciowych sygnałów sterujących, co czyni je nieodpowiednimi do przesyłania energii na dużą odległość. Przewody spawalnicze natomiast, choć mogą wydawać się na pierwszy rzut oka podobne, są używane w procesach spawania i mają inną specyfikację techniczną, co wynika z ich zmiennych obciążeń oraz temperatur pracy. Błędy w identyfikacji tych kabli mogą prowadzić do niewłaściwego doboru materiałów w instalacjach, co z kolei stwarza ryzyko awarii oraz zagrożeń dla bezpieczeństwa. Dlatego tak ważne jest, aby dokładnie rozumieć różnice pomiędzy typami kabli i ich przeznaczeniem w różnych aplikacjach elektrycznych.

Pytanie 24

Którą klasę ochronności posiada oprawa oświetleniowa oznaczona przedstawionym symbolem graficznym?

Ilustracja do pytania
A. Klasę I
B. Klasę 0
C. Klasę II
D. Klasę III
Odpowiedź "Klasę I" jest prawidłowa, ponieważ symbol przedstawiony na zdjęciu jednoznacznie wskazuje na tę klasę ochronności. Klasa I opraw oświetleniowych charakteryzuje się tym, że są one wyposażone w uziemienie, co jest kluczowe dla bezpieczeństwa użytkowników. Uziemienie zapewnia, że w przypadku wystąpienia awarii, prąd będzie odprowadzany do ziemi, minimalizując ryzyko porażenia elektrycznego. W praktyce, oprawy tej klasy stosowane są w miejscach, gdzie istnieje ryzyko kontaktu z wodą lub w obiektach przemysłowych, gdzie warunki eksploatacji są trudniejsze. Warto zauważyć, że zgodnie z normą IEC 60598-1, wszystkie oprawy oświetleniowe klasy I muszą posiadać odpowiednie połączenie z przewodem ochronnym. W konsekwencji, stosowanie opraw klasy I w odpowiednich warunkach zwiększa bezpieczeństwo, co jest zgodne z najlepszymi praktykami w branży elektrycznej.

Pytanie 25

W jakiej sytuacji poślizg silnika indukcyjnego wyniesie 100%?

A. Wirnik silnika osiągnie prędkość wyższą niż prędkość synchroniczna
B. Gdy silnik będzie zasilany, jego wirnik pozostanie w bezruchu
C. Silnik będzie zasilany prądem w przeciwnym kierunku
D. Silnik będzie funkcjonować w trybie jałowym
Poślizg silnika indukcyjnego określa różnicę między prędkością synchroniczną a rzeczywistą prędkością wirnika. Gdy wirnik jest nieruchomy, oznacza to, że nie porusza się w stosunku do pola magnetycznego wytwarzanego przez uzwojenia statora. W takiej sytuacji prędkość wirnika wynosi 0, a prędkość synchroniczna, zależna od częstotliwości zasilania i liczby par biegunów, jest znacznie wyższa. Z tego powodu poślizg wynosi 100%, co oznacza maksymalne obciążenie silnika, a jego moment obrotowy jest równy zeru, co jest warunkiem niezbędnym do rozpoczęcia pracy silnika. W praktyce taka sytuacja ma miejsce podczas uruchamiania silników, gdy są one podłączane do zasilania, ale wirnik nie ma jeszcze możliwości obrotu, na przykład w przypadku zablokowania. W przemyśle, szczególnie w aplikacjach wymagających dużego momentu rozruchowego, jak w przypadku transportu materiałów, monitoruje się poślizg, aby zapewnić optymalne działanie silników. Zrozumienie poślizgu jest kluczowe dla efektywności energetycznej i żywotności silników indukcyjnych.

Pytanie 26

Który z przedstawionych wyłączników różnicowoprądowych umożliwia monitorowanie prądu upływu w instalacji elektrycznej?

