Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektronik
  • Kwalifikacja: ELM.02 - Montaż oraz instalowanie układów i urządzeń elektronicznych
  • Data rozpoczęcia: 7 grudnia 2025 11:54
  • Data zakończenia: 7 grudnia 2025 12:12

Egzamin zdany!

Wynik: 25/40 punktów (62,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 2

Jaki element anteny satelitarnej oznaczono na rysunku cyfrą 1?

Ilustracja do pytania
A. Siłownik.
B. Reflektor.
C. Konwerter.
D. Wspornik.
Konwerter, oznaczony na rysunku cyfrą 1, pełni kluczową rolę w systemach antenowych satelitarnych. Jego zadaniem jest konwersja sygnałów radiowych odbieranych przez reflektor anteny na sygnał elektryczny, który jest następnie transmitowany do odbiornika satelitarnego. W kontekście zastosowań praktycznych, konwertery są projektowane z różnymi parametrami, aby dostosować się do specyfikacji satelitów oraz różnorodnych pasm częstotliwości, takich jak Ku, Ka czy C. Ważne jest, aby konwerter był odpowiednio dopasowany do anteny, co wpływa na jakość odbioru sygnału oraz efektywność systemu. W branżowych standardach, takich jak EN 50083-2, określone są wymagania dotyczące konwerterów, co zapewnia ich niezawodność i efektywność. Osoby zajmujące się instalacjami satelitarnymi powinny znać różnice między konwerterami oraz ich konfiguracją, co ma fundamentalne znaczenie dla zapewnienia wysokiej jakości transmisji. Zrozumienie działania konwertera pozwala również na skuteczniejszą diagnostykę problemów związanych z odbiorem sygnału.

Pytanie 3

Na którym rysunku przedstawiono antenę dookólną?

Ilustracja do pytania
A. D.
B. A.
C. B.
D. C.
Antena dookólna, jaką przedstawiono na rysunku A, to urządzenie, które charakteryzuje się zdolnością do odbierania sygnałów z różnych kierunków w poziomej płaszczyźnie, co czyni ją idealnym rozwiązaniem w zastosowaniach, gdzie nie ma potrzeby kierunkowego odbioru sygnału. Anteny dookólne, takie jak dipol otwarty, są powszechnie wykorzystywane w systemach komunikacyjnych, radiowych oraz w technologii bezprzewodowej, gdzie ich zdolność do zbierania sygnału z wielu kierunków zapewnia lepszą jakość odbioru. W praktyce anteny te stosuje się w lokalizacjach, gdzie sygnały pochodzą z różnych źródeł, na przykład w stacjach bazowych sieci komórkowej lub w systemach Wi-Fi. Standardy branżowe, takie jak IEEE 802.11, uwzględniają użycie anten dookólnych w celu zapewnienia lepszego pokrycia sygnałem w obszarach miejskich. Warto również zauważyć, że anteny dookólne są kluczowe w zastosowaniach związanych z transmisją danych w otwartych przestrzeniach, gdzie sygnał musi być odbierany z różnych perspektyw.

Pytanie 4

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 5

Jakie przepisy prawne dotyczą zarządzania odpadami niebezpiecznymi?

A. Ustawa o energetyce
B. Ustawa dotycząca budownictwa
C. Ustawa o zamówieniach publicznych
D. Ustawa o odpadach
Ustawa o odpadach jest kluczowym aktem prawnym regulującym gospodarkę odpadami niebezpiecznymi w Polsce. Ustawa ta również implementuje dyrektywy unijne dotyczące zarządzania odpadami, w szczególności odpady niebezpieczne, co pozwala na harmonizację przepisów krajowych z normami europejskimi. Główne zasady wynikające z tej ustawy obejmują klasyfikację odpadów, obowiązki producentów oraz sposoby ich zbierania, transportu, przechowywania i unieszkodliwiania. Przykładem zastosowania tych przepisów jest konieczność posiadania odpowiednich zezwoleń na transport i unieszkodliwianie odpadów niebezpiecznych, które muszą być zgodne z wymaganiami ustawy. Dobre praktyki w zakresie gospodarki odpadami niebezpiecznymi obejmują również prowadzenie ewidencji tych odpadów, co pozwala na lepsze zarządzanie i kontrolę nad nimi. W kontekście międzynarodowym, Polska jest zobowiązana do przestrzegania konwencji takich jak Konwencja Bazylejska, co podkreśla znaczenie Ustawy o odpadach w kontroli i minimalizacji negatywnego wpływu na środowisko.

