Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik informatyk
  • Kwalifikacja: INF.02 - Administracja i eksploatacja systemów komputerowych, urządzeń peryferyjnych i lokalnych sieci komputerowych
  • Data rozpoczęcia: 19 grudnia 2025 13:31
  • Data zakończenia: 19 grudnia 2025 13:53

Egzamin niezdany

Wynik: 18/40 punktów (45,0%)

Wymagane minimum: 20 punktów (50%)

Udostępnij swój wynik
Szczegółowe wyniki:
Pytanie 1

Co symbolizuje graficzny znak przedstawiony na ilustracji?

Ilustracja do pytania
A. zamknięty kanał kablowy
B. gniazd telekomunikacyjne
C. główny punkt dystrybucyjny
D. otwarty kanał kablowy
Symbole używane w dokumentacji technicznej są kluczowe dla zrozumienia planów i schematów instalacji teletechnicznych. Otwarty kanał kablowy, mimo że jest często używany do prowadzenia przewodów, zwykle oznaczany jest w inny sposób, bardziej przypominający prostokątną ramkę, co pozwala na łatwe wyróżnienie na planach. Zamknięte kanały kablowe, takie jak korytka czy rynny, też mają różne oznaczenia w zależności od ich specyfiki i zastosowania, co jest regulowane przez normy takie jak EN 50085. Z kolei główny punkt dystrybucyjny, będący centralnym elementem sieci telekomunikacyjnej, gdzie zbiegają się główne linie transmisyjne, zwykle oznaczany jest bardziej złożonym symbolem, często z dodatkowymi opisami technicznymi. Błędne zrozumienie symboli może prowadzić do nieprawidłowej instalacji lub konfiguracji systemów telekomunikacyjnych, co z kolei skutkuje problemami z łącznością lub niespełnieniem norm bezpieczeństwa i funkcjonalności. Dlatego tak istotne jest dokładne zaznajomienie się ze standardami oznaczeń, co pozwala na efektywne planowanie i realizację projektów zgodnie z wymaganiami branżowymi. Znajomość różnic w symbolach i ich zastosowaniach jest niezbędna dla specjalistów zajmujących się projektowaniem i instalacją systemów telekomunikacyjnych, aby uniknąć typowych błędów myślowych i nieporozumień w interpretacji dokumentacji technicznej. Prawidłowa interpretacja symboli jest kluczowa dla zapewnienia, że wszystkie elementy infrastruktury są zainstalowane zgodnie z planem i działają optymalnie.

Pytanie 2

Podczas próby zapisania danych na karcie SD wyświetla się komunikat „usuń ochronę przed zapisem lub skorzystaj z innego nośnika”. Najczęstszą przyczyną takiego komunikatu jest

A. Zbyt duży rozmiar pliku, który ma być zapisany
B. Posiadanie uprawnień 'tylko do odczytu' dla plików na karcie SD
C. Ustawienie mechanicznego przełącznika blokady zapisu na karcie w pozycji ON
D. Brak wolnego miejsca na karcie pamięci
Jak coś poszło nie tak z innymi odpowiedziami, to warto zrozumieć, czemu te problemy nie są przyczyną komunikatu o ochronie przed zapisem. Brak miejsca na karcie pamięci może powodować problemy z zapisem, ale nie daje komunikatu o ochronie przed zapisem. Zazwyczaj, jak brakuje miejsca, system operacyjny informuje w inny sposób, mówiąc, że nie można dodać plików przez ich niedobór. Jeśli masz uprawnienia tylko do odczytu do pliku na karcie SD, to dotyczy głównie plików, a nie samej karty. Nawet jak karta nie jest zablokowana, można zapisywać nowe pliki, mimo że niektóre mogą być tylko do odczytu. I jeszcze, za duży rozmiar pliku, który próbujesz zapisać, też nie jest powodem tego błędu. Systemy plików, takie jak FAT32, mają swoje limity, ale wtedy zazwyczaj dostajesz inny komunikat, który mówi o przekroczeniu maksymalnego rozmiaru pliku. Jak to zrozumiesz, unikniesz mylnych wniosków i lepiej zarządzisz danymi na swoich kartach SD.

Pytanie 3

Jakie oprogramowanie do wirtualizacji jest dostępne jako rola w systemie Windows Server 2012?

A. Hyper-V
B. Virtual PC
C. VMware
D. Virtual Box
Hyper-V to natywne oprogramowanie do wirtualizacji, które jest dostępne jako rola w systemie Windows Server 2012. Umożliwia tworzenie, zarządzanie i uruchamianie wielu maszyn wirtualnych na jednym fizycznym serwerze. Hyper-V wspiera różne systemy operacyjne gościa, zarówno Windows, jak i Linux, co czyni go elastycznym rozwiązaniem w środowiskach serwerowych. Przykładowe zastosowanie Hyper-V obejmuje konsolidację serwerów, co pozwala na zmniejszenie kosztów sprzętu i energii, a także na zwiększenie efektywności wykorzystania zasobów. Hyper-V oferuje również funkcje takie jak migracja na żywo, które pozwalają na przenoszenie maszyn wirtualnych między hostami bez przerywania ich pracy. Warto także zwrócić uwagę na zgodność Hyper-V z wieloma standardami branżowymi, co zapewnia bezpieczeństwo i niezawodność. Użycie Hyper-V w środowisku produkcyjnym staje się coraz bardziej popularne, a jego integracja z innymi rozwiązaniami Microsoft, takimi jak System Center, umożliwia efektywne zarządzanie infrastrukturą IT.

Pytanie 4

Jaką maksymalną ilość GB pamięci RAM może obsłużyć 32-bitowa edycja systemu Windows?

A. 4 GB
B. 12 GB
C. 2 GB
D. 8 GB
Nie wszystkie dostępne odpowiedzi są poprawne, ponieważ wynikają z niedokładnego zrozumienia konstrukcji systemów operacyjnych i architektur komputerowych. Na przykład, odpowiedzi wskazujące na 2 GB lub 8 GB pamięci RAM są mylne, ponieważ ignorują kluczowe ograniczenia związane z architekturą 32-bitową. 32-bitowe procesory mogą adresować maksymalnie 4 GB pamięci, i chociaż w przypadku niektórych systemów operacyjnych ilość dostępnej pamięci może być ograniczona przez różne czynniki, fizycznie nie można przekroczyć 4 GB. Ponadto, niektóre systemy operacyjne mogą mieć swoje własne ograniczenia, ale nie zmienia to fundamentalnego ograniczenia architektury 32-bitowej. Użytkownicy często mylą te liczby z rzeczywistym wykorzystaniem pamięci dzięki różnym technologiom, takim jak PAE (Physical Address Extension), które pozwala na wykorzystanie większej ilości pamięci, ale tylko w specyficznych warunkach i nie w standardowy sposób. Z tego powodu, aby uniknąć błędów w przyszłości, ważne jest zrozumienie, jak różne architektury wpływają na dostęp do pamięci oraz jakie są realne ograniczenia w kontekście konkretnego systemu operacyjnego.

Pytanie 5

W jakiej warstwie modelu ISO/OSI wykorzystywane są adresy logiczne?

A. Warstwie transportowej
B. Warstwie sieciowej
C. Warstwie łącza danych
D. Warstwie fizycznej
Adresy logiczne są stosowane w warstwie sieciowej modelu ISO/OSI, która odpowiada za trasowanie pakietów danych pomiędzy różnymi sieciami. W tej warstwie wykorzystuje się protokoły, takie jak IP (Internet Protocol), do identyfikacji urządzeń w sieci oraz ustalania ścieżki, jaką mają przebyć dane. Adresy logiczne, w przeciwieństwie do adresów fizycznych (np. adresów MAC, które są używane w warstwie łącza danych), są niezależne od sprzętu i pozwalają na elastyczne zarządzanie ruchem sieciowym. Przykładem zastosowania adresów logicznych jest sytuacja, gdy pakiet danych wysyłany z jednego komputera w sieci lokalnej dociera do innego komputera w sieci rozległej (WAN). Dzięki adresom IP możliwe jest prawidłowe trasowanie danych przez różne routery i sieci. Ponadto, stosowanie adresacji logicznej umożliwia implementację różnych technik zarządzania ruchem, takich jak NAT (Network Address Translation) czy DHCP (Dynamic Host Configuration Protocol), co zwiększa efektywność i elastyczność sieci.

