Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektryk
  • Kwalifikacja: ELE.05 - Eksploatacja maszyn, urządzeń i instalacji elektrycznych
  • Data rozpoczęcia: 17 grudnia 2025 08:59
  • Data zakończenia: 17 grudnia 2025 08:59

Egzamin niezdany

Wynik: 0/40 punktów (0,0%)

Wymagane minimum: 20 punktów (50%)

Udostępnij swój wynik
Szczegółowe wyniki:
Pytanie 1

Jaką wartość ma maksymalna dopuszczalna rezystancja uziomu RA przewodu ochronnego łączącego uziom z dostępnością przewodzącą dla znamionowego prądu różnicowego IN = 30 mA oraz napięcia dotykowego 50 V AC wyłącznika różnicowoprądowego?

A. Około 1 660 Ω
B. 2 000 Ω
C. Około 830 Ω
D. 4 000 Ω

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Największa dopuszczalna rezystancja uziomu <i>R<sub>A</sub></i> przewodu ochronnego łączącego uziom z częścią przewodzącą dostępną dla prądu różnicowego <i>I<sub>N</sub> = 30 mA</i> i napięcia dotykowego 50 V AC wynosi około 1 660 Ω. W praktyce oznacza to, że gdy osoba dotknie elementu przewodzącego, prąd różnicowy powinien być w stanie przepływać przez przewód uziemiający, a jego wartość powinna być na tyle niska, aby zminimalizować ryzyko porażenia prądem. Dopuszczalna rezystancja uziomu jest regulowana przez normy, takie jak PN-IEC 60364-4-41, które określają maksymalne wartości dla różnych kategorii instalacji elektrycznych. Używanie tych norm w projektowaniu i budowie instalacji elektrycznych jest kluczowe dla zapewnienia bezpieczeństwa użytkowników. W praktyce, wartość rezystancji powinna być mierzona podczas odbioru instalacji, a także okresowo sprawdzana w celu zapewnienia ciągłej ochrony. Przykładem jest instalacja w budynkach mieszkalnych, gdzie właściwie dobrana rezystancja uziomu zapobiega poważnym skutkom awarii elektrycznych.

Pytanie 2

Jakie uszkodzenie lub defekt można wykryć podczas przeglądu instalacji elektrycznej w budynku mieszkalnym?

A. Brak ciągłości połączeń
B. Przekroczenie dopuszczalnego czasu zadziałania wyłącznika ochronnego
C. Pogorszenie się stanu mechanicznego złącz i połączeń
D. Pogorszenie się stanu izolacji

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Pogorszenie się stanu mechanicznego złącz i połączeń jest kluczowym elementem, który można zlokalizować podczas oględzin instalacji elektrycznej. Wszelkie uszkodzenia mechaniczne złącz mogą prowadzić do zwiększonego oporu, co z kolei może skutkować przegrzewaniem się złącz oraz potencjalnymi awariami systemu. W praktyce, obserwacja stanu mechanicznego złącz pozwala na wczesne wykrywanie problemów, które mogą prowadzić do niebezpiecznych sytuacji, takich jak zwarcia czy pożary. Na przykład, złącza, które wykazują oznaki korozji lub zużycia, powinny być wymieniane, aby zapewnić bezpieczeństwo i niezawodność instalacji elektrycznej. W branży elektrycznej istnieją określone standardy, takie jak normy IEC 60364, które zalecają regularne przeglądy oraz konserwację elementów instalacji, co jest kluczowe dla zapewnienia ich prawidłowego funkcjonowania i bezpieczeństwa użytkowników. Przeprowadzanie systematycznych inspekcji złącz i połączeń jest zatem nie tylko zalecane, ale wręcz konieczne w kontekście utrzymania instalacji elektrycznej w dobrym stanie.

Pytanie 3

Jakie jest minimalne natężenie prądu wymagane do pomiaru ciągłości przewodu ochronnego?

A. 400 mA
B. 200 mA
C. 100 mA
D. 500 mA

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wiesz, że minimalna wartość prądu do pomiaru ciągłości przewodów ochronnych wynosi 200 mA? To jak najbardziej zgodne z normami, m.in. IEC 60364 i wytycznymi Polskiego Komitetu Normalizacyjnego. Dzięki takiemu prądowi możesz skutecznie sprawdzić, czy nie ma żadnych przerw albo uszkodzeń w przewodach ochronnych. To mega ważne, bo takie usterki mogą prowadzić do niebezpiecznych sytuacji w instalacjach elektrycznych. Jak masz odpowiednie mierniki, jak multitesty, to łatwo możesz to wszystko sprawdzić. Na przykład w zakładach przemysłowych, gdzie przewody mogą być narażone na różne uszkodzenia, to 200 mA jest wręcz niezbędne, żeby zapewnić bezpieczeństwo. Pomiary te są kluczowe dla niezawodności instalacji i zapobiegają zagrożeniom związanym z prądem.

Pytanie 4

Jaki jest maksymalny dopuszczalny czas wyłączenia zasilania w celu zapewnienia ochrony przed porażeniem elektrycznym w przypadku uszkodzenia w systemie sieciowym TN-S, kiedy napięcie fazowe przekracza 400 V, a obwody odbiorcze mają prąd znamionowy do 32 A?

A. 0,1 s
B. 0,2 s
C. 0,8 s
D. 0,5 s

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź 0,1 s jest poprawna, ponieważ zgodnie z normą PN-EN 60364-4-41, dla obwodów o prądzie znamionowym do 32 A oraz w układzie TN-S, największy dopuszczalny czas wyłączenia zasilania dla ochrony przed porażeniem prądem elektrycznym wynosi właśnie 0,1 s. Taki krótki czas wyłączenia jest kluczowy, aby zminimalizować ryzyko poważnych uszkodzeń ciała w przypadku porażenia prądem. Przykładowo, w instalacjach przemysłowych, gdzie pracownicy mogą mieć kontakt z elementami przewodzącymi, szybkie wyłączanie zasilania pozwala na ochronę przed skutkami wypadków elektrycznych. W praktyce montażu instalacji elektrycznych, stosowanie zabezpieczeń czasowych, takich jak wyłączniki różnicowoprądowe, jest często spotykane, aby spełnić wymagania dotyczące minimalizacji czasu wyłączenia. Dodatkowo, należy pamiętać, że odpowiednie projektowanie instalacji elektrycznych uwzględniające te wymagania jest niezbędne do zapewnienia bezpieczeństwa użytkowników.

Pytanie 5

Jaką charakterystykę powinien mieć wyłącznik instalacyjny nadprądowy, aby zapewnić, że nie wystąpi przypadkowe zadziałanie zabezpieczenia podczas uruchamiania urządzenia o dużym momencie rozruchowym?

A. Charakterystykę D
B. Charakterystykę B
C. Charakterystykę C
D. Charakterystykę Z

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wyłącznik nadprądowy z charakterystyką D to całkiem fajna opcja, zwłaszcza jeśli pracujesz z urządzeniami, które mają duży pobór prądu, jak na przykład silniki. Wiesz, różni się on trochę od charakterystyk B i C, które nie pozwalają na takie chwilowe przeszalenie prądu. A w przypadku silników, to może być naprawdę ważne, bo w momencie startu potrafią pobierać nawet 5-7 razy więcej prądu niż w normalnych warunkach. Taki wyłącznik D pomoże uniknąć niepotrzebnych wyłączeń, co jest kluczowe w przemyśle, gdzie maszyny muszą działać bez przerwy. Dobrze jest też pamiętać o normach, jak IEC 60947-2, bo wskazują one, jak ważne jest dobranie odpowiedniej charakterystyki do konkretnego obciążenia. Dzięki temu możesz być pewny, że wszystko będzie działać sprawnie i bezpiecznie.

