Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektroradiolog
  • Kwalifikacja: MED.08 - Świadczenie usług medycznych w zakresie diagnostyki obrazowej, elektromedycznej i radioterapii
  • Data rozpoczęcia: 30 grudnia 2025 05:31
  • Data zakończenia: 30 grudnia 2025 05:42

Egzamin zdany!

Wynik: 27/40 punktów (67,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Znak umieszczony w pracowni rezonansu magnetycznego zakazuje wstępu osobom

Ilustracja do pytania
A. z zaburzeniami krążenia.
B. z kardiomiopatią.
C. z nadciśnieniem tętniczym.
D. z rozrusznikiem serca.
W pracowni rezonansu magnetycznego kluczowe zagrożenie wynika z bardzo silnego stałego pola magnetycznego oraz szybko zmieniających się pól gradientowych. Rozrusznik serca to urządzenie elektroniczne oparte najczęściej na elementach ferromagnetycznych i wrażliwej elektronice. Silne pole magnetyczne może zakłócić jego pracę, przełączyć tryby, wywołać niekontrolowaną stymulację albo całkowicie uszkodzić układ. Może też dojść do przemieszczenia generatora lub elektrod, bo metal w polu magnetycznym „chce się ustawić” względem linii pola. Z mojego doświadczenia to jest absolutny klasyk przeciwwskazań, omawiany na każdym szkoleniu BHP do MR. Dlatego na drzwiach pracowni MR umieszcza się właśnie taki piktogram – serce z przewodem, przekreślone czerwonym znakiem zakazu. Ma on informować pacjentów i personel, że osoby z rozrusznikiem serca (chyba że to specjalny, certyfikowany MR-conditional i w ściśle kontrolowanych warunkach) nie mogą wchodzić do strefy pola magnetycznego. W wytycznych producentów MR oraz w standardach bezpieczeństwa (np. zalecenia Europejskiego Towarzystwa Radiologicznego, wytyczne kardiologiczne dotyczące urządzeń wszczepialnych) rozrusznik jest traktowany jako przeciwwskazanie bezwzględne albo co najmniej wymagające bardzo szczegółowej kwalifikacji. W praktyce technik radiologii zawsze przed badaniem MR przeprowadza dokładny wywiad: pyta o wszczepione urządzenia, karty implantów, zabiegi kardiochirurgiczne. Jeżeli pacjent zgłasza rozrusznik, badanie MR w standardowej pracowni po prostu się nie odbywa, a dobiera się inną metodę obrazowania, np. TK lub USG. Ten znak ma więc nie tylko znaczenie „teoretyczne”, ale jest codziennym, praktycznym narzędziem bezpieczeństwa, które ma zapobiec bardzo groźnym powikłaniom, włącznie z zatrzymaniem krążenia.

Pytanie 2

Który typ głowicy ultrasonograficznej przedstawiono na ilustracji?

Ilustracja do pytania
A. Sektorową.
B. Liniową.
C. Konweksową.
D. Endokawitarną.
Na ilustracji widać głowicę liniową – charakterystyczną po prostokątnym, równym czołie emitera, które tworzy długi, płaski pasek kryształów piezoelektrycznych. W przekroju wiązka ma kształt prostokąta, a obraz powstaje jako równoległe linie skanowania, bez zwężania się w „wachlarz” jak w głowicach sektorowych czy konweksowych. Taka konstrukcja daje szerokie okno akustyczne tuż pod powierzchnią skóry i bardzo dobrą rozdzielczość przestrzenną w badaniu struktur położonych płytko. W praktyce klinicznej głowice liniowe stosuje się głównie do badania tkanek powierzchownych: tarczycy, sutka, moszny, naczyń (USG dopplerowskie tętnic szyjnych, żył kończyn dolnych), narządu ruchu (ścięgna, więzadła, mięśnie) oraz w ultrasonografii przyłóżkowej do oceny ściany brzucha, punkcji naczyniowych czy blokad nerwów. Z mojego doświadczenia w pracowniach diagnostycznych przyjmuje się jako dobrą praktykę, że do struktur powierzchownych wybiera się właśnie głowicę liniową o wysokiej częstotliwości, najczęściej 7,5–15 MHz, bo wyższa częstotliwość oznacza lepszą rozdzielczość kosztem głębokości penetracji, co w tym przypadku jest korzystne. W wytycznych i kursach z ultrasonografii podkreśla się, żeby przy USG naczyniowym zawsze zaczynać od głowicy liniowej, a dopiero przy bardzo głębokim położeniu naczyń rozważać inne typy. Warto też pamiętać, że płaski kształt czoła ułatwia dokładne dociśnięcie do skóry i stabilne prowadzenie głowicy wzdłuż naczyń czy ścięgien, co przekłada się na powtarzalność badania i lepszą jakość dokumentacji obrazowej.

Pytanie 3

Promieniowanie rentgenowskie jest

A. falą ultradźwiękową.
B. strumieniem elektronów.
C. strumieniem protonów.
D. falą elektromagnetyczną.
Promieniowanie rentgenowskie należy do fal elektromagnetycznych, tak samo jak światło widzialne, ultrafiolet, podczerwień czy promieniowanie gamma. Różni się od nich głównie długością fali i energią kwantów. Promieniowanie X ma bardzo krótką długość fali i wysoką energię, dzięki czemu ma właściwości jonizujące – potrafi wybijać elektrony z atomów. To właśnie ta cecha pozwala na tworzenie obrazów w radiologii, ale jednocześnie wymaga ścisłego przestrzegania zasad ochrony radiologicznej. W aparacie RTG elektrony są rozpędzane i gwałtownie hamowane na anodzie lampy – w tym procesie powstaje promieniowanie hamowania oraz charakterystyczne, ale końcowy efekt i tak jest taki, że wychodzi z lampy wiązka fali elektromagnetycznej o określonym widmie energii. W praktyce medycznej to promieniowanie przechodzi przez ciało pacjenta i jest różnie pochłaniane przez tkanki: kości absorbują więcej, płuca mniej, dlatego na detektorze lub kliszy powstaje kontrastowy obraz. W tomografii komputerowej, mammografii czy radiografii cyfrowej zasada fizyczna jest ta sama – zawsze pracujemy z falą elektromagnetyczną z zakresu promieniowania X, tylko zmieniają się parametry ekspozycji, geometria wiązki i rodzaj detektora. Warto też pamiętać, że zgodnie z podstawami fizyki medycznej i normami opisującymi pracę z promieniowaniem jonizującym (np. zalecenia ICRP), wszystkie procedury z użyciem RTG traktowane są jako praca z promieniowaniem elektromagnetycznym, a nie z wiązką cząstek materialnych. Moim zdaniem dobrze jest to sobie jasno poukładać, bo potem łatwiej zrozumieć takie pojęcia jak energia fotonu, twardość wiązki, filtracja czy warstwa półchłonna.

Pytanie 4

Na obrazie uwidoczniono złamanie kompresyjne kręgu

Ilustracja do pytania
A. L1
B. L2
C. Th11
D. Th12
W tym zadaniu łatwo się pomylić, bo przejście piersiowo‑lędźwiowe bywa na obrazach dość mylące, zwłaszcza jeśli ktoś patrzy głównie na kształt kręgu, a nie na jego położenie względem sąsiednich struktur. Błędne odpowiedzi zwykle wynikają z założenia, że każdy bardziej masywny trzon od razu musi być lędźwiowy, albo z mechanicznego liczenia "od góry obrazu w dół", bez odniesienia do kości krzyżowej i typowych punktów orientacyjnych. Kręgi L1 i L2 są rzeczywiście masywne, mają duże trzony i brak przyczepów żeber, ale leżą już poniżej przejścia piersiowo‑lędźwiowego. Jeżeli na obrazie widzimy wyraźne przejście z węższych, bardziej klinowatych kręgów piersiowych na szersze kręgi lędźwiowe, to pierwszy wyraźnie lędźwiowy trzon poniżej tego przejścia to L1, a nie Th12. Błędne oznaczenie złamania Th12 jako L1 lub L2 to dość typowy błąd u osób początkujących, bo skupiają się na samej deformacji trzonu, a nie na jego numeracji. W praktyce opisowej według dobrych standardów radiolog powinien zawsze zacząć od lokalizacji kości krzyżowej, odliczyć kręgi lędźwiowe do góry (L5–L1), i dopiero nad L1 umieścić Th12. Kręgi Th11 i Th12 są ostatnimi kręgami piersiowymi, ale różnią się położeniem: Th11 leży wyżej, nad Th12, i nie jest bezpośrednio sąsiadem z L1. Próba nazwania widocznego złamania Th11 wynika zwykle z mylenia liczby kręgów piersiowych lub nieuwzględniania segmentu przejściowego. Dodatkowo trzeba pamiętać o ewentualnych wariantach anatomicznych (np. przejściowy krąg lędźwiowo‑krzyżowy), ale nawet wtedy zasada systematycznego liczenia od dołu obrazu w górę pozostaje złotym standardem. Moim zdaniem dobra praktyka to zawsze ocena całej sekwencji, porównanie wysokości trzonów, kształtu wyrostków i relacji do żeber, a dopiero potem stawianie ostatecznej etykietki typu Th12, L1 itd. Dzięki temu można uniknąć właśnie takich pomyłek w numeracji poziomu złamania.

Pytanie 5

Testy podstawowe z zakresu geometrii pola rentgenowskiego, przeznaczone do sprawdzenia zgodności pola wiązki promieniowania rentgenowskiego z symulacją świetlną, są wykonywane raz

A. w miesiącu.
B. w kwartale.
C. w tygodniu.
D. w roku.
Prawidłowa odpowiedź „w miesiącu” wynika z zasad rutynowej kontroli jakości w diagnostyce rentgenowskiej. Testy podstawowe geometrii pola rentgenowskiego, czyli sprawdzenie zgodności pola wiązki promieniowania z polem świetlnym lampy, zalicza się do badań wykonywanych regularnie, ale nie aż tak rzadko jak roczne przeglądy ani tak często jak testy dzienne. Chodzi o to, żeby na bieżąco wychwycić wszelkie rozjazdy między polem świetlnym a rzeczywistym polem napromieniania, zanim zaczną one wpływać na jakość badań i narażenie pacjenta. W dobrych praktykach pracowni RTG przyjmuje się, że testy geometryczne wykonuje się co miesiąc, razem z innymi testami okresowymi, np. kontrolą wskaźnika ogniskowo–skórnego, centrowania wiązki czy dokładności wskaźników odległości. W praktyce wygląda to tak, że na detektorze lub kasecie układa się specjalny przyrząd testowy (np. test do oceny zgodności pola świetlnego i promieniowania), ustawia się typową odległość ognisko–detektor, włącza się lampę, zaznacza się granice pola świetlnego, a następnie wykonuje się ekspozycję. Po wywołaniu obrazu sprawdza się, czy granice pola promieniowania mieszczą się w dopuszczalnych tolerancjach, zwykle rzędu kilku milimetrów lub określonego procentu wymiaru pola. Moim zdaniem to jest jeden z bardziej „przyziemnych”, ale kluczowych testów – jeśli pole wiązki jest przesunięte, można niechcący napromieniać tkanki, które w ogóle nie miały być badane, albo odwrotnie, „uciąć” istotny fragment obrazu, co potem rozwala całą diagnostykę. Normy krajowe i wytyczne z kontroli jakości (np. oparte na zaleceniach europejskich) właśnie dlatego zaliczają ten test do comiesięcznych, żeby utrzymać stabilną, powtarzalną geometrię układu lampy RTG i pola ekspozycji.