Pytanie 6

Ile bitów zawiera adres MAC karty sieciowej?

A. 48
B. 16
C. 64
D. 32
Adres fizyczny MAC (Media Access Control) karty sieciowej składa się z 48 bitów, co odpowiada 6 bajtom. Adres ten jest unikalnym identyfikatorem przypisanym do każdej karty sieciowej, co pozwala na jednoznaczną identyfikację urządzenia w sieci lokalnej. MAC jest kluczowym elementem komunikacji w warstwie łącza danych modelu OSI, gdzie odpowiada za adresowanie i przesyłanie ramki danych w sieciach Ethernet oraz Wi-Fi. Dzięki standardowi IEEE 802.3, adresy MAC są formatowane w postaci szesnastkowej, co oznacza, że każdy bajt jest reprezentowany przez dwie cyfry szesnastkowe, co w sumie daje 12 znaków w zapisie heksadecymalnym. Przykładowy adres MAC to 00:1A:2B:3C:4D:5E. Zrozumienie struktury adresu MAC oraz jego funkcji jest istotne dla administratorów sieci, którzy muszą zarządzać dostępem do sieci oraz diagnozować problemy z połączeniami. Ponadto, znajomość adresów MAC jest niezbędna w kontekście zabezpieczeń sieciowych, w tym filtracji adresów MAC oraz monitoringu ruchu sieciowego.

Pytanie 7

Litera S w protokole FTPS oznacza zabezpieczenie danych podczas ich przesyłania poprzez

A. logowanie
B. szyfrowanie
C. uwierzytelnianie
D. autoryzację
Protokół FTPS (File Transfer Protocol Secure) to rozszerzenie standardowego protokołu FTP, które dodaje warstwę zabezpieczeń poprzez szyfrowanie przesyłanych danych. Litera 'S' oznacza, że wszystkie dane przesyłane pomiędzy klientem a serwerem są szyfrowane. Użycie szyfrowania chroni informacje przed nieautoryzowanym dostępem w trakcie transmisji, co jest kluczowe w kontekście bezpieczeństwa danych. W praktyce oznacza to, że nawet jeśli dane zostaną przechwycone przez złośliwego użytkownika, nie będą one czytelne bez odpowiedniego klucza szyfrującego. W branży IT stosuje się różne protokoły szyfrowania, takie jak SSL (Secure Sockets Layer) lub TLS (Transport Layer Security), które są powszechnie uznawane za standardy zabezpieczeń. Przy korzystaniu z FTPS, szczególnie w środowiskach, gdzie przesyłane są wrażliwe dane, jak dane osobowe czy informacje finansowe, szyfrowanie staje się niezbędnym elementem polityki bezpieczeństwa. Wdrożenie FTPS z odpowiednią konfiguracją szyfrowania jest zgodne z najlepszymi praktykami w zakresie ochrony danych, co czyni go godnym zaufania rozwiązaniem do bezpiecznej wymiany plików.

Pytanie 8

Ile podsieci tworzą komputery z adresami: 192.168.5.12/25, 192.168.5.50/25, 192.168.5.200/25, 192.158.5.250/25?

A. 2
B. 1
C. 4
D. 3
Pojęcie podsieci w kontekście adresacji IP może być mylone, co prowadzi do niepoprawnych wniosków dotyczących liczby podsieci, w których pracują podane komputery. Wybierając odpowiedź sugerującą, że wszystkie komputery znajdują się w jednej lub dwóch podsieciach, można popełnić błąd w ocenie maski podsieci. Maski podsieci definiują zakres adresów, które mogą być używane w danej sieci. W przypadku adresów 192.168.5.12/25, 192.168.5.50/25 i 192.168.5.200/25 wszystkie te adresy dzielą tę samą maskę podsieci, co oznacza, że mogą współdzielić tę samą sieć i komunikować się ze sobą bez potrzeby routera. Z drugiej strony, adres 192.158.5.250/25 nie może być zakwalifikowany do tej samej grupy, ponieważ jego prefiks różni się od pozostałych. Przykładem błędnego rozumowania może być mylenie adresów w innej klasie z adresami w tej samej klasie, co prowadzi do nieuwzględnienia, że różne prefiksy delimitują różne sieci. Aby uzyskać dokładny obraz struktury podsieci w sieci komputerowej, konieczne jest zrozumienie znaczenia prefiksów i zastosowanie odpowiednich narzędzi do analizy sieci, takich jak kalkulatory podsieci, które pomagają wizualizować i zrozumieć jak adresacja IP i maski podsieci wpływają na dostępność i komunikację urządzeń w sieci.

Pytanie 9

W systemie Windows harmonogram zadań umożliwia przypisanie

A. nie więcej niż czterech terminów realizacji dla danego programu
B. więcej niż pięciu terminów realizacji dla danego programu
C. nie więcej niż pięciu terminów realizacji dla danego programu
D. nie więcej niż trzech terminów realizacji dla danego programu
Harmonogram zadań w systemie Windows jest narzędziem, które pozwala na automatyzację uruchamiania programów i skryptów w określonych terminach lub według zdefiniowanych warunków. Umożliwia on przypisanie więcej niż pięciu terminów wykonania dla wskazanego programu, co znacznie zwiększa elastyczność jego użycia. Użytkownicy mogą na przykład zaplanować codzienne, tygodniowe lub miesięczne zadania, takie jak tworzenie kopii zapasowych, uruchamianie skryptów konserwacyjnych lub wykonywanie raportów. Dobrą praktyką jest korzystanie z harmonogramu zadań do automatyzacji rutynowych zadań, co pozwala na oszczędność czasu oraz minimalizację błędów ludzkich. Harmonogram zadań wspiera również funkcje takie jak uruchamianie zadań na podstawie zdarzeń systemowych, co poszerza jego funkcjonalność. W kontekście standardów IT, automatyzacja zadań jest kluczowym elementem efektywnego zarządzania systemami, co jest zgodne z metodykami DevOps i zarządzania infrastrukturą jako kodem (IaC).

Pytanie 10

SuperPi to aplikacja używana do testowania

A. ilości nieużywanej pamięci operacyjnej RAM
B. efektywności procesorów o podwyższonej częstotliwości
C. obciążenia oraz efektywności kart graficznych
D. efektywności dysków twardych
Odpowiedzi, które sugerują, że SuperPi mierzy obciążenie i wydajność kart graficznych, wydajność dysków twardych lub ilość niewykorzystanej pamięci operacyjnej RAM, są mylące i niezgodne z rzeczywistością. SuperPi to program dedykowany wyłącznie testowaniu procesorów. Wykorzystując algorytm obliczania liczby π, koncentruje się na obliczeniach CPU, a nie na innych komponentach systemu. W przypadku kart graficznych, do oceny ich wydajności stosuje się zupełnie inne narzędzia, takie jak 3DMark czy FurMark, które wykonują skomplikowane obliczenia graficzne i testy obciążeniowe. Porównując wydajność dysków twardych, używa się programów takich jak CrystalDiskMark, które mierzą szybkość odczytu i zapisu danych, co jest całkowicie innym rodzajem analizy. Z kolei pamięć operacyjna RAM jest oceniana za pomocą narzędzi takich jak MemTest86, które sprawdzają integralność i wydajność pamięci, nie zaś użycia CPU. Typowe błędy myślowe prowadzące do tych niepoprawnych wniosków często wynikają z nieporozumienia dotyczącego funkcji różnych komponentów komputera oraz braku znajomości odpowiednich narzędzi do ich analizy. Dlatego ważne jest, aby zrozumieć, że każdy typ benchmarkingu ma swoje określone zastosowanie i nie może być stosowany zamiennie.