Pytanie 6

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 7

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 8

Przedstawiony na rysunku przyrząd pomiarowy służy do wykonywania pomiarów w

Ilustracja do pytania
A. instalacjach antenowych.
B. instalacjach zasilających urządzenia.
C. sieciach komputerowych.
D. sieciach telewizji kablowej.
Poprawna odpowiedź to sieci komputerowe, ponieważ przedstawiony na zdjęciu przyrząd to tester kabli sieciowych. Urządzenie to jest kluczowe w diagnostyce i utrzymaniu infrastruktury sieciowej. Tester kabli pozwala na sprawdzenie ciągłości połączeń, identyfikację błędów w okablowaniu oraz testowanie zgodności z normami, takimi jak TIA/EIA-568. Dzięki niemu można szybko zlokalizować problemy, takie jak zwarcia, przerwy czy odwrotne połączenia, co jest niezbędne w utrzymaniu stabilności i wydajności sieci komputerowych. W praktyce, tester kabli jest używany przez techników IT podczas instalacji nowych sieci, a także w trakcie konserwacji istniejących systemów, co zapewnia ich niezawodność. Oprócz tego, urządzenie to przyczynia się do szybszego rozwiązywania problemów, co zmniejsza przestoje i zwiększa efektywność operacyjną.

Pytanie 9

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 10

Jak można ustalić miejsce, w którym doszło do uszkodzenia kabla przesyłającego sygnał telewizji kablowej do odbiorcy?

A. zmierzyć poziom sygnału w kanale zwrotnym
B. zmierzyć impedancję falową kabla
C. zbadać parametry kabla za pomocą reflektometru
D. analizować parametry sygnału przy użyciu analizatora widma
Reflektometria jest kluczowym narzędziem do lokalizacji przerwań w kablach sygnałowych, w tym kabli telewizji kablowej. Reflektometr mierzy czas, w jakim sygnał wraca do urządzenia po odbiciu od przeszkód lub przerw w kablu. Dzięki temu technik może zidentyfikować miejsce przerwania, analizując charakterystykę odbicia sygnału w funkcji odległości. W praktyce, stosując reflektometr, technik może szybko zlokalizować problem, co pozwala na szybszą interwencję i minimalizację przestojów w dostępie do usług telewizyjnych. Jest to standard w branży, ponieważ umożliwia dokładną diagnozę i zmniejsza koszty związane z nieefektywną naprawą. Ponadto, reflektometria pozwala na ocenę innych parametrów kabla, takich jak straty sygnału czy impedancja, co daje pełny obraz stanu infrastruktury. Właściwe stosowanie tej metody jest zgodne ze standardami branżowymi, które podkreślają znaczenie precyzyjnych pomiarów w utrzymaniu jakości usług telewizyjnych.

Pytanie 11

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 12

Podłączenie telewizyjnej anteny lub odbiornika TV o wejściu symetrycznym przy użyciu przewodu współosiowego wymaga stosowania

A. symetryzatorów
B. falowodów
C. linii rezonansowych równoległych
D. linii nierezonansowych typu delta
Odpowiedź 'symetryzatorów' jest poprawna, ponieważ symetryzator jest urządzeniem stosowanym do przekształcania sygnałów z linii asymetrycznych, takich jak przewody współosiowe, na sygnały symetryczne. W kontekście połączeń antenowych, symetryzatory są kluczowe do efektywnego przesyłania sygnału do odbiornika telewizyjnego, który często ma wejście symetryczne. Użycie symetryzatora pozwala na eliminację problemów związanych z niedopasowaniem impedancji, co może prowadzić do strat sygnału lub odbić. Przykładem zastosowania symetryzatorów są instalacje antenowe, gdzie stosuje się je do podłączenia anteny o wyjściu symetrycznym do odbiornika telewizyjnego. Standardy branżowe, takie jak te dotyczące instalacji antenowych, podkreślają znaczenie stosowania symetryzatorów w celu uzyskania optymalnej jakości odbioru, co jest szczególnie istotne w przypadku sygnałów telewizyjnych wymagających wysokiej integralności i niskiego poziomu zakłóceń. Warto również wspomnieć, że symetryzatory mogą występować w różnych formach, w tym jako transformatorów, i są projektowane tak, aby spełniały konkretne wymagania dotyczące pasma przenoszenia i tłumienia sygnału.

Pytanie 13

Jakie zjawisko napięć związane jest z pojęciem rezonansu?

