Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektryk
  • Kwalifikacja: ELE.02 - Montaż, uruchamianie i konserwacja instalacji, maszyn i urządzeń elektrycznych
  • Data rozpoczęcia: 8 grudnia 2025 08:32
  • Data zakończenia: 8 grudnia 2025 09:00

Egzamin zdany!

Wynik: 22/40 punktów (55,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Na którym rysunku przedstawiono źródło światła z trzonkiem typu B?

Ilustracja do pytania
A. D.
B. C.
C. B.
D. A.
Wybór odpowiedzi, która nie wskazuje na źródło światła z trzonkiem typu B, może wynikać z nieznajomości podstawowych różnic między różnymi typami trzonków. Trzonek igiełkowy, jak w przypadku odpowiedzi B, ma zupełnie inny mechanizm mocowania, który polega na osadzeniu żarówki w oprawie poprzez włożenie jej w odpowiednie gniazdo, a nie na blokowaniu poprzez wystające elementy. Tego typu trzonki są popularne w halogenach, które charakteryzują się większą efektywnością energetyczną, ale nie są kompatybilne z oprawami zaprojektowanymi dla trzonków baionetowych. Świetlówki, przedstawione w odpowiedzi C, wykorzystują całkowicie odmienną technologię, opartą na zasadzie wyładowania elektrycznego, co czyni je nieodpowiednimi dla zastosowań wymagających trzonka typu B. Na zakończenie, trzonek gwintowy, jak w przypadku odpowiedzi D, jest powszechnie używany w tradycyjnych żarówkach i różni się konstrukcyjnie oraz funkcjonalnie od trzonka baionetowego, co może prowadzić do błędnych założeń o kompatybilności. Kluczowym błędem w ocenie tej kwestii jest nieprawidłowe rozumienie różnorodności typów trzonków w kontekście ich zastosowań, co może prowadzić do niewłaściwych wyborów przy zakupie źródeł światła.

Pytanie 2

Której klasy ogranicznik przepięciowy przedstawiono na rysunku?

Ilustracja do pytania
A. Klasy A
B. Klasy C
C. Klasy D
D. Klasy B
Odpowiedź "Klasy D" jest jak najbardziej trafna. Ograniczniki tej klasy są stworzone po to, żeby chronić instalacje elektryczne przed dużymi przepięciami, które mogą się zdarzyć na przykład podczas burzy albo z powodu problemów w sieci energetycznej. To, co jest super w ogranicznikach klasy D, to ich zdolność do wchłaniania ogromnych energii w bardzo krótkim czasie, przez co świetnie sprawdzają się w systemach niskonapięciowych. Można je np. znaleźć w zasilaniu komputerowym, gdzie ochrona przed nagłymi wzrostami napięcia jest naprawdę ważna, żeby nie utracić danych. Zgodnie z normą IEC 62305, korzystanie z ograniczników klasy D jest polecane, żeby zminimalizować ryzyko zniszczenia sprzętu elektronicznego. Ważne jest, aby dobrać je do lokalnych warunków, bo to gwarantuje najlepszą ochronę.

Pytanie 3

Instalacja elektryczna, której odbiorniki oznaczone są symbolem graficznym pokazanym na rysunku

Ilustracja do pytania
A. jest zasilana bardzo niskim napięciem.
B. nie posiada ochrony przed dotykiem pośrednim.
C. posiada podwójną lub wzmocnioną izolację.
D. ma uziemione przewodzące obudowy odbiorników.
Wybór odpowiedzi innych niż "jest zasilana bardzo niskim napięciem" wskazuje na nieporozumienie dotyczące klasyfikacji urządzeń elektrycznych i ich właściwości. Przykładowo, stwierdzenie, że instalacja "ma uziemione przewodzące obudowy odbiorników" jest nieprawidłowe, ponieważ urządzenia klasy III nie wymagają uziemienia dla zapewnienia bezpieczeństwa. Uziemienie dotyczy głównie urządzeń klasy I, gdzie ochrona przed porażeniem elektrycznym realizowana jest poprzez uziemienie metalowej obudowy. Kolejna opcja, mówiąca o "podwójnej lub wzmocnionej izolacji", odnosi się także do urządzeń klasy II, które są zabezpieczone dodatkową izolacją, a nie do urządzeń klasy III. Twierdzenie, że urządzenie "nie posiada ochrony przed dotykiem pośrednim", jest mylące, ponieważ urządzenia klasy III są projektowane z myślą o minimalizacji ryzyka kontaktu z napięciem, korzystając z niskich wartości napięcia, co w praktyce oznacza, że nie ma zagrożenia dotyku pośredniego. Wreszcie, stwierdzenie, że "jest zasilana bardzo niskim napięciem" jest jedynym prawidłowym opisem, a błędne odpowiedzi wynikają z niepełnego zrozumienia klasyfikacji i bezpieczeństwa w elektryce, co jest kluczowe dla prawidłowego stosowania zasad ochrony w instalacjach elektrycznych.

Pytanie 4

Do pomiaru której wielkości jest przeznaczony miernik przedstawiony na ilustracji?

Ilustracja do pytania
A. Częstotliwości.
B. Odkształceń przebiegu napięcia.
C. Spadku napięcia.
D. Współczynnika mocy.
Miernik przedstawiony na ilustracji jest przeznaczony do pomiaru współczynnika mocy, co jest kluczowe w analizie pracy układów elektrycznych. Współczynnik mocy, oznaczany jako cos φ, określa, jak efektywnie energia elektryczna jest przekształcana w pracę. W praktyce, wartości współczynnika mocy mogą sięgać od 0 do 1, gdzie 1 oznacza, że cała moc jest efektywnie wykorzystana. W przypadku obciążeń indukcyjnych, takich jak silniki, współczynnik mocy jest zazwyczaj mniejszy niż 1, co oznacza straty energii. Poprawne zarządzanie współczynnikiem mocy jest istotne w przemyśle, ponieważ niski współczynnik mocy może prowadzić do zwiększonych kosztów energii oraz kar nałożonych przez dostawców energii. Przykłady zastosowań obejmują monitorowanie i poprawę wydajności energetycznej w zakładach produkcyjnych, a także optymalizację systemów oświetleniowych i grzewczych. Zgodność z normami, takimi jak IEC 61000, jest również istotna w ocenie jakości energii elektrycznej i minimalizacji zakłóceń w systemach zasilania.

Pytanie 5

Który rodzaj pomiaru pokazany jest na rysunku?

Ilustracja do pytania
A. Impedancji zwarciowej.
B. Napięcia dotykowego.
C. Rezystancji izolacji stanowiska.
D. Ciągłości przewodów.
Nieznajomość pomiarów elektrycznych może prowadzić do błędnych wniosków i zagrożeń. Widzisz, jeśli chodzi o napięcie dotykowe, ciągłość przewodów czy impedancję zwarciową, to nie są te same pojęcia co pomiar rezystancji izolacji. Napięcie dotykowe dotyczy zagrożenia, jakie występuje, gdy mamy do czynienia z elementami pod napięciem. Jego pomiar nie mówi nic o stanie izolacji, a bardziej o ryzyku. Z kolei pomiar ciągłości przewodów potwierdza, że wszystko działa jak powinno, więc to też oddzielna sprawa. A impedancja zwarciowa to zupełnie inny temat, bo bada, co się dzieje w przypadku zwarcia. Mylenie tych pojęć może prowadzić do nieodpowiednich działań, a w konsekwencji do poważnych awarii. Dlatego ważne jest, żeby zrozumieć, czym różnią się te pomiary oraz jak je stosować w kontekście bezpieczeństwa instalacji elektrycznych.