Pytanie 11

Toner stanowi materiał eksploatacyjny w drukarce

A. igłowej
B. sublimacyjnej
C. laserowej
D. atramentowej
No, chyba nie do końca to pasuje. Wybór drukarek igłowych, atramentowych czy sublimacyjnych nie jest dobry, kiedy mówimy o tonerach. Drukarki igłowe działają na zasadzie uderzania igieł w taśmę barwiącą, więc nie używają tonera, a raczej taśmy, co ma sens przy prostych rzeczach, jak paragon. Atramentowe to inna sprawa - działają z płynem nanoszonym na papier przez dysze, a to też nie ma z tonerem wiele wspólnego. Często są mniej wydajne i mogą kosztować więcej przy dużym użytkowaniu. A drukarki sublimacyjne używają specjalnych wkładów z atramentem, który pod wpływem ciepła staje się gazem. To też nie ma nic wspólnego z tonerem. Z tego co widzę, tu chodzi o mylenie materiałów eksploatacyjnych i brak wiedzy o tym, jak różne technologie działają. Dlatego fajnie by było wiedzieć więcej o tych drukarkach i ich mechanizmach, żeby lepiej dopasować sprzęt do potrzeb.

Pytanie 12

Do jakiej warstwy modelu ISO/OSI odnosi się segmentacja danych, komunikacja w trybie połączeniowym przy użyciu protokołu TCP oraz komunikacja w trybie bezpołączeniowym z protokołem UDP?

A. Warstwa transportowa
B. Warstwa łącza danych
C. Warstwa fizyczna
D. Warstwa sieciowa
Warstwy modelu ISO/OSI, takie jak Łącza danych, Fizyczna i Sieciowa, nie są odpowiednie dla zadań związanych z segmentowaniem danych oraz komunikacją w trybie połączeniowym i bezpołączeniowym. Warstwa Łącza danych zajmuje się przede wszystkim odpowiedzialnością za przesyłanie ramek danych między urządzeniami w tej samej sieci, a także wykrywaniem i ewentualną korekcją błędów na tym poziomie. To jest kluczowe dla zapewnienia poprawności transmisji na poziomie lokalnym, ale nie obejmuje zarządzania połączeniem czy segmentowaniem danych. Warstwa Fizyczna definiuje fizyczne aspekty transmisji, takie jak sygnały elektryczne, światłowodowe czy radiowe, ale nie zajmuje się strukturą danych ani ich organizacją w kontekście aplikacji. Z kolei warstwa Sieciowa odpowiada za trasowanie pakietów między różnymi sieciami oraz obsługę adresacji, co jest fundamentalne dla komunikacji w rozproszonych systemach komputerowych, ale nie dotyczy szczegółów dotyczących połączenia i segmentacji informacji. Typowe błędy w myśleniu mogą obejmować mylenie funkcji warstw oraz ignorowanie specyfikacji protokołów, co prowadzi do nieprawidłowych interpretacji ich roli w ramach modelu ISO/OSI. Zrozumienie, która warstwa odpowiedzialna jest za konkretne aspekty komunikacji, jest kluczowe dla efektywnego projektowania i zarządzania sieciami komputerowymi oraz aplikacjami sieciowymi.

Pytanie 13

Do weryfikacji funkcjonowania serwera DNS na systemach Windows Server można zastosować narzędzie nslookup. Jeżeli w poleceniu jako argument zostanie podana nazwa komputera, np. nslookup host.domena.com, to system sprawdzi

A. aliasu zdefiniowanego dla rekordu adresu domeny.
B. strefy przeszukiwania wstecz.
C. obie strefy przeszukiwania, najpierw wstecz, a potem do przodu.
D. strefy przeszukiwania do przodu.
Wybór strefy przeszukiwania wstecz jako odpowiedzi na to pytanie jest niepoprawny, ponieważ strefa ta działa w odwrotny sposób. Strefa przeszukiwania wstecz jest używana do przekształcania adresów IP na odpowiadające im nazwy hostów. Zatem, jeżeli podalibyśmy adres IP w narzędziu nslookup, moglibyśmy uzyskać nazwę hosta, ale nie jest to poprawne w kontekście podawania nazwy domeny. Koncepcja strefy przeszukiwania do przodu, która jest głównym aspektem omawianego pytania, odnosi się do przekształcania nazw na adresy IP, co czyni ją odpowiednią w przypadku zapytania o nazwę hosta. Wybór aliasu wprowadzonego dla rekordu adresu domeny również nie jest adekwatny, ponieważ nslookup nie jest narzędziem do analizy aliasów, lecz do rozwiązywania nazw. Istnieje także mylne przekonanie, że nslookup jednocześnie przeszukuje obie strefy, co jest błędne; narzędzie to zawsze zaczyna od strefy przeszukiwania do przodu przy podawaniu nazwy. Takie nieporozumienia mogą prowadzić do trudności w prawidłowym rozwiązywaniu problemów z DNS oraz w skutecznym zarządzaniu infrastrukturą sieciową. Zrozumienie różnicy między tymi strefami jest kluczowe dla prawidłowego korzystania z narzędzi diagnostycznych i efektywnego zarządzania systemami DNS.

Pytanie 14

Podstawowy rekord uruchamiający na dysku twardym to

A. NTLDR
B. MBR
C. FDISK
D. BOOT
FDISK to narzędzie do partycjonowania dysków, ale to nie jest główny rekord rozruchowy. Jego zadaniem jest robienie partycji - tworzenie, usuwanie czy modyfikowanie ich, ale nie ma to bezpośrednio związku z rozruchem. NTLDR, czyli NT Loader, to program, który odpowiada za ładowanie systemu Windows NT i jego pochodnych. Chociaż jest ważny w procesie rozruchu Windows, to nie jest samym rekordem rozruchowym dysku. NTLDR jest uruchamiany przez MBR, więc w rzeczywistości to MBR uruchamia cały proces. Boot to ogólny termin dotyczący rozruchu, ale nie mówi ci o konkretnym elemencie jak MBR. Często ludzie mylą narzędzia i terminologię związaną z rozruchem systemu i zarządzaniem partycjami. Zrozumienie, co to jest MBR i jak działa z innymi elementami systemu rozruchowego, jest kluczowe dla każdej osoby, która ma do czynienia z komputerami. Umiejętność ogarniania tych wszystkich rzeczy jest podstawą administracji systemów i wsparcia technicznego, co pomaga w rozwiązywaniu problemów związanych z uruchamianiem systemu i zarządzaniem danymi.

Pytanie 15

Ile pinów znajduje się w wtyczce SATA?

A. 7
B. 9
C. 4
D. 5
Wybór liczby pinów innej niż 7 we wtyczce SATA prowadzi do nieporozumień związanych z funkcjonalnością tego standardu. Odpowiedzi takie jak 4, 5 czy 9 ignorują fakt, że wtyczka SATA została zaprojektowana w celu optymalizacji transferu danych oraz kompatybilności z różnymi urządzeniami. Liczba 4 czy 5 pinów może sugerować uproszczoną konstrukcję, co jest niezgodne z rzeczywistością, ponieważ wtyczka SATA obsługuje pełną funkcjonalność poprzez swoje 7 pinów, które odpowiadają za przesył danych oraz sygnalizację. Warto zrozumieć, że wtyczki i gniazda zaprojektowane zgodnie ze standardem SATA mają na celu zapewnienie odpowiedniej wydajności oraz niezawodności, co jest niemożliwe przy mniejszej liczbie pinów. Ponadto, błędny wybór dotyczący liczby pinów może prowadzić do nieuchronnych problemów związanych z podłączeniem urządzeń, jak np. brak możliwości transferu danych, co ma kluczowe znaczenie w nowoczesnych systemach komputerowych. Dobre praktyki w zakresie projektowania systemów komputerowych wymagają zrozumienia, jak różne standardy, w tym SATA, wpływają na wydajność oraz kompatybilność komponentów. Ignorowanie takich szczegółów jak liczba pinów i ich funkcje prowadzi do nieefektywności i frustracji podczas użytkowania sprzętu.

Pytanie 16

Jakie urządzenie zapewnia zabezpieczenie przed różnorodnymi atakami z sieci i może również realizować dodatkowe funkcje, takie jak szyfrowanie danych przesyłanych lub automatyczne informowanie administratora o włamaniu?