Pytanie 6

Na obrazie radiologicznym nadgarstka uwidoczniono złamanie nasady

Ilustracja do pytania
A. bliższej kości łokciowej.
B. bliższej kości promieniowej.
C. dalszej kości łokciowej.
D. dalszej kości promieniowej.
Prawidłowo wskazana została dalsza nasada kości promieniowej. Na typowym zdjęciu RTG nadgarstka w projekcji AP lub PA kość promieniowa leży bocznie (od strony kciuka), a jej dalsza nasada tworzy główną powierzchnię stawową dla kości nadgarstka. W przedstawionym obrazie linia złamania przebiega właśnie w obrębie tej dalszej części kości promieniowej, tuż powyżej powierzchni stawowej, co jest klasycznym obrazem złamania nasady dalszej. W praktyce klinicznej bardzo często mamy do czynienia ze złamaniami dalszej nasady kości promieniowej typu Collesa lub Smitha – różnią się one głównie kierunkiem przemieszczenia odłamów, ale lokalizacja pozostaje ta sama: dystalna część kości promieniowej. Moim zdaniem warto od razu wyrabiać sobie nawyk orientowania się na zdjęciu: po pierwsze określamy, gdzie jest promień (strona kciuka), gdzie łokieć (strona palca małego), a dopiero potem analizujemy nasady – bliższą (od strony stawu łokciowego) i dalszą (od strony nadgarstka). W standardach opisów radiologicznych zaleca się zawsze podanie, której kości dotyczy złamanie, w jakim jej segmencie (nasada bliższa, trzon, nasada dalsza) oraz czy dochodzi do zajęcia powierzchni stawowej. W tym przypadku zmiana lokalizuje się w dalszej nasadzie kości promieniowej, w bezpośrednim sąsiedztwie powierzchni stawowej, co ma znaczenie dla dalszego leczenia – unieruchomienia, ewentualnej repozycji czy kwalifikacji do leczenia operacyjnego. W praktyce technika RTG nadgarstka wymaga prawidłowego ułożenia kończyny: dłoń płasko na detektorze, palce wyprostowane, oś trzeciego palca w przedłużeniu przedramienia. Dopiero przy takim ułożeniu anatomia jest czytelna, a identyfikacja nasady dalszej kości promieniowej – jednoznaczna. To jest taka podstawowa, ale bardzo ważna umiejętność w diagnostyce obrazowej kończyny górnej.

Pytanie 7

Osłony na gonady dla osób dorosłych powinny posiadać równoważnik osłabienia promieniowania nie mniejszy niż

A. 1,00 mm Pb
B. 0,35 mm Pb
C. 0,75 mm Pb
D. 0,50 mm Pb
Prawidłowo – dla osób dorosłych osłony na gonady powinny mieć równoważnik osłabienia co najmniej 1,00 mm Pb. Wynika to z zasad ochrony radiologicznej, gdzie gonady traktuje się jako narząd szczególnie wrażliwy, kluczowy dla płodności i ryzyka dziedzicznych skutków promieniowania. Grubość 1,00 mm ołowiu zapewnia bardzo wysoki stopień osłabienia wiązki promieniowania w typowych warunkach badań RTG, np. w radiografii miednicy, bioder, kręgosłupa lędźwiowego. Przy takiej grubości osłony dawka pochłonięta przez jądra lub jajniki jest istotnie zredukowana, a jednocześnie osłona jest jeszcze na tyle ergonomiczna, że da się ją wygodnie stosować w praktyce. Moim zdaniem ważne jest, żeby nie traktować tej wartości jako „opcji”, tylko jako minimum – jeśli w pracowni są osłony cieńsze, to dla dorosłych nie spełniają one standardów ochrony. W dobrych pracowniach radiologicznych rutynowo stosuje się osłony gonadowe właśnie o grubości około 1 mm Pb, dopasowane kształtem: fartuchy typu „figi”, ochraniacze moszny, osłony na okolice miednicy. Warto pamiętać, że zgodnie z zasadą ALARA (As Low As Reasonably Achievable) redukujemy dawkę wszędzie tam, gdzie to możliwe, bez utraty jakości diagnostycznej obrazu. Dobrze dobrana osłona 1 mm Pb nie powinna wchodzić w pole obrazowania i nie może zasłaniać interesujących nas struktur, dlatego tak ważne jest poprawne pozycjonowanie pacjenta i prawidłowe ułożenie samej osłony. Z mojego doświadczenia wiele błędów w pracowni polega właśnie na tym, że ktoś ma dobrą osłonę, ale źle ją zakłada i albo wchodzi w projekcję, albo w ogóle nie przykrywa gonad. Sama grubość 1,00 mm Pb to jedno, a prawidłowa technika i nawyk jej stosowania – drugie, równie ważne.

Pytanie 8

Który narząd został oznaczony strzałką na obrazie rezonansu magnetycznego?

Ilustracja do pytania
A. Trzustka.
B. Śledziona.
C. Wątroba.
D. Nerka.
Na obrazie rezonansu magnetycznego strzałka wskazuje nerkę – dokładnie jej zarys z charakterystycznym układem kielichowo‑miedniczkowym. Na projekcji czołowej (koronalnej) MR nerki leżą po obu stronach kręgosłupa, mają kształt zbliżony do fasoli i wyraźną granicę między korą a rdzeniem. Wewnątrz widoczny jest centralnie położony układ zbiorczy, który w wielu sekwencjach ma inny sygnał niż otaczający miąższ. To właśnie ten „płatkowaty” obraz w obrębie wnęki nerki dobrze widać tam, gdzie skierowana jest strzałka. Moim zdaniem to jeden z łatwiejszych narządów do rozpoznawania na MR, jeśli raz zapamięta się jego położenie względem kręgosłupa i dużych naczyń. W praktyce klinicznej poprawna identyfikacja nerki na MR jest kluczowa przy ocenie guzów, torbieli, wodonercza, zmian zapalnych czy wad wrodzonych. Radiolodzy zgodnie z zaleceniami towarzystw (np. ESR, EAU) opisują w MR nerki m.in. grubość miąższu, zarys zewnętrzny, sygnał w różnych sekwencjach, obecność zmian ogniskowych oraz stan układu kielichowo‑miedniczkowego i moczowodu. W badaniach z kontrastem ocenia się też perfuzję guza i funkcję wydzielniczą. W technice ważne jest prawidłowe pozycjonowanie pacjenta w osi długiej kręgosłupa i dobór sekwencji T1/T2 oraz ewentualnie sekwencji tłumienia tłuszczu, żeby wyraźnie odróżnić miąższ nerki od otaczającej tkanki tłuszczowej okołonerkowej. Z mojego doświadczenia dobrze jest też zawsze „przelecieć” wzrokiem kolejne warstwy, żeby zobaczyć ciągłość nerki z moczowodem i uniknąć pomyłek z innymi strukturami jamy brzusznej.

Pytanie 9

Przy podejrzeniu ciała obcego w oczodole należy wykonać

A. dwa zdjęcia AP i dwa boczne oczodołów.
B. jedno zdjęcie PA i jedno boczne oczodołów.
C. dwa zdjęcia PA i jedno boczne oczodołów.
D. jedno zdjęcie AP i dwa boczne oczodołów.
Prawidłowa odpowiedź „dwa zdjęcia PA i jedno boczne oczodołów” wynika z bardzo konkretnej zasady w diagnostyce radiologicznej ciał obcych w okolicy oczodołu. Chodzi o to, żeby możliwie precyzyjnie określić lokalizację ciała obcego w trzech wymiarach, a jednocześnie ograniczyć dawkę promieniowania i nie robić zbędnych projekcji. Dwie projekcje PA (postero–anterior, promień pada z tyłu na przód) wykonywane są zazwyczaj w dwóch nieco zmienionych ustawieniach głowy lub przy różnym spojrzeniu gałek ocznych. Dzięki temu ciało obce „przesuwa się” względem struktur kostnych i można ocenić, czy leży ono w gałce ocznej, w tkankach miękkich oczodołu, czy może już poza nim. Jedno zdjęcie boczne pozwala natomiast ocenić głębokość położenia – czyli czy ciało obce jest bardziej ku przodowi, czy w tylnej części oczodołu, blisko szczytu, nerwu wzrokowego itp. W praktyce klinicznej, szczególnie przy podejrzeniu metalicznego ciała obcego (np. po szlifowaniu metalu, urazie warsztatowym), taki zestaw projekcji jest klasycznym, podręcznikowym postępowaniem przed np. planowanym badaniem TK czy MR. Co ważne, wybór projekcji PA, a nie AP, jest związany także z ochroną radiologiczną – mózg i soczewki są mniej obciążane dawką, a jakość obrazu struktur kostnych oczodołu jest bardzo dobra. Moim zdaniem warto też zapamiętać, że przy podejrzeniu ciała obcego przed badaniem MR często właśnie zwykłe RTG oczodołów w tych projekcjach jest pierwszym, szybkim i tanim „filtrem bezpieczeństwa”. To jest po prostu standard dobra praktyka w radiologii urazowej okolicy oka.

Pytanie 10

Którą metodę badania zastosowano w obrazowaniu stawu kolanowego?

Ilustracja do pytania
A. MR, obraz T2- zależny.
B. TK z kontrastem.
C. MR, obraz T1- zależny.
D. TK.
Na obrazie widzisz typowe badanie MR stawu kolanowego w sekwencji T1‑zależnej, w projekcji strzałkowej. Świadczy o tym kilka charakterystycznych cech: tkanka tłuszczowa (szpik kostny w nasadach kości, tkanka podskórna) jest bardzo jasna, jednorodna, natomiast płyn stawowy i chrząstka są relatywnie ciemne. W obrazach T1‑zależnych kontrast pomiędzy tłuszczem a innymi tkankami jest wyraźny, co ułatwia ocenę budowy anatomicznej: kształtu nasad kości, ciągłości więzadeł, struktur łąkotek, relacji mięśni i ścięgien. Moim zdaniem to jest właśnie główny powód, dla którego T1 traktuje się często jako obraz „anatomiczny” – bardzo czytelny do nauki i do planowania dalszej diagnostyki. W praktyce klinicznej sekwencje T1‑zależne stosuje się do oceny szpiku kostnego (np. nacieki nowotworowe, pourazowe ogniska krwotoczne), do wstępnej oceny zarysów łąkotek i więzadeł, a także po podaniu kontrastu gadolinowego, gdzie obszary patologicznego wzmocnienia wyróżniają się na tle jasnego tłuszczu. W standardowych protokołach MR stawu kolanowego (np. wg zaleceń ESSR – European Society of Musculoskeletal Radiology) zawsze znajdują się obrazy T1, właśnie ze względu na dobrą wizualizację anatomii i szpiku. Warto kojarzyć: TK i TK z kontrastem dają zupełnie inną teksturę obrazu (szarości kości, brak tak mocno świecącego tłuszczu), a w typowym T2 płyn jest bardzo jasny. Tutaj jest odwrotnie – płyn nie „świeci”, co jednoznacznie kieruje na MR, obraz T1‑zależny. Rozpoznanie typu sekwencji po wyglądzie tkanek to praktyczna umiejętność w pracowni diagnostyki obrazowej – pomaga od razu zorientować się, co dokładnie oglądamy i jakie informacje można z tego obrazu wyciągnąć.

Pytanie 11

Którą patologię uwidoczniono na zamieszczonym rentgenogramie?