Pytanie 6

Którym z kluczy nie da się skręcić stojana silnika elektrycznego śrubami jak przedstawiona na ilustracji?

Ilustracja do pytania
A. Płaskim.
B. Nasadowym.
C. Imbusowym.
D. Oczkowym.
Wybór klucza oczkowego, nasadowego lub płaskiego na pewno wydaje się logiczny, jednak ze względu na specyfikę śrub, klucz imbusowy jest jedynym, który jest nieodpowiedni w tej sytuacji. Klucz oczkowy, używany do dokręcania śrub zewnętrznych, oferuje dużą powierzchnię kontaktu, co przekłada się na lepszą siłę dokręcania i mniejsze ryzyko uszkodzenia główki śruby. Klucz nasadowy, z kolei, jest bardziej uniwersalny i pozwala na łatwe odkręcanie i zakręcanie różnych typów śrub, a także umożliwia pracę w trudno dostępnych miejscach. Klucz płaski natomiast sprawdza się w sytuacjach, gdy potrzebna jest bezpośrednia siła na śrubę, szczególnie w ciasnych przestrzeniach. Niezrozumienie różnic między tymi narzędziami i ich zastosowaniem prowadzi do nieprawidłowych wyborów, co może skutkować uszkodzeniami materiałów lub narzędzi. Klucz imbusowy jest przeznaczony do śrub, które mają gniazda wewnętrzne, co czyni go nieodpowiednim narzędziem w sytuacji, gdy mamy do czynienia z główkami zewnętrznymi. Takie podstawowe błędy w doborze narzędzi mogą wpływać na efektywność pracy oraz bezpieczeństwo, dlatego warto inwestować czas w naukę i zrozumienie odpowiednich zastosowań narzędzi w kontekście praktycznym.

Pytanie 7

Na którym rysunku przedstawiono przewód spawalniczy OnS-1?

Ilustracja do pytania
A. D.
B. B.
C. C.
D. A.
Odpowiedź B jest poprawna, ponieważ przewód spawalniczy OnS-1 charakteryzuje się specyficzną konstrukcją, która jest dostosowana do spawania łukowego. Składa się z wielu cienkich drutów miedzianych, które są skręcone w pęczki, co zapewnia doskonałe przewodnictwo elektryczne oraz elastyczność. Tego typu przewody są szeroko stosowane w przemyśle spawalniczym, gdzie kluczowe jest utrzymanie wysokiej jakości połączeń oraz efektywności procesów spawania. W praktyce, wybór odpowiedniego przewodu spawalniczego ma bezpośredni wpływ na jakość realizowanych zadań oraz trwałość spoin. Ponadto, przewody takie jak OnS-1 spełniają normy IEC 60228 oraz EN 50525, które określają wymagania dotyczące przewodów elektrycznych, co czyni je niezawodnym wyborem dla profesjonalnych spawaczy. Zrozumienie konstrukcji i zastosowania przewodów spawalniczych jest kluczowe, aby uniknąć problemów związanych z wydajnością i bezpieczeństwem podczas pracy.

Pytanie 8

W jaki sposób realizowana jest ochrona przed porażeniem elektrycznym poprzez dotyk pośredni w oprawie oświetleniowej drugiej klasy ochronności działającej w sieci TN-S?

A. Zastosowanie podwójnej warstwy izolacji
B. Zasilanie z transformatora izolacyjnego
C. Użycie napięcia zasilania o zmniejszonej wartości
D. Połączenie obudowy z przewodem ochronnym sieci
W kontekście ochrony przed dotykiem pośrednim, wiele podejść może wydawać się atrakcyjnych, jednak nie są one wystarczające do zapewnienia właściwego poziomu bezpieczeństwa. Zastosowanie napięcia zasilającego o obniżonej wartości, choć teoretycznie może zredukować ryzyko porażenia, nie eliminuje go całkowicie, ponieważ w przypadku awarii izolacji nadal może wystąpić ryzyko niebezpiecznego napięcia. Zasilanie z transformatora separacyjnego również nie stanowi pełnej odpowiedzi na problem, gdyż chociaż transformator ten ogranicza ryzyko porażenia, to nie jest to rozwiązanie wystarczające w przypadku urządzeń, które nie są dostatecznie izolowane. Połączenie obudowy z przewodem ochronnym sieci jest bardziej charakterystyczne dla urządzeń klasy I, gdzie niezbędne jest uziemienie, natomiast w oprawach klasy II, które są projektowane bez przewodu ochronnego, takie podejście jest nieadekwatne. Te nieprawidłowe koncepcje często wynikają z braku zrozumienia zasad klasyfikacji sprzętu elektrycznego oraz norm bezpieczeństwa, takich jak IEC 61140, które jasno definiują wymagania dotyczące ochrony przeciwporażeniowej. Właściwe zrozumienie i zastosowanie zasad dotyczących izolacji oraz konstrukcji sprzętu jest kluczowe dla zapewnienia bezpieczeństwa użytkowników, co jest często pomijane w praktycznych zastosowaniach.

Pytanie 9

Jaką maksymalną wartość impedancji pętli zwarcia należy przyjąć w trójfazowym układzie elektrycznym o napięciu 230/400 V, aby zabezpieczenie przeciwporażeniowe działało prawidłowo w przypadku uszkodzenia izolacji, zakładając, że zasilanie tego obwodu ma być odłączone przez instalacyjny wyłącznik nadprądowy B20?

A. 0,56 Ω
B. 2,30 Ω
C. 1,15 Ω
D. 3,83 Ω
Wybór błędnych wartości impedancji pętli zwarcia może wynikać z niewłaściwego zrozumienia zasad działania wyłączników nadprądowych oraz ich charakterystyk. Na przykład, 0,56 Ω i 1,15 Ω to wartości znacznie zbyt niskie, co może sugerować, że osoba odpowiedzialna za projektowanie lub pomiar nie uwzględniała wymaganych parametrów dla wyłącznika B20. Tego rodzaju wartości mogą prowadzić do nieefektywnej ochrony, gdyż w przypadku zwarcia obwód może zadziałać zbyt szybko, zanim układ zabezpieczeń zdąży dopełnić swojej funkcji. Wartości 3,83 Ω również są nieprawidłowe, ponieważ przekraczają dopuszczalny limit. W praktyce, zbyt wysoka impedancja pętli zwarcia oznacza, że prąd zwarciowy może być niewystarczający, aby wyzwolić zabezpieczenie. Należy zauważyć, że zgodnie z normami, takimi jak PN-IEC 60364, odpowiednie wartości impedancji są kluczowe dla działania systemów zabezpieczeń. Dlatego ważne jest, aby przy projektowaniu oraz ocenie instalacji elektrycznych przestrzegać wytycznych, by zapewnić odpowiedni poziom bezpieczeństwa, eliminując słabe punkty, które mogą prowadzić do niebezpiecznych sytuacji.

Pytanie 10

Jaki jest minimalny dopuszczalny przekrój przewodów miedzianych stosowanych w budynkach jako wewnętrzne linie zasilające (WLZ)?