A. punkt dostępowy
B. koncentrator
C. regenerator
D. firewall sprzętowy
Firewall sprzętowy, znany również jako zapora ogniowa, to kluczowe urządzenie w architekturze bezpieczeństwa sieci, które służy do monitorowania i kontrolowania ruchu sieciowego w celu ochrony przed nieautoryzowanym dostępem oraz atakami z sieci. Funkcjonalność firewalla obejmuje nie tylko blokowanie niepożądanych połączeń, ale także możliwość szyfrowania przesyłanych danych, co znacząco podnosi poziom bezpieczeństwa informacji. Przykładowo, w przedsiębiorstwie firewall może być skonfigurowany do automatycznego powiadamiania administratora o podejrzanych aktywnościach, co pozwala na szybką reakcję na potencjalne zagrożenia. Zgodnie z najlepszymi praktykami branżowymi, firewalle powinny być regularnie aktualizowane oraz dostosowywane do zmieniających się warunków w sieci, aby skutecznie przeciwdziałać nowym typom zagrożeń. Wiele organizacji wdraża rozwiązania firewallowe w połączeniu z innymi technologiami zabezpieczeń, co tworzy wielowarstwowy system ochrony, zgodny z zaleceniami standardów bezpieczeństwa takich jak ISO/IEC 27001.

Pytanie 17

Który adres IPv4 identyfikuje urządzenie działające w sieci z adresem 14.36.64.0/20?

A. 14.36.65.1
B. 14.36.80.1
C. 14.36.48.1
D. 14.36.17.1
Kiedy próbujesz ustalić, które adresy IP są w danym zakresie, ważne jest, żeby dobrze zrozumieć, jak działają adresy IP. Zasięg sieci 14.36.64.0/20 mówi, że pierwsze 20 bitów to identyfikacja sieci. Adresy 14.36.80.1 i 14.36.48.1 są poza tym zakresem, bo 14.36.80.1 wskazuje na 14.36.80.0/20, a jego pierwsze 20 bitów to 00001110.00100100.01010000.00000000, natomiast 14.36.48.1 pokazuje na 14.36.48.0/20, co w binarnym to 00001110.00100100.00110000.00000000. Myślę, że błąd w wyborze tych adresów bierze się z niepełnego zrozumienia, gdzie kończą się granice podsieci. Często ludzie mylą adresy, myśląc, że są blisko siebie, a w rzeczywistości mogą być zupełnie w innych podsieciach. Do tego, 14.36.17.1 też nie pasuje, bo jego pierwsze trzy oktety wskazują na inną podsieć z maską /20. Kluczowy błąd, który widać, to nieprzestrzeganie zasad podziału adresów IP, co może prowadzić do kłopotów z zarządzaniem i bezpieczeństwem sieci.

Pytanie 18

Jaką topologię fizyczną charakteryzuje zapewnienie nadmiarowych połączeń między urządzeniami sieciowymi?

A. Siatkową
B. Magistralną
C. Gwiazdkową
D. Pierścieniową
Topologia siatki jest uznawana za jedną z najbardziej niezawodnych struktur w sieciach komputerowych, ponieważ zapewnia nadmiarowe połączenia między urządzeniami. W tej topologii każde urządzenie jest zazwyczaj połączone z wieloma innymi, co pozwala na alternatywne trasy przesyłania danych. Taki układ minimalizuje ryzyko awarii, ponieważ nawet jeśli jedno połączenie przestanie działać, dane mogą być przesyłane inną trasą. Przykłady zastosowań topologii siatki obejmują sieci rozległe (WAN) w dużych organizacjach, gdzie niezawodność i możliwość szybkiego przywrócenia łączności są kluczowe. W praktyce, wdrażając tę topologię, należy przestrzegać standardów takich jak IEEE 802.3 dla Ethernetu, co zapewnia kompatybilność i wydajność. Dobrze zaprojektowana sieć siatkowa zwiększa także wydajność dzięki równoległemu przesyłaniu danych, co jest istotne w aplikacjach wymagających dużej przepustowości. W związku z tym, stosowanie topologii siatki w projektach sieciowych jest zgodne z najlepszymi praktykami w branży, co czyni ją preferowanym wyborem dla krytycznych zastosowań.

Pytanie 19

Adres projektowanej sieci należy do klasy C. Sieć została podzielona na 4 podsieci, z 62 urządzeniami w każdej z nich. Która z poniżej wymienionych masek jest adekwatna do tego zadania?

A. 255.255.255.240
B. 255.255.255.224
C. 255.255.255.192
D. 255.255.255.128
Wybór maski 255.255.255.240 to nie jest najlepszy pomysł, ponieważ wykorzystuje za dużo bitów do identyfikacji hostów, co potem ogranicza liczbę dostępnych adresów IP w każdej podsieci. Ta maska oferuje tylko 16 adresów, ale tak naprawdę tylko 14 z nich można wykorzystać – bo jeden jest dla adresu sieci, a drugi dla rozgłoszenia. Z tego powodu nie da się spełnić wymogu 62 urządzeń w każdej podsieci. Maska 255.255.255.128 również odpada, bo chociaż ma 126 hostów, dzieli adresy tylko na dwie podsieci, a więc ani nie uzyskamy czterech podsieci, ani 62 urządzeń w każdej. Z kolei maska 255.255.255.224 pozwala utworzyć pięć podsieci, ale zaledwie 30 dostępnych adresów hostów w każdej, więc też nie spełnia wymagań. Takie nieporozumienia wynikają najczęściej z braku zrozumienia, jak działa maska podsieci i co to znaczy dla dostępnych adresów IP. W praktyce kluczowe jest, żeby wiedzieć ile podsieci i hostów naprawdę potrzebujemy, zanim przystąpimy do podziału sieci, a dopiero potem dobieramy maskę, żeby jak najlepiej wykorzystać dostępne zasoby adresowe i uniknąć problemów z brakującymi adresami IP.

Pytanie 20

Ataki mające na celu zakłócenie funkcjonowania aplikacji oraz procesów działających w urządzeniu sieciowym określane są jako ataki typu

A. zero-day
B. spoofing
C. smurf
D. DoS
Atak typu DoS (Denial of Service) ma na celu zablokowanie dostępu do usługi lub aplikacji, przeciążając zasoby serwera poprzez generowanie dużej liczby żądań w krótkim czasie. Taki atak może uniemożliwić prawidłowe działanie systemu, co w praktyce oznacza, że użytkownicy nie mogą korzystać z danej usługi. W kontekście sieciowym, atak DoS jest często realizowany poprzez wykorzystanie flaw w protokołach komunikacyjnych lub przez wysyłanie dużych pakietów danych, które skutkują wyczerpaniem zasobów serwera. Przykładem zastosowania tej wiedzy w praktyce jest zabezpieczanie sieci za pomocą zapór ogniowych oraz systemów wykrywania intruzów, które monitorują i blokują podejrzane wzorce ruchu. Zgodnie z najlepszymi praktykami branżowymi, organizacje powinny wdrażać strategie obrony wielowarstwowej, aby zminimalizować ryzyko ataków DoS, m.in. poprzez skalowanie zasobów serwerowych oraz zastosowanie sieci CDN, która może rozproszyć ruch do wielu lokalizacji.

Pytanie 21

W systemie Windows, który wspiera przydziały dyskowe, użytkownik o nazwie Gość

A. może należeć do grup lokalnych i globalnych
B. może być częścią jedynie grupy globalnej
C. nie może być częścią żadnej grupy
D. może być członkiem tylko grupy o nazwie Goście
Inne odpowiedzi na to pytanie mają trochę problemów z podstawowym zrozumieniem tego, jak działają grupy użytkowników w Windows. Na przykład, mówienie, że Gość nie może być w żadnej grupie jest po prostu nieprawidłowe, bo nawet użytkownicy z ograniczonymi uprawnieniami mogą być przypisani do grup. Tak naprawdę, każdy użytkownik, w tym Gość, może należeć do grupy, co daje mu pewne uprawnienia. Stwierdzenie, że Gość może tylko być w grupie globalnej, jest trochę mylące, ponieważ Gość może też być częścią grup lokalnych, co jest ważne w zarządzaniu dostępem do lokalnych zasobów. Dodatkowo, jest nieprawdziwe to, że Gość może należeć tylko do grupy o nazwie Goście. W rzeczywistości Windows daje nam większą elastyczność, pozwalając Gościowi na dostęp do różnych grup w zależności od potrzeb. Dlatego, ograniczenia, które przedstawiono w tych odpowiedziach, są nieprawidłowe i mogą prowadzić do nieefektywnego zarządzania dostępem, co w końcu może zagrozić bezpieczeństwu danych w systemie.