Ilustracja do pytania
A. B.
B. C.
C. D.
D. A.
Wybór niewłaściwego wyłącznika różnicowoprądowego, który nie posiada wskaźnika prądu upływu, może prowadzić do poważnych konsekwencji w eksploatacji instalacji elektrycznej. Osoby decydujące się na użycie wyłączników bez takich wskaźników mogą być narażone na niebezpieczeństwo, ponieważ nie są w stanie monitorować potencjalnych zagrożeń związanych z prądem upływu. Brak wskaźnika oznacza, że użytkownik nie otrzymuje informacji o niewłaściwym działaniu instalacji, co może skutkować poważnymi uszkodzeniami sprzętu elektrycznego lub, w najgorszym wypadku, porażeniem prądem elektrycznym. Często spotykanym błędem jest założenie, że wszystkie wyłączniki różnicowoprądowe działają w ten sam sposób i oferują te same funkcjonalności. To mylne przekonanie prowadzi do niewłaściwego doboru urządzeń, co może skutkować nieodpowiednim zabezpieczeniem całego systemu elektrycznego. Warto zauważyć, że zgodnie z obowiązującymi normami, takim jak PN-EN 61008, wyłączniki różnicowoprądowe powinny być wyposażone w dodatkowe funkcje monitorujące, aby zapewnić maksymalne bezpieczeństwo użytkowania. Dokonując wyboru, należy zwracać uwagę na specyfikacje techniczne oraz dostępne funkcje, aby uniknąć potencjalnych zagrożeń i w pełni wykorzystać możliwości, jakie oferują nowoczesne rozwiązania w zakresie zabezpieczeń elektrycznych.

Pytanie 27

Z którym zaciskiem będzie połączony zacisk 42 stycznika K2 według przedstawionego schematu montażowego?

Ilustracja do pytania
A. Z zaciskiem 4 listwy zaciskowej X1
B. Z zaciskiem A2 stycznika K1
C. Z zaciskiem 3 listwy zaciskowej X1
D. Z zaciskiem 22 stycznika K1
Zacisk 42 stycznika K2 jest połączony z zaciskiem 4 listwy zaciskowej X1, co można zweryfikować na podstawie schematu montażowego. Ważne jest, aby dokładnie analizować schematy w kontekście połączeń elektrycznych, ponieważ zapewniają one wizualizację, która jest kluczowa dla właściwego zrozumienia działania obwodu. W praktyce, połączenia takie umożliwiają prawidłowe funkcjonowanie urządzeń, na przykład sterowanie silnikami lub innymi komponentami systemu. W przypadku styczników, poprawne połączenia są istotne dla zapewnienia ich niezawodnej pracy. Dobrą praktyką jest również dokumentowanie wszelkich połączeń, co ułatwia późniejsze serwisowanie oraz modyfikacje w instalacji. Zrozumienie schematu oraz umiejętność interpretacji połączeń elektrycznych są fundamentami pracy w branży elektroinstalacyjnej. Warto również zaznaczyć, że zgodność z normami oraz standardami branżowymi, takimi jak IEC, jest niezbędna dla zapewnienia bezpieczeństwa i efektywności działania systemów elektrycznych.

Pytanie 28

Jakie są przyczyny automatycznego wyłączenia wyłącznika instalacyjnego po mniej więcej 10 minutach od włączenia obwodu odbiorczego w instalacji elektrycznej?

A. Zwarcie bezimpedancyjne
B. Przeciążenie
C. Prąd błądzący
D. Przepięcie
Przeciążenie obwodu elektrycznego jest jedną z najczęstszych przyczyn samoczynnego zadziałania wyłącznika instalacyjnego. Przeciążenie następuje w momencie, gdy obciążenie podłączone do obwodu przekracza jego dopuszczalną wartość prądową. Wyłączniki instalacyjne, zgodnie z normami PN-EN 60898, są zaprojektowane w taki sposób, aby chronić instalację przed uszkodzeniem w wyniku zbyt dużego natężenia prądu. W przypadku obwodów o niskiej impedancji, takie jak instalacje oświetleniowe czy gniazdka, obciążenie może wzrosnąć w wyniku uruchomienia wielu urządzeń jednocześnie, co prowadzi do przeciążenia. Gdy prąd przekracza wartość znamionową wyłącznika, mechanizm wyłączający uruchamia się automatycznie, co zapobiega ewentualnym uszkodzeniom kabli czy urządzeń. W praktyce, ważne jest, aby przed podłączeniem nowych urządzeń do instalacji, upewnić się, że całkowite obciążenie nie przekroczy wartości znamionowej wyłącznika, co jest kluczowe w zarządzaniu energią i zapewnieniu bezpieczeństwa instalacji elektrycznych.