Ilustracja do pytania
A. Stłuczenie łopatki.
B. Zwichnięcie kości ramiennej.
C. Złamanie nasady dalszej kości ramiennej.
D. Złamanie obojczyka.
Na tym zdjęciu RTG widoczny jest typowy obraz zwichnięcia kości ramiennej w stawie ramiennym, czyli przemieszczenia głowy kości ramiennej względem panewki łopatki. Kluczowe jest to, że zarys kostny głowy kości ramiennej jest ciągły, bez szczeliny złamania, ale głowa nie znajduje się w prawidłowej relacji do panewki. Zamiast „siedzieć” centralnie w panewce, jest przemieszczona – najczęściej do przodu i ku dołowi w stosunku do łopatki. Na prawidłowym RTG barku oś trzonu kości ramiennej, głowa i panewka tworzą harmonijną, anatomiczną linię, a przestrzeń stawowa ma równomierną szerokość. Tutaj ta relacja jest zaburzona, co według standardów opisowych radiologii jednoznacznie sugeruje zwichnięcie, a nie złamanie. W praktyce technik elektroradiologii powinien zawsze ocenić, czy na zdjęciu AP barku głowa kości ramiennej „nakłada się” na panewkę. Jeśli nie – trzeba podejrzewać zwichnięcie i, zgodnie z dobrymi praktykami, wykonać dodatkową projekcję (np. Y-łopatkową lub osiową), oczywiście po uzgodnieniu z lekarzem i z zachowaniem zasad bezpieczeństwa pacjenta. Takie podejście jest zgodne z zasadami diagnostyki obrazowej narządu ruchu. Moim zdaniem warto wyrobić sobie nawyk, żeby przy każdym barku najpierw szukać: ciągłości obrysów kostnych (czyli złamania), a dopiero później oceniać położenie głowy względem panewki. W zwichnięciu głowa jest przesunięta, ale jej kontur jest wyraźny, bez cech złamania nasady dalszej czy proksymalnej. To pomaga w odróżnieniu czystego zwichnięcia od złamania z przemieszczeniem. W codziennej pracy w pracowni RTG takie rozróżnienie ma duże znaczenie, bo wpływa na dalsze postępowanie ortopedyczne – inne jest nastawianie zwichnięcia, a inaczej leczy się złamania okołostawowe.

Pytanie 12

Parametrem krwi, który powinien zostać oznaczony u pacjenta przed wykonaniem badania MR z kontrastem, jest

A. hemoglobina.
B. fibrynogen.
C. bilirubina.
D. kreatynina.
Prawidłowo wskazana została kreatynina. Przy badaniu rezonansu magnetycznego z podaniem kontrastu najważniejsze jest oszacowanie wydolności nerek pacjenta, bo większość stosowanych środków kontrastowych (zwłaszcza gadolinowych) jest wydalana właśnie przez nerki. Standardowo ocenia się stężenie kreatyniny w surowicy i na tej podstawie wylicza się eGFR (szacunkowy współczynnik przesączania kłębuszkowego). To właśnie eGFR mówi nam, czy ryzyko powikłań po kontraście jest akceptowalne. W praktyce, zgodnie z zaleceniami wielu towarzystw radiologicznych, przy eGFR powyżej ok. 30 ml/min/1,73 m² podanie kontrastu gadolinowego jest zazwyczaj uznawane za względnie bezpieczne, oczywiście przy braku innych przeciwwskazań. Przy niższych wartościach planuje się badanie bardzo ostrożnie, czasem rezygnuje się z kontrastu, dobiera się inny środek albo konsultuje z nefrologiem. W pracowni obrazowej wygląda to tak: przed planowanym MR z kontrastem pacjent ma w skierowaniu lub w dokumentacji aktualny wynik kreatyniny. Technik lub pielęgniarka sprawdza datę i wartość, lekarz opisujący albo radiolog kwalifikujący ocenia, czy można bezpiecznie podać kontrast. Moim zdaniem to jest jeden z tych parametrów, które naprawdę warto mieć „w małym palcu”, bo pojawia się non stop przy badaniach TK i MR. Dodatkowo pamiętaj, że oznaczenie kreatyniny jest szybkie, tanie i szeroko dostępne, dlatego weszło do standardu przed wieloma badaniami z kontrastem. To typowy przykład, jak proste badanie laboratoryjne realnie zwiększa bezpieczeństwo procedury obrazowej.

Pytanie 13

Który zestaw zdjęć narządów klatki piersiowej należy wykonać u pacjenta z podejrzeniem lewostronnego zapalenia płuc?

A. PA i lewoboczne.
B. AP i lewoboczne.
C. AP i prawoboczne.
D. PA i prawoboczne.
Prawidłowo – przy podejrzeniu lewostronnego zapalenia płuc standardem jest wykonanie zdjęcia PA (projekcja tylno‑przednia) oraz zdjęcia bocznego lewobocznego. Projekcja PA jest podstawową projekcją klatki piersiowej u pacjentów, którzy mogą stać lub siedzieć. Promień wchodzi od tyłu (posterior) i wychodzi z przodu (anterior), co daje dobrą jakość obrazu, właściwe powiększenie struktur serca i prawidłową ocenę pól płucnych. Moim zdaniem to jest taki „złoty standard” w radiografii klatki piersiowej u przytomnych, współpracujących pacjentów. Drugim, kluczowym badaniem jest projekcja boczna – w tym przypadku lewoboczna. Lewy bok pacjenta przylega do detektora, dzięki czemu struktury po lewej stronie klatki piersiowej (m.in. lewa połowa klatki, lewy płat dolny, segmenty języczkowe) są mniej powiększone i wyraźniej widoczne. Właśnie dlatego w podejrzeniu lewostronnego zapalenia płuc wybiera się lewoboczne, a nie prawoboczne zdjęcie. W praktyce klinicznej często na zdjęciu PA zmiany zapalne mogą się „chować” za sercem lub nakładać na inne struktury. Projekcja boczna pomaga wtedy ustalić, czy naciek jest w płacie górnym, dolnym, czy w segmencie języczkowym, oraz czy zmiana jest rzeczywiście w miąższu płuca, czy np. w śródpiersiu. Dobre praktyki w diagnostyce obrazowej mówią też, że komplet PA + boczne daje dużo większą pewność diagnostyczną niż samo PA, szczególnie przy zmianach jednostronnych. W niektórych ośrodkach, gdy pacjent jest wydolny krążeniowo i oddechowo, taki zestaw projekcji jest traktowany jako badanie wyjściowe przy każdej podejrzanej patologii płuc. Z mojego doświadczenia technicznego wynika, że prawidłowy dobór projekcji oszczędza potem dodatkowych badań i skraca czas diagnostyki.

Pytanie 14

Do zadań technika elektroradiologa w pracowni hemodynamicznej należy

A. przygotowanie stolika zabiegowego.
B. dokumentowanie obrazów ICUS.
C. podanie operatorowi cewnika.
D. ustalanie ilości kontrastu.
Prawidłowo – w pracowni hemodynamicznej jednym z kluczowych zadań technika elektroradiologa jest właśnie dokumentowanie obrazów ICUS (intravascular ultrasound, wewnątrznaczyniowe USG). To badanie obrazowe wykonywane podczas zabiegów kardiologii inwazyjnej, np. angioplastyki wieńcowej, stentowania czy oceny zwężeń w tętnicach. Technik odpowiada za prawidłowe uruchomienie i obsługę aparatury, zapis przebiegu badania, archiwizację sekwencji obrazów oraz poprawne opisanie danych w systemie (PACS/RIS lub lokalny system kardiologiczny). Od jakości tej dokumentacji zależy późniejsza możliwość analizy zabiegu, porównanie wyników w czasie, a także wiarygodność danych medycznych. W praktyce wygląda to tak, że operator wprowadza sondę ICUS do naczynia, a technik pilnuje parametrów rejestracji, synchronizacji z EKG, poprawnego oznaczenia segmentów naczynia i momentów kluczowych (np. przed i po implantacji stentu). Moim zdaniem jest to jedno z bardziej odpowiedzialnych zadań, bo błędne podpisanie serii, zgubienie fragmentu badania albo niewłaściwe zarchiwizowanie potrafi mocno utrudnić dalsze leczenie pacjenta. Standardem jest, że technik dba o ciągłość rejestracji, poprawną jakość obrazu (dobór głębokości, zakresu dynamicznego, wzmocnienia), a po zabiegu sprawdza, czy badanie jest kompletne i dostępne dla lekarza w systemie. W wielu pracowniach technik zajmuje się też eksportem wybranych fragmentów badania ICUS do dokumentacji zabiegowej, żeby lekarz mógł je użyć w opisie lub na konsyliach. To jest dokładnie ten obszar odpowiedzialności, który pokrywa się z kompetencjami technika elektroradiologa – obsługa aparatury obrazowej, rejestracja, archiwizacja i techniczna jakość badania.

Pytanie 15

Na radiogramie TK głowy strzałką wskazano

Ilustracja do pytania
A. zatokę klinową.
B. przegrodę nosową.
C. zbiornik wielki.
D. zatokę sitową.
Na przedstawionym przekroju osiowym TK głowy strzałka wskazuje prawidłowo zatokę klinową. W tomografii komputerowej w projekcji poprzecznej zatoka klinowa leży centralnie, w linii pośrodkowej, tuż za jamą nosową i poniżej siodła tureckiego. Ma charakterystyczny, dość symetryczny kształt, a jej światło w badaniu bez kontrastu jest hipodensyjne (ciemne), wypełnione powietrzem, otoczone grubszą warstwą kości trzonu kości klinowej. Moim zdaniem to jest jedno z tych miejsc, które warto sobie „zakodować”, bo w praktyce radiologicznej często ocenia się właśnie zatokę klinową pod kątem zmian zapalnych, polipów, guzów czy szerzenia się patologii z przysadki mózgowej. W standardowych opisach TK zatok czy TK głowy zwraca się uwagę na drożność ujść zatok, obecność płynu, pogrubienie błony śluzowej czy całkowite zacienienie zatoki klinowej. Dobre praktyki uczą, żeby zawsze porównywać obustronne struktury oraz oceniać zatokę klinową w kilku kolejnych warstwach – unikamy wtedy pomyłek wynikających z artefaktów albo nietypowego ułożenia głowy. W wielu pracowniach technik wykonujący badanie ma obowiązek sprawdzenia, czy zakres skanowania obejmuje cały kompleks zatok przynosowych, w tym właśnie zatokę klinową, bo bywa ona pomijana przy zbyt małym zakresie. W codziennej pracy klinicznej obraz zatoki klinowej ma znaczenie np. przed planowanym dostępem chirurgicznym przez zatokę klinową do przysadki (dostęp endoskopowy przez nos). Chirurdzy laryngolodzy i neurochirurdzy opierają się wtedy na dokładnym opisie TK i znajomości anatomicznych wariantów tej zatoki. Dlatego rozpoznanie jej na obrazie TK to taki absolutny „must have” w diagnostyce obrazowej głowy.

Pytanie 16

Na radiogramie uwidoczniono złamanie

Ilustracja do pytania
A. trzonu kości promieniowej.
B. nasady dalszej kości promieniowej.
C. nasady dalszej kości łokciowej.
D. trzonu kości łokciowej.
Na przedstawionym radiogramie wyraźnie widać, że linia złamania przebiega przez środkowy odcinek kości promieniowej, czyli jej trzon. Nasada dalsza znajduje się w okolicy stawu promieniowo-nadgarstkowego, tuż przy nadgarstku, natomiast na zdjęciu złamanie jest położone zdecydowanie wyżej, w części diafizalnej kości. Charakterystyczny jest obraz przerwania ciągłości warstwy korowej w odcinku środkowym kości oraz przemieszczenie odłamów, co typowo opisuje się jako złamanie trzonu. Z mojego doświadczenia w pracowni RTG duża część pomyłek wynika właśnie z mylenia „nasady dalszej” z „trzonem”, dlatego warto sobie w głowie dzielić kość na trzy strefy: nasada bliższa, trzon, nasada dalsza i patrzeć, gdzie faktycznie wypada złamanie. W praktyce klinicznej rozpoznanie złamania trzonu kości promieniowej ma wpływ na dalsze postępowanie – inaczej unieruchamia się typowe złamania nasady dalszej (np. typu Collesa), a inaczej złamania diafizalne. W przypadku trzonu kości promieniowej częściej rozważa się leczenie operacyjne, szczególnie przy dużym przemieszczeniu, żeby przywrócić prawidłową oś kończyny i rotację przedramienia. Dobrą praktyką w diagnostyce obrazowej jest też ocena całej kości w co najmniej dwóch prostopadłych projekcjach, tak jak uczą standardy radiologiczne – AP i boczna – bo czasem złamanie trzonu jest widoczne tylko w jednej projekcji lub wygląda łagodniej niż jest w rzeczywistości. Tutaj obraz jest na tyle wyraźny, że rozpoznanie złamania trzonu kości promieniowej jest jednoznaczne i zgodne z zasadami opisu RTG kończyn górnych.