Pytanie 22

Jaka jest maska dla adresu IP 192.168.1.10/8?

A. 255.0.255.0
B. 255.255.255.0
C. 255.0.0.0
D. 255.255.0.0
Wszystkie pozostałe odpowiedzi są niepoprawne, a każda z nich ilustruje typowe nieporozumienia dotyczące działania masek podsieci. Odpowiedź 255.0.255.0 sugeruje, że pierwsze 16 bitów jest wykorzystywanych do identyfikacji sieci, co jest błędne w przypadku maski /8. Taka struktura maski jest charakterystyczna dla większych podsieci, co nie ma miejsca tutaj. Odpowiedź 255.255.255.0, z kolei, jest typowa dla klasy C, gdzie 24 bity są przeznaczone na identyfikację sieci, co jest zbyt szerokim zakresem dla adresu klasy A. Użycie tej maski w kontekście adresu 192.168.1.10 wprowadza w błąd, ponieważ nie wykorzystuje ono potencjału adresacji klasy A. Odpowiedź 255.255.0.0 również przypisuje zbyt wiele bitów do identyfikacji sieci, co skutkowałoby zbyt małą liczbą dostępnych adresów dla hostów. Typowym błędem myślowym w podejściu do masek podsieci jest założenie, że większa liczba bitów w masce zawsze oznacza lepszą kontrolę nad siecią. W rzeczywistości, odpowiednia maska powinna być dostosowana do rozmiaru i wymagań konkretnej sieci, co w przypadku maski /8 oznacza, że 8 bitów jest wystarczające na identyfikację sieci, a pozostałe bity powinny być przeznaczone na hosty.

Pytanie 23

Aby naprawić zasilacz laptopa poprzez wymianę kondensatorów, jakie narzędzie powinno się wykorzystać?

A. tester okablowania sieciowego
B. tester płyt głównych
C. chwytak próżniowy
D. lutownicę z cyną i kalafonią
Aby wymienić kondensatory w zasilaczu laptopa, niezbędne jest posiadanie odpowiednich narzędzi, a lutownica z cyną i kalafonią stanowi kluczowy element tego procesu. Lutownica umożliwia precyzyjne łączenie elementów elektronicznych poprzez podgrzewanie ich końców i wprowadzenie stopionego cyny, co zapewnia stabilne połączenie. Kalafonia pełni rolę fluxu, który ułatwia lutowanie, poprawiając przyczepność cyny do elementów oraz zapobiegając utlenianiu styków. W praktyce, wymiana kondensatorów wymaga również zachowania ostrożności, aby nie uszkodzić innych komponentów na płytce PCB. Standardem w branży jest stosowanie lutownic o regulowanej temperaturze, co pozwala na dostosowanie ciepła do różnych elementów; zbyt wysoka temperatura może zaszkodzić zarówno kondensatorom, jak i ścieżkom na płytce. Warto również znać klasyfikację kondensatorów (np. elektrolityczne, ceramiczne) oraz ich parametry, takie jak pojemność i napięcie robocze, co jest niezbędne do prawidłowej wymiany. W związku z tym, świadome podejście do użycia lutownicy w tym kontekście jest kluczowe dla zapewnienia prawidłowego funkcjonowania urządzenia po naprawie.

Pytanie 24

Jak nazywa się współpracujące z monitorami CRT urządzenie wskazujące z końcówką wyposażoną w światłoczuły element, która poprzez dotknięcie ekranu monitora powoduje przesłanie sygnału do komputera, umożliwiając w ten sposób lokalizację kursora?

A. Ekran dotykowy.
B. Touchpad.
C. Pióro świetlne.
D. Trackball.
Wiele osób słysząc pytanie o urządzenie do wskazywania na ekranie, od razu myśli o ekranach dotykowych, touchpadach czy trackballach – i nic dziwnego, bo to najpopularniejsze technologie obecnie. Jednak w kontekście monitorów CRT sytuacja wyglądała trochę inaczej. Ekran dotykowy, choć dziś powszechny, działa zupełnie inaczej – wykorzystuje najczęściej technologię pojemnościową lub rezystancyjną i nie wymaga światłoczułego elementu ani pracy z CRT, lecz jest integralną częścią nowoczesnych, płaskich wyświetlaczy. Touchpad natomiast to płaska płytka używana głównie w laptopach jako zamiennik myszy – tutaj w ogóle nie ma kontaktu z ekranem, a lokalizacja kursora odbywa się na zupełnie innej zasadzie, raczej poprzez przesuwanie palca po powierzchni. Trackball zaś przypomina odwróconą myszkę – kulka obracana palcem pozwala przesuwać kursor, ale urządzenie to jest niezależne od ekranu i nie wymaga dotykania samego wyświetlacza. Łatwo wpaść w pułapkę myślenia, że każde urządzenie, które pozwala przesuwać kursor, musi mieć jakieś związki z ekranem, ale technicznie rzecz biorąc, tylko pióro świetlne korzystało z bezpośredniej interakcji ze światłem z kineskopu CRT. Częstym błędem jest też utożsamianie ekranów dotykowych z każdą formą wskazywania na ekranie – tymczasem te technologie powstały znacznie później i nie mają związku z sygnałem światłoczułym. Branżowe dobre praktyki podkreślają, by rozpoznawać urządzenia wejściowe nie tylko po funkcji (wskazywanie kursora), ale przede wszystkim po zasadzie działania i technologii, z jakiej korzystają – to pomaga lepiej zrozumieć, dlaczego pewne rozwiązania stosowano w konkretnych epokach rozwoju sprzętu komputerowego. Gdyby ktoś dziś chciał uruchomić stare oprogramowanie CAD na oryginalnym sprzęcie, pióro świetlne byłoby wręcz niezbędnym narzędziem, podczas gdy pozostałe wymienione urządzenia nie mają tu zastosowania. Moim zdaniem warto to zapamiętać, bo taka wiedza pokazuje, jak dynamicznie zmieniają się interfejsy człowiek-komputer i jaką rolę odgrywają ograniczenia techniczne epoki.

Pytanie 25

Użytkownik systemu Windows może korzystając z programu Cipher

A. ochronić dane poprzez szyfrowanie plików
B. zeskanować system w celu wykrycia malware
C. usunąć konto użytkownika wraz z jego profilem i dokumentami
D. wykonać przyrostową kopię zapasową plików systemowych
Odpowiedź, że program Cipher umożliwia ochronę danych przez szyfrowanie plików, jest prawidłowa. Program Cipher to narzędzie wbudowane w system Windows, które pozwala na szyfrowanie i deszyfrowanie plików i folderów. Dzięki zastosowaniu szyfrowania, użytkownicy mogą zabezpieczyć swoje dane przed nieautoryzowanym dostępem, co jest szczególnie istotne w kontekście ochrony informacji wrażliwych. Przykładem zastosowania Cipher może być szyfrowanie plików zawierających dane osobowe lub finansowe, które powinny być chronione przed potencjalnymi naruszeniami bezpieczeństwa. Zastosowanie szyfrowania zgodnie z zasadami dobrych praktyk bezpieczeństwa IT, wyróżnia się tym, że nawet w przypadku fizycznego dostępu do komputera przez nieupoważnioną osobę, zaszyfrowane pliki pozostaną niedostępne bez odpowiedniego klucza. Warto też podkreślić, że Cipher korzysta z standardu szyfrowania AES (Advanced Encryption Standard), co zapewnia wysoki poziom bezpieczeństwa danych. Stosowanie szyfrowania jest nie tylko zalecane, ale w wielu branżach staje się wymogiem prawnym, co czyni umiejętność korzystania z narzędzi takich jak Cipher szczególnie cenną.

Pytanie 26

W jakim systemie występuje jądro hybrydowe (kernel)?