A. 10 mm2
B. 6 mm2
C. 4 mm2
D. 16 mm2
Wybór nieodpowiedniego przekroju przewodów miedzianych w instalacjach elektrycznych może prowadzić do poważnych problemów technicznych i bezpieczeństwa. W przypadku, gdy ktoś wybiera przekrój 6 mm2, może nie spełniać wymagań dotyczących obciążeń prądowych w instalacjach zasilających, co naraża na ryzyko przegrzania przewodów. Przewody o mniejszym przekroju, takie jak 4 mm2, mogą być stosowane w niezbyt obciążonych obwodach, ale w kontekście wewnętrznych linii zasilających, ich zastosowanie może być nieadekwatne, szczególnie w przypadku obciążenia większego niż nominalne. Również przekrój 16 mm2, mimo że wyższy, nie jest wymagany w standardowych warunkach domowych, co prowadzi do nieuzasadnionych kosztów instalacyjnych. Takie podejście może wynikać z błędnego założenia, że większy przekrój zawsze owocuje większym bezpieczeństwem, podczas gdy kluczowe jest dobranie odpowiedniego przekroju do konkretnego zastosowania i wymagań technicznych. W praktyce, wdrożenie norm i standardów, takich jak PN-IEC 60364, jest kluczowe dla zapewnienia efektywności i bezpieczeństwa instalacji elektrycznych.

Pytanie 11

Działanie którego środka ochrony przeciwporażeniowej w instalacji elektrycznej o napięciu znamionowym 230 V, pozwala ocenić miernik przedstawiony na rysunku?

Ilustracja do pytania
A. Połączeń wyrównawczych.
B. Izolacji roboczej.
C. Zasilania napięciem bezpiecznym.
D. Samoczynnego wyłączenia zasilania.
Udzielając odpowiedzi na to pytanie, można było się posługiwać różnymi pojęciami związanymi z bezpieczeństwem elektrycznym, jednak niektóre z nich mogą wprowadzać w błąd. Zasilanie napięciem bezpiecznym odnosi się do systemów, które wykorzystują niższe napięcia w celu zminimalizowania ryzyka porażenia, jednak nie jest to związane z pomiarem izolacji, którego celem jest ochrona przed porażeniem w instalacjach o napięciu 230 V. Połączenia wyrównawcze są istotne w kontekście ochrony przed porażeniem, ale ich ocena wymaga innego rodzaju pomiarów, takich jak pomiar oporności połączeń. Samoczynne wyłączenie zasilania to mechanizm zabezpieczający, który działa w przypadku wykrycia nieprawidłowości w instalacji, ale także nie jest bezpośrednio związany z pomiarem izolacji roboczej. Typowym błędem jest mylenie tych pojęć i pomijanie istotności pomiarów rezystancji izolacji w kontekście bezpieczeństwa energetycznego. W rzeczywistości, zrozumienie funkcji izolacji roboczej oraz jej roli w ochronie przed porażeniem elektrycznym jest kluczowe dla każdego, kto pracuje z systemami elektrycznymi, a nieprawidłowe zrozumienie tych zagadnień może prowadzić do niebezpiecznych sytuacji podczas eksploatacji instalacji.

Pytanie 12

Wymagana izolacja przewodów używanych w trójfazowej sieci niskiego napięcia 230/400 V powinna wynosić co najmniej

A. 300/300 V
B. 100/100 V
C. 300/500 V
D. 450/750 V
Izolacja przewodów stosowanych w sieci trójfazowej niskiego napięcia 230/400 V powinna być wykonana na poziomie co najmniej 300/500 V, co jest zgodne z obowiązującymi normami IEC 60227 oraz IEC 60502. Tego rodzaju izolacja zapewnia odpowiednią ochronę przed przebiciem i krótko-terminowymi napięciami, które mogą wystąpić w trakcie normalnej eksploatacji instalacji elektrycznej. Przykładowo, w systemach zasilania budynków komercyjnych, gdzie przewody muszą być odporne na różne warunki otoczenia, zastosowanie przewodów o klasie izolacji 300/500 V jest standardem, który zapewnia długotrwałość oraz bezpieczeństwo użytkowników. Warto również zauważyć, że wyższe klasy izolacji, takie jak 450/750 V, są stosowane w bardziej wymagających aplikacjach, jak instalacje przemysłowe, ale w przypadku typowych instalacji niskonapięciowych, klasa 300/500 V jest wystarczająca i zalecana.

Pytanie 13

Który z wymienionych systemów powinien być zainstalowany w instalacji elektrycznej zasilającej istotne odbiory niskiego napięcia, aby w momencie utraty zasilania nastąpiło automatyczne przełączenie pomiędzy podstawowym źródłem a rezerwowym źródłem zasilania?

A. SZR
B. SPZ
C. SCO
D. SRN
Odpowiedź SZR (System Zasilania Rezerwowego) jest prawidłowa, ponieważ ten układ jest zaprojektowany do automatycznego przełączania źródeł zasilania w przypadku zaniku zasilania z głównego źródła. Działa on na zasadzie monitorowania napięcia w sieci zasilającej; w momencie wykrycia spadku napięcia lub całkowitego braku zasilania, SZR automatycznie uruchamia rezerwowe źródło zasilania, co zapewnia ciągłość pracy ważnych odbiorników niskiego napięcia, takich jak systemy alarmowe, oświetlenie awaryjne czy urządzenia medyczne. Przykładowo, w szpitalach i centrach danych, gdzie nieprzerwane zasilanie jest kluczowe, SZR eliminuje ryzyko przestojów. Stosowanie SZR jest zgodne z normami PN-EN 50171 oraz PN-EN 62040, które określają wymagania dotyczące systemów zasilania awaryjnego oraz UPS. Dzięki temu, instalacje z SZR nie tylko zwiększają bezpieczeństwo, ale też poprawiają efektywność operacyjną, co jest niezbędne w obiektach o krytycznym znaczeniu.

Pytanie 14

Na którym rysunku przedstawiono przyrząd do lokalizowania trasy przebiegu przewodów instalacyjnych pod tynkiem?

Ilustracja do pytania
A. C.
B. A.
C. B.
D. D.
Odpowiedź C jest w porządku, bo na tym rysunku widzimy detektor przewodów, który jest super ważnym narzędziem w elektryce. Detektory, takie jak te od Boscha, pomagają znaleźć ukryte kable pod tynkiem, co jest mega przydatne, gdy robimy remonty lub zakładamy nowe systemy elektryczne. Dzięki detektorowi możemy uniknąć uszkodzenia już istniejących instalacji, co może prowadzić do naprawdę poważnych problemów, jak zwarcia czy uszkodzenie sprzętu. W branży ważne jest, żeby dokładnie lokalizować przewody, co mówi norma IEC 60364. Poza tym, te urządzenia potrafią też rozpoznać różne typy przewodów, co bardzo ułatwia planowanie prac budowlanych i remontowych, moim zdaniem to spora oszczędność czasu.

Pytanie 15

Który układ sieciowy przedstawiono na schemacie?