A. obwodzie równoległym R, L, C
B. obwodzie szeregowym R, L, C
C. stabilizatorze napięcia o działaniu impulsowym
D. stabilizatorze napięcia o działaniu ciągłym
Rezonans napięć występuje w obwodach szeregowych R, L, C, gdzie R to opornik, L to induktor, a C to kondensator. Gdy częstotliwość sygnału zmiennego osiąga wartość rezonansową, impedancja obwodu osiąga minimum, co prowadzi do maksymalizacji prądu. W takim stanie napięcia na elementach obwodu są ze sobą ściśle powiązane, co może prowadzić do zjawiska wzmacniania sygnału. Przykładem praktycznym zastosowania tego zjawiska jest obwód rezonansowy stosowany w radioodbiornikach, gdzie umożliwia selekcję określonej częstotliwości sygnału radiowego, eliminując inne zakłócenia. Zrozumienie tego zjawiska jest kluczowe w projektowaniu filtrów, oscylatorów oraz w systemach komunikacyjnych. W praktyce inżynierskiej, wiedza o rezonansie jest niezbędna do efektywnego projektowania układów elektronicznych, aby zapewnić ich stabilność i efektywność działania.

Pytanie 14

Przyrząd, który pozwala na pomiar wartości międzyszczytowej szumów na wyjściu wzmacniacza, to

A. woltomierz cyfrowy
B. oscyloskop jednokanałowy
C. miernik zniekształceń
D. analyzer widma
Woltomierz cyfrowy, mimo że jest narzędziem użytecznym w pomiarach napięcia, nie jest odpowiedni do analizy międzyszczytowych wartości szumów na wyjściu wzmacniacza. Woltomierz mierzy średnią wartość napięcia AC, co nie dostarcza wystarczających informacji na temat charakterystyki sygnału szumowego. W praktyce, na przykład w aplikacjach audio, bardzo ważne jest śledzenie nie tylko wartości RMS, ale także kształtu przebiegu, co woltomierz nie jest w stanie zaoferować. Miernik zniekształceń również ma swoje ograniczenia, ponieważ jest zaprojektowany głównie do oceny jakości sygnału, a nie do bezpośredniego pomiaru szumów. Chociaż może dostarczać informacji o zniekształceniach, nie jest w stanie precyzyjnie zidentyfikować wartości szumów na wyjściu wzmacniacza. Przyrząd taki, jak analizator widma, może być przydatny do oceny szumów, jednak jego zastosowanie wymaga bardziej zaawansowanej analizy częstotliwościowej, co nie jest konieczne w przypadku prostego pomiaru międzyszczytowego. W rzeczywistości, wiele osób popełnia błąd, myląc różne funkcje przyrządów pomiarowych, co prowadzi do niewłaściwych wyników i wniosków. Aby skutecznie mierzyć szumy, niezbędne jest korzystanie z oscyloskopu, który dostarcza kompletnych informacji o zachowaniu sygnału.

Pytanie 15

Aby prawidłowo uziemić system antenowy, nie powinno się używać

A. gołych przewodów miedzianych
B. przewodu zerowego z sieci zasilającej
C. ciągłych rur z instalacji wodociągowej
D. ciągłych rur z instalacji grzewczej
Wykorzystanie przewodów miedzianych gołych, ciągłych rur instalacji grzewczej czy ciągłych rur instalacji wodociągowej do uziemienia systemu antenowego może wydawać się rozsądne, jednak w praktyce niesie ze sobą wiele ryzyk i niebezpieczeństw. Przewody miedziane gołe, choć mają doskonałą przewodność, nie są odpowiednie do uziemienia ze względu na ich narażenie na korozję oraz możliwość wystąpienia przerwy w ciągłości przewodzenia prądu. Korozja może znacząco zmniejszyć efektywność uziemienia, co w konsekwencji prowadzi do niewystarczającej ochrony przed przepięciami. Z kolei ciągłe rury instalacji grzewczej oraz wodociągowej mogą być podłączone do systemów zasilających, które nie są właściwie uziemione lub mogą być pod napięciem, co stwarza ryzyko porażenia prądem. W normach instalacyjnych, takich jak PN-EN 61140, klarownie wskazuje się, że uziemienie powinno być realizowane przy użyciu dedykowanych systemów uziemiających, które są projektowane z myślą o zapewnieniu maksymalnego bezpieczeństwa i efektywności. Typowym błędem myślowym jest założenie, że jakiekolwiek przewodniki metalowe mogą być stosowane do uziemienia – takie podejście pomija kluczowe zasady bezpieczeństwa i może prowadzić do tragicznych konsekwencji.