A. Linux
B. MorphOS
C. QNX
D. Windows
Odpowiedzi wskazujące na Linux, MorphOS i QNX, mimo że są to interesujące systemy operacyjne, są niepoprawne w kontekście pytania o jądro hybrydowe. Linux wykorzystuje jądro monolityczne, co oznacza, że wszystkie funkcje jądra są zintegrowane w jednej dużej jednostce. Ta architektura, mimo że oferuje wysoką wydajność, może powodować problemy z zarządzaniem zasobami oraz stabilnością systemu. W przypadku MorphOS, jest to system operacyjny, który skupia się na mikrojądrach i nie posiada hybrydowego podejścia, co również czyni tę odpowiedź nieprawidłową. Z kolei QNX, będący systemem operacyjnym czasu rzeczywistego, bazuje na mikrojądrze, co sprawia, że nie spełnia kryteriów hybrydowego jądra. Typowym błędem myślowym prowadzącym do takich odpowiedzi jest mylenie różnych architektur jądra i ich zastosowań. Użytkownicy często nie zdają sobie sprawy, że jądra monolityczne i mikrojądra mają odmienne cele i są zoptymalizowane pod różne scenariusze. W praktyce, wybór architektury jądra ma istotny wpływ na wydajność i stabilność systemu operacyjnego.

Pytanie 27

Pliki specjalne urządzeń, tworzone podczas instalacji sterowników w systemie Linux, są zapisywane w katalogu

A. ./sbin
B. ./var
C. ./proc
D. ./dev
Wybierając katalog /var, można się łatwo pomylić, bo rzeczywiście znajduje się tam dużo danych tworzonych dynamicznie przez system – logi, bazy danych czy różne pliki tymczasowe, ale nie mają one nic wspólnego z reprezentacją urządzeń podłączonych do systemu. Katalog /sbin natomiast kojarzy się głównie z narzędziami administracyjnymi, takimi jak polecenia do obsługi systemu plików czy zarządzania procesami, ale zdecydowanie nie jest miejscem przechowywania plików urządzeń. Myślę, że niektórzy mogą to pomylić, bo niektóre narzędzia ze /sbin służą do pracy bezpośrednio z urządzeniami, więc wydawałoby się logiczne, że pliki te mogą być tam. Jeśli chodzi o /proc, to jest to całkiem odrębna koncepcja – jest to system plików wirtualnych pokazujący „na żywo” bieżące informacje o systemie, procesach, sprzęcie i konfiguracji jądra. Nie przechowuje się tam plików reprezentujących urządzenia, tylko statusy systemu, jak np. /proc/cpuinfo czy /proc/meminfo. Typowym błędem jest przekonanie, że wszystko, co dotyczy sprzętu, powinno być w /proc, bo rzeczywiście można tam podejrzeć informacje o urządzeniach, ale nie ma tam plików umożliwiających bezpośredni dostęp do tych urządzeń. Często myli się też katalog /dev z innymi lokalizacjami systemu plików, bo nie każdy wie, że Linux traktuje urządzenia jako pliki. To właśnie ta filozofia „wszystko jest plikiem” odróżnia Linuksa od innych systemów. Przypisanie plików urządzeń do innego katalogu może wynikać z braku doświadczenia z architekturą systemu plików Linuksa lub z przyzwyczajeń wyniesionych z innych środowisk. Warto więc pamiętać – tylko /dev służy do przechowywania specjalnych plików urządzeń i to jest klucz do sprawnego zarządzania sprzętem pod Linuksem.

Pytanie 28

Wykonanie na komputerze z systemem Windows poleceń ipconfig /release oraz ipconfig /renew umożliwia weryfikację, czy usługa w sieci działa poprawnie

A. serwera DHCP
B. serwera DNS
C. rutingu
D. Active Directory
Wybór serwera DNS jako odpowiedzi na to pytanie jest nieprawidłowy, ponieważ serwer DNS (Domain Name System) jest odpowiedzialny za tłumaczenie nazw domen na adresy IP. Nie zajmuje się on przydzielaniem adresów IP, co jest główną rolą serwera DHCP. W związku z tym polecenia ipconfig /release i ipconfig /renew, które odpowiadają za interakcję z serwerem DHCP, nie mają bezpośredniego wpływu na funkcjonalność serwera DNS. Kolejna odpowiedź dotycząca rutingu także jest myląca; routing to proces przesyłania danych między różnymi sieciami, a nie przydzielania adresów IP. Narzędzia takie jak ipconfig nie są używane do testowania funkcji routingu, lecz służą do zarządzania konfiguracją IP na pojedynczych urządzeniach. W odniesieniu do Active Directory, jest to system zarządzania zasobami w sieci, który również nie ma związku z funkcją przydzielania adresów IP. Chociaż Active Directory może współpracować z serwerami DHCP, to jednak nie jest to jego główny cel. Wszelkie nieporozumienia w tym kontekście mogą wynikać z braku zrozumienia różnych ról, jakie pełnią poszczególne komponenty infrastruktury sieciowej oraz ich wzajemnych relacji. Aby skutecznie zarządzać siecią, istotne jest zrozumienie, jak różne usługi i protokoły współdziałają ze sobą, oraz jakie są ich specyficzne funkcje.

Pytanie 29

Aby zintegrować komputer z siecią LAN, należy użyć interfejsu

A. D-SUB
B. S/PDIF
C. RJ-45
D. LPT
Interfejs RJ-45 jest standardem używanym w sieciach Ethernet oraz LAN, który pozwala na fizyczne połączenie komputerów i innych urządzeń sieciowych. Zastosowanie tego interfejsu umożliwia przesyłanie danych z prędkościami typowymi dla sieci lokalnych, wynoszącymi od 10 Mbps do nawet 10 Gbps w przypadku nowoczesnych technologii. Złącze RJ-45 jest odpowiedzialne za łączenie kabli miedzianych typu twisted pair, które są powszechnie stosowane w budowie infrastruktury sieciowej. W codziennych zastosowaniach, RJ-45 znajduje zastosowanie w podłączaniu komputerów do routerów, przełączników oraz punktów dostępowych. W standardzie ANSI/TIA-568 określono kolory przewodów w kablu Ethernet, co zapewnia spójność w instalacjach sieciowych. Warto również zwrócić uwagę na właściwości kabli, takie jak kategorie (np. Cat5e, Cat6), które wpływają na wydajność i przepustowość sieci. Przykładem zastosowania RJ-45 jest sieć biurowa, gdzie wiele komputerów jest podłączonych do switcha, umożliwiając współdzielenie zasobów i dostęp do internetu.

Pytanie 30

Który z przyrządów służy do usuwania izolacji?

Ilustracja do pytania
A. C
B. A
C. B
D. D
Narzędzie oznaczone jako C jest profesjonalnym przyrządem do ściągania izolacji z przewodów. Jest to narzędzie precyzyjne, często nazywane ściągaczem izolacji lub stripperem. Umożliwia ono bezpieczne i efektywne usunięcie warstwy izolacyjnej z przewodów bez uszkadzania samego przewodu. Takie narzędzia są powszechnie stosowane w branży elektrotechnicznej i telekomunikacyjnej do przygotowywania przewodów do łączenia, lutowania lub montażu złącz. Standardy branżowe, takie jak IEC 60364, wskazują na konieczność właściwego przygotowania przewodów elektrycznych w celu zapewnienia bezpieczeństwa i niezawodności połączeń. Ściągacze izolacji wyposażone są w regulowane ostrza, co pozwala na dostosowanie ich do różnej grubości izolacji, co z kolei minimalizuje ryzyko uszkodzenia przewodnika. Praktyczne zastosowanie tego narzędzia obejmuje prace instalacyjne, serwisowe oraz produkcyjne, gdzie szybkość i precyzja są kluczowe. Używanie odpowiednich narzędzi zgodnie z ich przeznaczeniem jest podstawą profesjonalizmu w pracy z instalacjami elektrycznymi.