Ilustracja do pytania
A. TN-S
B. IT
C. TN-C
D. TT
Wybór odpowiedzi innej niż TT wskazuje na szereg nieporozumień dotyczących układów sieciowych. Układ TN-C, na przykład, charakteryzuje się połączeniem przewodu neutralnego z przewodem ochronnym, co w przypadku awarii może prowadzić do niebezpiecznych sytuacji, zagrażających użytkownikom budynku. W kontekście norm, takie połączenie jest sprzeczne z zasadami, które nakładają obowiązek utrzymania niezależnych ścieżek uziemienia dla przewodu neutralnego i ochronnego. Z kolei układ IT, który także został błędnie wybrany, polega na braku połączenia z ziemią w systemie zasilania, co powoduje, że nawet w przypadku uszkodzenia izolacji, nie ma bezpośredniego uziemienia, co generuje zagrożenie. Układ TT, w przeciwieństwie do tych dwóch, zapewnia dodatkowe bezpieczeństwo poprzez niezależne uziemienia. Odpowiedzi wskazujące na TN-S również są mylne, ponieważ w tym układzie występuje oddzielne uziemienie dla przewodów neutralnych i ochronnych, co nie jest zgodne z przedstawionym schematem. Tego typu nieprawidłowe odpowiedzi często wynikają z mylenia podstawowych zasad dotyczących uziemienia oraz bezpieczeństwa instalacji elektrycznych. Niezrozumienie kluczowych różnic pomiędzy tymi układami może prowadzić do podjęcia niewłaściwych decyzji w projektowaniu i eksploatacji instalacji elektrycznych, co z kolei może zagrażać bezpieczeństwu użytkowników.

Pytanie 16

Jak długo maksymalnie może trwać samoczynne wyłączenie zasilania w obwodzie odbiorczym z napięciem przemiennym 230 V i prądem obciążenia do 32 A, w sieci TN, spełniający wymagania dotyczące ochrony przed dotykiem pośrednim?

A. 0,4 sekundy
B. 5 sekund
C. 0,2 sekundy
D. 1 sekundę
Maksymalny czas samoczynnego wyłączenia zasilania w obwodzie odbiorczym o napięciu 230 V i prądzie obciążenia do 32 A w sieci TN wynoszący 0,4 sekundy jest zgodny z normami obowiązującymi w dziedzinie bezpieczeństwa elektrycznego, takimi jak norma PN-EN 61140. Czas ten określa, jak szybko system ochronny powinien zareagować w przypadku wystąpienia zwarcia lub awarii, aby zminimalizować ryzyko porażenia prądem. W praktyce oznacza to, że urządzenia zabezpieczające, takie jak wyłączniki różnicowoprądowe, muszą być zdolne do zadziałania w tym krótkim czasie. Takie szybkie reakcje są kluczowe w warunkach użytkowania, zwłaszcza w środowisku domowym i komercyjnym, gdzie obecność ludzi jest stała. Przykładem zastosowania tej zasady mogą być obwody zasilające w łazienkach oraz innych pomieszczeniach narażonych na kontakt z wodą, gdzie ryzyko porażenia prądem jest znacznie wyższe. Odpowiednie zabezpieczenia w postaci wyłączników, które działają w ciągu 0,4 sekundy, mogą uratować życie, eliminując zasilanie w przypadku niebezpiecznych sytuacji.

Pytanie 17

Jakie czynności powinny być przeprowadzone po serwisie silnika elektrycznego?

A. Pomiar rezystancji izolacji i próbne uruchomienie
B. Sprawdzenie układów sterowania i sygnalizacji
C. Impregnację uzwojeń i wyważenie wirnika
D. Sprawdzenie układów rozruchowych i regulacyjnych
Pomiar rezystancji izolacji oraz wykonanie próbnego uruchomienia silnika elektrycznego to kluczowe czynności po jego konserwacji. Rezystancja izolacji jest istotnym wskaźnikiem stanu izolacji uzwojeń silnika; jej wysoka wartość sygnalizuje dobrą izolację, co jest niezbędne do zapewnienia bezpieczeństwa eksploatacji. Standardy takie jak IEC 60034-1 zalecają, aby rezystancja izolacji była co najmniej 1 MΩ na każdy kV napięcia roboczego, co chroni przed przebiciem i zwarciem. Próbne uruchomienie pozwala na ocenę rzeczywistej pracy silnika, w tym jego momentu obrotowego, prędkości i stabilności działania. W praktyce, te czynności pozwalają na wczesne wykrycie potencjalnych usterek, co może zapobiec poważnym awariom i zwiększyć trwałość urządzenia. Regularne pomiary izolacji i testy operacyjne są zgodne z najlepszymi praktykami w branży, co przekłada się na wydajność i bezpieczeństwo operacyjne.

Pytanie 18

Jaki wyłącznik nadmiarowo-prądowy najlepiej zastosować do zabezpieczenia instalacji elektrycznej z przewidywanym prądem zwarciowym Iz = 150 A?

A. B25
B. C20
C. C16
D. D10
Odpowiedzi C16, C20 i D10 to nie są najlepsze wybory i to z kilku powodów. Przede wszystkim, wybierając wyłącznik nadmiarowo-prądowy, trzeba brać pod uwagę przewidywany prąd zwarciowy. Przy 150 A, C16 i C20 mogą być za małe, bo ich prąd znamionowy nie jest wystarczający. C16 by działał za szybko w normalnych warunkach, co oznacza, że mógłby wyłączać się bez potrzeby, a to nie jest dobre, zwłaszcza przy takich prądach zwarciowych. C20, choć lepszy od C16, nadal nie spełnia wymagań, które mogą być w awaryjnych sytuacjach. A D10? No, to już w ogóle nie ma sensu, bo 10 A to zdecydowanie za mało na prąd zwarciowy wynoszący 150 A. Używanie takich słabych wyłączników może prowadzić do częstych wyłączeń i narażenia instalacji na różne niebezpieczeństwa. W praktyce to może skończyć się poważnymi kłopotami, nawet porażeniem elektrycznym. Dlatego tak ważne jest, żeby trzymać się norm i przepisów.

Pytanie 19

Jaką rolę odgrywa wyzwalacz elektromagnetyczny w wyłączniku nadprądowym?

A. Rozpoznaje przeciążenia
B. Zatrzymuje łuk elektryczny
C. Napina sprężynę napędu
D. Rozpoznaje zwarcia
Wykrywanie przeciążenia przez wyzwalacz elektromagnetyczny w wyłączniku nadprądowym to często mylony temat. Chociaż wyzwalacz elektromagnetyczny jest kluczowym elementem w systemach zabezpieczeń, jego główną funkcją nie jest identyfikacja przeciążenia, lecz detekcja zwarć, które następują przy znacznie większych prądach. Przeciążenie oznacza, że prąd roboczy jest wyższy od nominalnego, ale wciąż niższy od wartości, która spowodowałaby bezpośrednie uszkodzenie obwodu. W takich sytuacjach wyzwalacze termiczne, a nie elektromagnetyczne, są odpowiedzialne za monitorowanie długotrwałego wzrostu temperatury, co związane jest z przeciążeniem. Z kolei gasi łuk elektryczny i naciąga sprężynę napędu to funkcje, które również nie są charakterystyczne dla wyzwalacza elektromagnetycznego. Gasi łuk elektryczny w wyłącznikach nadprądowych jest realizowane zazwyczaj przez specjalne mechanizmy, takie jak komory gaszenia, które mają na celu zminimalizowanie ryzyka powstania łuku podczas rozłączenia obwodu. Naciąganie sprężyny napędu dotyczy mechanizmów działania wyłączników, ale nie jest jednym z zadań wyzwalacza elektromagnetycznego. Stąd wynika, że pomylenie funkcji różnych komponentów wyłącznika nadprądowego może prowadzić do niewłaściwego zrozumienia ich roli w systemach elektrycznych.

Pytanie 20

Jaką minimalną wartość powinno mieć napięcie probiercze miernika używanego do pomiaru rezystancji izolacji w instalacji elektrycznej pracującej pod napięciem 230/400 V?