Pytanie 29

Który z podanych symboli oznacza urządzenie, którym należy zastąpić element instalacji elektrycznej przedstawiony na rysunku?

Ilustracja do pytania
A. CF16-25/2/003
B. SM 320 230-2z
C. S 191 B20
D. FAZ B10/1
Wybór odpowiedzi innej niż "S 191 B20" może wynikać z niewłaściwego zrozumienia oznaczeń oraz funkcji urządzeń elektrycznych. Na przykład, nieprawidłowe odpowiedzi, takie jak "FAZ B10/1" czy "CF16-25/2/003", wskazują na niewłaściwą interpretację prądów znamionowych i charakterystyk. Odpowiedź "FAZ B10/1" oznacza wyłącznik automatyczny o charakterystyce B i prądzie znamionowym 10A. Zastosowanie go w miejsce urządzenia o prądzie 20A jest niewłaściwe, ponieważ spowoduje to nieodpowiednie zabezpieczenie obwodu. Z kolei odpowiedzi "SM 320 230-2z" i "CF16-25/2/003" odnoszą się do urządzeń, które nie spełniają wymagań dotyczących charakterystyki i prądu znamionowego dla konkretnego zastosowania w danym obwodzie. Niezrozumienie znaczenia oznaczeń może prowadzić do wyboru urządzeń, które nie tylko nie zapewniają odpowiedniej ochrony, ale również mogą stwarzać zagrożenie dla bezpieczeństwa instalacji. Fundamentalnym błędem jest przyjęcie niewłaściwej wartości prądu znamionowego lub charakterystyki, co w praktyce może doprowadzić do awarii i uszkodzenia urządzeń oraz zwiększonego ryzyka pożaru. Dlatego kluczowe jest, aby przed dokonaniem wyboru odpowiednich urządzeń elektrycznych dokładnie zrozumieć ich parametry oraz standardy, takie jak PN-EN 60898, które regulują zasady ich stosowania w instalacjach elektrycznych.

Pytanie 30

Po zmianie podłączenia do budynku zauważono, że trójfazowy silnik napędzający hydrofor kręci się w przeciwną stronę niż przed wymianą podłączenia. Co jest przyczyną takiego działania silnika?

A. brak podłączenia dwóch faz
B. zamiana jednej fazy z przewodem neutralnym
C. brak podłączenia jednej fazy
D. zamiana dwóch faz miejscami
Zamiana dwóch faz między sobą jest kluczowym zjawiskiem w trójfazowych układach zasilania, które wpływa na kierunek obrotów silników asynchronicznych. W przypadku silników trójfazowych, kierunek ich obrotów można zmieniać poprzez zamianę miejscami dwóch dowolnych faz zasilających. W praktyce, jeśli podłączymy fazy w inny sposób, silnik zacznie obracać się w przeciwną stronę, co można zaobserwować w przypadku hydroforów, które są często używane do pompowania wody w różnych aplikacjach domowych. W takiej sytuacji, ważne jest, aby zwracać uwagę na prawidłowe oznaczenia faz oraz standardy instalacyjne, które powinny być przestrzegane dla zapewnienia prawidłowego działania urządzeń. Przykładem zastosowania tej wiedzy jest również sytuacja, gdy wykonujemy konserwację instalacji elektrycznej, w której zmieniamy przyłącze, co może prowadzić do niezamierzonych skutków, takich jak zmiana kierunku obrotów silnika. Dlatego ważne jest, aby zawsze upewnić się, że połączenia faz są zgodne z dokumentacją oraz zaleceniami producentów urządzeń.