Pytanie 6

Jaka jest maksymalna wartość skuteczna napięcia przemiennego, która może być wykorzystana do zasilania lamp oświetleniowych umieszczonych w strefie 0 łazienki?

A. 12 V
B. 25 V
C. 30 V
D. 60 V

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Maksymalna dopuszczalna wartość skuteczna napięcia przemiennego do zasilania lamp oświetleniowych zainstalowanych w strefie 0 łazienki wynosi 12 V. Strefa 0 to obszar, w którym istnieje bezpośrednie ryzyko kontaktu z wodą, co stwarza większe zagrożenie porażeniem prądem. Z tego powodu normy elektryczne, takie jak PN-IEC 60364, nakładają restrykcje na używanie napięcia w tych strefach. Użycie niskiego napięcia, takiego jak 12 V, minimalizuje ryzyko wystąpienia niebezpiecznych sytuacji, które mogłyby prowadzić do porażenia prądem. W praktyce, lampy LED, które są zaprojektowane do pracy w takich warunkach, zwykle wykorzystują zasilacze transformujące napięcie sieciowe na 12 V, a ich instalacja jest zgodna z zasadami ochrony przeciwporażeniowej. Ponadto, stosowanie niskonapięciowych źródeł światła w strefie 0 jest nie tylko zgodne z przepisami, ale również sprzyja efektywności energetycznej oraz wydłuża żywotność urządzeń oświetleniowych.

Pytanie 7

Jakie jest prawidłowe postępowanie w przypadku podejrzenia obecności napięcia na obudowie urządzenia elektrycznego?

A. Podłączenie dodatkowego obciążenia, co może pogorszyć sytuację
B. Natychmiastowe wyłączenie zasilania
C. Odłączenie uziemienia, co jest niebezpieczne i niewłaściwe
D. Zmiana przewodów, chociaż to nie rozwiązuje problemu napięcia na obudowie

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
W przypadku podejrzenia obecności napięcia na obudowie urządzenia elektrycznego, najlepszym i najbezpieczniejszym działaniem jest natychmiastowe odłączenie zasilania. Jest to zgodne z podstawowymi zasadami bezpieczeństwa elektrycznego i normami BHP. Gdy urządzenie elektryczne ma napięcie na obudowie, może to oznaczać uszkodzenie izolacji lub inny problem techniczny, który stwarza ryzyko porażenia prądem. Szybkie odłączenie zasilania eliminuje to ryzyko i pozwala na dalsze, bezpieczne działania. Po odłączeniu zasilania należy również upewnić się, że urządzenie jest odpowiednio uziemione, aby uniknąć podobnych problemów w przyszłości. Następnie można przystąpić do diagnostyki i naprawy urządzenia przez wykwalifikowanego specjalistę, co jest zgodne z dobrą praktyką w branży elektrycznej. Ważne jest również, by regularnie sprawdzać stan techniczny urządzeń elektrycznych i ich uziemienia, aby uniknąć takich sytuacji w przyszłości. Moim zdaniem, wiedza o bezpiecznym postępowaniu w takich sytuacjach powinna być podstawą w każdej edukacji technicznej.

Pytanie 8

Podczas wymiany uszkodzonego przewodu PEN w instalacji o napięciu do 1 kV, która jest trwale zamontowana, należy pamiętać, aby nowy przewód miał przekrój co najmniej

A. 10 mm2 Cu lub 10 mm2 Al
B. 10 mm2 Cu lub 16 mm2 Al
C. 16 mm2 Cu lub 16 mm2 Al
D. 16 mm2 Cu lub 10 mm2 Al

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wybór odpowiedzi 10 mm2 Cu lub 16 mm2 Al jako minimalnego przekroju przewodu PEN w instalacji do 1 kV jest zgodny z obowiązującymi standardami oraz najlepszymi praktykami w zakresie instalacji elektrycznych. Przewód PEN, który łączy funkcje przewodu neutralnego i ochronnego, odgrywa kluczową rolę w zapewnieniu bezpieczeństwa instalacji. W przypadku zastosowania przewodów miedzianych, minimalny przekrój 10 mm2 jest zgodny z normą PN-IEC 60364, która określa wymagania dla instalacji elektrycznych. Przewody aluminiowe muszą mieć większy przekrój, 16 mm2, ze względu na niższą przewodność elektryczną w porównaniu do miedzi. W praktyce, zastosowanie przewodu o odpowiednim przekroju zapewnia właściwe odprowadzanie prądu oraz minimalizuje ryzyko przegrzewania się przewodów, co z kolei zmniejsza ryzyko wystąpienia awarii instalacji. Dodatkowo, dobranie odpowiedniego przekroju przewodów wpływa na efektywność energetyczną instalacji oraz na jej długowieczność.

Pytanie 9

Aby zapobiec przegrzewaniu uzwojeń silnika indukcyjnego, nie powinno się długotrwale

A. zwiększać oporu wirnika
B. zmniejszać współczynnika mocy
C. obniżać poślizgu
D. przekraczać prądu znamionowego

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Przekraczanie prądu znamionowego silnika indukcyjnego prowadzi do jego przegrzewania, co może skutkować uszkodzeniem izolacji uzwojeń oraz skróceniem żywotności urządzenia. Prąd znamionowy to maksymalny prąd, który silnik może pobierać w normalnych warunkach pracy, zgodnie z jego specyfikacją. Przekroczenie tej wartości, na przykład podczas przeciążenia lub przy zbyt małym napięciu zasilającym, powoduje wzrost temperatury uzwojeń, co z kolei prowadzi do zwiększenia strat cieplnych i ryzyka awarii. W praktyce, zastosowanie odpowiednich zabezpieczeń, takich jak wyłączniki silnikowe lub przekaźniki termiczne, jest kluczowe dla ochrony silników przed skutkami przeciążeń. Dodatkowo, regularne monitorowanie stanu technicznego silnika oraz jego parametrów pracy, zgodnie z normą PN-EN 60034, pozwala na wczesne wykrywanie problemów i podejmowanie działań zapobiegawczych. Z tego względu, przy projektowaniu systemów zasilania należy uwzględnić odpowiednie marginesy dla prądu znamionowego, aby zapewnić długotrwałą i bezawaryjną pracę silników indukcyjnych.

Pytanie 10

Jaką czynność konserwacyjną silnika prądu stałego można zrealizować podczas jego inspekcji w trakcie działania?

A. Czyszczenie komutatora
B. Weryfikacja stanu szczotkotrzymaczy
C. Wymiana uszkodzonego amperomierza w obwodzie zasilającym
D. Weryfikacja stanu osłon elementów wirujących

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Sprawdzanie osłon części wirujących w silnikach prądu stałego to naprawdę istotna kwestia, jeśli mówimy o ich konserwacji. Te osłony są jak tarcza – chronią nas przed przypadkowymi kontaktem z ruchomymi elementami i pomagają w ochronie silnika przed różnymi zanieczyszczeniami. Regularne przeglądy tych osłon mogą pomóc zauważyć usterki, takie jak pęknięcia czy luzy, które mogą doprowadzić do poważniejszych problemów. Na przykład, w przemyśle, gdzie silniki muszą być niezawodne, kontrola stanu tych osłon to podstawa. Podobno według norm ISO 13857, bezpieczeństwo to kluczowa sprawa, więc chronienie się przed urazami od ruchomych części maszyn to nie tylko dobry pomysł, ale wręcz obowiązek. Sprawdzanie stanu osłon to jedna z tych rzeczy, które powinniśmy robić podczas przeglądów technicznych, bo wczesne wykrycie jakichś problemów to skuteczny sposób na uniknięcie kłopotów w przyszłości.