Pytanie 17

Podczas wykonywania zdjęcia rentgenowskiego lewobocznego czaszki promień centralny powinien przebiegać

A. od prawej do lewej strony czaszki, prostopadle do płaszczyzny strzałkowej.
B. od lewej do prawej strony czaszki, prostopadle do płaszczyzny czołowej.
C. od prawej do lewej strony czaszki, prostopadle do płaszczyzny czołowej.
D. od lewej do prawej strony czaszki, prostopadle do płaszczyzny strzałkowej.
Prawidłowa odpowiedź wynika z geometrii ułożenia pacjenta i definicji płaszczyzn anatomicznych. W projekcji lewobocznej czaszki badana jest lewa strona głowy, czyli to ona powinna przylegać do detektora (kasety). Żeby uzyskać obraz lewej strony możliwie ostry i bez powiększenia, promień centralny musi przechodzić z prawej do lewej strony czaszki – od strony lampy w kierunku detektora. To jest klasyczna zasada w radiografii: część badana bliżej detektora, lampa po stronie przeciwnej. Dodatkowo promień powinien być prostopadły do płaszczyzny strzałkowej, bo ta płaszczyzna dzieli ciało na część prawą i lewą. W lewym bocznym zdjęciu czaszki płaszczyzna strzałkowa pacjenta jest ustawiona równolegle do detektora, więc prostopadły do niej promień daje prawidłową, „czystą” projekcję boczną, bez skośnego nałożenia struktur. Płaszczyzna czołowa (frontalna) w tym ustawieniu jest z kolei prostopadła do detektora, więc promień padający prostopadle do niej dałby projekcję czołową, a nie boczną. W praktyce technik ustawia pacjenta bokiem do detektora, wyrównuje linie anatomiczne (np. linia między kątem oka a przewodem słuchowym zewnętrznym), sprawdza brak rotacji i pochyleń, a potem centralny promień kieruje z prawej na lewą, pod kątem 90° do płaszczyzny strzałkowej. Tak się uzyskuje standardowe boczne RTG czaszki zgodne z atlasami i wytycznymi radiologicznymi. Moim zdaniem warto sobie to zwizualizować na modelu czaszki, bo wtedy łatwiej zapamiętać, że „boczne = promień prostopadły do płaszczyzny strzałkowej, po stronie przeciwnej do badanej”.

Pytanie 18

Zamieszczony obraz został wykonany metodą

Ilustracja do pytania
A. MRI
B. USG
C. TK
D. PET
Na tym obrazie widać przekrój poprzeczny głowy z bardzo wyraźnie odgraniczoną kością czaszki, która jest intensywnie biała, oraz typowy dla tomografii komputerowej rozkład szarości w mózgowiu i zatokach. Pomyłki przy tym pytaniu zwykle wynikają z mylenia różnych metod obrazowania, zwłaszcza gdy ktoś patrzy tylko na to, że jest to „czarno-biały” przekrój, bez analizy szczegółów technicznych. Ultrasonografia (USG) nie daje takich przekrojów przez czaszkę u dorosłych, bo kość bardzo silnie odbija i tłumi fale ultradźwiękowe. W USG obraz jest dynamiczny, ziarnisty, bez wyraźnej białej obwódki kości otaczającej cały przekrój. Gdyby to było USG, widzielibyśmy raczej struktury powierzchowne, a nie pełny przekrój mózgowia. Rezonans magnetyczny (MRI) daje obrazy przekrojowe, ale zupełnie inny jest charakter kontrastu: kość jest bardzo ciemna, prawie „wycięta” z obrazu, a tkanki miękkie mają bogaty kontrast zależny od sekwencji (T1, T2, FLAIR itd.). W MRI nie zobaczysz tak intensywnie białej, ciągłej obwódki kostnej jak w TK. Częstym błędem jest to, że ktoś myśli: „jest przekrój, więc pewnie MRI”, a pomija fakt, że w TK operujemy gęstością w HU, co daje właśnie taki typowy wygląd kości. Pozytonowa tomografia emisyjna (PET) to natomiast zupełnie inna bajka – pokazuje głównie metabolizm i wychwyt radioznacznika, więc dominuje mapa kolorowa lub szaroodcieniowa ognisk aktywności, a nie dokładny obraz anatomiczny kości i mózgu. PET często łączy się z TK lub MRI, ale wtedy widać charakterystyczne nałożenie obrazów funkcjonalnych i anatomicznych. Tutaj mamy czysty obraz anatomiczny typowy dla TK. Z mojego punktu widzenia dobrą praktyką jest, żeby przy każdym obrazie najpierw zadać sobie pytanie: jak zachowuje się kość, jak wygląda tło, czy widzę mapę funkcjonalną czy czystą anatomię. To pomaga szybko odsiać błędne skojarzenia i poprawnie rozpoznać technikę obrazowania.

Pytanie 19

Ligand stosuje się

A. w radiologii klasycznej jako środek kontrastujący negatywny.
B. w radiologii klasycznej jako środek kontrastujący pozytywny.
C. w rezonansie magnetycznym jako środek kontrastujący pozytywny.
D. w medycynie nuklearnej jako nośnik radiofarmaceutyku.
Prawidłowo – ligand w tym kontekście to związek chemiczny, który wiąże się selektywnie z określonym celem biologicznym, np. receptorem, enzymem czy transporterem, i właśnie w medycynie nuklearnej pełni rolę nośnika radiofarmaceutyku. Mówiąc prościej: ligand „prowadzi za rękę” izotop promieniotwórczy dokładnie tam, gdzie chcemy zobaczyć czynność narządu albo ognisko chorobowe. Radioizotop sam z siebie nie jest wybiórczy, dopiero połączenie go z odpowiednim ligandem tworzy radiofarmaceutyk o określonej tropowości, np. do kości, mięśnia sercowego, guzów neuroendokrynnych czy receptorów dopaminergicznych. W scyntygrafii kości używa się ligandów fosfonianowych znakowanych technetem-99m, które gromadzą się w miejscach wzmożonego metabolizmu kostnego. W scyntygrafii perfuzyjnej serca mamy ligandy lipofilne, które wnikają do kardiomiocytów proporcjonalnie do przepływu krwi. W PET z kolei typowym przykładem jest 18F-FDG, gdzie ligandem jest analog glukozy, a izotopem fluor-18. Z mojego doświadczenia to właśnie zrozumienie roli liganda tłumaczy, czemu dwa różne radiofarmaceutyki z tym samym izotopem mogą mieć zupełnie inne wskazania. Dobre praktyki w medycynie nuklearnej wymagają bardzo świadomego doboru liganda do konkretnego badania: bierzemy pod uwagę farmakokinetykę, specyficzność wiązania, szybkość eliminacji, a także bezpieczeństwo dla pacjenta. W wytycznych EANM czy IAEA wyraźnie podkreśla się, że to właściwości liganda decydują o jakości obrazowania funkcjonalnego, a nie tylko sam izotop. Dlatego poprawne skojarzenie pojęcia „ligand” z nośnikiem radiofarmaceutyku w medycynie nuklearnej jest bardzo istotne i praktycznie przydatne w pracy z gammakamerą czy PET.

Pytanie 20

Na obrazie ultrasonograficznym jamy brzusznej uwidoczniono

Ilustracja do pytania
A. wątrobę.
B. trzustkę.
C. śledzionę.
D. nerkę.
Na tym obrazie USG faktycznie widoczna jest wątroba – i to w dość klasycznym ujęciu. Charakterystyczne jest jednorodne, drobnoziarniste echo miąższu, o echogeniczności nieco wyższej niż kora nerki i podobnej lub lekko wyższej niż śledziona (w praktyce porównuje się to zawsze w jednym badaniu, a nie z pamięci). Widzimy typowy układ: powierzchnia wątroby tworzy gładką, silnie echogeniczną linię pod kopułą przepony, a w miąższu przebiegają bezechowe lub hipoechogeniczne naczynia – żyła wrotna i żyły wątrobowe – często z echogenicznymi ścianami. Moim zdaniem właśnie to rozpoznawanie naczyń jest jednym z najlepszych trików w praktyce. W standardach badań USG jamy brzusznej (np. PTU) podkreśla się konieczność oceny wielkości wątroby, jednorodności miąższu, zarysu brzegów oraz stosunku echogeniczności do nerki prawej. W pozycji leżącej na plecach sonda zwykle leży pod prawym łukiem żebrowym, a obraz obejmuje prawy płat z przeponą u góry. W codziennej pracy technika i lekarz powinni umieć odróżnić prawidłową wątrobę od zmian typu stłuszczenie, marskość czy ogniska ogniskowe. Na przykład w stłuszczeniu wątroba staje się wyraźnie bardziej hiperechogeniczna, a głębsze partie gorzej widoczne. W takich zadaniach testowych warto zawsze „odhaczyć” sobie: jednorodny miąższ + kontakt z przeponą + duże naczynia w środku = najczęściej wątroba w projekcji podżebrowej prawej.

Pytanie 21

Rozpoczęcie badania TK nerek po 20-30 sekundach od początku podania środka kontrastowego umożliwia diagnostykę

A. kory i rdzenia nerek.
B. tętnic nerkowych.
C. żył nerkowych.
D. dróg moczowych.
W tym pytaniu kluczowe jest zrozumienie, że czas po podaniu środka kontrastowego w TK nie jest przypadkowy, tylko odpowiada określonym fazom krążenia kontrastu w organizmie. Około 20–30 sekund po rozpoczęciu iniekcji dożylnej dominuje faza tętnicza, a więc kontrast jest głównie w tętnicach, w tym w tętnicach nerkowych. To nie jest jeszcze moment dobrej oceny żył nerkowych, bo pełniejsza faza żylna pojawia się później, zwykle około 60–70 sekund, kiedy kontrast przepłynie przez łożysko włośniczkowe i zacznie się gromadzić w układzie żylnym. Dlatego oczekiwanie, że po 20–30 sekundach najlepiej zobaczymy żyły nerkowe, jest oparte na myleniu fazy tętniczej z żylną. Podobnie drogi moczowe wymagają czasu, żeby kontrast został przefiltrowany w kłębuszkach nerkowych i pojawił się w miedniczkach nerkowych, moczowodach i pęcherzu. To jest tzw. faza wydalnicza, zwykle kilka minut po podaniu kontrastu, a nie pierwsze dziesiątki sekund. W tej wczesnej fazie kontrast jest jeszcze „w krwi”, a nie w moczu. Kolejne typowe nieporozumienie dotyczy kory i rdzenia nerek. Co prawda już w okolicach 30–40 sekund zaczyna się faza korowo-rdzeniowa, gdzie różnica wysycenia kontrastem między korą a rdzeniem jest dobrze widoczna, ale optymalny moment to zwykle trochę później niż 20 sekund, bardziej w stronę 30–40 sekund, zależnie od protokołu. Wczesna, czysto tętnicza faza służy przede wszystkim ocenie naczyń, a nie szczegółowej analizie struktury miąższu. Z mojego doświadczenia największy błąd myślowy polega na traktowaniu „kontrast jest podany” jako jednego, stałego stanu. Tymczasem w dobrych praktykach radiologicznych planuje się cały protokół wielofazowy: najpierw faza tętnicza do tętnic, później faza żylno-miąższowa do oceny narządów, a na końcu faza wydalnicza do układu moczowego. Jeśli pomylimy te fazy, możemy albo nie zobaczyć patologii, albo wyciągnąć fałszywe wnioski z prawidłowego badania. Dlatego tak ważne jest kojarzenie czasu od podania kontrastu z konkretną strukturą, którą chcemy zdiagnozować.