Pytanie 16

Multiswitche umożliwiają

A. wybór programów telewizyjnych do odbioru.
B. zmianę kąta azymutu anteny.
C. stworzenie systemu antenowego z dowolną ilością gniazd do odbioru.
D. sterowanie wszystkimi torami satelitarnymi.
Wybór innych odpowiedzi prowadzi do nieporozumień związanych z funkcjonalnością multiswitchy oraz ich rolą w systemach telewizyjnych. Na przykład regulacja wszystkich torów satelitarnych nie jest możliwa za pomocą multiswitchy, ponieważ te urządzenia służą głównie do dystrybucji sygnału, a nie jego regulacji. Regulacja odbywa się na poziomie LNB (Low Noise Block), które jest odpowiedzialne za odbiór sygnału z satelity. To właśnie LNB decyduje o tym, które częstotliwości są odbierane i przesyłane do multiswitcha. Ustawienie kąta azymutu anteny również nie jest funkcją multiswitcha. Proces ten należy wykonać na etapie instalacji anteny, aby zapewnić optymalny odbiór sygnału. Właściwe ustawienie azymutu oraz elewacji jest kluczowe dla uzyskania pełnego potencjału systemu satelitarnego. Wreszcie, wybór odbieranych programów telewizyjnych nie jest funkcją multiswitcha, lecz dekodera, który interpretuje sygnał i umożliwia dostęp do określonych kanałów. Błędne przekonania dotyczące tych funkcji mogą prowadzić do nieefektywnego projektowania systemów, które nie spełniają oczekiwań użytkowników.

Pytanie 17

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 18

Aby podłączyć monitor do jednostki centralnej, należy użyć interfejsu

A. SATA
B. IDE
C. USB
D. D-SUB 15
Interfejs D-SUB 15, znany również jako VGA (Video Graphics Array), jest standardowym złączem stosowanym do przesyłania sygnału wideo z jednostki centralnej do monitora. To złącze umożliwia przesyłanie analogowego sygnału wideo, co czyni je jednym z najczęściej stosowanych rozwiązań w przypadku starszych monitorów oraz projektorów. D-SUB 15 jest zaprojektowany do obsługi rozdzielczości do 640x480 pikseli przy 60 Hz, a w przypadku nowszych technologii może obsługiwać wyższe rozdzielczości, chociaż z ograniczeniami wynikającymi z analogowej natury sygnału. W praktyce, aby prawidłowo podłączyć monitor z interfejsem D-SUB 15, użytkownik powinien upewnić się, że zarówno jednostka centralna, jak i monitor mają odpowiednie złącza. D-SUB 15 jest powszechnie stosowany w różnych zastosowaniach, takich jak prezentacje multimedialne czy w biurach, gdzie starsze technologie nadal są w użyciu.

Pytanie 19

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 20

Termin "licznik mikrorozkazów" odnosi się do

A. pętli PLL
B. systemu mikroprocesorowego
C. oscyloskopu cyfrowego
D. manipulatora
Licznik mikrorozkazów to kluczowy element systemu mikroprocesorowego, który odpowiada za synchronizację i kontrolę wykonywania instrukcji. Działa na zasadzie zliczania mikrorozkazów, które są najmniejszymi jednostkami operacyjnymi w architekturze mikroprocesorów. Każdy mikrorozkaz zazwyczaj odpowiada za pojedynczą operację, jak na przykład przeniesienie danych, wykonanie obliczeń czy zarządzanie pamięcią. W praktyce, licznik mikrorozkazów jest wykorzystywany do zarządzania sekwencją działań wewnętrznych mikroprocesora, co jest kluczowe dla wydajności i poprawności operacji. Zastosowanie liczników mikrorozkazów jest zgodne z najlepszymi praktykami inżynieryjnymi, które zakładają efektywne zarządzanie cyklami pracy mikroprocesora, co przekłada się na optymalizację wydajności systemu. W nowoczesnych urządzeniach elektronicznych, takich jak komputery, smartfony czy systemy wbudowane, licznik mikrorozkazów odgrywa fundamentalną rolę w zapewnieniu prawidłowego działania aplikacji i systemów operacyjnych, co czyni go jednym z kluczowych elementów architektury komputerowej.

Pytanie 21

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 22

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 23

Jeśli złącze BE tranzystora bipolarnego jest spolaryzowane w kierunku przewodzenia, a złącze CB w kierunku zaporowym, to w jakim stanie pracuje tranzystor?

A. zatkania (odcięcia)
B. aktywnym inwersyjnym
C. aktywnym
D. nasycenia
Odpowiedzi, które wskazują na zatkanie, nasycenie lub aktywny inwersyjny, opierają się na błędnych zrozumieniach działania tranzystora bipolarnego. W stanie zatkania, zarówno złącze BE, jak i CB są spolaryzowane zaporowo, co oznacza, że nie ma przepływu prądu, a tranzystor nie przewodzi. To podejście jest sprzeczne z rzeczywistością przedstawioną w pytaniu, gdzie złącze BE jest w stanie przewodzenia. Z kolei stan nasycenia występuje, gdy obydwa złącza są spolaryzowane w kierunku przewodzenia, co prowadzi do maksymalnego przepływu prądu kolektora. To również nie odpowiada sytuacji opisanej w pytaniu. Aktywny inwersyjny tryb pracy odnosi się do sytuacji, w której tranzystor jest używany w konfiguracji inwersyjnej, co nie ma miejsca w przypadku podanych warunków. Typowe błędy myślowe w tym kontekście to mylenie polaryzacji złączy oraz niezrozumienie, że zależność między prądem bazy a prądem kolektora jest kluczowym aspektem pracy tranzystora w trybie aktywnym. Aby poprawnie zrozumieć działanie tranzystora, kluczowe jest przyswojenie zasad jego polaryzacji oraz roli złącza BE w procesie wzmacniania sygnału.