Pytanie 31

Którego z elektronarzędzi należy użyć do wycinania bruzd pod przewody instalacji podtynkowej?

Ilustracja do pytania
A. B.
B. A.
C. D.
D. C.
Frezerka do bruzd, czyli narzędzie oznaczone jako D, jest najbardziej odpowiednim elektronarzędziem do wycinania bruzd pod przewody instalacji podtynkowej. Dzięki swojej konstrukcji umożliwia precyzyjne cięcie w twardych materiałach, takich jak beton czy cegła, co jest kluczowe dla prawidłowego montażu instalacji elektrycznych. Narzędzie to posiada regulację głębokości cięcia, co pozwala na dostosowanie do różnych grubości przewodów oraz zapewnia estetyczne i schludne wykonanie rowków. W praktyce, operatorzy frezerek do bruzd często wykorzystują je do tworzenia kanałów, w których umieszczane są przewody, co pozwala na estetyczne ukrycie instalacji. Zgodnie z najlepszymi praktykami branżowymi, stosowanie tego narzędzia zapewnia nie tylko efektywność pracy, ale także bezpieczeństwo, eliminując ryzyko uszkodzenia instalacji oraz minimalizując ilość pyłów i odpadów materiałowych.

Pytanie 32

Jak długo maksymalnie może trwać samoczynne wyłączenie zasilania w obwodzie odbiorczym z napięciem przemiennym 230 V i prądem obciążenia do 32 A, w sieci TN, spełniający wymagania dotyczące ochrony przed dotykiem pośrednim?

A. 0,2 sekundy
B. 0,4 sekundy
C. 5 sekund
D. 1 sekundę
Maksymalny czas samoczynnego wyłączenia zasilania w obwodzie odbiorczym o napięciu 230 V i prądzie obciążenia do 32 A w sieci TN wynoszący 0,4 sekundy jest zgodny z normami obowiązującymi w dziedzinie bezpieczeństwa elektrycznego, takimi jak norma PN-EN 61140. Czas ten określa, jak szybko system ochronny powinien zareagować w przypadku wystąpienia zwarcia lub awarii, aby zminimalizować ryzyko porażenia prądem. W praktyce oznacza to, że urządzenia zabezpieczające, takie jak wyłączniki różnicowoprądowe, muszą być zdolne do zadziałania w tym krótkim czasie. Takie szybkie reakcje są kluczowe w warunkach użytkowania, zwłaszcza w środowisku domowym i komercyjnym, gdzie obecność ludzi jest stała. Przykładem zastosowania tej zasady mogą być obwody zasilające w łazienkach oraz innych pomieszczeniach narażonych na kontakt z wodą, gdzie ryzyko porażenia prądem jest znacznie wyższe. Odpowiednie zabezpieczenia w postaci wyłączników, które działają w ciągu 0,4 sekundy, mogą uratować życie, eliminując zasilanie w przypadku niebezpiecznych sytuacji.

Pytanie 33

Na której ilustracji przedstawiono symbol graficzny rozłącznika?

Ilustracja do pytania
A. Na ilustracji III.
B. Na ilustracji IV.
C. Na ilustracji II.
D. Na ilustracji I.
Wybór innej ilustracji jako symbolu graficznego rozłącznika może wynikać z nieporozumień dotyczących interpretacji symboli elektrycznych. Na ilustracji I, III i IV przedstawione są inne elementy schematów elektrycznych, które mają różne funkcje i zastosowania. Na przykład, ilustracja I może przedstawiać symbol przekaźnika, który ma za zadanie automatyczne włączanie i wyłączanie obwodów, co jest zupełnie inną funkcją niż rozłącznik. Z kolei ilustracja III może pokazować symbol bezpiecznika, który chroni obwód przed przeciążeniem, a ilustracja IV może przedstawiać symbol wyłącznika, który manualnie przerywa obwód. Tego rodzaju błędy w identyfikacji symboli wynikają często z braku znajomości standardów IEC 60617, które definiują różne symbole używane w schematach elektrycznych. Kluczowe jest zrozumienie, że każdy symbol ma swoje specyficzne oznaczenie oraz funkcję, dlatego mylenie ich może prowadzić do nieprawidłowych wniosków i potencjalnych zagrożeń w pracy z instalacjami elektrycznymi. Aby uniknąć tego typu pomyłek, zaleca się systematyczne zapoznawanie się z normami i dobrymi praktykami w zakresie projektowania oraz czytania schematów elektrycznych.