Pytanie 11

Aby zweryfikować poprawność funkcjonowania wyłączników różnicowoprądowych, zmierzono ich różnicowe prądy zadziałania i wyniki umieszczono w poniższej tabeli. Który z wyłączników spełnia kryterium prądu zadziałania IA = (0,5÷1,00) IN?

WyłącznikWynik pomiaru różnicowego prądu zadziałania I&Dₑₗₜₐ;
P302 25-10-AC30 mA
P202 25-30-AC25 mA
P304 40-30-AC40 mA
P304 40-100-AC40 mA
A. P304 40-100-AC
B. P202 25-30-AC
C. P302 25-10-AC
D. P304 40-30-AC

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wyłącznik różnicowoprądowy P202 25-30-AC jest poprawnym wyborem, ponieważ jego zmierzony prąd zadziałania wynosi 25 mA, co plasuje go w przedziale od 15 mA do 30 mA, zgodnym z wymaganiami prądu zadziałania IA = (0,5÷1,00) IN. Zgodnie z normą PN-EN 61008, wyłączniki różnicowoprądowe muszą działać w określonym zakresie prądów zadziałania, co jest kluczowe dla zapewnienia bezpieczeństwa użytkowników oraz ochrony instalacji elektrycznych. Przykładem praktycznego zastosowania tego wyłącznika jest jego instalacja w budynkach mieszkalnych, gdzie chroni przed porażeniem prądem elektrycznym w przypadku uszkodzenia izolacji. Odpowiedni dobór wyłącznika do wartości znamionowych instalacji jest kluczowy, aby zapewnić skuteczną ochronę i minimalizować ryzyko uszkodzeń, a P202 25-30-AC spełnia te normy, co czyni go odpowiednim wyborem.

Pytanie 12

Zatrzymanie pracy grzejnika skutkuje natychmiastowym działaniem zabezpieczenia nadprądowego. Co to sugeruje?

A. zwarcie przewodu fazowego oraz neutralnego
B. zwarcie przewodu ochronnego z obudową
C. uszkodzenie w grzałce
D. uszkodzenie w przewodzie fazowym

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wyłączenie grzejnika w sytuacji, gdy zabezpieczenie nadprądowe natychmiast się załącza, wskazuje na przerwę w grzałce. Taka przerwa w obwodzie grzewczym powoduje, że prąd nie może przepływać przez grzałkę, co skutkuje narastającym napięciem na niepodłączonym odcinku obwodu. W związku z tym, zabezpieczenie nadprądowe, które ma za zadanie chronić instalację przed przeciążeniem oraz zwarciem, rozłącza obwód. Praktycznym przykładem zastosowania tej wiedzy jest kontrola stanu technicznego grzejników oraz regularne przeglądy instalacji elektrycznej, które powinny być przeprowadzane zgodnie z normą PN-IEC 60364. Właściwe podejście do utrzymania instalacji elektrycznej oraz systematyczna diagnostyka pozwala na wczesne wykrywanie usterek i zapobiega poważniejszym awariom. Ponadto, świadomość dotycząca działania zabezpieczeń nadprądowych jest kluczowa w kontekście prawidłowego użytkowania urządzeń grzewczych oraz zapewnienia bezpieczeństwa użytkowników.

Pytanie 13

W jakim układzie sieciowym wyłączniki różnicowoprądowe nie mogą być używane jako elementy ochrony przed porażeniem w przypadku awarii?

A. TN-C
B. TT
C. IT
D. TN-S

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź TN-C jest poprawna, ponieważ w tym układzie sieciowym nie można stosować wyłączników różnicowoprądowych (WRP) jako elementów ochrony przeciwporażeniowej. W systemie TN-C, gdzie neutralny przewód (N) oraz ochronny przewód (PE) są połączone w jeden przewód (PEN), istnieje ryzyko, że WRP nie zadziała w przypadku uszkodzenia. Dzieje się tak, ponieważ wszelkie prądy upływowe mogą być zrównoważone przez prąd neutralny i nie będą rejestrowane przez wyłącznik. Przykładowo, w instalacjach przemysłowych lub budowlanych z układem TN-C, zastosowanie WRP może prowadzić do sytuacji, w których osoba dotykająca części metalowe staje się narażona na porażenie prądem, ponieważ WRP nie wykryje niewielkich różnic prądowych. Dobrymi praktykami w systemach TN-C są stosowanie dodatkowych środków ochrony, takich jak zabezpieczenia przez izolację oraz odpowiednie uziemienie, które mogą zminimalizować ryzyko porażenia. Zgodnie z normą PN-IEC 60364, zaleca się użycie układów TN-S lub TT, gdzie separacja przewodów PE i N pozwala na skuteczne działanie WRP.

Pytanie 14

Co oznacza symbol IP44 w kontekście ochrony urządzeń elektrycznych?

A. Ochronę przed pełnym zanurzeniem w wodzie
B. Ochronę przed bezpośrednim działaniem promieni słonecznych
C. Ochronę przed pyłem oraz działaniem pary wodnej
D. Ochronę przed ciałami stałymi większymi niż 1 mm oraz przed bryzgami wody z dowolnego kierunku

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Symbol IP44 w kontekście ochrony urządzeń elektrycznych oznacza, że urządzenie jest zabezpieczone przed ciałami stałymi o średnicy większej niż 1 mm oraz przed bryzgami wody z dowolnego kierunku. Jest to standardowy sposób klasyfikacji stopnia ochrony zapewnianej przez obudowy urządzeń elektrycznych, określany przez normę IEC 60529. Pierwsza cyfra '4' oznacza, że urządzenie jest chronione przed cząstkami stałymi większymi niż 1 mm, co jest istotne w kontekście ochrony przed kurzem, pyłem czy nawet niewielkimi owadami. Druga cyfra '4' wskazuje na ochronę przed wodą bryzgającą z dowolnego kierunku, co jest istotne w środowiskach, gdzie urządzenie może być narażone na deszcz lub inne źródła wilgoci, ale nie jest przewidziane do zanurzenia. Tego rodzaju ochrona jest szczególnie ważna w przypadku instalacji zewnętrznych lub w miejscach o podwyższonej wilgotności, gdzie niezawodność sprzętu elektrycznego jest kluczowa dla bezpieczeństwa i ciągłości pracy. W praktyce, wybór odpowiedniej klasy IP pozwala na dostosowanie urządzenia do specyficznych warunków pracy, zapewniając jego długowieczność i niezawodność, co jest zgodne z dobrymi praktykami branżowymi.

Pytanie 15

Jakie jest maksymalne dopuszczalne wartości impedancji pętli zwarcia w instalacji elektrycznej o napięciu nominalnym 230 V działającej w układzie TN-S, zabezpieczonej wyłącznikiem nadprądowym C16, aby zapewnić samoczynne wyłączenie zasilania jako środek ochrony przeciwporażeniowej w przypadku awarii?

A. 2,87 Ω
B. 0,71 Ω
C. 4,79 Ω
D. 1,43 Ω

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Maksymalna dopuszczalna impedancja pętli zwarcia dla instalacji z wyłącznikiem nadprądowym C16 w sieci TN-S wynosi 1,43 Ω, co zapewnia odpowiednie warunki do samoczynnego wyłączenia zasilania w przypadku uszkodzenia. Taki wyłącznik nadprądowy zadziała, gdy prąd zwarciowy osiągnie wartość wystarczającą do jego uruchomienia, co w przypadku C16 wynosi 16 A. Aby zapewnić skuteczną ochronę, impedancja pętli zwarcia powinna być tak dobrana, aby prąd zwarciowy przekraczał wartość zadziałania wyłącznika. Przy napięciu 230 V, zgodnie z zasadą Ohma (U = I * R), maksymalna impedancja wynosi: Z = U / I = 230 V / 16 A = 14,375 Ω, co daje duży margines, ale w praktyce akceptowana wartość dla bezpiecznego działania to 1,43 Ω. Przykłady praktycznych zastosowań obejmują instalacje w budynkach mieszkalnych, gdzie ważne jest zapewnienie szybkiego odłączenia prądu w przypadku awarii. Standardy PN-IEC 60364-4-41 oraz PN-EN 61140 określają wymagania dotyczące ochrony przeciwporażeniowej, a także metodyka obliczania impedancji pętli zwarcia, co pozwala na właściwe zabezpieczenie przed porażeniem elektrycznym.