Pytanie 22

Głowica typu convex w USG służy do badania

A. tarczycy.
B. gruczołu piersiowego.
C. układu mięśniowo-szkieletowego
D. jamy brzusznej.
Prawidłowo wskazana głowica convex (wypukła) to standard w badaniach USG jamy brzusznej. Ten typ głowicy ma stosunkowo niską częstotliwość, zwykle w zakresie ok. 2–5 MHz, dzięki czemu fale ultradźwiękowe penetrują głębiej w głąb tkanek. To jest kluczowe przy ocenie narządów położonych głęboko, takich jak wątroba, nerki, trzustka, śledziona, pęcherzyk żółciowy czy aorta brzuszna. Obraz z głowicy convex ma szerokie pole widzenia, rozszerzające się w głąb obrazu, co bardzo ułatwia orientację przestrzenną w jamie brzusznej i ocenę dużych struktur. W praktyce klinicznej właśnie głowicą convex wykonuje się rutynowe USG jamy brzusznej u dorosłych: badanie wątroby pod kątem stłuszczenia, marskości, zmian ogniskowych, ocenę zastoju w drogach żółciowych, poszukiwanie kamieni w pęcherzyku żółciowym, ocenę nerek przy podejrzeniu kolki nerkowej czy wodonercza, a także badanie aorty pod kątem tętniaka. Z mojego doświadczenia, jeżeli w pracowni USG ktoś mówi „standardowa głowica do brzucha”, to w 99% przypadków chodzi właśnie o convex. Zgodnie z powszechnie przyjętymi standardami w diagnostyce obrazowej (zarówno w wytycznych towarzystw radiologicznych, jak i w typowych podręcznikach do USG) dobór głowicy opiera się na kompromisie między rozdzielczością a głębokością penetracji. Głowica convex daje trochę gorszą rozdzielczość powierzchowną niż liniowa, ale jest znacznie lepsza do struktur położonych głęboko. Dlatego nie używa się jej z wyboru do tarczycy czy badania mięśni, tylko właśnie do brzucha, miednicy, czasem do położniczego USG u pacjentek z większą masą ciała. W dobrze zorganizowanej pracowni technik lub lekarz zawsze dobiera głowicę do badania, a nie odwrotnie – i do jamy brzusznej głowica convex jest po prostu złotym standardem.

Pytanie 23

W ultrasonografii występuje zależność:

A. im wyższa częstotliwość, tym gorsza rozdzielczość.
B. im wyższa częstotliwość, tym płytsza penetracja wiązki.
C. im wyższa rozdzielczość, tym głębsza penetracja wiązki.
D. im wyższa częstotliwość, tym głębsza penetracja wiązki.
Zależność między częstotliwością a penetracją w ultrasonografii bywa często mylona, bo intuicyjnie wydaje się, że „więcej” znaczy „lepiej i głębiej”. W fizyce ultradźwięków jest dokładnie odwrotnie: im wyższa częstotliwość, tym silniejsze tłumienie fali w tkankach i tym płytszy zasięg użytecznego sygnału. To tłumienie wynika z absorpcji energii i rozpraszania na granicach ośrodków. W efekcie fala o wysokiej częstotliwości traci energię szybciej niż fala o niskiej częstotliwości, więc nie może wiarygodnie zobrazować struktur położonych głęboko. Pojawia się też mylące skojarzenie, że wyższa rozdzielczość obrazu automatycznie zapewni głębszą penetrację. W ultrasonografii rozdzielczość osiowa jest ściśle związana właśnie z częstotliwością – im wyższa, tym lepsza zdolność rozróżniania dwóch blisko położonych struktur. Jednak ta poprawa rozdzielczości odbywa się kosztem głębokości. Standardy pracy w USG mówią wprost: do struktur powierzchownych stosujemy wysokie częstotliwości i wysoką rozdzielczość, do struktur głębokich – niższe częstotliwości i gorszą rozdzielczość, ale za to większą penetrację. Przeciwstawne stwierdzenie, że wzrost częstotliwości pogarsza rozdzielczość, jest sprzeczne z podstawową teorią fal akustycznych i z praktyką kliniczną. Głowice wysokoczęstotliwościowe są właśnie projektowane po to, żeby uzyskać obraz o bardzo wysokiej szczegółowości, tylko na mniejszej głębokości. Typowy błąd myślowy polega na mieszaniu pojęć: część osób utożsamia „silniejszą wiązkę” z „większą głębokością”, tymczasem aparaty kompensują mocą tylko do pewnego stopnia, nie są w stanie pokonać fizycznego prawa tłumienia w tkankach. Podobnie mylące jest przekonanie, że rozdzielczość to coś niezależnego od częstotliwości – w USG to jest bezpośrednio ze sobą powiązane. Dobre praktyki mówią jasno: wybór głowicy i częstotliwości zaczyna się od pytania, jak głęboko leży interesująca nas struktura, a dopiero potem szuka się maksimum rozdzielczości w tym zakresie głębokości, a nie odwrotnie.

Pytanie 24

Na przekroju poprzecznym rezonansu magnetycznego strzałką oznaczono

Ilustracja do pytania
A. żołądek.
B. wątrobę.
C. trzustkę.
D. śledzionę.
Strzałka na przekroju poprzecznym MR pokazuje wątrobę – duży, jednorodny narząd położony w prawym górnym kwadrancie jamy brzusznej, przylegający do przepony i ściany brzucha. Na typowych obrazach przekroju poprzecznego (axial) wątroba zajmuje znaczną część prawej strony obrazu, otacza żyłę główną dolną, a jej krawędź jest lekko zaokrąglona. W rezonansie magnetycznym rozpoznajemy ją nie tylko po lokalizacji, ale też po charakterystycznym, stosunkowo jednorodnym sygnale miąższu oraz obecności struktur naczyniowych – żyły wrotnej i żył wątrobowych. W praktyce klinicznej poprawne rozpoznawanie wątroby na MR jest kluczowe przy ocenie zmian ogniskowych, takich jak naczyniaki, przerzuty czy ogniska HCC, oraz przy planowaniu biopsji czy zabiegów interwencyjnych. Radiolodzy, zgodnie z dobrymi praktykami (ESR, EASL), zawsze zaczynają opis jamy brzusznej od oceny wątroby: wielkości, jednorodności miąższu, zarysów brzegu, cech marskości, obecności płynu w jamie otrzewnej. Moim zdaniem opanowanie anatomii wątroby w obrazowaniu to podstawa, bo ten narząd jest punktem odniesienia do orientacji w całym badaniu. W technice MR ważne jest też świadome dobranie sekwencji: T1, T2, sekwencje z saturacją tłuszczu oraz fazy po kontraście paramagnetycznym, które pozwalają odróżnić prawidłowy miąższ od zmian patologicznych. W codziennej pracy technika elektroradiologii umiejętność szybkiego rozpoznania wątroby na skanach pomaga prawidłowo zaplanować zakres badania, ustawić odpowiednie pola widzenia (FOV) i ocenić, czy pacjent był dobrze wypozycjonowany.

Pytanie 25

Po zakończeniu badania angiograficznego należy zapisać w dokumentacji medycznej pacjenta:

A. ilość kontrastu, ilość znieczulenia, czas skopii.
B. czas skopii, dawkę efektywną, równoważnik dawki.
C. ilość kontrastu, dawkę efektywną, równoważnik dawki.
D. ilość kontrastu, czas skopii, dawkę efektywną.
W badaniach angiograficznych bardzo łatwo skupić się tylko na obrazie naczyń i samym zabiegu, a trochę zignorować to, co trzeba później rzetelnie udokumentować. Stąd biorą się pomyłki w doborze parametrów, które powinny trafić do dokumentacji medycznej po zakończeniu procedury. Wiele osób intuicyjnie myśli, że skoro używamy kontrastu i promieniowania, to wystarczy zapisać „jakąś dawkę” i „jakąś ilość leku” i będzie po sprawie. Niestety tak to nie działa. Znieczulenie, choć oczywiście ważne klinicznie, nie jest kluczowym parametrem z punktu widzenia dokumentowania narażenia radiologicznego w angiografii. Informacja o typie i ilości środka znieczulającego zazwyczaj znajduje się w karcie znieczulenia lub w części anestezjologicznej dokumentacji, a nie w sekcji dotyczącej samego badania obrazowego. My w tym pytaniu skupiamy się na tym, co jest wymagane w kontekście ochrony radiologicznej i stosowania kontrastu, a nie na całej farmakoterapii okołozabiegowej. Równoważnik dawki bywa mylony z dawką efektywną. To częsty błąd. Równoważnik dawki opisuje narażenie konkretnego narządu lub tkanki z uwzględnieniem rodzaju promieniowania, natomiast w praktyce klinicznej, przy opisie badań radiologicznych, używa się przede wszystkim dawki efektywnej jako parametru ujednolicającego całe narażenie organizmu. Dawka efektywna pozwala porównać różne badania między sobą i odnieść je do poziomów referencyjnych oraz zasad optymalizacji. Sam czas skopii bez dawki efektywnej też jest niewystarczający. Można mieć krótki czas skopii, ale z bardzo wysokimi parametrami ekspozycji, co wcale nie oznacza małej dawki dla pacjenta. Z drugiej strony, samo wpisanie równoważnika dawki bez jasnego odniesienia do dawki efektywnej nie spełnia standardów dokumentacyjnych, które coraz częściej są zintegrowane z systemami RIS/PACS i wymagają konkretnych pól, jak DAP, CTDIvol (dla TK) czy właśnie dawka efektywna. Typowym błędem myślowym jest też traktowanie angiografii jak zwykłego badania RTG, gdzie „wystarczy coś o dawce zapisać”. W nowoczesnej ochronie radiologicznej istotne jest systematyczne dokumentowanie ilości kontrastu, czasu skopii i parametrów dawki w sposób możliwy do późniejszej analizy. Dzięki temu można wykrywać procedury o zbyt wysokim narażeniu i wprowadzać poprawki techniczne lub organizacyjne. Dlatego odpowiedzi pomijające któryś z tych elementów, albo zastępujące dawkę efektywną samym równoważnikiem dawki czy informacją o znieczuleniu, nie odzwierciedlają aktualnych standardów i dobrych praktyk pracy w pracowni angiograficznej.

Pytanie 26

Folia wzmacniająca umieszczona w kasecie rentgenowskiej emituje pod wpływem promieniowania X światło

A. ultrafioletowe, umożliwiające zmniejszenie dawki promieniowania do wykonania badania.
B. ultrafioletowe, wymagające zwiększenia dawki promieniowania do wykonania badania.
C. widzialne, wymagające zwiększenia dawki promieniowania do wykonania badania.
D. widzialne, umożliwiające zmniejszenie dawki promieniowania do wykonania badania.
Prawidłowo – folia wzmacniająca (ekran wzmacniający) w kasecie rentgenowskiej emituje światło widzialne, a jej głównym zadaniem jest właśnie umożliwienie zmniejszenia dawki promieniowania X potrzebnej do wykonania zdjęcia. Promieniowanie rentgenowskie pada na folię, a kryształy luminoforu (np. wolframian wapnia w starszych kasetach albo związki ziem rzadkich – gadolinu, lantanu – w nowoczesnych) pochłaniają fotony X i zamieniają ich energię na błysk światła widzialnego. To światło naświetla film dużo efektywniej niż same fotony X, dlatego do uzyskania odpowiedniej czerni na filmie wystarczy znacznie mniejsza dawka promieniowania. W praktyce klinicznej oznacza to realne obniżenie narażenia pacjenta – w klasycznych systemach analogowych nawet kilkukrotne. Moim zdaniem to jeden z podstawowych przykładów, jak fizyka medyczna przekłada się na ochronę radiologiczną w codziennej pracy. W nowoczesnych kasetach CR/DR idea jest podobna: mamy warstwę fosforową lub detektor półprzewodnikowy, który też ma za zadanie jak najlepiej „wyłapać” fotony X i przekształcić je w sygnał (świetlny lub elektryczny), żeby nie trzeba było sztucznie podkręcać dawki. Ważna dobra praktyka: zawsze dobiera się kasetę i rodzaj folii do typu badania (np. folie o większej czułości do badań pediatrycznych), właśnie po to, żeby zgodnie ze standardem ALARA (As Low As Reasonably Achievable) trzymać dawki jak najniższe przy zachowaniu diagnostycznej jakości obrazu. Widać to choćby przy zdjęciach klatki piersiowej – odpowiednio dobrany ekran wzmacniający pozwala skrócić czas ekspozycji, zmniejszyć dawkę i jednocześnie ograniczyć poruszenie obrazu.