A. 2 500 V
B. 500 V
C. 1 000 V
D. 250 V
Wybór napięcia probierczego o wartości 250 V jest niewłaściwy, ponieważ jest zbyt niskie do przeprowadzenia skutecznego testu izolacji w instalacjach o napięciu znamionowym 230/400 V. Użycie tak niskiego napięcia może nie ujawniać rzeczywistych problemów ze stanem izolacji, a co za tym idzie, może prowadzić do błędnych wniosków na temat jej jakości. Ponadto, napięcie 250 V nie spełnia wymagań normatywnych określonych przez IEC, które zalecają zastosowanie wyższego napięcia, aby efektywnie ocenić odporność izolacji na przebicia. Wybór 1000 V jako napięcia probierczego również może być nieadekwatny dla standardowych instalacji 230/400 V, ponieważ takie napięcie może powodować nadmierne obciążenie izolacji, co nie zawsze jest bezpieczne. Może to prowadzić do uszkodzenia izolacji, co w konsekwencji wiąże się z ryzykiem powstania awarii w instalacji. Warto również zauważyć, że napięcie 2500 V, mimo że jest stosowane w specyficznych przypadkach, takich jak testy na wytrzymałość izolacji w wysokonapięciowych instalacjach, jest zbytnio zawyżone w kontekście pomiarów w standardowych instalacjach elektrycznych. Przy wyborze odpowiedniego napięcia do testów, należy kierować się zaleceniami producentów oraz obowiązującymi normami bezpieczeństwa, aby zapewnić rzetelne i bezpieczne wyniki pomiarów.

Pytanie 21

Przystępując do działań konserwacyjnych, takich jak wymiana uszkodzonych elementów instalacji elektrycznej, należy postępować w następującej kolejności:

A. zabezpieczyć przed przypadkowym włączeniem, oznakować obszar prac, odłączyć instalację od źródła zasilania, upewnić się o braku napięcia
B. oznakować obszar prac, zabezpieczyć przed przypadkowym włączeniem, odłączyć instalację od źródła zasilania, upewnić się o braku napięcia
C. oznakować obszar prac, zabezpieczyć przed przypadkowym włączeniem, upewnić się o braku napięcia, odłączyć instalację od źródła zasilania
D. odłączyć instalację od źródła zasilania, zabezpieczyć przed przypadkowym włączeniem, upewnić się o braku napięcia, oznakować obszar prac
Poprawna odpowiedź skupia się na fundamentalnych zasadach bezpieczeństwa, które powinny być przestrzegane podczas wykonywania prac konserwacyjnych w instalacjach elektrycznych. Kluczowym krokiem jest wyłączenie instalacji spod napięcia, co zapobiega przypadkowemu porażeniu prądem podczas pracy. Po wyłączeniu instalacji, zabezpieczenie miejsca pracy przed przypadkowym załączeniem jest kolejnym istotnym krokiem; może to obejmować zablokowanie dostępu do przycisków włączających lub umieszczenie odpowiednich osłon. Następnie, potwierdzenie braku napięcia za pomocą odpowiednich narzędzi pomiarowych, takich jak wskaźniki napięcia, jest niezbędne, aby upewnić się, że instalacja jest bezpieczna do pracy. Ostatecznie, oznakowanie miejsca prac jest kluczowe, aby ostrzec innych o prowadzonych działaniach. Ta kolejność działań jest zgodna z normami bezpieczeństwa, takimi jak PN-EN 50110-1, które podkreślają znaczenie systematycznego podejścia do prac konserwacyjnych. W praktyce, stosowanie się do tych zasad może znacząco zmniejszyć ryzyko wypadków i poprawić bezpieczeństwo personelu.

Pytanie 22

Na którym rysunku zamieszczono gniazdo wtyczkowe bryzgoszczelne?

Ilustracja do pytania
A. C.
B. A.
C. B.
D. D.
Gniazdo wtyczkowe bryzgoszczelne, które widzisz na zdjęciu C, zostało zaprojektowane tak, żeby dobrze chronić przed wilgocią i wodą. To znaczy, że nadaje się do miejsc, gdzie warunki atmosferyczne mogą być naprawdę trudne. Jest zgodne z normami PN-EN 60670-1, które mówią, jakie powinny być wymagania dla takich gniazd. Często mają dodatkowe uszczelki i osłony, które blokują wodę przed dostaniem się do wnętrza połączenia elektrycznego. W praktyce, gniazda bryzgoszczelne stosuje się w ogrodach, na tarasach albo w pobliżu basenów, gdzie zwykłe gniazda mogłyby się łatwo zepsuć. Fajnie jest też zwracać uwagę na oznaczenia IP, które mówią, jak to gniazdo jest chronione przed wodą i pyłem. Używanie takich gniazd to lepsze bezpieczeństwo dla użytkowników i dłuższa żywotność naszej instalacji elektrycznej.

Pytanie 23

Ze względu na ochronę przed dostępem wody przedstawiona na rysunku oprawa oświetleniowa jest

Ilustracja do pytania
A. odporna na krople wody.
B. wodoszczelna.
C. strugoszczelna.
D. nieodporna na wnikanie wody.
Kiedy wybierzesz złotą odpowiedź, warto zwrócić uwagę na kilka istotnych rzeczy dotyczących ochrony opraw oświetleniowych przed wodą. Odpowiedzi, które mówią, że ta oprawa jest strugoszczelna czy odporna na krople wody, są błędne. Te terminy sugerują, że produkt ma jakieś zabezpieczenia, a w tym przypadku ich nie ma. Strugoszczelność oznacza, że urządzenie jest tak zaprojektowane, żeby chronić przed intensywnym deszczem, a oprawy odporne na krople wody są przystosowane do mniejszych ilości wilgoci, ale też muszą mieć uszczelnienia. Wodoszczelność to całkowita odporność na wodę i to też tutaj nie ma miejsca. Fajnie byłoby zrozumieć klasyfikację IP przy wyborze opraw, bo to ma duże znaczenie w praktyce. Nieznajomość tych kwestii może prowadzić do zastosowania złych produktów w złych warunkach, a to może zwiększyć ryzyko uszkodzenia, a nawet obniżyć efektywność energetyczną. Dlatego, zanim zdecydujesz, jaką oprawę wybrać, dobrze jest zrozumieć, w jakim środowisku będą używane i jakie normy powinny być spełnione.

Pytanie 24

Którą funkcję pomiarową powinien posiadać miernik, aby można było wyznaczyć impedancję pętli zwarcia w układzie przedstawionym na rysunku?

Ilustracja do pytania
A. ZL-PE RCD
B. ZL-PE
C. ZL-L
D. ZL-N
Odpowiedź "ZL-PE RCD" jest prawidłowa, ponieważ pomiar impedancji pętli zwarcia w układzie z urządzeniem różnicowoprądowym (RCD) wymaga uwzględnienia przewodu ochronnego PE oraz przewodu fazowego L. Zrozumienie tego zagadnienia jest kluczowe dla zapewnienia bezpieczeństwa instalacji elektrycznych. W praktyce, pomiar ZL-PE RCD pozwala na ocenę skuteczności ochrony przeciwporażeniowej, co jest istotne w kontekście norm bezpieczeństwa, takich jak PN-IEC 60364. Przykładowo, w instalacjach, gdzie stosuje się RCD, odpowiedni pomiar zapewnia, że w przypadku zwarcia, prąd różnicowy (ΔI) nie przekroczy wartości granicznych, co pozwala na szybkie wyłączenie zasilania i minimalizację ryzyka porażenia prądem. Warto również zauważyć, że pomiar ten powinien być wykonywany przez wykwalifikowanych specjalistów, aby zapewnić dokładność i wiarygodność wyników. W kontekście praktycznym, wyniki pomiaru można wykorzystać do analizy stanu instalacji oraz planowania ewentualnych działań serwisowych, co jest zgodne z dobrymi praktykami w branży elektrycznej.