Pytanie 16

Właściciel budynku jednorodzinnego zauważył, że w pralce nastąpiło przebicie do obudowy. Instalacja została wykonana w układzie TN-S, a jako środek ochrony przed porażeniem elektrycznym przy awarii zastosowano samoczynne wyłączenie zasilania. W celu naprawienia usterki instalacji konieczne jest

A. wymienić wkładkę ochronnika przeciwprzepięciowego
B. wymienić wyłącznik nadprądowy
C. zapewnić ciągłość przewodów ochronnych
D. zapewnić ciągłość przewodów neutralnych

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Zapewnienie ciągłości przewodów ochronnych w instalacji elektrycznej jest kluczowe dla zapewnienia bezpieczeństwa użytkowników oraz prawidłowego funkcjonowania urządzeń elektrycznych. W układzie TN-S, który charakteryzuje się oddzielnym przewodem neutralnym i ochronnym, ciągłość przewodów ochronnych (PE) jest niezbędna, aby zapewnić skuteczną ochronę przeciwporażeniową. W przypadku stwierdzenia przebicia do obudowy pralki, brak ciągłości przewodu ochronnego może prowadzić do niebezpiecznej sytuacji, w której obudowa urządzenia może mieć potencjał elektryczny, co naraża użytkowników na ryzyko porażenia prądem. Przykładem może być sytuacja, w której podczas użytkowania pralki dotknięcie obudowy może spowodować przepływ prądu przez ciało człowieka w kierunku uziemienia. Aby temu zapobiec, należy nie tylko zapewnić prawidłowe podłączenie przewodu ochronnego, ale również regularnie sprawdzać jego ciągłość oraz integralność. Zgodnie z normami PN-EN 60364 oraz zaleceniami polskiej normy dotyczącej instalacji elektrycznych, wykonywanie regularnych pomiarów i inspekcji instalacji jest niezbędnym wymogiem dla bezpieczeństwa użytkowników. Dbałość o ciągłość przewodów ochronnych jest elementem dobrych praktyk inżynieryjnych oraz kluczowym aspektem ochrony przed porażeniem elektrycznym.

Pytanie 17

Który z poniższych środków ostrożności nie jest wymagany dla zapewnienia bezpieczeństwa podczas realizacji prac przy linii napowietrznej, która została odłączona od zasilania?

A. Przyłączenie wyłączonej linii do uziemienia
B. Realizowanie pracy w zespole
C. Ogrodzenie terenu, na którym prowadzone są prace
D. Używanie sprzętu izolacyjnego

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Stosowanie sprzętu izolacyjnego w kontekście prac przy wyłączonej linii napowietrznej jest często mylone z koniecznością w sytuacjach, gdzie napięcie jest obecne. Gdy linia jest wyłączona i odpowiednio zabezpieczona, sprzęt izolacyjny nie jest konieczny, ponieważ nie ma ryzyka porażenia prądem. Jednakże, w praktyce, jego użycie może być zalecane w celu dodatkowego zabezpieczenia oraz w sytuacjach, gdzie istnieje ryzyko nieprzewidzianych okoliczności, takich jak przypadkowe włączenie linii. Na przykład, w zgodzie z normami BHP, stosowanie sprzętu izolacyjnego jest kluczowe podczas pracy w pobliżu niepewnych źródeł napięcia. Zawsze warto stosować zasadę ostrożności i posiadać odpowiednie szkolenie w zakresie użycia tego sprzętu. Pracownicy powinni być również świadomi procedur dotyczących oznakowania i blokowania urządzeń, aby zapewnić, że linie pozostaną wyłączone podczas realizacji prac.

Pytanie 18

Jaką liczbę należy użyć do pomnożenia wartości znamionowego prądu silnika trójfazowego klatkowego, który napędza pompę, aby obliczyć maksymalną dopuszczalną wartość nastawy prądu na jego zabezpieczeniu termicznym?

A. 1,1
B. 1,4
C. 0,8
D. 2,2

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź 1,1 jest poprawna, ponieważ przy obliczaniu maksymalnej dopuszczalnej wartości nastawy prądu na zabezpieczeniu termicznym silników trójfazowych, stosuje się współczynnik 1,1. Ten współczynnik uwzględnia zwiększone obciążenie silnika w przypadku jego rozruchu oraz wpływ na jego pracę w warunkach długotrwałego obciążenia. Przyjmuje się, że silniki trójfazowe mogą być obciążane do wartości 10% powyżej znamionowej przez krótki czas, co jest kluczowe dla ochrony silnika oraz zapewnienia jego efektywności. W praktyce oznacza to, że jeżeli znamionowy prąd silnika wynosi na przykład 10 A, to maksymalna wartość nastawy na zabezpieczeniu termicznym powinna wynosić 11 A. Zastosowanie tego współczynnika jest zgodne z normami IEC 60034 oraz wytycznymi producentów urządzeń, co jest kluczowe dla zabezpieczenia silników i zapewnienia ich prawidłowej pracy.

Pytanie 19

Która z poniższych informacji powinna być wyeksponowana na elektrycznym urządzeniu napędowym?

A. Poziom odchylenia napięcia zasilającego
B. Termin kolejnego przeglądu technicznego
C. Typ zastosowanych zabezpieczeń przeciwzwarciowych
D. Strzałka wskazująca wymagany kierunek obrotu

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Strzałka oznaczająca wymagany kierunek wirowania jest kluczowym elementem oznaczenia elektrycznego urządzenia napędowego, który musi być widoczny dla operatorów i personelu technicznego. Oznaczenie to jest niezbędne, aby zapewnić poprawne uruchomienie i eksploatację maszyny. W przypadku napędów elektrycznych, niewłaściwy kierunek wirowania może prowadzić do poważnych uszkodzeń mechanicznych, zwiększonego zużycia energii oraz zagrożeń dla bezpieczeństwa pracowników. W praktyce oznaczenie kierunku wirowania powinno być zgodne z obowiązującymi standardami, takimi jak norma PN-EN 60204-1 dotycząca bezpieczeństwa maszyn oraz prawidłowej obsługi urządzeń elektrycznych. Przykładowo, w przypadku silników elektrycznych, strzałka na obudowie silnika wskazuje, w którą stronę wirnik powinien się obracać podczas pracy. Niezastosowanie się do tych oznaczeń może skutkować błędami w procesu produkcji, a także prowadzić do znacznych kosztów napraw i przestojów.

Pytanie 20

Jakie urządzenie jest wykorzystywane do ochrony przewodów instalacyjnych przed skutkami przeciążeń?

A. Izolacyjny rozłącznik
B. Wyłącznik nadprądowy
C. Ochrona przeciwprzepięciowa
D. Przekaźnik cieplny

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wyłącznik nadprądowy jest kluczowym urządzeniem stosowanym w instalacjach elektrycznych do ochrony przewodów instalacyjnych przed skutkami przeciążeń oraz zwarć. Działa on na zasadzie monitorowania prądu przepływającego przez obwód i automatycznie odłącza zasilanie w przypadku, gdy wartość prądu przekroczy ustaloną wartość nominalną. Dzięki temu zapobiega przegrzewaniu się przewodów oraz ryzyku pożaru. Przykładowo, w domowej instalacji elektrycznej, wyłącznik nadprądowy może chronić obwód, na którym znajduje się sprzęt AGD, co jest zgodne z normą PN-EN 60898. Często stosuje się go w połączeniu z innymi zabezpieczeniami, tworząc kompleksowy system ochrony. W przypadku nadmiernego obciążenia, wyłącznik nadprądowy zadziała w ułamku sekundy, co jest kluczowe dla bezpieczeństwa użytkowników. Dążąc do zapewnienia wysokiego poziomu bezpieczeństwa w instalacjach, należy regularnie kontrolować stan wyłączników nadprądowych oraz dostosowywać ich parametry do wymagań obciążeniowych danego obwodu.