Pytanie 27

Zamieszczone obrazy związane są z badaniem

Ilustracja do pytania
A. testu wysiłkowego.
B. dopplerowskim.
C. densytometrycznym.
D. audiometrycznym.
Prawidłowo wskazana odpowiedź to badanie densytometryczne. Na obrazie po lewej stronie widać projekcję bliższego końca kości udowej z nałożonymi polami pomiarowymi, a po prawej charakterystyczny wykres zależności BMD (Bone Mineral Density, gęstość mineralna kości) od wieku z zaznaczonym T-score i strefami: zieloną (norma), żółtą (osteopenia) i czerwoną (osteoporoza). To jest typowy ekran z badania DXA (dual-energy X-ray absorptiometry), czyli złotego standardu w diagnostyce osteoporozy według zaleceń WHO i większości towarzystw osteologicznych. W densytometrii wykorzystuje się promieniowanie rentgenowskie o dwóch różnych energiach, a oprogramowanie aparatu wylicza BMD w g/cm² oraz wskaźniki T-score i Z-score. Kluczowe miejsca pomiaru to kręgosłup lędźwiowy i bliższy koniec kości udowej, dokładnie tak jak na pokazanym obrazie. W praktyce klinicznej wynik densytometrii służy nie tylko do rozpoznania osteoporozy, ale też do oceny ryzyka złamań (np. FRAX), kwalifikacji do leczenia farmakologicznego i monitorowania skuteczności terapii. Z mojego doświadczenia ważne jest prawidłowe pozycjonowanie pacjenta i unikanie artefaktów, bo błędy ułożenia biodra czy obecność metalowych elementów potrafią istotnie zafałszować BMD. Dobrą praktyką jest porównywanie kolejnych badań na tym samym aparacie, w tej samej projekcji i z identycznym protokołem analizy, żeby trend gęstości mineralnej kości był wiarygodny. Warto też pamiętać, że densytometria nie bada „jakości” kości jako takiej, tylko ich gęstość, dlatego wynik zawsze interpretujemy razem z obrazem klinicznym, wywiadem o złamaniach i innymi czynnikami ryzyka.

Pytanie 28

Zwiększenie napięcia na lampie rentgenowskiej powoduje

A. skrócenie fali i zwiększenie przenikliwości promieniowania X
B. skrócenie fali i zmniejszenie przenikliwości promieniowania X
C. wydłużenie fali i zwiększenie przenikliwości promieniowania X
D. wydłużenie fali i zmniejszenie przenikliwości promieniowania X
Prawidłowo – zwiększenie napięcia na lampie rentgenowskiej skraca długość fali promieniowania X i jednocześnie zwiększa jego przenikliwość. Wynika to bezpośrednio z fizyki zjawiska: wyższe napięcie anodowe (kV) nadaje elektronom większą energię kinetyczną. Te szybsze elektrony uderzają w anodę i wytwarzają fotony promieniowania X o wyższej energii. A im wyższa energia fotonu, tym krótsza długość fali (E = h·c/λ) i większa zdolność przenikania przez tkanki pacjenta czy materiały osłonowe. W praktyce radiologicznej oznacza to, że podnosząc kV, uzyskujemy bardziej „twarde” promieniowanie, które lepiej przechodzi przez gęste struktury, np. kości miednicy czy klatkę piersiową u pacjentów o większej masie ciała. Moim zdaniem kluczowe jest kojarzenie: kV = jakość promieniowania (energia, przenikliwość), a mAs = ilość promieniowania (liczba fotonów). W nowoczesnych aparatach RTG standardy pracy i dobre praktyki (np. wytyczne EFRS, europejskie zalecenia dla ekspozycji) mówią jasno: dobiera się możliwie wysokie kV i możliwie niskie mAs, aby zmniejszyć dawkę dla pacjenta, ale jednocześnie zachować odpowiedni kontrast obrazu. Dla zdjęć klatki piersiowej stosuje się zwykle wyższe napięcia (np. 100–125 kV), właśnie po to, żeby promieniowanie miało wysoką przenikliwość i równomiernie „przeszło” przez cały przekrój klatki. Przy badaniach kończyn, gdzie struktury są cieńsze, używa się niższego napięcia, bo nie potrzebujemy aż tak twardego widma. Warto też pamiętać, że zwiększenie kV zmniejsza kontrast tkankowy obrazu (bo wszystko jest bardziej przepuszczalne), ale za to redukuje pochłoniętą dawkę w skórze. W dobrze prowadzonym pracowni RTG technik świadomie balansuje kV i mAs, aby osiągnąć kompromis między jakością diagnostyczną a ochroną radiologiczną. Z mojego doświadczenia to jedna z podstawowych umiejętności w diagnostyce obrazowej – rozumieć, że zmiana napięcia to nie tylko „jaśniej/ciemniej”, ale przede wszystkim zmiana energii i przenikliwości promieniowania.

Pytanie 29

W diagnostyce metodą rezonansu magnetycznego biorą udział

A. protony wodoru.
B. jądra wapnia.
C. elektrony wodoru.
D. elektrony wapnia.
W rezonansie magnetycznym kluczową rolę odgrywają protony wodoru, czyli po prostu jądra atomów wodoru obecne głównie w wodzie i tłuszczu. Moim zdaniem to jedna z tych rzeczy, które warto mieć „wryte” w pamięć, bo przewija się praktycznie wszędzie, gdzie mowa o MR. W organizmie człowieka woda stanowi większość masy, a każdy atom wodoru ma pojedynczy proton z własnym momentem magnetycznym (tzw. spinem). W silnym polu magnetycznym tomografu MR te protony ustawiają się częściowo równolegle do kierunku pola. Następnie urządzenie wysyła fale radiowe (impuls RF) o częstotliwości rezonansowej Larmora, które wytrącają te protony z równowagi. Gdy impuls się kończy, protony wracają do stanu wyjściowego, emitując sygnał, który jest rejestrowany przez cewki odbiorcze. Na podstawie różnic w czasie relaksacji T1 i T2 oraz gęstości protonów w różnych tkankach komputer rekonstruuje obraz przekrojowy ciała. Dlatego w praktyce im więcej protonów wodoru w danej tkance, tym silniejszy sygnał MR, choć ważne są też właściwości środowiska chemicznego, np. różnice między tkanką tłuszczową a mięśniową. W standardach opisów badań MR często odnosi się do sekwencji zależnych od T1, T2, PD (proton density), co bezpośrednio pokazuje, że to właśnie protony wodoru są głównym „źródłem informacji” w tym badaniu. W codziennej pracy technika czy elektroradiologa przekłada się to na dobór odpowiednich sekwencji, parametrów TR, TE i typów obrazowania, aby jak najlepiej wykorzystać sygnał od protonów wodoru do uwidocznienia zmian patologicznych, np. obrzęku, martwicy, zmian demielinizacyjnych czy guzów. Bez obecności protonów wodoru obraz MR praktycznie by nie powstał, co widać chociażby w obrębie struktur zawierających mało wody (np. kość korowa), które dają bardzo słaby sygnał.

Pytanie 30

Na obrazie TK klatki piersiowej w przekroju poprzecznym strzałką oznaczono

Ilustracja do pytania
A. oskrzele główne prawe.
B. aortę zstępującą.
C. oskrzele główne lewe.
D. aortę wstępującą.
Na tym typie zadań najczęstszy problem nie polega na nieznajomości anatomii, tylko na pomyleniu orientacji obrazu TK i podobnych do siebie struktur w śródpiersiu. W standardowych przekrojach poprzecznych TK patrzymy na pacjenta od strony jego stóp. Oznaczenie R po lewej stronie ekranu wskazuje prawą stronę pacjenta, więc wszystko po przeciwnej stronie to lewa połowa klatki piersiowej. Jeśli ktoś wybiera prawe oskrzele główne, to zwykle dlatego, że patrzy „intuicyjnie”, jak na zdjęcie od przodu, a nie jak na przekrój poprzeczny. Prawe oskrzele główne jest rzeczywiście bardziej pionowe, krótsze i szersze, ale będzie po stronie oznaczonej literą R. Strzałka na obrazie wyraźnie wskazuje strukturę po stronie przeciwnej, czyli anatomicznie lewej. Wybór aorty wstępującej lub zstępującej wynika zazwyczaj z mylenia struktur powietrznych z naczyniami. Aorta w TK z kontrastem ma gęstość wysoką, jest jasna, o okrągłym lub lekko owalnym przekroju. Na tym poziomie przekroju aorta wstępująca leży bardziej z przodu i po prawej stronie pacjenta, blisko prawej komory, natomiast aorta zstępująca jest zwykle tylno-lewostronna, przylega do kręgosłupa. Struktura wskazana strzałką ma gęstość powietrza (ciemna), co jest typowe dla światła dróg oddechowych, a nie dla naczynia wypełnionego kontrastem. Dodatkowo jej położenie – tuż poniżej rozdwojenia tchawicy, w bezpośrednim sąsiedztwie wnęki lewego płuca – jest książkowe dla lewego oskrzela głównego. Moim zdaniem dobrym nawykiem jest przy każdym przekroju najpierw zidentyfikować tchawicę, potem bifurkację, a dopiero później przechodzić do oskrzeli i naczyń. Pozwala to uniknąć typowego błędu: brania jasnych, kontrastujących naczyń za „główne drogi oddechowe” tylko dlatego, że są wyraźniejsze. W praktyce zawodowej takie pomyłki mogą skutkować błędną oceną lokalizacji guza, węzła chłonnego albo zakrzepu, dlatego standardy dobrej praktyki w diagnostyce obrazowej mocno podkreślają konieczność systematycznej analizy przekrojów i świadomego korzystania z oznaczeń orientacyjnych na obrazie.

Pytanie 31

Świeżo wynaczyniona krew na obrazach TK głowy bez podania środka kontrastowego ukazuje się jako obszar

A. hiperdensyjny.
B. normodensyjny.
C. hipodensyjny.
D. izodensyjny.
Świeżo wynaczyniona krew w badaniu TK głowy bez podania kontrastu nie jest ani izodensyjna, ani hipodensyjna, ani „normodensyjna” w stosunku do mózgowia – i tu właśnie często pojawia się błąd w myśleniu. W ostrych stanach wielu osobom intuicyjnie wydaje się, że krew będzie miała „normalną” gęstość albo że będzie ciemniejsza, bo kojarzą to z obrazem w MR albo z innymi płynami. Tymczasem w tomografii komputerowej gęstość wyrażamy w jednostkach Hounsfielda i zależy ona w dużej mierze od zawartości wody oraz składników takich jak białka czy jony. Świeża krew, szczególnie skrzep, ma wysokie stężenie hemoglobiny i białek, a więc wyższą gęstość niż otaczająca tkanka mózgowa. Dlatego na obrazie TK jest ona hiperdensyjna, czyli jaśniejsza. Określenia typu „izodensyjny” czy „normodensyjny” sugerują, że gęstość jest zbliżona do otaczających struktur mózgowia. Tak dzieje się dopiero w fazie podostrej, gdy krew zaczyna się rozpadać, zmienia się zawartość wody i dochodzi do przebudowy ogniska krwotocznego. Wtedy rzeczywiście może być problem z odróżnieniem krwiaka od mózgu, bo robi się on izodensyjny. Jeszcze później, w fazie przewlekłej, krwiak często staje się hipodensyjny, czyli ciemniejszy niż mózgowie, przez dominującą zawartość płynu. Mylenie tych faz jest bardzo typowym błędem: ktoś pamięta, że „stary krwiak jest ciemny”, i błędnie przenosi to na fazę ostrą. Dodatkowo zamieszanie wprowadza fakt, że obrzęk mózgu wokół krwotoku jest hipodensyjny, więc część osób kojarzy krwawienie z „ciemnym obszarem”, nie rozróżniając samego skrzepu od otaczającego obrzęku. W dobrej praktyce diagnostyki obrazowej zawsze trzeba myśleć dynamicznie: jaka jest faza krwawienia, jakie są typowe wartości HU i jak to będzie wyglądało na monitorze. Z mojego doświadczenia, jeśli w głowie pojawia się wątpliwość „ciemne czy jasne?”, to dla świeżej krwi w TK głowy bez kontrastu odpowiedź powinna automatycznie brzmieć: jasne, czyli hiperdensyjne.