Pytanie 25

Miernikiem, którego przełącznik zakresów przedstawiono na rysunku, nie można zmierzyć

Ilustracja do pytania
A. ciągłości połączeń.
B. rezystancji izolacji.
C. parametrów wyłączników RCD.
D. impedancji pętli zwarcia.
Wszystkie pozostałe odpowiedzi mogą być mylone z rzeczywistymi możliwościami miernika, co prowadzi do nieporozumień w zakresie jego zastosowania. Pomiar parametrów wyłączników RCD, ciągłości połączeń oraz impedancji pętli zwarcia jest możliwy dzięki odpowiednim zakresom, które są dostępne w większości nowoczesnych mierników elektrycznych. Ważne jest zrozumienie, że wyłączniki RCD, czyli różnicowoprądowe, wymagają pomiaru impedancji, aby ocenić ich skuteczność w ochronie przed porażeniem prądem. Ciągłość połączeń jest również istotna, ponieważ zapewnia, że prąd elektryczny prawidłowo przepływa przez układ, co jest niezbędne dla bezpieczeństwa i wydajności instalacji. Jednakże, pomiar rezystancji izolacji nie można wykonać na tym mierniku, co może prowadzić do błędnych wniosków o stanie izolacji w instalacjach elektrycznych. Często, użytkownicy zastanawiają się, dlaczego ich mierniki nie oferują pomiaru rezystancji izolacji, co może prowadzić do przekonania, że urządzenie jest niewłaściwe lub wadliwe. W rzeczywistości, kluczowe jest, aby posiadać odpowiednie narzędzia, takie jak mierniki izolacji, które są specjalnie zaprojektowane do przeprowadzania tego rodzaju pomiarów, zgodnie z normami bezpieczeństwa oraz najlepszymi praktykami przemysłowymi.

Pytanie 26

Przyporządkuj rodzaje trzonków świetlówek kompaktowych, w kolejności jak na rysunku.

Ilustracja do pytania
A. A.
B. D.
C. C.
D. B.
Wybór niepoprawnej odpowiedzi może wynikać z braku znajomości klasyfikacji trzonków świetlówek kompaktowych, co jest kluczowe dla prawidłowego doboru źródeł światła. Odpowiedzi, które nie odpowiadają rzeczywistości, mogą wprowadzać w błąd, prowadząc do wyboru niewłaściwego trzonka, co z kolei skutkuje problemami z montażem oraz użytkowaniem. Na przykład, wiele osób może mylić trzonek E27 z B22d, co jest typowym błędem, ponieważ mają one różne średnice oraz sposoby montażu. Nieprawidłowe zrozumienie tych różnic prowadzi do sytuacji, w której użytkownicy zamawiają niewłaściwe żarówki, co skutkuje frustracją i dodatkowymi kosztami związanymi z wymianą. Ważne jest, aby zapoznać się z rysunkami oraz opisami technicznymi, które wyraźnie przedstawiają różnice między rodzajami trzonków. Praktyczna znajomość tych elementów jest niezbędna, szczególnie w sytuacjach, gdy chodzi o projektowanie oświetlenia w pomieszczeniach, gdzie efektywność energetyczna ma kluczowe znaczenie. Niepoprawne odpowiedzi mogą również wynikać z nieuwagi podczas analizy rysunku, co może zniekształcić postrzeganie właściwego wsparcia technicznego oraz prowadzić do pomyłek w przyszłych zakupach oświetleniowych.

Pytanie 27

Zgodnie z polskim prawem budowlanym, instalacje elektryczne oraz piorunochronne w obiektach mieszkalnych powinny być poddawane okresowym badaniom

A. raz na rok
B. co najmniej raz na 10 lat
C. raz na pół roku
D. co najmniej raz na 5 lat
Instalacja elektryczna oraz piorunochronna w budynkach mieszkalnych jest kluczowym elementem zapewniającym bezpieczeństwo użytkowników oraz ochronę mienia. Zgodnie z obowiązującymi przepisami prawa budowlanego, takie instalacje powinny być poddawane okresowym badaniom co najmniej raz na 5 lat. Taki harmonogram przeglądów ma na celu wczesne wykrywanie potencjalnych usterek, które mogą prowadzić do poważnych zagrożeń, takich jak pożary czy porażenia prądowe. Regularne kontrole pozwalają na ocenę stanu technicznego instalacji, w tym ich zgodności z aktualnymi normami oraz skutecznością w ochronie przed skutkami wyładowań atmosferycznych. Przykładem praktycznego zastosowania tej wiedzy może być sytuacja, w której w wyniku regularnych przeglądów wykryto zużycie izolacji, co mogłoby prowadzić do niebezpiecznych warunków. W przypadku instalacji piorunochronnych, ich skuteczność w odprowadzaniu prądów piorunowych również wymaga regularnych ocen, aby zapewnić maksymalną ochronę budynku. Warto zaznaczyć, że zgodność z normami PN-IEC 62305 oraz PN-EN 61439 jest kluczowa dla bezpieczeństwa obiektów.

Pytanie 28

Który z pomiarów służy do oceny efektywności zabezpieczenia przed dotykiem bezpośrednim w instalacjach do 1 kV?

A. Rezystancji uziemienia
B. Impedancji zwarciowej
C. Napięcia dotykowego
D. Rezystancji izolacji
Pomiar rezystancji izolacji jest kluczowym elementem oceny skuteczności ochrony przed dotykiem bezpośrednim w instalacjach elektrycznych do 1 kV. W przypadku takich systemów, odpowiednia izolacja jest niezbędna do zapewnienia bezpieczeństwa użytkowników oraz niezawodności działania instalacji. Rezystancja izolacji wskazuje na zdolność materiału do odseparowania prądu elektrycznego od części dostępnych dla użytkowników, co jest kluczowe w kontekście ochrony przed porażeniem elektrycznym. Przykładowo, normy IEC 60364 dotyczące instalacji elektrycznych wymagają, aby pomiar rezystancji izolacji wynosił co najmniej 1 MΩ. W praktyce oznacza to, że przed oddaniem do użytku nowej instalacji, a także podczas jej regularnej konserwacji, wykonuje się pomiary rezystancji izolacji, co pozwala na identyfikację potencjalnych uszkodzeń oraz degradacji materiałów izolacyjnych. W przypadku wykrycia niskiej rezystancji należy niezwłocznie podjąć działania naprawcze, aby zapewnić bezpieczeństwo użytkowników oraz zgodność z obowiązującymi normami.

Pytanie 29

Które z poniższych wskazówek nie odnosi się do realizacji nowych instalacji elektrycznych w obiektach mieszkalnych?