Pytanie 31

W systemie Windows mechanizm ostrzegający przed uruchamianiem nieznanych aplikacji oraz plików pobranych z Internetu funkcjonuje dzięki

A. Windows Update
B. Windows Ink
C. zaporze systemu Windows
D. Windows SmartScreen
Windows SmartScreen to funkcja zabezpieczeń w systemie Windows, która ma na celu ochronę użytkowników przed uruchamianiem potencjalnie niebezpiecznych aplikacji i plików pobranych z Internetu. Działa ona poprzez analizowanie plików w czasie rzeczywistym i porównywanie ich z bazą danych znanych zagrożeń. Gdy użytkownik próbuje uruchomić program, SmartScreen ocenia ryzyko, a w przypadku zidentyfikowania zagrożenia wyświetla alert ostrzegawczy. Jest to niezwykle przydatne w codziennym użytkowaniu, szczególnie w kontekście wzrastającej liczby cyberataków i złośliwego oprogramowania. Przykładem zastosowania może być sytuacja, w której użytkownik pobiera plik z mniej znanej strony internetowej i przed jego uruchomieniem SmartScreen informuje o potencjalnym ryzyku, co pozwala na podjęcie świadomej decyzji o dalszym działaniu. Warto podkreślić, że ta funkcjonalność jest częścią zalecanych praktyk w zakresie zarządzania bezpieczeństwem IT, które sugerują stosowanie wielowarstwowych metod ochrony, w tym ograniczenie uruchamiania nieznanych aplikacji. Włączenie SmartScreen w systemie Windows jest zgodne z najlepszymi praktykami w zakresie minimalizacji ryzyka związanego z cyberzagrożeniami.

Pytanie 32

Który typ standardu zakończenia kabla w systemie okablowania strukturalnego ilustruje przedstawiony rysunek?

Ilustracja do pytania
A. EIA/TIA 607
B. T568A
C. T568B
D. EIA/TIA 569
Standard T568B również definiuje sekwencję kolorów przewodów, ale w innej kolejności niż T568A: biało-pomarańczowy, pomarańczowy, biało-zielony, niebieski, biało-niebieski, zielony, biało-brązowy, brązowy. Choć jest równie popularny, jego zastosowanie może prowadzić do niezgodności, jeśli nie jest używany konsekwentnie w całej instalacji sieciowej. Wybór między T568A a T568B zależy często od lokalnych norm lub preferencji instalatora. Standard EIA/TIA 569 odnosi się do projektowania przestrzeni telekomunikacyjnej, a nie do sekwencji przewodów w złączach RJ-45. Definiuje on wymagania dotyczące planowania i instalacji przestrzeni takich jak pomieszczenia telekomunikacyjne i kanały kablowe, co oznacza, że nie jest bezpośrednio związany z zakończeniami przewodów. Z kolei EIA/TIA 607 dotyczy uziemienia i połączeń wyrównawczych w instalacjach telekomunikacyjnych. Jest to krytyczne dla zapewnienia bezpieczeństwa elektrycznego i ochrony przed przepięciami, szczególnie w środowiskach o dużej ilości sprzętu elektronicznego. Mylenie tych standardów z T568A lub T568B wynika często z braku zrozumienia ich zakresu i zastosowania. Kluczową umiejętnością jest rozróżnianie, które standardy dotyczą fizycznych aspektów instalacji, a które operacyjnych, co pomaga w prawidłowej konfiguracji i konserwacji systemów telekomunikacyjnych.

Pytanie 33

Zrzut ekranu ilustruje aplikację

Ilustracja do pytania
A. antyspamowy
B. typu recovery
C. antywirusowy
D. typu firewall
Firewall to mega ważny element w zabezpieczeniach sieci komputerowych. Działa jak taka bariera pomiędzy naszą siecią a światem zewnętrznym. Jego głównym zadaniem jest monitorowanie i kontrolowanie ruchu w sieci, oczywiście na podstawie reguł, które wcześniej ustaliliśmy. Na zrzucie ekranu widać listę reguł przychodzących, co pokazuje, że mamy do czynienia z typowym firewall'em. Firewalle mogą być hardware'owe albo software'owe i często można je ustawiać w taki sposób, żeby filtrowały pakiety, zmieniały adresy sieciowe czy sprawdzały stan połączeń. Dobrze skonfigurowany firewall chroni przed nieautoryzowanym dostępem, zapobiega atakom DOS i kontroluje, kto ma dostęp do naszych zasobów. Korzysta się z nich w różnych miejscach, od domowych sieci po te wielkie korporacyjne. Dobrze jest regularnie aktualizować reguły firewalla, sprawdzać logi w poszukiwaniu dziwnych rzeczy i łączyć go z innymi narzędziami bezpieczeństwa, jak systemy wykrywania intruzów. Jak się to wszystko dobrze poustawia, można znacząco poprawić bezpieczeństwo i chronić nasze wrażliwe dane przed zagrożeniami w sieci.

Pytanie 34

W systemie Linux polecenie chmod 321 start spowoduje nadanie następujących uprawnień plikowi start:

A. pełna kontrola dla użytkownika root, zapis i odczyt dla użytkownika standardowego, odczyt dla pozostałych.
B. zapis, odczyt i wykonanie dla użytkownika root, odczyt i wykonanie dla użytkownika standardowego, odczyt dla pozostałych.
C. czytanie, zapis i wykonanie dla właściciela pliku, zapis i wykonanie dla grupy i czytanie dla pozostałych.
D. wykonanie i zapis dla właściciela pliku, zapis dla grupy, wykonanie dla pozostałych.
Polecenie chmod 321 start w systemie Linux ustawia uprawnienia do pliku start według notacji oktalnej. Każda cyfra odpowiada konkretnej grupie użytkowników: pierwsza to właściciel (user), druga to grupa (group), trzecia to pozostali (others). Liczba 3 oznacza zapis (2) + wykonanie (1), czyli razem 3 – bez odczytu. 2 oznacza tylko zapis, a 1 to tylko wykonanie. W praktyce po tej komendzie właściciel pliku może wykonywać plik i go modyfikować (zapisywać), ale już nie odczyta jego zawartości. Grupa może go tylko zapisywać, natomiast pozostali wyłącznie wykonywać. Moim zdaniem to ciekawe podejście, bo w realnych scenariuszach takie ograniczenie bywa przydatne np. gdy chcemy, by określone osoby mogły uruchamiać skrypt bez możliwości podejrzenia kodu lub by grupa mogła manipulować plikiem, lecz nie uruchamiać lub czytać zawartości. Warto pamiętać, że taka konfiguracja nie jest często spotykana w standardowych środowiskach produkcyjnych, gdzie najczęściej spotyka się zestawy typu 644 czy 755. Dobrze jednak znać te mniej oczywiste kombinacje, bo pozwalają na precyzyjne kontrolowanie dostępu – to już taka trochę wyższa szkoła jazdy w administrowaniu Linuksem. Z mojego doświadczenia to niezła okazja, żeby przećwiczyć myślenie binarne i rozumienie uprawnień, bo w praktyce, gdy pracuje się z większą liczbą użytkowników, takie niestandardowe ustawienia mogą realnie zwiększyć bezpieczeństwo systemu. Warto też pamiętać o narzędziach typu umask, które domyślnie ustalają uprawnienia dla nowych plików – to się przydaje, gdy chcemy, by nowo tworzone pliki miały od razu nietypowe uprawnienia.

Pytanie 35

Aby stworzyć las w strukturze katalogowej AD DS (Active Directory Domain Services), konieczne jest utworzenie przynajmniej

A. jednego drzewa domeny
B. czterech drzew domeny
C. trzech drzew domeny
D. dwóch drzew domeny
Aby utworzyć las w strukturze katalogowej Active Directory Domain Services (AD DS), konieczne jest stworzenie przynajmniej jednego drzewa domeny. Las to zbiór jednego lub więcej drzew domeny, które dzielą wspólną konfigurację i schemat. Każde drzewo w lesie może zawierać wiele domen, a hierarchia ta zapewnia elastyczność w zarządzaniu relacjami między domenami oraz bezpieczeństwem. Przykładem zastosowania tej architektury może być sytuacja, gdy organizacja posiada kilka jednostek biznesowych, z których każda ma swoją własną domenę. W takim przypadku można utworzyć jedno drzewo, w którym każda jednostka będzie miała swoją domenę, a wszystkie one będą współdzielić wspólny las. Warto również zaznaczyć, że zgodnie z najlepszymi praktykami, lasy powinny być projektowane z myślą o przyszłym rozwoju i ewentualnym rozszerzeniu, co może wiązać się z dodawaniem nowych drzew i domen w miarę wzrostu organizacji.