Pytanie 32

DSA to cyfrowa

A. arteriografia subtrakcyjna.
B. angiografia subtrakcyjna.
C. limfografia subtrakcyjna.
D. flebografia subtrakcyjna.
Skrót DSA bywa mylący, bo w praktyce klinicznej funkcjonuje sporo podobnie brzmiących nazw badań naczyniowych. Kluczowe jest jednak to, że „A” w DSA oznacza angiografię, czyli ogólne obrazowanie naczyń krwionośnych, a nie konkretny typ naczynia. Angiografia jako pojęcie obejmuje zarówno arteriografię (tętnice), flebografię (żyły), jak i badania bardziej wyspecjalizowane. Dlatego mówimy o cyfrowej angiografii subtrakcyjnej, a nie np. wyłącznie o cyfrowej arteriografii subtrakcyjnej. Arteriografia to badanie skoncentrowane na tętnicach – technicznie często wykorzystuje się do niej właśnie DSA, ale sama nazwa DSA nie ogranicza się tylko do tętnic. Z punktu widzenia terminologii byłoby więc nieprecyzyjne utożsamianie DSA z arteriografią, bo w jednej pracowni na tym samym aparacie wykonuje się w tej samej technice również obrazowanie żylne czy tętniczo-żylne malformacje. Podobnie jest z flebografią. Flebografia to kontrastowe badanie żył, np. żył kończyn dolnych czy żyły głównej górnej. Można zastosować technikę subtrakcji cyfrowej do uwidocznienia żył, ale nazwa badania systemowo pozostaje angiografią wykonywaną metodą DSA, a flebografia jest określeniem opisującym zakres anatomiczny, a nie typ technologii. Mylenie tych pojęć wynika zwykle z tego, że ktoś łączy nazwę techniki z nazwą konkretnej procedury klinicznej. Jeszcze mniej trafne jest kojarzenie DSA z limfografią. Limfografia dotyczy obrazowania naczyń chłonnych i węzłów chłonnych, tradycyjnie z użyciem specyficznych środków kontrastowych i zupełnie innych protokołów. W praktyce współczesnej limfografia klasyczna jest rzadziej wykonywana, częściej zastępują ją MR czy CT z odpowiednimi sekwencjami lub technikami, ale nadal nie używa się dla niej terminu DSA. Sedno sprawy jest takie: DSA to nazwa technologii i metody obróbki obrazu (cyfrowa subtrakcja), stosowanej przede wszystkim w angiografii. Arteriografia, flebografia i limfografia to natomiast nazwy opisujące, jakie naczynia są badane. Dobra praktyka w radiologii wymaga, żeby tych pojęć nie mieszać, bo ma to znaczenie zarówno dla dokumentacji, jak i dla planowania zabiegu oraz oceny ryzyka dla pacjenta.

Pytanie 33

Na przekroju poprzecznym TK mózgu strzałką wskazano obszar

Ilustracja do pytania
A. hyperdensyjny w płacie czołowym.
B. hypodensyjny w płacie czołowym.
C. hypodensyjny w móżdżku.
D. hyperdensyjny w móżdżku.
Na tym obrazie TK głowy główną pułapką jest jednoczesne rozpoznanie lokalizacji i charakteru densyjnego zmiany. Strzałka wskazuje strukturę położoną w tylnym dole czaszki, poniżej półkul mózgowych i powyżej otworu wielkiego. To typowa projekcja na móżdżek, z widocznymi półkulami móżdżku i robakiem. Mylenie tego poziomu z płatem czołowym wynika najczęściej z braku nawyku orientowania się w osi czaszka–podstawa–tylny dół; płaty czołowe leżą znacznie wyżej i ku przodowi, nad oczodołami, w zupełnie innym przekroju anatomicznym. Dlatego odpowiedzi, które mówią o płacie czołowym, ignorują podstawową zasadę interpretacji obrazów: najpierw identyfikujemy poziom i region anatomiczny, dopiero później opisujemy charakter zmiany. Drugie źródło błędu to ocena gęstości. W tomografii komputerowej tkanka bardziej jasna (biała) ma wyższą gęstość – nazywamy ją hyperdensyjną. Tkanka ciemniejsza (bliżej czerni) jest hypodensyjna. Wskazany obszar jest wyraźnie jaśniejszy niż otaczająca tkanka móżdżku, więc nie można go nazwać hypodensyjnym. Pomyłka w tym miejscu często wynika z niedostatecznego porównania z sąsiednimi strukturami oraz z kością czaszki, która jest najbardziej hyperdensyjna. Dobrą praktyką jest zawsze zestawienie badanego ogniska z prawidłową istotą szarą i białą – jeśli coś jest porównywalne z kością lub świeżą krwią, będzie jasne, czyli hyperdensyjne. Z perspektywy pracy technika i lekarza radiologa kluczowe jest, aby nie opierać się na intuicyjnym wrażeniu „ciemniejsze–jaśniejsze”, tylko świadomie używać pojęć hypodensyjny i hyperdensyjny, odnosząc je do skali Hounsfielda i wyglądu prawidłowych struktur. Moim zdaniem warto wyrobić sobie prosty nawyk: najpierw orientacja w anatomii (czy to na pewno móżdżek, a nie płat czołowy), potem ocena densyjności na tle otoczenia, a na końcu dopiero próba klinicznej interpretacji (np. krwotok, guz, zwapnienie). Taka sekwencja myślenia minimalizuje ryzyko właśnie takich pomyłek, jakie sugerują niepoprawne odpowiedzi w tym zadaniu.

Pytanie 34

Do zdjęcia prawych otworów międzykręgowych kręgosłupa szyjnego pacjent stoi w skosie

A. prawym przednim.
B. prawym tylnym.
C. lewym przednim.
D. lewym tylnym.
W tym zadaniu cała trudność polega na zrozumieniu logiki projekcji skośnych kręgosłupa szyjnego, a nie tylko na zapamiętaniu skrótu. Typowy błąd polega na myleniu, po której stronie widoczne są otwory międzykręgowe w zależności od tego, czy wybieramy skos przedni czy tylny i z której strony pada promień. W odpowiedziach z określeniem „prawy tylny” oraz „prawy przedni” często kryje się intuicyjne myślenie: skoro badamy prawe otwory, to wybiorę projekcję „prawą”. Niestety w kręgosłupie szyjnym tak to nie działa. W projekcjach skośnych szyi otwory międzykręgowe najlepiej uwidaczniają się po stronie przydetektorowej, czyli tej bliżej kasety. Jeśli pacjent stoi w prawym tylnym skosie (RPO), to bliżej detektora znajduje się lewa strona szyi, a promień wchodzi od strony prawej tylnej. Efekt jest taki, że lepiej uwidocznimy LEWE otwory międzykręgowe, a nie prawe. Analogicznie, przy prawym przednim skosie (RAO) promień wchodzi od przodu po prawej stronie, ale nadal strona bliższa detektorowi będzie lewa, więc diagnostycznie wyraźniejsze będą lewe otwory. To jest bardzo typowe złudzenie: skupiamy się na tym, skąd pada promień, a nie na tym, która strona jest przy detektorze. Odpowiedź z „lewym przednim” też jest myląca, bo ktoś może założyć, że skoro lewa, to będzie widoczna prawa strona, ale przy projekcjach przednich (LAO/RAO) otwory oglądamy z innej geometrii wiązki, i standardowo do oceny szyjnych otworów międzykręgowych preferuje się projekcje tylne skośne, właśnie LPO i RPO. W praktyce klinicznej przyjęło się, że: LPO – oglądamy prawe otwory, RPO – oglądamy lewe otwory. Jeżeli wybierzemy niewłaściwy skos, obraz będzie mało przydatny diagnostycznie, a pacjent niepotrzebnie dostanie kolejną dawkę promieniowania przy powtórce badania. Dobra praktyka to zawsze myśleć: którą stronę chcę przyłożyć do detektora, a dopiero potem dobierać projekcję i kierunek wiązki, zamiast kierować się tylko intuicyjną nazwą skosu.

Pytanie 35

Do badania MR nadgarstka pacjenta należy ułożyć

A. na plecach, badana ręka wyciągnięta ponad głowę.
B. na brzuchu, badana ręka ułożona wzdłuż ciała.
C. na brzuchu, badana ręka wyciągnięta ponad głowę.
D. na plecach, badana ręka ułożona wzdłuż ciała.
Poprawna odpowiedź wskazuje klasyczne, zalecane ułożenie pacjenta do badania MR nadgarstka: na brzuchu (pozycja pronacyjna), z badaną ręką wyciągniętą ponad głowę, tak żeby nadgarstek znalazł się w centrum cewki nadgarstkowej i w izocentrum magnesu. Taka pozycja wynika z praktyki pracowni rezonansu i z zaleceń producentów cewek oraz systemów MR – chodzi o uzyskanie jak najwyższego SNR (stosunku sygnału do szumu) i minimalizację artefaktów ruchowych. Gdy ręka jest wyciągnięta do góry, łatwiej jest precyzyjnie ułożyć nadgarstek w cewce powierzchniowej, ograniczyć ruchy palców i przedramienia oraz ustabilizować staw za pomocą klinów, gąbek i pasów mocujących. Z mojego doświadczenia technicy często podkreślają, że w tej pozycji łatwiej też „odsunąć” bark i tułów od pola obrazowania, co zmniejsza ryzyko artefaktów od oddechu i pracy mięśni obręczy barkowej. W praktyce klinicznej taka pozycja dobrze sprawdza się zwłaszcza przy badaniach wysokopolowych (1,5 T i 3 T), gdzie bardzo ważne jest dokładne pozycjonowanie w izocentrum i właściwe dopasowanie cewki nadgarstkowej. Dodatkowo, pozycja na brzuchu z ręką nad głową umożliwia wygodne podłączenie cewek dedykowanych, prowadzenie cewek kablowych tak, żeby nie tworzyły pętli oraz bezpieczne ułożenie przewodów, co jest zgodne z zasadami bezpieczeństwa MR. W dobrych praktykach przyjmuje się też, że przed rozpoczęciem sekwencji warto sprawdzić, czy pacjent jest w stanie utrzymać tę pozycję przez cały czas badania – jeśli tak, zwykle uzyskujemy bardzo dobre, ostre obrazy stawu nadgarstkowego, ścięgien, więzadeł i kości nadgarstka, co ma kluczowe znaczenie np. przy urazach sportowych, podejrzeniu jałowej martwicy, zmian przeciążeniowych czy ocenie więzadła scapholunate.

Pytanie 36

Którą strukturę anatomiczną oznaczono na zamieszczonym obrazie rezonansu magnetycznego?