Pytanie 21

Który z poniższych pomiarów potwierdza ciągłość przewodu ochronnego w układzie TN-S?

A. Prądu upływu w przewodzie ochronnym
B. Impedancji pętli zwarcia
C. Rezystancji uziomu
D. Rezystancji izolacji przewodu ochronnego

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź dotycząca impedancji pętli zwarcia jest poprawna, ponieważ jest to kluczowy parametr w ocenie ciągłości przewodu ochronnego w systemie TN-S. W systemach ochrony przeciwporażeniowej, takich jak TN-S, impedancja pętli zwarcia odgrywa istotną rolę w zapewnieniu skutecznej i szybkiej reakcji zabezpieczeń na zwarcie. Wysoka jakość przewodu ochronnego wymaga, aby jego impedancja była odpowiednio niska, co pozwala na szybkie załączenie wyłącznika nadprądowego w przypadku wystąpienia zwarcia. Praktyczne zastosowanie tego pomiaru można zobaczyć w trakcie testów instalacji elektrycznych, gdzie zmierzone wartości impedancji pętli zwarcia są porównywane z wymaganiami standardów, takich jak PN-IEC 60364, które wskazują na maksymalne wartości impedancji, aby zapewnić bezpieczeństwo użytkowników. Odpowiednia analiza impedancji pętli zwarcia jest także niezbędna w procesie odbioru instalacji elektrycznych oraz w regularnych przeglądach technicznych, co wpływa na długotrwałe i bezpieczne użytkowanie instalacji elektrycznej.

Pytanie 22

Jaką minimalną wartość rezystancji powinna mieć podłoga i ściany w izolowanym miejscu pracy z urządzeniami pracującymi na napięciu 400 V, aby zapewnić efektywną ochronę przeciwporażeniową przed dotykiem pośrednim?

A. 50kΩ
B. 75kΩ
C. 25kΩ
D. 10kΩ

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Rezystancja ścian i podłogi w izolowanym stanowisku pracy z urządzeniami o napięciu 400 V powinna wynosić co najmniej 50 kΩ, aby zapewnić skuteczną ochronę przed dotykiem pośrednim. Wysoka wartość rezystancji jest kluczowa, ponieważ zmniejsza ryzyko przepływu prądu przez ciało człowieka w przypadku awarii izolacji. Zgodnie z normami IEC 60364 oraz PN-EN 61140, minimalna rezystancja ochronna dla urządzeń elektrycznych w takich warunkach powinna wynosić 50 kΩ. W praktyce, stosowanie takiej wartości rezystancji wpływa na zwiększenie bezpieczeństwa operatorów, zwłaszcza w środowiskach przemysłowych, gdzie ryzyko porażenia prądem jest wyższe. Przykładem może być zakład produkcyjny, w którym regularnie stosuje się urządzenia do pomiarów rezystancji w celu zapewnienia, że izolacja jest odpowiednia i nie zagraża pracownikom. Dobre praktyki obejmują także okresowe przeglądy instalacji elektrycznych oraz testowanie zabezpieczeń, co dodatkowo minimalizuje ryzyko awarii.

Pytanie 23

Jakiej informacji nie jest konieczne zawarcie w instrukcji użytkowania instalacji elektrycznych chronionych wyłącznikami nadmiarowo-prądowymi?

A. Danych technicznych instalacji
B. Zasad bezpieczeństwa przy realizacji prac eksploatacyjnych
C. Terminów dotyczących prób oraz kontrolnych pomiarów
D. Wybory i konfiguracji urządzeń zabezpieczających

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Kiedy dobierasz urządzenia zabezpieczające, musisz naprawdę wiedzieć, co robisz i przeanalizować, jakie masz parametry techniczne. Instrukcja dotycząca instalacji elektrycznych, które mają wyłączniki nadmiarowo-prądowe, nie musi opisywać wszystkiego na szczegółowo, bo każdy przypadek jest inny i trzeba to dopasować do konkretnej sytuacji. W praktyce dobierasz te urządzenia na podstawie tego, jak duże masz obciążenie, jak wygląda sama instalacja i jakie są warunki pracy. Na przykład, wyłączniki nadmiarowo-prądowe powinny być wybierane zgodnie z normami PN-EN 60898. Ważne jest, żebyś wiedział, jakie są ich cechy – na przykład typ wyłącznika. Powinieneś to określić, analizując obciążenie i możliwe zagrożenia. Dlatego instrukcja eksploatacji koncentruje się na zasadach użytkowania, kontroli i konserwacji – to wszystko jest kluczowe, żeby zapewnić bezpieczeństwo i sprawność systemu.

Pytanie 24

Jakie prace są dozwolone w instalacjach elektrycznych, które nie są wyłączone spod napięcia w sieci TN?

A. Wykonywanie pomiaru rezystancji izolacji instalacji.
B. Wymiana wkładek bezpiecznikowych.
C. Dokręcanie przewodów w złączach.
D. Zamiana gniazdek.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wymiana wkładek bezpiecznikowych w instalacjach elektrycznych niewyłączonych spod napięcia w układzie sieciowym TN jest dozwolona, ponieważ ta czynność nie wiąże się z bezpośrednim narażeniem pracownika na kontakt z elementami pod napięciem. Wkładki bezpiecznikowe są elementami, które można wymieniać bez rozłączania obwodu, co jest zgodne z zasadami bezpieczeństwa określonymi w normach PN-IEC 60364. W praktyce, wymiana wkładek bezpiecznikowych jest powszechnie stosowaną procedurą, która może być przeprowadzana przez przeszkolonych pracowników elektrycznych, co pozwala na kontynuowanie pracy urządzeń w przypadku awarii. W kontekście dobrych praktyk, istotne jest, aby personel posiadał odpowiednie kwalifikacje oraz znał zasady BHP, co zapewnia bezpieczeństwo podczas takich operacji. Zastosowanie odpowiednich narzędzi oraz przestrzeganie procedur operacyjnych pozwala na zminimalizowanie ryzyka i zapewnienie ciągłości zasilania w instalacjach elektrycznych.

Pytanie 25

Trójfazowy silnik klatkowy, pracujący ze znamionowym obciążeniem, nagle zaczął pracować głośniej, a jego prędkość obrotowa spadła. Która z poniższych przyczyn może być odpowiedzialna za zaobserwowaną zmianę w funkcjonowaniu tego silnika?