Pytanie 24

Klient zgłasza problem z zamontowanym systemem alarmowym, który składa się z 4 czujników PIR umieszczonych na wysokości 2,5 m, centrali alarmowej zainstalowanej na poddaszu oraz syreny zewnętrznej umieszczonej na wysokości 4 m. Jakie narzędzia są niezbędne do identyfikacji usterki systemu alarmowego w obiekcie?

A. Drabina, multimetr, zestaw wkrętaków, zestaw szczypiec
B. Wiertarka, lutownica, zestaw wkrętaków, zestaw szczypiec, szukacz par przewodów
C. Drabina, multimetr, wiertarka, ściągacz izolacji
D. Multimetr, wiertarka, lutownica, zestaw wkrętaków, szczypce boczne
Zestawy narzędzi, które wymieniłeś, zawierają elementy, które raczej nie są potrzebne do diagnostyki w systemie alarmowym. Na przykład wiertarka – niby jest przydatna, ale głównie w czasie instalacji, a nie podczas diagnozowania usterek. Użycie wiertarki w tej sytuacji może prowadzić do niepotrzebnych uszkodzeń i błędnej manipulacji przy zainstalowanych elementach. Lutownica też nie jest konieczna, bo najczęściej problemy z alarmami dotyczą połączeń, a nie uszkodzonych elementów. Choć zestaw wkrętaków i szczypiec czasami się pojawia w odpowiedziach, to stosowanie ich razem z niewłaściwymi narzędziami, jak wiertarka czy lutownica, nie daje pełnego zestawu do skutecznej diagnostyki. Ważne, żeby rozumieć, jakie narzędzia są kluczowe w danej sytuacji, bo błędne decyzje mogą wpłynąć na efektywność i bezpieczeństwo pracy. Narzędzia muszą być dostosowane do konkretnego problemu i zgadzać się z najlepszymi praktykami w diagnostyce systemów alarmowych.

Pytanie 25

Wyłącznik, który chroni instalację elektryczną przed skutkami przeciążenia, to

A. czasowy
B. nadprądowy
C. różnicowoprądowy
D. podnapięciowy
Różnicowoprądowy wyłącznik jest elementem ochrony przed porażeniem elektrycznym, a nie przeciążeniem. Jego głównym zadaniem jest wykrywanie różnic w prądzie płynącym w przewodach fazowym i neutralnym, co może wskazywać na upływ prądu do ziemi. Zastosowanie tego typu wyłącznika jest kluczowe w miejscach, gdzie istnieje ryzyko kontaktu z wodą lub w przypadku urządzeń przenośnych, ale nie chroni on przed skutkami przeciążenia w instalacji elektrycznej, co może prowadzić do uszkodzenia przewodów. Wyłącznik czasowy nie ma zastosowania w kontekście przeciążenia, ponieważ jego funkcja polega na automatycznym włączaniu lub wyłączaniu obwodów po określonym czasie, co nie wpływa na ochronę przed prądem, który przekracza określoną wartość. Podobnie, wyłącznik podnapięciowy jest używany do ochrony przed spadkami napięcia, a nie przed przeciążeniem. Typowym błędem jest mylenie tych różnych rodzajów wyłączników, co może prowadzić do niewłaściwego doboru zabezpieczeń w instalacjach elektrycznych. Ważne jest zrozumienie, że każdy z tych elementów pełni inną funkcję, a ich zastosowanie wymaga znajomości specyfiki, norm i wymagań dotyczących zabezpieczeń elektrycznych.