Ilustracja do pytania
A. Guzek mniejszy kości ramiennej.
B. Guzek większy kości ramiennej.
C. Głowę kości ramiennej.
D. Trzon kości ramiennej.
Na takim obrazie MR barku bardzo łatwo pomylić poszczególne części kości ramiennej, zwłaszcza jeśli ktoś patrzy głównie na kształt, a nie na relacje anatomiczne. Głowa kości ramiennej ma wyraźnie kulisty zarys i jest pogrążona w panewce łopatki; na obrazie zwykle leży bardziej przyśrodkowo i nieco niżej niż wskazywany tutaj punkt. Jeżeli strzałka pokazuje strukturę boczną, tuż pod sklepieniem barkowym i w sąsiedztwie ścięgien stożka rotatorów, to raczej nie będzie to głowa, tylko właśnie gużek większy. Głowę łatwo zidentyfikować po gładkiej, regularnej powierzchni stawowej, podczas gdy guzek większy jest bardziej nieregularny i stanowi miejsce przyczepu ścięgien. Guzek mniejszy z kolei leży bardziej przyśrodkowo i do przodu, bliżej przyczepu ścięgna mięśnia podłopatkowego. W wielu projekcjach MR jest częściowo „schowany” i nie tworzy tak wyraźnej bocznej wyniosłości jak guzek większy. Typowym błędem jest myślenie: mniejszy guzek = mniejsza wyniosłość na obrazie, ale w praktyce jego rozpoznanie zależy bardziej od położenia w stosunku do trzonu i głowy kości ramiennej oraz orientacji ramienia (rotacja wewnętrzna lub zewnętrzna), niż od samego rozmiaru. Trzon kości ramiennej na obrazach barku najczęściej widoczny jest niżej, w części diafizalnej, o znacznie bardziej cylindrycznym kształcie i bez charakterystycznych nasadowych wyniosłości. Jeżeli strzałka znajduje się w obrębie nasady bliższej, tuż pod powierzchnią stawową i bocznie, to nie ma mowy o trzonie – to już jest rejon nasadowo-guzkowy. Typowy błąd polega na tym, że ktoś „odruchowo” dzieli kość tylko na głowę i resztę, pomijając obecność guzków. W praktyce klinicznej, zwłaszcza w ortopedii i radiologii, rozróżnienie: głowa – guzek większy – guzek mniejszy – trzon jest kluczowe przy opisie złamań, zmian zwyrodnieniowych, entezopatii i uszkodzeń stożka rotatorów. Standardy dobrej praktyki opisowej wymagają precyzyjnego nazewnictwa tych struktur, bo od tego zależy zrozumienie opisu przez chirurga i późniejsze planowanie leczenia operacyjnego lub zachowawczego.

Pytanie 37

Na obrazie cyfrowej angiografii subtrakcyjnej strzałką zaznaczono

Ilustracja do pytania
A. żyłę płucną górną prawą.
B. tętnicę szyjną wspólną prawą.
C. pień płucny.
D. pień ramienno-głowowy.
Na tym typie obrazu – cyfrowej angiografii subtrakcyjnej łuku aorty – najczęstszy błąd polega na myleniu dużych naczyń wychodzących z aorty z naczyniami płucnymi lub z pojedynczymi tętnicami szyjnymi. Wynika to zwykle z patrzenia tylko na kształt jednego fragmentu, bez uwzględnienia całego układu anatomicznego i kolejności odejścia naczyń. W tym przypadku widoczny jest klasyczny łuk aorty, a od jego górnej części odchodzą trzy główne pnie tętnicze: po prawej stronie obrazowania pień ramienno‑głowowy, dalej tętnica szyjna wspólna lewa i najbardziej z boku tętnica podobojczykowa lewa. Pień płucny w ogóle nie pasuje do tego obrazu – anatomicznie wychodzi z prawej komory serca, przebiega bardziej przednio i nie tworzy tak charakterystycznych, symetrycznych odgałęzień jak gałęzie łuku aorty. Na klasycznej aortografii łuk aorty jest wypełniony kontrastem, natomiast pień płucny byłby widoczny przy zupełnie innym typie badania (np. angiografii tętnic płucnych) i z reguły w innej projekcji. Mylenie tych struktur wynika często z automatycznego kojarzenia „dużego naczynia w klatce piersiowej” z pniem płucnym, bez analizy miejsca podania kontrastu i przebiegu naczynia. Żyła płucna górna prawa to z kolei naczynie żylne, cienkościenne, uchodzące do lewego przedsionka, położone bardziej ku tyłowi. Na DSA po podaniu kontrastu do aorty praktycznie nie będzie się ona wyraźnie kontrastowała w tej fazie, a jej przebieg i średnica są zupełnie inne niż w przypadku grubego, tętniczego pnia wychodzącego z aorty. Jej wybór świadczy zwykle o braku rozróżnienia między układem tętniczym i żylnym w klatce piersiowej na obrazach angiograficznych. Tętnica szyjna wspólna prawa jest rzeczywiście blisko anatomicznie związana z pniem ramienno‑głowowym, ale nie jest pierwszą gałęzią łuku aorty, tylko jego gałęzią pośrednią. Najpierw od łuku odchodzi pień ramienno‑głowowy, a dopiero on dzieli się na tętnicę szyjną wspólną prawą i tętnicę podobojczykową prawą. Na obrazie DSA tętnica szyjna wspólna prawa będzie więc widoczna wyżej, bardziej pionowo, po rozwidleniu. Typowy błąd to „skracanie” tego schematu i nazywanie całego segmentu od łuku aż do szyi tętnicą szyjną wspólną, bez dostrzeżenia miejsca jej odejścia od pnia ramienno‑głowowego. Dlatego przy nauce anatomii w obrazowaniu warto ćwiczyć patrzenie na cały przebieg naczynia, jego początek, rozgałęzienia i relacje z innymi strukturami, a nie tylko na fragment wskazany strzałką.

Pytanie 38

Parametr SNR w obrazowaniu MR oznacza

A. grubość obrazowanej warstwy.
B. rozmiar matrycy.
C. wielkość pola widzenia.
D. stosunek sygnału do szumu.
Parametr SNR w obrazowaniu MR to stosunek sygnału do szumu (Signal to Noise Ratio) i jest jednym z absolutnie kluczowych pojęć przy ocenie jakości obrazów rezonansu. Mówiąc po ludzku: patrzymy, jak silny jest użyteczny sygnał pochodzący z tkanek pacjenta w porównaniu do przypadkowych zakłóceń, czyli szumu. Im wyższy SNR, tym obraz jest bardziej „czysty”, gładszy, z wyraźniejszym zarysem struktur anatomicznych i mniejszym ziarnem. Przy niskim SNR obraz robi się „ziarnisty”, poszarpany, trudniej odróżnić szczegóły, a diagnostyka staje się mniej pewna. W praktyce technik MR ciągle balansuje parametrami, które wpływają na SNR: zwiększenie grubości warstwy, liczby akwizycji (NEX/NSA), pola widzenia (FOV), czy zastosowanie odpowiednich cewek odbiorczych poprawia SNR, ale często kosztem rozdzielczości lub czasu badania. Z kolei zwiększenie rozdzielczości (większa matryca, mniejszy voxel) zwykle SNR obniża. Moim zdaniem ważne jest, żeby nie traktować SNR jako abstrakcyjnej liczby, tylko jako realne narzędzie do oceny, czy dana sekwencja nadaje się do wiarygodnej interpretacji. W wielu ośrodkach przyjmuje się minimalne wartości SNR dla konkretnych protokołów, tak żeby radiolog miał wystarczająco „czysty” obraz do opisu. W zaawansowanych systemach kontroli jakości MR SNR mierzy się regularnie na fantomach, żeby sprawdzać stabilność aparatu i wychwycić spadek jakości zanim zauważy go lekarz. W codziennej pracy, jeśli radiolog mówi, że „za dużo szumu na obrazach”, to w praktyce właśnie ma zastrzeżenia do zbyt niskiego SNR i trzeba tak dobrać parametry, żeby ten stosunek sygnału do szumu poprawić, nie tracąc przy tym istotnych informacji diagnostycznych.

Pytanie 39

Obrazowanie w sekwencjach STIR, FLAIR, SE wykonywane jest w badaniu

A. TK
B. MR
C. USG
D. PET
Prawidłowo powiązałeś sekwencje STIR, FLAIR i SE z rezonansem magnetycznym, czyli badaniem MR. To są nazwy konkretnych sekwencji obrazowania stosowanych właśnie w MRI. W uproszczeniu sekwencja to sposób „pobierania” sygnału z tkanek przez aparat, z określonymi czasami TR, TE, sposobem tłumienia sygnału, itp. STIR (Short Tau Inversion Recovery) to sekwencja tłumiąca sygnał tłuszczu. Dzięki temu bardzo dobrze widać obrzęk, naciek zapalny czy zmiany pourazowe, np. w układzie kostno‑stawowym, w kręgosłupie, w badaniach onkologicznych. FLAIR (Fluid Attenuated Inversion Recovery) tłumi sygnał płynu mózgowo‑rdzeniowego, przez co świetnie uwidacznia zmiany w istocie białej mózgu, np. w stwardnieniu rozsianym, niedokrwieniu czy zapaleniach. SE (Spin Echo) to klasyczna, podstawowa sekwencja MR, na której opierają się obrazy T1‑ i T2‑zależne, stosowana praktycznie w każdym badaniu MR, od głowy, przez kręgosłup, po jamę brzuszną. W praktyce klinicznej protokół MR głowy prawie zawsze zawiera kombinację sekwencji SE T1, SE/TSE T2 oraz FLAIR; z kolei w badaniach narządu ruchu bardzo często pojawia się STIR do oceny szpiku kostnego i tkanek miękkich. Moim zdaniem warto zapamiętać to skojarzenie: jeśli słyszysz STIR, FLAIR, SE, T1, T2, DWI – myślisz od razu „MR”, bo to jest standard w opisach badań i w zaleceniach towarzystw radiologicznych. W USG, TK czy PET takich nazw sekwencji po prostu się nie używa, tam operuje się innymi parametrami i protokołami.

Pytanie 40

Którą strukturę anatomiczną oznaczono na skanie TK głowy?

Ilustracja do pytania
A. Komorę boczną.
B. Wodociąg mózgu.
C. Komorę III.
D. Szyszynkę.
Na tym obrazie TK głowy łatwo pomylić różne elementy układu komorowego, zwłaszcza gdy ogląda się pojedynczy przekrój, a nie całe badanie w sekwencji warstw. Wskazana przez strzałkę struktura ma jednak typowy wygląd i położenie dla przednich części komór bocznych, a nie dla pozostałych wymienionych odpowiedzi. Wodociąg mózgu (wodociąg Sylwiusza) jest wąskim kanałem łączącym komorę III z komorą IV. Leży w obrębie śródmózgowia, czyli znacznie bardziej ku tyłowi i ku dołowi, w rejonie pnia mózgu. W typowym przekroju osiowym TK głowy wodociąg, jeśli w ogóle jest widoczny, ma postać bardzo cienkiego, punktowego lub nitkowatego światła, a nie szerokiej, rozgałęziającej się przestrzeni w obrębie półkul. Pomyłka w tym kierunku zwykle wynika z traktowania całego układu komorowego jako jednej „dziury z płynem”, bez zwracania uwagi na topografię względem kory i sklepistości czaszki. Komora III ma z kolei kształt bardziej szczelinowaty, położona jest dokładnie w linii pośrodkowej, między wzgórzami, niżej niż rogi przednie komór bocznych. Na przekrojach, gdzie dobrze widać rogi przednie, komora III często nie jest jeszcze wyraźnie widoczna lub ma zupełnie inny, bardziej podłużny układ, a nie formę litery „V” w półkulach. Szyszynka natomiast jest strukturą miąższową, parenchymatyczną, a nie przestrzenią płynową. W TK często wykazuje drobne zwapnienia i wtedy wygląda jako jasny, niewielki punkt w okolicy tylnej części komory III, nad wzgórkami czworaczymi. Na prezentowanym obrazie strzałka nie wskazuje takiego punktowego, hiperdensyjnego ogniska, tylko symetryczną przestrzeń wypełnioną płynem. Typowym błędem jest tu ocenianie „kształtu” bez uwzględnienia kontekstu anatomicznego – gdzie jest sklepistość, gdzie są półkule, gdzie pień mózgu. Dobra praktyka w diagnostyce obrazowej zakłada zawsze korelację struktury z jej położeniem w trzech płaszczyznach i znajomość tego, które elementy układu komorowego powinny być widoczne na danym poziomie przekroju. Dzięki temu łatwiej uniknąć takich pomyłek i prawidłowo rozróżnić komory boczne, komorę III, wodociąg oraz drobne gruczoły jak szyszynka.