Pytanie 34

Jakie źródło światła przedstawiono na rysunku?

Ilustracja do pytania
A. Lampę indukcyjną.
B. Lampę metalohalogenkową.
C. Świetlówkę kompaktową.
D. Żarówkę halogenową.
Świetlówka kompaktowa, przedstawiona na zdjęciu, charakteryzuje się unikalnym kształtem, który opiera się na zwiniętej rurze zawierającej gaz fluorescencyjny, co pozwala na efektywne generowanie światła. W przeciwieństwie do tradycyjnych żarówek, świetlówki kompaktowe oferują znacznie wyższą efektywność energetyczną, co przekłada się na dłuższy czas życia oraz niższe zużycie energii. Używane są powszechnie w domach oraz biurach jako odpowiednik standardowych żarówek, zwłaszcza w sytuacjach, gdy zależy nam na oszczędności energii. Dodatkowo, świetlówki kompaktowe są często stosowane w ogrodach i na zewnątrz budynków, ponieważ oferują wysoką jakość światła przy niskim poborze mocy. Warto również zauważyć, że ich ograniczona emisja ciepła sprawia, że są bezpieczniejsze w użytkowaniu, zwłaszcza w zamkniętych przestrzeniach. Zgodnie z normami energetycznymi, ich zastosowanie przyczynia się do zmniejszenia emisji dwutlenku węgla, co jest zgodne z globalnymi dążeniami do ochrony środowiska.

Pytanie 35

Którym z urządzeń przedstawionych na rysunkach należy zastąpić uszkodzony w instalacji elektrycznej stycznik o oznaczeniu SM 425 230 4Z?

Ilustracja do pytania
A. D.
B. C.
C. B.
D. A.
Wybór nieprawidłowego stycznika może prowadzić do różnych problemów w systemach elektrycznych. W przypadku odpowiedzi, które nie są zgodne z parametrami technicznymi uszkodzonego stycznika SM 425 230 4Z, można wskazać na kilka kluczowych aspektów. Przede wszystkim, najczęstszym błędem jest ignorowanie napięcia cewki, które musi być zgodne z wymaganym 230V. Styczniki o innych wartościach napięcia cewki mogą nie działać prawidłowo, co prowadzi do ich uszkodzenia lub niepoprawnej pracy całego układu. Dodatkowo, liczba styków pomocniczych jest również istotna – ich brak lub niewłaściwa liczba może uniemożliwić prawidłowe funkcjonowanie obwodów sterujących. Wiele osób może także popełniać błąd w ocenie parametrów styków pomocniczych, które są kluczowe dla działania urządzenia w kontekście bezpieczeństwa i niezawodności. Warto również pamiętać, że dobór odpowiednich komponentów jest regulowany przez normy takie jak IEC 60947, które wskazują, jak ważne jest stosowanie zamienników o porównywalnych parametrach. Dlatego, aby uniknąć typowych pomyłek, zawsze należy dokładnie analizować dokumentację techniczną oraz parametry urządzeń przed dokonaniem wyboru zamiennika.