A. Przerwa w przewodzie ochronnym w sieci zasilającej.
B. Brak jednej z faz zasilania.
C. Wzrost wartości napięcia z sieci zasilającej.
D. Zwiększenie częstotliwości napięcia zasilającego.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Przerwa w jednej z faz zasilania jest jedną z najczęstszych przyczyn problemów z trójfazowymi silnikami klatkowym. Taki silnik jest zaprojektowany do pracy na trzech fazach, a ich zrównoważone napięcie jest kluczowe dla prawidłowego działania. W przypadku przerwy w jednej z faz, silnik zaczyna pracować w trybie niepełnym, co prowadzi do utraty momentu obrotowego oraz zwiększenia obciążenia na pozostałych fazach. Przykładowo, podczas pracy silnika w trybie niepełnym, jego obroty mogą znacznie spaść, a hałas wzrosnąć z powodu wibracji i nadmiernych prądów w pozostałych fazach. W praktyce, jeśli operator zauważy takie objawy, powinien natychmiast wyłączyć silnik i sprawdzić połączenia zasilające oraz zabezpieczenia, zgodnie z zasadami bezpieczeństwa i dobrymi praktykami eksploatacyjnymi. Warto także przeprowadzić analizy obwodów zasilających, aby zidentyfikować ewentualne uszkodzenia. Takie działania są zgodne z normami IEC 60034 dotyczącymi maszyn elektrycznych oraz z procedurami bezpieczeństwa pracy z urządzeniami elektrycznymi.

Pytanie 26

Jaką wielkość należy zmierzyć, aby ocenić skuteczność zabezpieczeń podstawowych w elektrycznej instalacji o napięciu znamionowym do 1 kV?

A. Rezystancji izolacji
B. Napięcia krokowego
C. Rezystancji uziomu
D. Impedancji zwarciowej

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Pomiar rezystancji izolacji jest kluczowym elementem oceny skuteczności ochrony podstawowej w instalacjach elektrycznych, szczególnie w tych o napięciu znamionowym do 1 kV. Odpowiedni poziom rezystancji izolacji zapewnia, że nie występują niepożądane przepływy prądu do ziemi, co mogłoby prowadzić do porażenia prądem lub uszkodzenia urządzeń. Zgodnie z normą PN-EN 60364-6, minimalna rezystancja izolacji powinna wynosić co najmniej 1 MΩ dla systemów o napięciu do 1 kV, co gwarantuje odpowiednie bezpieczeństwo. Przykładem zastosowania tego pomiaru jest przeprowadzanie testów przed oddaniem do użytkowania nowej instalacji, a także regularne kontrole w celu wykrycia degradacji izolacji na skutek starzenia się materiałów, wilgoci czy innych czynników zewnętrznych. Dzięki tym pomiarom można zminimalizować ryzyko awarii, co jest szczególnie istotne w obiektach użyteczności publicznej oraz w środowiskach przemysłowych, gdzie bezpieczeństwo użytkowników ma kluczowe znaczenie.

Pytanie 27

Jaka powinna być minimalna wartość natężenia prądu przy pomiarze ciągłości przewodu ochronnego?

A. 400 mA
B. 500 mA
C. 100 mA
D. 200 mA

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Minimalna wartość natężenia prądu podczas wykonywania pomiaru ciągłości przewodu ochronnego wynosząca 200 mA jest określona przez normy, takie jak PN-EN 61557-4. Pomiary te mają na celu potwierdzenie, że przewody ochronne są w stanie zapewnić odpowiednią ochronę przed porażeniem elektrycznym. Wartość ta została ustalona na podstawie doświadczeń inżynieryjnych i badań, które wykazały, że natężenie prądu na poziomie 200 mA jest wystarczające do wykrycia ewentualnych wad w izolacji przewodów, a jednocześnie jest na tyle bezpieczne, aby nie stanowić zagrożenia dla osób wykonujących pomiar. W praktyce, podczas testów, jeśli wartość ta nie zostanie osiągnięta, może to sugerować problemy z przewodem ochronnym, co może prowadzić do niebezpiecznych sytuacji w instalacji elektrycznej. Regularne wykonywanie takich pomiarów jest kluczowe dla zapewnienia bezpieczeństwa użytkowników oraz zgodności z przepisami. Prawidłowe pomiary ciągłości przewodów ochronnych powinny być częścią regularnego serwisu i konserwacji instalacji elektrycznej, aby zapewnić ich prawidłowe funkcjonowanie.

Pytanie 28

Jaki jest cel uziemienia ochronnego w instalacjach elektrycznych?

A. Poprawa jakości sygnału w instalacjach telekomunikacyjnych
B. Zabezpieczenie ludzi przed porażeniem elektrycznym
C. Redukcja zużycia energii elektrycznej w instalacjach elektrycznych
D. Zwiększenie mocy znamionowej urządzeń elektrycznych

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Uziemienie ochronne ma na celu przede wszystkim zabezpieczenie ludzi przed porażeniem elektrycznym, co jest jednym z najważniejszych aspektów bezpieczeństwa w instalacjach elektrycznych. W praktyce oznacza to, że obudowy urządzeń elektrycznych są połączone z ziemią, co umożliwia szybkie odprowadzenie prądu w przypadku zwarcia lub uszkodzenia izolacji. Dzięki temu, jeżeli np. przewód fazowy zetknie się z metalową obudową urządzenia, prąd popłynie do ziemi, a nie przez ciało człowieka, co znacząco zmniejsza ryzyko porażenia. Takie uziemienie jest wymagane przez normy bezpieczeństwa elektrycznego, takie jak PN-IEC 60364. W skrócie, uziemienie ochronne działa jako środek zapobiegawczy, który minimalizuje ryzyko wypadków i zwiększa ogólne bezpieczeństwo użytkowników instalacji elektrycznych. Dodatkowo, uziemienie ochronne pomaga w stabilizacji napięcia sieci i eliminuje potencjalne różnice napięcia, co jest kluczowe w utrzymaniu właściwego działania urządzeń elektrycznych. To nie tylko praktyka, ale też standard w branży, który musi być przestrzegany, by zapewnić bezpieczne i efektywne działanie instalacji.

Pytanie 29

Co należy zrobić przed przystąpieniem do pomiaru rezystancji izolacji za pomocą megomierza?

A. Odłączyć zasilanie
B. Zmierzyć napięcie zasilania
C. Podłączyć urządzenie do sieci
D. Uziemić megomierz

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Przed pomiarem rezystancji izolacji za pomocą megomierza należy bezwzględnie odłączyć zasilanie badanego obwodu. To kluczowy krok, który zapewnia bezpieczeństwo zarówno osoby wykonującej pomiar, jak i chroni sprzęt przed uszkodzeniem. Megomierz generuje wysokie napięcie, które w połączeniu z istniejącym zasilaniem mogłoby spowodować porażenie elektryczne lub uszkodzenie izolacji. Dodatkowo, odłączenie zasilania pozwala na uzyskanie dokładnych wyników, ponieważ eliminuje wpływ napięcia zasilającego na pomiar. W praktyce, przed rozpoczęciem pomiarów, należy również upewnić się, że obwód nie jest pod napięciem za pomocą odpowiednich narzędzi, takich jak wskaźnik napięcia. Przestrzeganie tych zasad jest zgodne z normami bezpieczeństwa pracy z urządzeniami elektrycznymi, które podkreślają znaczenie odłączenia zasilania przed jakimikolwiek pracami serwisowymi czy pomiarowymi.

Pytanie 30

Trójfazowy silnik indukcyjny jest przystosowany do uruchamiania z wykorzystaniem przełącznika gwiazda-trójkąt. Jaką mocą, w porównaniu do mocy znamionowej, można go obciążyć przy połączeniu uzwojeń w konfiguracji gwiazdy?

A. Dwukrotnie większą
B. Trzykrotnie większą
C. Dwukrotnie mniejszą
D. Trzykrotnie mniejszą

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź, że silnik indukcyjny trójfazowy można obciążyć trzykrotnie mniejszą mocą przy połączeniu uzwojeń w gwiazdę, jest poprawna z technicznego punktu widzenia. W układzie gwiazda napięcie zasilające na każdym uzwojeniu wynosi 1/√3 napięcia fazowego, co wpływa na moc, jaką silnik może wygenerować. W momencie rozruchu w trybie gwiazdy, silnik może dostarczyć jedynie 1/3 mocy znamionowej, co jest kluczowe, aby uniknąć przeciążenia uzwojeń i nadmiernych prądów rozruchowych, które mogłyby prowadzić do uszkodzenia silnika. W praktyce, stosowanie przełącznika gwiazda-trójkąt w dużych silnikach indukcyjnych pozwala na zredukowanie prądów rozruchowych, co jest zgodne z dobrymi praktykami w inżynierii elektrycznej. Przykładem zastosowania tej metody są silniki napędzające duże wentylatory, pompy czy sprężarki, w których istotne jest kontrolowanie momentu rozruchowego oraz ograniczenie obciążeń mechanicznych w początkowej fazie pracy.