Pytanie 26

W dziedzinie mikroprocesorowej termin stos odnosi się do

A. sekwencji ostatnio realizowanych rozkazów przez mikroprocesor
B. licznika wewnętrznych impulsów zegarowych mikroprocesora
C. słowa sterującego, na przykład układem czasowo-licznikowym
D. obszaru pamięci użytkowej mikroprocesora, który jest używany na przykład podczas obsługi przerwania
Wybór innych odpowiedzi może wynikać z nieporozumienia dotyczącego funkcji i zastosowania różnych komponentów systemu mikroprocesorowego. Pierwsza z propozycji mówiąca o 'słowie sterującym' sugeruje, że stos jest powiązany z zarządzaniem sygnałami w mikroprocesorze, co jest błędne. Słowo sterujące to fragment instrukcji, który nie odnosi się do obszaru pamięci, a raczej do operacji jakie mikroprocesor ma wykonać. Odwołując się do drugiej odpowiedzi, lista ostatnio wykonanych rozkazów mikroprocesora jest bardziej związana z rejestrem stanów lub buforami, a nie ze stosami. Stos nie przechowuje rozkazów, ale dane tymczasowe i adresy powrotu. Ponadto, licznik wewnętrznych impulsów zegarowych mikroprocesora to element odpowiedzialny za synchronizację operacji, a nie za przechowywanie danych, co również może prowadzić do mylnych wniosków. Kluczowe jest zrozumienie, że stos pełni zupełnie inną rolę w architekturze komputerowej. Właściwe zarządzanie pamięcią i zrozumienie struktur danych to podstawowe umiejętności w programowaniu niskopoziomowym. Ignorowanie tych aspektów może prowadzić do nieefektywnego kodu oraz problemów z wydajnością i stabilnością oprogramowania.

Pytanie 27

Podczas naprawy telewizora technik serwisowy doznał porażenia prądem. Po jego uwolnieniu z kontaktu stwierdzono, że jest nieprzytomny, oddycha i ma prawidłową pracę serca. W jaki sposób powinno się ułożyć poszkodowanego?

A. W pozycji bocznej ustalonej
B. W pozycji siedzącej z podparciem głowy
C. Na brzuchu z głową odchyloną na bok
D. Na plecach z uniesionymi nogami
Wybór pozycji bocznej ustalonej dla poszkodowanego jest kluczowy w sytuacji, gdy osoba jest nieprzytomna, ale oddycha, a praca serca jest w normie. Ta pozycja pozwala na zapewnienie drożności dróg oddechowych, co jest fundamentalne w sytuacjach medycznych. Ułożenie na boku ogranicza ryzyko zachłyśnięcia się, co może nastąpić, jeśli pacjent w tej sytuacji wymiotuje. Dodatkowo, w pozycji bocznej ustalonej, osoba jest mniej narażona na urazy w przypadku utraty równowagi czy dodatkowych kontuzji. Przy zastosowaniu tej pozycji ważne jest, aby głowa poszkodowanego była ustawiona w sposób, który umożliwia swobodny przepływ powietrza, a nogi były lekko zgięte w kolanach, co stabilizuje jego ciało. Tego typu postępowanie jest zgodne z wytycznymi Europejskiej Rady Resuscytacji oraz innymi uznawanymi standardami w pierwszej pomocy, co podkreśla znaczenie edukacji w zakresie reagowania na sytuacje nagłe.

Pytanie 28

Jakie rodzaje sił stanowią zagrożenie dla mechanicznych połączeń światłowodowych?

A. Poprzeczne
B. Skrośne
C. Ukośne
D. Wzdłużne
Siły skrośne, ukośne oraz poprzeczne wpływają na spaw w mniejszym stopniu, co często prowadzi do błędnych wniosków w kontekście ich znaczenia dla światłowodowych spawów mechanicznych. Siły skrośne, działające równolegle do powierzchni spawu, mogą powodować uszkodzenia, ale w praktyce rzadziej prowadzą do poważnych problemów z integralnością optyczną w porównaniu do sił wzdłużnych. Często zdarza się, że osoby zajmujące się instalacją światłowodów mylnie interpretują siły skrośne jako główne zagrożenie, nie dostrzegając realnych zagrożeń związanych z obciążeniami wzdłużnymi. Z kolei siły ukośne, które działają pod kątem do osi włókna, mogą być mylnie uważane za istotne, jednak ich wpływ na spawy jest zazwyczaj marginalny w porównaniu do sił wzdłużnych. W przypadku sił poprzecznych, działających prostopadle do osi włókna, również nie stanowią one głównego zagrożenia, gdyż ich wpływ na spaw jest ograniczony, a w wielu przypadkach można je zminimalizować poprzez odpowiednie ułożenie kabli i zabezpieczenia. Niezrozumienie tych różnic prowadzi do nieodpowiedniego projektowania i instalacji, co może skutkować spadkiem jakości sygnału oraz zwiększeniem ryzyka awarii.

Pytanie 29

Dwie czujki radiowe zainstalowane w tym samym pomieszczeniu zakłócają nawzajem swoje działanie. Przyczyną tego jest

A. to, że instalacja ma tylko jeden sygnalizator
B. ich umiejscowienie na suficie
C. ich natychmiastowe działanie
D. to, że działają na tej samej częstotliwości
Czujki radiowe, które pracują na tej samej częstotliwości, mogą się nawzajem zakłócać, bo sygnały się mieszają. Z mojego doświadczenia wynika, że jak dwie czujki nadają na tej samej częstotliwości, to ich sygnały mogą się nałożyć, co prowadzi do błędnych wyników. Weźmy na przykład systemy alarmowe – zazwyczaj mamy tam kilka czujek w jednym miejscu. Żeby uniknąć problemów z zakłóceniami, projektanci systemów często używają różnych częstotliwości dla czujek albo stosują różne techniki kodowania sygnałów, dzięki czemu urządzenia mogą działać równolegle. To wszystko jest zgodne z normami, jak EN 50131, które mówią o wymaganiach dla systemów alarmowych, w tym o zakłóceniach radiowych.