Pytanie 36

Narzędziem niezbędnym do wymiany łącznika pokazanego na zdjęciu jest wkrętak

Ilustracja do pytania
A. PH2
B. płaski.
C. z bitem M8
D. TROX
Prawidłowa odpowiedź to wkrętak płaski, który jest narzędziem odpowiednim do wymiany łącznika pokazanego na zdjęciu. Wyłączniki instalacyjne wyposażone w zacisk śrubowy wymagają użycia wkrętaka płaskiego, ponieważ jego konstrukcja pozwala na łatwe i precyzyjne wkręcanie lub wykręcanie śrub. W praktyce, wkrętak płaski jest najczęściej wykorzystywany w instalacjach elektrycznych, gdzie śruby mocujące są powszechnie stosowane. W sytuacjach, gdy zachodzi potrzeba wymiany wyłączników, zastosowanie odpowiedniego narzędzia jest kluczowe dla zapewnienia bezpieczeństwa oraz poprawności wykonania instalacji. Warto również dodać, że wkrętaki płaskie są dostępne w różnych rozmiarach, co umożliwia ich dopasowanie do konkretnego typu śrub. W przypadku niewłaściwego narzędzia może dojść do uszkodzenia śruby lub samego wyłącznika, co prowadzi do dodatkowych kosztów i ryzyka w zakresie bezpieczeństwa elektrycznego.

Pytanie 37

Który element stycznika elektromagnetycznego przedstawiono na ilustracji?

Ilustracja do pytania
A. Sprężynę zwrotną.
B. Zworę.
C. Komorę gaszeniową.
D. Cewkę.
Cewka jest kluczowym elementem stycznika elektromagnetycznego, który odgrywa fundamentalną rolę w jego działaniu. Gdy do cewki doprowadzony jest prąd, wytwarza ona pole magnetyczne, które przyciąga ruchomy rdzeń stycznika, powodując zamknięcie styków. Dzięki temu możliwy jest przepływ prądu przez obciążenie, co jest istotne w różnych aplikacjach elektrycznych, od automatyki przemysłowej po systemy oświetleniowe. Cewki stosowane w stycznikach są zazwyczaj projektowane zgodnie z normami IEC oraz DIN, co zapewnia ich niezawodność i efektywność. Przykładem zastosowania stycznika z cewką może być automatyczne włączenie pompy wody w systemach zarządzania budynkami, gdzie cewka aktywuje styki, kiedy poziom wody osiąga określoną wartość. Zrozumienie działania cewki oraz jej roli w stycznikach jest kluczowe dla profesjonalistów w dziedzinie elektrotechniki, co pozwala na poprawne zaprojektowanie oraz efektywne użytkowanie systemów elektrycznych.

Pytanie 38

Jakie zabezpieczenie przed porażeniem prądem w przypadku pośredniego dotyku zostało wdrożone, gdy pojedynczy odbiornik jest zasilany za pośrednictwem transformatora o przekładni 230 V/230 V, który jest skonstruowany w taki sposób, że nie można doprowadzić do zwarcia między jego uzwojeniami?

A. Podwójna lub wzmocniona izolacja
B. Izolowanie miejsca pracy
C. Ochronne obniżenie napięcia
D. Izolacja odbiornika
Separacja odbiornika to jedna z podstawowych metod ochrony przed dotykiem pośrednim, szczególnie w układach zasilania, gdzie izolacja galwaniczna jest kluczowa. W przypadku analizy transformatora o przekładni 230 V/230 V, zastosowanie tej metody oznacza, że urządzenie zasilane jest z transformatora, który nie jest połączony elektrycznie z innymi obwodami. Dzięki temu, jeśli dojdzie do awarii w jednym z obwodów, prąd nie popłynie do innych części instalacji, co znacząco zwiększa bezpieczeństwo użytkowania. W praktyce oznacza to, że w różnych obszarach zastosowań, takich jak instalacje w laboratoriach czy w obiektach służby zdrowia, separacja odbiornika jest stosowana do zapewnienia minimalnego ryzyka porażenia prądem. Dodatkowo, zgodnie z normami IEC 61140, separacja odbiornika jest uznawana za istotny element projektowania instalacji elektrycznych, co podkreśla jej znaczenie w zapewnieniu bezpieczeństwa użytkowników.