A. Obwody oświetleniowe powinny być oddzielone od gniazd wtyczkowych
B. Odbiorniki o dużej mocy należy zasilać z dedykowanych obwodów
C. Gniazda wtyczkowe w każdym pomieszczeniu powinny być zasilane z oddzielnego obwodu
D. Gniazda wtyczkowe w kuchni powinny być zasilane z oddzielnego obwodu
Gniazda wtyczkowe każdego pomieszczenia zasilane z osobnego obwodu nie są praktyką zalecaną w kontekście nowych instalacji elektrycznych w mieszkaniach. W rzeczywistości gniazda wtyczkowe są zazwyczaj grupowane w obwody, co pozwala na efektywniejsze wykorzystanie przewodów oraz zmniejszenie kosztów instalacji. Zgodnie z normami PN-IEC 60364, zaleca się zasilanie gniazd wtyczkowych w różnych pomieszczeniach z jednego obwodu, co czyni instalację bardziej elastyczną i łatwiejszą w eksploatacji. Przykładowo, w przypadku lokali mieszkalnych często stosuje się obwody trójfazowe, które zapewniają równomierne obciążenie i zmniejszają ryzyko przeciążenia. Gniazda wtyczkowe w kuchni, które wymagają osobnego obwodu, są wyjątkiem, ponieważ często zasilają urządzenia o dużej mocy, takie jak piekarniki czy lodówki. Ostatecznie, taka praktyka oszczędza na kosztach instalacji i ułatwia przyszłe modyfikacje bez potrzeby rozbudowy infrastruktury elektrycznej.

Pytanie 30

Którą czynność przedstawiono na rysunku?

Ilustracja do pytania
A. Klejenie na gorąco przewodu kabelkowego.
B. Ściąganie izolacji z przewodu.
C. Zaciskanie opaski kablowej.
D. Zaciskanie końcówki tulejkowej.
Odpowiedź "Zaciskanie opaski kablowej" jest prawidłowa, ponieważ na zdjęciu przedstawiono narzędzie służące do zaciskania opasek kablowych. Opaski kablowe są powszechnie stosowane w instalacjach elektrycznych oraz w organizacji kabli w różnych aplikacjach, takich jak urządzenia komputerowe, automatyka przemysłowa czy instalacje domowe. Zaciskanie opaski kablowej pozwala na skuteczne zabezpieczenie wiązek przewodów, co zwiększa bezpieczeństwo instalacji oraz zapobiega przypadkowemu uszkodzeniu kabli. Stosując opaski kablowe, należy zwrócić uwagę na ich odpowiednią szerokość oraz materiał, z którego są wykonane, aby były zgodne z obowiązującymi standardami. Dobrą praktyką jest również stosowanie narzędzi mechanicznych, co pozwala uniknąć nadmiernego nacisku na przewody i ich uszkodzenia. Właściwe użycie opasek kablowych wpływa nie tylko na estetykę instalacji, ale także na jej funkcjonalność i trwałość.

Pytanie 31

Dokonując oględzin powykonawczych zabezpieczeń w instalacji elektrycznej przedstawionej na schemacie można stwierdzić, że zamieniono miejscami bezpieczniki

Ilustracja do pytania
A. B1 z B2
B. B3 z B2
C. B1 z B4
D. B2 z B4
Odpowiedź B1 z B2 jest prawidłowa, ponieważ analiza schematu instalacji elektrycznej wyraźnie wskazuje na zamianę miejscami tych dwóch bezpieczników. Bezpiecznik B1, który ma wartość nominalną 10A, powinien być umieszczony na początku instalacji, gdzie jego zadaniem jest ochrona całego obwodu przed przeciążeniem. Z kolei bezpiecznik B2, o wartości 25A, jest przeznaczony do zabezpieczania obwodów o większym poborze mocy. Przełożenie tych miejsc prowadzi do nieodpowiedniego zabezpieczenia, co jest sprzeczne z normami bezpieczeństwa, takimi jak PN-IEC 60364, które wymagają, aby zabezpieczenia były dobierane na podstawie charakterystyki obwodów oraz urządzeń, które mają chronić. Właściwe umiejscowienie bezpieczników jest kluczowe dla zachowania bezpieczeństwa użytkowników oraz ochrony instalacji. W praktyce, niewłaściwe dobranie wartości bezpieczników może prowadzić do ich nadmiernego przepalania lub wręcz do uszkodzenia urządzeń podłączonych do instalacji, co generuje dodatkowe koszty napraw i obniża komfort użytkowania.

Pytanie 32

Której końcówki wkrętaka należy użyć do demontażu wyłącznika nadprądowego z szyny TH 35?

Ilustracja do pytania
A. Końcówki 2.
B. Końcówki 1.
C. Końcówki 3.
D. Końcówki 4.
Wybór niewłaściwej końcówki wkrętaka do demontażu wyłącznika nadprądowego z szyny TH 35 może prowadzić do szeregu problemów technicznych oraz zwiększenia ryzyka uszkodzeń. Końcówki 1., 3. i 4. są nieodpowiednie, ponieważ mają różne kształty, które nie są dostosowane do typowych złączy śrubowych stosowanych w tej aplikacji. Końcówka 1. najprawdopodobniej jest typu krzyżowego lub pozbawiona odpowiedniej płaskości, co utrudni prawidłowe wkręcanie czy wykręcanie. Z kolei końcówki 3. i 4. mogą być przeznaczone do specyficznych zastosowań, takich jak śruby torx czy inne nietypowe złącza, a ich użycie w montażu wyłączników nadprądowych może spowodować uszkodzenia elementów lub niepewne połączenia. Błędem myślowym jest zatem założenie, że wszelkie końcówki mogą być stosowane zamiennie, co jest sprzeczne z dobrymi praktykami w branży elektroinstalacyjnej. W praktyce kluczowe jest korzystanie z narzędzi, które są odpowiednio dobrane do specyfiki i standardów instalacji, aby zapewnić bezpieczeństwo oraz niezawodność działania urządzeń. Niezastosowanie się do tych zasad może prowadzić do awarii systemu elektrycznego oraz stwarzać ryzyko wystąpienia zagrożeń, takich jak zwarcia czy przegrzanie.

Pytanie 33

Ile wynosi skuteczność świetlna źródła światła o etykiecie przedstawionej na ilustracji?

Ilustracja do pytania
A. 206,9 lm/W
B. 81,4 lm/W
C. 1 180,0 lm/W
D. 14,5 lm/W
Nieprawidłowe odpowiedzi często wynikają z nieporozumień związanych z efektywnością świetlną. Często ludzie mylą lumeny z watami, co prowadzi do pomyłek. Na przykład, jeśli ktoś odpowiedział 14,5 lm/W, to pewnie myślał, że moc żarówki to jej skuteczność, co całkowicie mija się z prawdą. Moc w watach mówi nam, ile energii żarówka zużywa, a nie jak dobrze świeci. Inny błąd to podawanie złych danych, jak 1 180,0 lm/W – to jest fizycznie niemożliwe dla normalnych źródeł światła. Czasem zapominamy także o kontekście, w jakim używamy źródeł światła, co prowadzi do błędnych wyników. Trzeba pamiętać, że skuteczność świetlna to liczby, które trzeba dobrze zrozumieć i podliczyć, bazując na danych o strumieniu świetlnym i mocy, co jest współczesnym krokiem w stronę lepszej efektywności energetycznej oraz ekologii.

Pytanie 34

Którą wstawkę kalibrową należy zastosować do podstawy bezpiecznikowej przeznaczonej dla wkładki topikowej typu D, o oznaczeniu literowym gL i parametrach katalogowych U = 500 V, I = 25 A?