Pytanie 30

Które urządzenie pozwoli szybko sprawdzić poprawność połączeń w kablu internetowym zakończonym wtykami RJ-45?

Ilustracja do pytania
A. C.
B. D.
C. B.
D. A.
Urządzenie oznaczone literą D to tester kabli sieciowych, które jest kluczowym narzędziem w diagnostyce oraz utrzymaniu sieci komputerowych. Testery kabli pozwalają na szybkie i dokładne sprawdzenie poprawności połączeń w kablach zakończonych wtykami RJ-45, co jest niezwykle istotne w kontekście zapewnienia stabilności oraz wydajności sieci. Użycie testera polega na podłączeniu obu końców kabla do urządzenia; tester następnie przeprowadza sekwencję testów, weryfikując, czy wszystkie żyły są poprawnie połączone, co pozwala szybko zidentyfikować ewentualne błędy, takie jak zwarcia, otwarte obwody czy błędne kolejności żył. Stanowi to nieocenione wsparcie w sytuacjach, gdy napotykamy problemy z połączeniem, a także w procesie instalacji nowych kabli, gdzie przestrzeganie standardów TIA/EIA-568A/B jest kluczowe dla zapewnienia wysokiej jakości transmisji sygnałów. Korzystanie z tego narzędzia to nie tylko najlepsza praktyka, ale również oszczędność czasu i kosztów w dłuższej perspektywie.

Pytanie 31

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 32

Antena paraboliczna jest używana do odbioru sygnałów

A. radiowych w zakresie fal długich i średnich
B. telewizji naziemnej
C. telewizji satelitarnej
D. radiowych w paśmie UKF
Odpowiedzi sugerujące, że antena paraboliczna służy do odbioru sygnałów telewizji naziemnej lub radiowych w paśmie UKF oraz fal długich i średnich są błędne z kilku powodów. Telewizja naziemna wykorzystuje inny typ anten, zazwyczaj anteny dipolowe lub szerokopasmowe, które są zaprojektowane do odbioru sygnałów nadawanych z wież telewizyjnych w bliskiej odległości. Anteny te nie są w stanie skoncentrować sygnału w taki sposób, jak antena paraboliczna, co ogranicza ich zasięg i jakość odbioru. Użycie anten parabolicznych do odbioru fal radiowych w zakresach UKF, długich czy średnich nie jest również uzasadnione. Fale te mają zupełnie inne właściwości fizyczne, a ich odbiór wymaga innych typów anten, które są w stanie efektywnie reagować na odpowiednią długość fali. Przykładowo, fale długie i średnie są odbierane poprzez anteny ferrytowe lub teleskopowe, które mają zdolność do odbioru sygnałów o znacznie większej długości fali. Typowym błędem myślowym jest zakładanie, że jedna antena może spełniać wszystkie funkcje odbiorcze, co prowadzi do nieporozumień dotyczących technologii radiowej i telewizyjnej. Każdy rodzaj sygnału wymaga dostosowanego rozwiązania antenowego, co jest kluczowe dla zapewnienia jakości i stabilności odbioru.

Pytanie 33

Jakiego sprzętu należy użyć podczas wymiany uszkodzonej diody w elektrozaczepie drzwi wejściowych?

A. Stacji lutowniczej
B. Stacji na gorące powietrze
C. Lutownicy oporowej
D. Lutownicy transformatorowej
Lutownica transformatorowa to naprawdę świetne narzędzie, jeśli chodzi o wymianę uszkodzonych diod w elektrozaczepach. Daje stabilne i kontrolowane źródło ciepła, co jest kluczowe dla elektroniki. Wiesz, że przegrzanie diody może ją trwale uszkodzić? Dlatego te lutownice są super, bo mają dużą moc i szybko się nagrzewają, więc można precyzyjnie lutować w krótkim czasie. Ich konstrukcja pozwala na lepszą kontrolę temperatury, co jest zgodne z tym, jak powinno się pracować w elektronice. Na przykład, wymieniając diody w systemach zabezpieczeń jak elektrozaczepy, warto mieć pewność, że łączone elementy będą trwałe i bezpieczne w użytkowaniu. W praktyce widziałem, że profesjonaliści w warsztatach preferują lutownice transformatorowe, bo precyzja jest tam mega ważna. Używając takiego narzędzia, ryzyko błędów maleje, a praca staje się bardziej efektywna.