Pytanie 39

Na zdjęciach przedstawiono kolejno od lewej typy trzonków źródeł światła

Ilustracja do pytania
A. E27,G4,G9,MR11
B. E27,MR11,G4,G9
C. E27,G4,MR11,G9
D. E27,G9,MR11,G4
Zrozumienie różnorodności trzonków źródeł światła jest kluczowe dla efektywnego i praktycznego ich wykorzystania. Wybór niewłaściwej kombinacji trzonków, jak w przypadku niepoprawnych odpowiedzi, może prowadzić do nieefektywnego oświetlenia, a także do problemów z kompatybilnością urządzeń. Na przykład, pomylenie trzonka E27 z G4 w praktycznym zastosowaniu jest poważnym błędem, ponieważ E27 to standardowy gwint dla większych żarówek, podczas gdy G4 jest przeznaczony dla niskonapięciowych źródeł światła, takich jak miniaturowe halogeny. W przypadku odpowiedzi, które sugerują inne porządki, kluczowe jest zrozumienie, że różne typy trzonków mają specyficzne wymiary i przeznaczenia, co sprawia, że ich zamiana lub niewłaściwa identyfikacja prowadzi do nieprawidłowego działania systemu oświetleniowego. Niepoprawne odpowiedzi mogą także wynikać z błędnego przekonania, że różne trzonki mogą być stosowane zamiennie, co nie jest prawdą w kontekście technicznych wymagań. Wiedza o tym, jakie trzonki są używane w określonych zastosowaniach, pozwala na lepsze planowanie i realizację projektów oświetleniowych, jak również na unikanie kosztownych pomyłek przy zakupie źródeł światła.

Pytanie 40

Na podstawie przedstawionego schematu połączeń określ, kiedy nastąpi zadziałanie wyłącznika różnicowoprądowego?

Ilustracja do pytania
A. Po załączeniu wyłącznika w obwodzie łazienki i podłączeniu odbiornika.
B. Po załączeniu wyłącznika w obwodzie gniazd pokoi.
C. Po załączeniu wyłącznika w obwodzie gniazd pokoi i podłączeniu odbiornika.
D. Po załączeniu wyłącznika w obwodzie łazienki.
Zrozumienie zasad działania wyłączników różnicowoprądowych jest kluczowe dla bezpieczeństwa użytkowników instalacji elektrycznych. Odpowiedzi, które nie uwzględniają podłączenia odbiornika lub odnoszą się tylko do samego załączenia wyłącznika, nie uwzględniają rzeczywistych warunków, w jakich wyłącznik różnicowoprądowy zadziała. Wyłącznik różnicowoprądowy jest zaprojektowany do wykrywania różnicy prądów między przewodami fazowym a neutralnym. Kiedy obwód jest załączony, ale nie ma podłączonego odbiornika, nie występuje żaden przepływ prądu przez urządzenie, co oznacza, że nie ma też ryzyka upływu prądu. Ta sytuacja prowadzi do błędnych wniosków, sugerujących, że sama aktywacja wyłącznika w obwodzie gniazd pokoi wystarczy do zadziałania RCD. W rzeczywistości, by wyłącznik mógł zadziałać, muszą być spełnione określone warunki, w tym obecność odbiornika, który może generować upływ prądu. Innym częstym błędem myślowym jest mylenie działania RCD z innymi zabezpieczeniami, takimi jak bezpieczniki, które działają na zasadzie przeciążenia prądowego. Zrozumienie tych różnic jest kluczowe dla bezpiecznego korzystania z instalacji elektrycznych, zgodnie z normami, takimi jak PN-EN 61008, które szczegółowo opisują wymagania dla wyłączników różnicowoprądowych. W związku z tym, odpowiedzi, które ignorują te fundamentalne zasady, mogą prowadzić do niebezpiecznych sytuacji w rzeczywistych instalacjach elektrycznych.