Pytanie 36

Którego protokołu działanie zostało zobrazowane na załączonym rysunku?

Ilustracja do pytania
A. Domain Name System(DNS)
B. Telnet
C. Dynamic Host Configuration Protocol (DHCP)
D. Security Shell (SSH)
Dynamic Host Configuration Protocol (DHCP) jest protokołem sieciowym używanym do automatycznego przypisywania adresów IP oraz innych parametrów konfiguracyjnych urządzeniom w sieci. Proces przedstawiony na rysunku to typowa sekwencja DHCP, która składa się z czterech głównych etapów: DISCOVER, OFFER, REQUEST i ACKNOWLEDGMENT. Na początku klient DHCP wysyła wiadomość DISCOVER, aby znaleźć dostępne serwery DHCP. Serwer DHCP odpowiada wiadomością OFFER, w której proponuje adres IP i inne parametry konfiguracyjne. Następnie klient wysyła wiadomość REQUEST, aby formalnie zażądać przyznania oferowanego adresu IP. Proces kończy się wiadomością ACKNOWLEDGMENT, którą serwer potwierdza przypisanie adresu IP i wysyła dodatkowe informacje konfiguracyjne. Praktyczne zastosowanie DHCP pozwala na uproszczenie zarządzania adresami IP w dużych sieciach, eliminując potrzebę ręcznego przypisywania adresów każdemu urządzeniu. Zapewnia również elastyczność i optymalizację wykorzystania dostępnych adresów IP oraz minimalizuje ryzyko konfliktów adresów. DHCP jest zgodny z wieloma standardami branżowymi, co czyni go uniwersalnym rozwiązaniem dla organizacji różnej wielkości. Warto również zaznaczyć, że DHCP oferuje funkcje takie jak dzierżawa adresów, co umożliwia efektywne zarządzanie czasem przypisania zasobów sieciowych.

Pytanie 37

Jakie polecenie w systemie operacyjnym Linux umożliwia sprawdzenie bieżącej konfiguracji interfejsu sieciowego na komputerze?

A. ping
B. ipconfig
C. ifconfig
D. tracert
Wybór odpowiedzi dotyczących polecenia 'ping' jest zrozumiały, jednak to narzędzie ma na celu testowanie łączności z określonym adresem IP lub nazwą hosta, a nie dostarczanie szczegółowych informacji o konfiguracji interfejsu sieciowego. 'Ping' wysyła pakiety ICMP Echo Request i oczekuje na odpowiedź, co pozwala na sprawdzenie, czy dany host jest dostępny w sieci, ale nie oferuje informacji na temat jego konfiguracji. Z kolei 'tracert', znany w systemach Unix jako 'traceroute', służy do śledzenia trasy pakietów w sieci. Pomaga w identyfikacji opóźnień i punktów przesiadkowych między źródłem a celem, ale ponownie, nie dostarcza danych o lokalnych interfejsach. W odpowiedzi 'ipconfig', która jest znana użytkownikom systemów Windows, również nie ma zastosowania w kontekście Linuxa. To polecenie umożliwia wyświetlanie informacji o konfiguracji sieci w systemie Windows, w tym adresów IP i informacji o interfejsach, jednak w systemach Linux używa się 'ifconfig' lub 'ip'. Przy wyborze odpowiedzi, ważne jest zrozumienie kontekstu systemu operacyjnego, w którym pracujemy, oraz celów poszczególnych poleceń. Wiele osób myli te komendy ze względu na podobieństwo ich funkcji, ale każde z nich ma swoje unikalne zastosowanie i zastosowanie w różnych scenariuszach sieciowych. Zrozumienie różnic pomiędzy nimi jest kluczowe dla efektywnego zarządzania siecią.

Pytanie 38

Oprogramowanie przypisane do konkretnego komputera lub jego podzespołów, które uniemożliwia instalację na nowym sprzęcie zakupionym przez tego samego użytkownika, to

A. OEM
B. MPL
C. CPL
D. MOLP
Odpowiedzi MPL, CPL i MOLP są nieprawidłowe w kontekście zadania, ponieważ nie opisują one właściwości oprogramowania przypisanego do jednego komputera, które nie pozwala na jego przenoszenie. MPL, czyli Multi-Party License, to typ licencji, który zakłada współpracę wielu stron, co nie współczesnie odnosi się do opisanego przypadku. CPL, z kolei, to Common Public License, która dotyczy licencji open source i nie ma zastosowania w kontekście oprogramowania przypisanego do konkretnego urządzenia. MOLP (Million of License Purchase) odnosi się do modeli zakupowych, które mogą być stosowane w dużych organizacjach, ale nie mają one związku z ograniczeniami dotyczącymi przenoszenia oprogramowania. Typowe błędy myślowe prowadzące do takich wniosków to mylenie pojęć licencyjnych oraz braku zrozumienia zasadności zastosowania różnych typów licencji w kontekście sprzętu. Warto zwrócić uwagę na to, że wybór odpowiedniego typu licencji jest kluczowy dla prawidłowego zarządzania oprogramowaniem w organizacji, co może mieć wpływ na koszty oraz zgodność z przepisami prawa. Właściwe zrozumienie tych różnic jest kluczowe dla każdego użytkownika, zarówno indywidualnego, jak i w kontekście zarządzania w przedsiębiorstwie.

Pytanie 39

Jaką maksymalną prędkość danych można osiągnąć w sieci korzystającej z skrętki kategorii 5e?

A. 1 Gb/s
B. 100 Mb/s
C. 10 Gb/s
D. 10 Mb/s
Maksymalna prędkość transmisji danych w sieciach Ethernet przy zastosowaniu skrętki kategorii 5e wynosi 1 Gb/s, co jest zgodne z normą IEEE 802.3ab. Skrętki kategorii 5e są powszechnie stosowane w lokalnych sieciach komputerowych, oferując nie tylko odpowiednią przepustowość, ale również poprawioną jakość sygnału w porównaniu do wcześniejszych kategorii. Dzięki zastosowaniu tej kategorii kabli, możliwe jest wsparcie dla aplikacji takich jak streaming wideo, gry online oraz szybkie przesyłanie dużych plików. W praktycznych zastosowaniach, sieci oparte na skrętce 5e mogą obsługiwać różne urządzenia, w tym komputery, drukarki oraz urządzenia IoT, co czyni je wszechstronnym rozwiązaniem w biurach i domach. Ponadto, zgodność z obowiązującymi standardami zapewnia interoperacyjność z innymi systemami i urządzeniami, co jest kluczowe w dzisiejszym złożonym środowisku sieciowym.

Pytanie 40

Osoba pragnąca jednocześnie drukować dokumenty w wersji oryginalnej oraz trzech kopiach na papierze samokopiującym, powinna nabyć drukarkę

A. termotransferową
B. laserową
C. igłową
D. atramentową
Wybór drukarki termotransferowej, atramentowej lub laserowej do drukowania dokumentów na papierze samokopiującym jest niewłaściwy z kilku kluczowych powodów. Drukarki termotransferowe wykorzystują proces, w którym ciepło jest stosowane do przenoszenia tuszu na papier. Ta technologia nie jest przystosowana do uzyskiwania kopii na papierze samokopiującym, który wymaga mechanicznego uderzenia dla stworzenia odbitki. Atramentowe urządzenia z kolei, wytwarzają wydruki poprzez nanoszenie kropli tuszu na papier, co również nie wspiera efektywnego tworzenia kopii, a dodatkowo tusz może rozmazać się w kontakcie z warstwami samokopiującymi. Drukarki laserowe, mimo że oferują wyspecjalizowane wydruki o wysokiej jakości, są zaprojektowane do jednego procesu wydruku na arkuszu, co znacznie ogranicza ich zdolność do pracy z dokumentami wymagającymi wielokrotnego wydruku na różnych warstwach. Wspólnym błędem, który prowadzi do takich mylnych wyborów, jest nieznajomość zasad działania różnych technologii druku oraz ich zastosowań. Ważne jest, aby przy wyborze sprzętu drukarskiego kierować się specyfiką potrzeb biurowych oraz technicznymi wymaganiami materiałów, z którymi będziemy pracować.