Pytanie 34

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 35

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 36

Zastosowanie uszkodzonych bezpieczników, zastępując je bezpiecznikami o większej wartości prądu znamionowego, może prowadzić do

A. większego zużycia mocy
B. większego zużycia energii
C. wzrostu napięcia źródła zasilania
D. przeciążenia oraz zniszczenia instalacji
Wiesz, wymiana uszkodzonych bezpieczników na te o wyższej wartości prądu może przynieść sporo problemów w instalacji elektrycznej. Bezpieczniki mają swoją rolę, chronią obwody przed przeciążeniem i zwarciami. Ich wartość znamionowa mówi, ile maksymalnie prądu można puścić przez obwód bez ryzyka uszkodzenia. Jak włożysz bezpiecznik o wyższej wartości, to obwód zacznie tolerować większy prąd, co może spalić przewody lub zepsuć urządzenia, które nie są na to gotowe. Przykład? Wyobraź sobie, że masz sprzęt, który jest stworzony do pracy z określonym prądem, a potem zmieniasz bezpiecznik. Dajesz mu więcej prądu i nagle urządzenie się przegrzewa, a w rezultacie kończy w śmietniku. W branży są normy, jak PN-IEC 60364, które podkreślają, jak ważne jest dobranie odpowiednich zabezpieczeń, żeby wszystko działało sprawnie i bezpiecznie.

Pytanie 37

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 38

Jakiego typu konwerter powinien być zastosowany do niezależnego bezpośredniego połączenia czterech tunerów satelitarnych?

A. Quatro
B. Quad
C. Twin
D. Monoblock
Odpowiedź Quad jest prawidłowa, ponieważ konwerter Quad pozwala na podłączenie czterech tunerów satelitarnych do jednego talerza antenowego. Posiada on cztery wyjścia, co umożliwia niezależne odbieranie sygnałów przez każdy z tunerów. Dzięki temu możliwe jest jednoczesne oglądanie różnych programów telewizyjnych lub nagrywanie ich, co jest istotne w przypadku gospodarstw domowych z większą liczbą użytkowników. Stosowanie konwertera Quad jest szczególnie zalecane w przypadku instalacji, gdzie użytkownicy chcą korzystać z różnych tunerów, co zwiększa funkcjonalność systemu satelitarnego. Zgodnie z najlepszymi praktykami branżowymi, takie rozwiązanie powinno być stosowane w instalacjach, gdzie planowane jest wykorzystanie większej liczby urządzeń jednocześnie, co zapewnia wygodę i elastyczność w dostępie do szerokiej gamy programów. Ważne jest również, aby konwerter był podłączony do odpowiedniego uchwytu antenowego, aby zapewnić stabilny odbiór sygnału. Warto również zwrócić uwagę na kompatybilność konwertera z posiadanymi tunerami, co ma kluczowe znaczenie dla prawidłowego działania całego systemu.

Pytanie 39

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 40

W zasilaczu buforowym, który zasila system alarmowy, konieczne jest pomiar napięć w trzech lokalizacjach:
1) na wejściu sieciowym transformatora,
2) na wyjściu transformatora 18 V,
3) na terminalach akumulatora 12 V.

Jakie zakresy pomiarowe w multimetrze powinny być ustawione?

A. 1) 750 V DC, 2) 200 V AC, 3) 20 V DC
B. 1) 750 V AC, 2) 20 V AC, 3) 20 V AC
C. 1) 200 V AC, 2) 200 V AC, 3) 20 V DC
D. 1) 750 V AC, 2) 20 V AC, 3) 20 V DC
Wybór odpowiednich zakresów pomiarowych w mierniku uniwersalnym jest kluczowy dla uzyskania dokładnych pomiarów oraz zapewnienia bezpieczeństwa podczas pracy z instalacjami elektrycznymi. W przypadku zasilacza buforowego zasilającego instalację alarmową, istotne jest, aby na wejściu sieciowym transformatora ustawić zakres 750 V AC, co odpowiada typowemu napięciu sieci energetycznej. Pomiar na wyjściu transformatora, gdzie napięcie wynosi nominalnie 18 V, powinien być przeprowadzony w zakresie 20 V AC, co jest zgodne z parametrami transformatora niskonapięciowego. W przypadku pomiaru napięcia na zaciskach akumulatora, które pracuje w systemie 12 V, należy ustawić zakres 20 V DC, co jest standardowym sposobem pomiaru napięć stałych w akumulatorach. Użycie właściwych zakresów zapewnia nie tylko dokładność pomiarów, ale także bezpieczeństwo użytkownika oraz sprzętu, zgodnie z zasadami BHP oraz dobrą praktyką inżynierską.