Pytanie 31

Aby zapewnić dodatkową ochronę, obwody zasilające gniazda wtyczkowe, w których prąd nie przekracza 32 A, powinny być chronione przez wyłącznik RCD o prądzie różnicowym

A. 1 000 mA
B. 100 mA
C. 500 mA
D. 30 mA

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź 30 mA jest prawidłowa, ponieważ wyłączniki różnicowoprądowe (RCD) o prądzie różnicowym 30 mA są zalecane do ochrony osób przed porażeniem prądem elektrycznym w instalacjach domowych i komercyjnych. W przypadku gniazd wtyczkowych, które obsługują urządzenia przenośne, istotne jest, aby ochrona była jak najszybsza i najskuteczniejsza, co osiąga się stosując RCD o niskim prądzie różnicowym. Wyłącznik 30 mA działa na zasadzie wykrywania różnicy prądów między przewodami fazowym a neutralnym, co pozwala na natychmiastowe odłączenie zasilania w przypadku wykrycia upływu prądu, który może być wynikiem zwarcia lub kontaktu z ciałem człowieka. Użycie wyłącznika o wyższym prądzie różnicowym, jak 100 mA lub 500 mA, nie zapewnia wystarczającej ochrony i może prowadzić do tragicznych skutków w przypadku porażenia. Przykładowo, w łazienkach, gdzie ryzyko kontaktu z wodą i prądem jest szczególnie wysokie, stosowanie RCD 30 mA jest wręcz obowiązkowe zgodnie z normami bezpieczeństwa elektrycznego.

Pytanie 32

Jakie oznaczenie powinna nosić wkładka bezpiecznikowa, którą trzeba zainstalować w celu zabezpieczenia silników oraz urządzeń rozdzielczych?

A. gR
B. gB
C. aM
D. aL

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wkładka bezpiecznikowa oznaczona symbolem aM jest przeznaczona do ochrony silników oraz urządzeń rozdzielczych przed przeciążeniem i zwarciem. Oznaczenie to wskazuje, że bezpiecznik ten ma charakterystykę czasowo-prądową, która jest dostosowana do pracy urządzeń z silnikami, co oznacza, że pozwala na chwilowe przekroczenie dopuszczalnego prądu w momencie rozruchu silnika, co jest niezbędne dla prawidłowego funkcjonowania urządzeń elektrycznych. W praktyce oznacza to, że wkładka aM jest w stanie znieść większy prąd przez krótki czas, co zapobiega niepotrzebnym wyłączeniom w przypadku chwilowych przeciążeń. Takie wkładki są szczególnie zalecane w instalacjach, gdzie silniki startują z dużym momentem, co generuje znaczne obciążenia prądowe. Wdrożenie wkładek aM zgodnie z normami IEC 60269, które określają wymagania dla wkładek bezpiecznikowych, jest dobrą praktyką, zapewniającą bezpieczeństwo oraz niezawodność systemów elektrycznych.

Pytanie 33

Ile maksymalnie gniazd wtykowych można zainstalować w jednym obwodzie w instalacjach elektrycznych w budynkach mieszkalnych?

A. 10
B. 6
C. 4
D. 12

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź 10 gniazd wtyczkowych na jedno gniazdo obwodowe jest zgodna z normami oraz praktykami stosowanymi w instalacjach elektrycznych. Zgodnie z Polskimi Normami, a także wytycznymi zawartymi w normach europejskich, maksymalna liczba gniazd wtyczkowych, które można podłączyć do jednego obwodu, powinna wynosić 10. To ograniczenie wynika z konieczności zapewnienia bezpieczeństwa użytkowników oraz ochrony instalacji przed przeciążeniem. Zbyt duża liczba gniazd wtyczkowych podłączonych do jednego obwodu może prowadzić do przegrzewania się przewodów, a co za tym idzie, do ryzyka pożaru. Przykładem może być sytuacja, w której użytkownik podłącza wiele urządzeń o dużym poborze mocy, takich jak czajniki, mikrofalówki czy komputery, co może przekroczyć dopuszczalny prąd obwodu. Dlatego ważne jest przestrzeganie zasad bezpieczeństwa oraz odpowiednie projektowanie instalacji elektrycznych, aby uniknąć niebezpieczeństw związanych z przeciążeniem.

Pytanie 34

Który z podanych sposobów ochrony przed porażeniem elektrycznym pełni rolę zabezpieczenia dodatkowego w przypadku uszkodzenia instalacji elektrycznych niskonapięciowych?

A. Podwójna lub wzmocniona izolacja elektryczna
B. Separacja elektryczna odbiornika
C. Umieszczenie części czynnych poza zasięgiem ręki
D. Ochronne miejscowe połączenia wyrównawcze

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Ochronne miejscowe połączenia wyrównawcze stanowią kluczowy element systemów ochrony przeciwporażeniowej, zwłaszcza w instalacjach elektrycznych niskich napięć. Działają one w celu minimalizacji różnic potencjałów między różnymi metalowymi elementami instalacji, co zmniejsza ryzyko porażenia prądem elektrycznym. W sytuacji awaryjnej, gdy dojdzie do uszkodzenia izolacji lub innej awarii, połączenia wyrównawcze zapewniają alternatywną drogę dla prądu, co przyczynia się do szybszego działania zabezpieczeń. Przykładowo, w obiektach użyteczności publicznej, takich jak szkoły czy szpitale, implementacja miejscowych połączeń wyrównawczych jest zgodna z normami PN-EN 61140, które podkreślają znaczenie zachowania niskiego poziomu ryzyka w zakresie bezpieczeństwa elektrycznego. Dobrą praktyką jest również regularne sprawdzanie stanu technicznego tych połączeń, aby zapewnić ich pełną funkcjonalność w razie potrzeby.

Pytanie 35

Jaką czynność powinno się przeprowadzić przed rozpoczęciem pracy silnika trójfazowego w przenośnym urządzeniu budowlanym, po zmianie jego lokalizacji?

A. Zweryfikować symetrię napięć w instalacji.
B. Dokonać pomiaru rezystancji izolacji urządzenia.
C. Sprawdzić kolejność faz w źródle zasilania.
D. Zmierzyć prąd różnicowy wyłącznika różnicowoprądowego

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Sprawdzenie kolejności faz w sieci zasilającej przed uruchomieniem silnika trójfazowego jest kluczowym krokiem w zapewnieniu prawidłowej pracy urządzenia. W przypadku silników trójfazowych, niewłaściwa kolejność faz może prowadzić do odwrotnego obrotu wirnika, co w kontekście urządzenia budowlanego może skutkować poważnymi konsekwencjami, takimi jak uszkodzenie maszyny czy zagrożenie dla bezpieczeństwa użytkownika. Przykładem może być sytuacja, gdy silnik napędza narzędzie, które wymaga określonego kierunku obrotów do bezpiecznej i efektywnej pracy. Zgodnie z normami IEC 60034, które regulują kwestie dotyczące silników elektrycznych, zawsze należy upewnić się, że kolejność faz jest prawidłowa przed uruchomieniem. W praktyce, przed rozpoczęciem pracy, warto wykorzystać specjalistyczne mierniki do sprawdzenia kolejności faz, co może zapobiec niebezpiecznym sytuacjom i wydłużyć żywotność urządzenia.

Pytanie 36

Czym charakteryzują się urządzenia oznaczone znakiem pokazanym na rysunku?

Ilustracja do pytania
A. Mają podwójną lub wzmocnioną izolację.
B. Muszą być umieszczane poza zasięgiem ręki.
C. Muszą być zasilane bardzo niskim napięciem bezpiecznym.
D. Wymagają ogrodzeń, jako ochrony przeciwporażeniowej.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź, że "Mają być zasilane bardzo niskim napięciem bezpiecznym" jest jak najbardziej trafna. Urządzenia z symbolem klasy III, który widnieje na rysunku, powinny być zasilane niskim napięciem, nieprzekraczającym 50V w prądzie przemiennym i 120V w prądzie stałym. Nazywamy to SELV, czyli ewentualnie niskim napięciem bezpiecznym. Dzięki temu ryzyko porażenia prądem jest znacznie mniejsze. W praktyce znajdziemy takie urządzenia wszędzie tam, gdzie ludzie często mają z nimi do czynienia, jak na przykład w sprzęcie medycznym czy lampach. Kluczowe jest, żeby przy projektowaniu instalacji elektrycznych z użyciem tych urządzeń przestrzegać norm bezpieczeństwa, jak PN-EN 61140. Co więcej, fakt, że nie trzeba ich uziemiać, bardzo ułatwia ich montaż i sprawia, że są super uniwersalne w różnych zastosowaniach przemysłowych i komercyjnych.

Pytanie 37

Jakie metody zapewniają ochronę przed porażeniem w instalacji fotowoltaicznej na stronie prądu stałego w przypadku uszkodzenia?

A. umieszczenie wszystkich komponentów na izolowanym podłożu
B. wykonanie wszystkich elementów w II klasie ochronności
C. użycie automatycznego wyłączenia zasilania poprzez wyłączniki nadprądowe
D. użycie automatycznego wyłączenia zasilania przez zastosowanie bezpieczników topikowych

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wykonanie urządzeń w II klasie ochronności oznacza, że są one zaprojektowane w taki sposób, aby zapewnić odpowiedni poziom bezpieczeństwa użytkownikom. Urządzenia te mają dodatkowe izolacje oraz nie wymagają podłączenia do uziemienia, co jest kluczowe w instalacjach fotowoltaicznych, gdzie prąd stały może stanowić zagrożenie w przypadku awarii. Przykładem zastosowania tego rozwiązania może być montaż paneli słonecznych, w których zastosowane komponenty są certyfikowane jako spełniające normy II klasy ochronności. W przypadku uszkodzenia instalacji, takie urządzenia zminimalizują ryzyko porażenia prądem, ponieważ są one zaprojektowane tak, by nie dopuścić do wystąpienia niebezpiecznych napięć na obudowie. Dodatkowo, stosowanie urządzeń w II klasie ochronności jest zgodne z normami IEC 61140, które definiują wymagania dotyczące ochrony osób przed porażeniem elektrycznym, co potwierdza ich praktyczną wartość na etapie projektowania i wdrażania instalacji fotowoltaicznych.

Pytanie 38

Jakie urządzenie gaśnicze powinno być użyte do gaszenia pożaru w rozdzielnicy elektrycznej, której nie można odłączyć od zasilania?

A. Gaśnicę proszkową.
B. Gaśnicę cieczy.
C. Tłumicę.
D. Hydronetkę.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Gaśnice proszkowe są skutecznym narzędziem do gaszenia pożarów klasy C, które obejmują gazy palne oraz pożary elektryczne. W przypadku pożaru rozdzielnicy elektrycznej, której nie można wyłączyć spod napięcia, stosowanie gaśnicy proszkowej jest zalecane ze względu na jej właściwości. Proszek gaśniczy, najczęściej bazujący na wodorofosforanie amonu, skutecznie tłumi płomienie, nie przewodząc prądu, co czyni go bezpiecznym w kontakcie z urządzeniami pod napięciem. Przykładowo, w sytuacji awaryjnej, gdy nie można zredukować napięcia elektrycznego, użycie gaśnicy proszkowej pozwala na szybkie i efektywne działanie, minimalizując ryzyko porażenia prądem. W praktyce, standardy bezpieczeństwa, takie jak normy NFPA i EN 3, jasno wskazują, że gaśnice proszkowe powinny być używane w takich sytuacjach, co czyni je najlepszym wyborem w kontekście ochrony przeciwpożarowej w obiektach z instalacjami elektrycznymi.

Pytanie 39

Na jaką wartość krotności prądu znamionowego silnika klatkowego trójfazowego, który napędza hydrofor w gospodarstwie domowym, powinno się ustawić zabezpieczenie termiczne?

A. 1,4 ∙ In
B. 1,1 ∙ In
C. 2,2 ∙ In
D. 0,8 ∙ In

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź 1,1 ∙ In jest poprawna, ponieważ zabezpieczenie termiczne silnika klatkowego trójfazowego powinno być dobrane w taki sposób, aby mogło one skutecznie chronić silnik przed przegrzaniem w normalnych warunkach pracy oraz w czasie rozruchu. W praktyce, standardowe ustawienie zabezpieczeń termicznych dla silników elektrycznych, zgodne z normami, zakłada, że maksymalne obciążenie nie powinno przekraczać 1,1-krotności prądu znamionowego In. Ustawienie to uwzględnia zarówno chwilowe przeciążenia, jak i okresy pracy silnika przy pełnym obciążeniu, zapewniając jednocześnie odpowiednią ochronę przed nadmiernym wzrostem temperatury. Ważne jest, aby zabezpieczenie termiczne nie było ustawione zbyt nisko, co mogłoby prowadzić do nadmiernych wyłączeń systemu, ani zbyt wysoko, co z kolei mogłoby skutkować uszkodzeniem silnika. Przykładowo, w instalacjach hydroforowych w gospodarstwach domowych, silniki często pracują w warunkach zmiennego obciążenia, dlatego dostosowanie ustawienia na poziomie 1,1 ∙ In zapewnia optymalną równowagę między ochroną a dostępnością mocy.

Pytanie 40

Jakie jest najwyższe dozwolone różnicowe natężenie prądu znamionowego wyłącznika różnicowoprądowego w celu zapewnienia ochrony przeciwpożarowej?

A. 300 mA
B. 10 mA
C. 100 mA
D. 30 mA

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź 300 mA jest prawidłowa, ponieważ zgodnie z normami ochrony przeciwpożarowej, maksymalny dopuszczalny różnicowy prąd znamionowy wyłącznika różnicowoprądowego, który ma na celu ochronę przed pożarem, wynosi właśnie 300 mA. Wyłączniki różnicowoprądowe o tej wartości prądu są projektowane tak, aby minimalizować ryzyko zapłonu w przypadku wystąpienia zwarcia, umożliwiając jednocześnie zapewnienie dostatecznego poziomu ochrony osób przed porażeniem prądem elektrycznym. W praktyce zastosowanie wyłączników o wartości 300 mA jest szczególnie zalecane w obiektach użyteczności publicznej oraz w instalacjach, gdzie występuje duże ryzyko przepływu prądu, ale niekoniecznie można zainstalować wyłączniki o niższych wartościach. Pomagają one w ograniczeniu skutków awarii i minimalizują straty materialne, podnosząc bezpieczeństwo całego systemu elektrycznego. Warto dodać, że w obiektach mieszkalnych oraz w strefach o podwyższonym ryzyku, takich jak łazienki czy kuchnie, zaleca się stosowanie wyłączników różnicowoprądowych o prądzie znamionowym 30 mA, co zapewnia skuteczniejszą ochronę przed porażeniem elektrycznym.