Ilustracja do pytania
A. Wstawkę 1.
B. Wstawkę 2.
C. Wstawkę 4.
D. Wstawkę 3.
Wstawkę kalibrową należy dobierać z uwzględnieniem specyfikacji technicznych wkładki topikowej. W przypadku wkładki typu D, oznaczonej jako gL, kluczowe znaczenie ma dopasowanie takich parametrów jak napięcie znamionowe i prąd znamionowy. Odpowiednia wstawką kalibrową jest wstawką 3, która posiada oznaczenie 'DII 63A 500V', co wskazuje, że jej maksymalne napięcie wynosi 500 V, a prąd do 63 A, co przekracza wymagane 25 A. Taki wybór zapewnia nie tylko poprawne działanie w systemie, ale również bezpieczeństwo użytkowania. Zastosowanie wstawki, która nie spełnia wymagań, mogłoby prowadzić do nieprawidłowej pracy zabezpieczeń i w konsekwencji do uszkodzenia urządzeń. Standardy ochrony obwodów elektrycznych, takie jak IEC 60269, zalecają dobranie wkładek topikowych i wstawek kalibracyjnych zgodnie z parametrami układu oraz wymaganiami systemu. Prawidłowy wybór umożliwia także lepsze monitorowanie i zarządzanie przepływem prądu, co jest szczególnie istotne w instalacjach przemysłowych.

Pytanie 35

Jakie źródło światła przedstawiono na rysunku?

Ilustracja do pytania
A. Żarówkę halogenową.
B. Lampę indukcyjną.
C. Lampę metalohalogenkową.
D. Świetlówkę kompaktową.
Świetlówka kompaktowa, przedstawiona na zdjęciu, charakteryzuje się unikalnym kształtem, który opiera się na zwiniętej rurze zawierającej gaz fluorescencyjny, co pozwala na efektywne generowanie światła. W przeciwieństwie do tradycyjnych żarówek, świetlówki kompaktowe oferują znacznie wyższą efektywność energetyczną, co przekłada się na dłuższy czas życia oraz niższe zużycie energii. Używane są powszechnie w domach oraz biurach jako odpowiednik standardowych żarówek, zwłaszcza w sytuacjach, gdy zależy nam na oszczędności energii. Dodatkowo, świetlówki kompaktowe są często stosowane w ogrodach i na zewnątrz budynków, ponieważ oferują wysoką jakość światła przy niskim poborze mocy. Warto również zauważyć, że ich ograniczona emisja ciepła sprawia, że są bezpieczniejsze w użytkowaniu, zwłaszcza w zamkniętych przestrzeniach. Zgodnie z normami energetycznymi, ich zastosowanie przyczynia się do zmniejszenia emisji dwutlenku węgla, co jest zgodne z globalnymi dążeniami do ochrony środowiska.

Pytanie 36

Naciśnięcie przycisku TEST na wyłączniku różnicowoprądowym, imituje

A. przeciążenie
B. upływ prądu
C. przepięcie
D. uszkodzenie przewodu
Wciśnięcie przycisku TEST na wyłączniku różnicowoprądowym (RCD) ma na celu symulację upływu prądu, co jest kluczowym elementem działania tego urządzenia. Wyłączniki różnicowoprądowe są zaprojektowane w celu ochrony przed porażeniem prądem elektrycznym oraz pożarami spowodowanymi przez upływ prądu, dlatego ich regularne testowanie jest niezwykle istotne. Kiedy użytkownik naciska przycisk TEST, wewnętrzny mechanizm wyłącznika wytwarza sztuczny upływ prądu, co powinno spowodować natychmiastowe wyłączenie obwodu. To działanie pozwala użytkownikom na weryfikację, czy urządzenie działa prawidłowo i jest w stanie wykryć rzeczywisty upływ prądu. Zgodnie z normami branżowymi, takie testowanie powinno być przeprowadzane co najmniej raz w miesiącu, aby zapewnić bezpieczeństwo instalacji elektrycznej. Przykładowo, w przypadku zużycia izolacji przewodów lub uszkodzeń urządzeń elektrycznych, wyłącznik różnicowoprądowy powinien zareagować, wyłączając zasilanie, co zapobiega potencjalnym wypadkom i uszkodzeniom mienia. Regularne testowanie RCD przyczynia się do wyższej ochrony użytkowników oraz zgodności z przepisami bezpieczeństwa elektrycznego, jak normy PN-EN 61008-1.

Pytanie 37

W celu sprawdzenia poprawności działania dwóch wyłączników różnicowoprądowych EFI-2-25/003 pracujących w instalacji elektrycznej zmierzono ich różnicowe prądy zadziałania. Na podstawie wyników pomiarów zamieszczonych w tabeli, określ poprawność działania tych wyłączników przy założeniu, że zmierzony różnicowy prąd zadziałania powinien wynosić (0,5 ÷ 1) IΔN.

Wyłącznik różnicowoprądowyZmierzony prąd różnicowoprądowy
IΔ w mA
115
225
A. Oba niesprawne.
B. 1 - sprawny, 2 - niesprawny.
C. 1 - niesprawny, 2 - sprawny.
D. Oba sprawne.
Oba wyłączniki różnicowoprądowe EFI-2-25/003 są uznawane za sprawne, ponieważ zmierzone prądy różnicowe wynoszą odpowiednio 15 mA oraz 25 mA, co mieści się w zakresie 0,5 ÷ 1 IΔN, gdzie IΔN wynosi 30 mA. Oznacza to, że obydwa wyłączniki działają prawidłowo, co jest zgodne z normami bezpieczeństwa, które zalecają, aby różnicowe prądy zadziałania były w tym zakresie. Przykładem praktycznego zastosowania tych wyłączników może być ochrona ludzi przed porażeniem prądem oraz zabezpieczenie instalacji elektrycznych przed skutkami upływu prądu. Warto również zaznaczyć, że zgodnie z normą PN-EN 61008-1, wyłączniki różnicowoprądowe powinny być regularnie testowane, aby zapewnić ich niezawodność, a pomiary powinny być wykonywane przez wykwalifikowany personel. Odpowiednie testowanie pozwala na wczesne wykrycie potencjalnych usterek, co jest kluczowe dla bezpieczeństwa użytkowników oraz trwałości instalacji elektrycznych.

Pytanie 38

Przyrząd przedstawiony na rysunku służy do

Ilustracja do pytania
A. pomiaru rezystancji żył przewodów.
B. wyznaczania trasy przewodów.
C. szacowania długości przewodów.
D. sprawdzania ciągłości żył przewodów.
Odpowiedź, która wskazuje na sprawdzanie ciągłości żył przewodów, jest prawidłowa z uwagi na specyfikę przyrządu przedstawionego na rysunku. Tester ciągłości obwodu, zwany również multimetrem w trybie testowania ciągłości, jest nieocenionym narzędziem w pracy elektryków oraz techników zajmujących się instalacjami elektrycznymi. Jego podstawową funkcją jest wykrywanie przerw w obwodzie, co jest kluczowe podczas diagnostyki usterek. Przykładowo, w sytuacji, gdy zasilanie nie dociera do określonego urządzenia, tester pozwala na szybkie sprawdzenie, czy przewody są w pełni sprawne. Gdy obwód jest zamknięty, tester zazwyczaj sygnalizuje to zapaleniem diody LED, co jest bardzo pomocne w identyfikacji problemów. Zgodnie z zasadami BHP oraz normami IEC 61010, stosowanie takich przyrządów w pracy pozwala zminimalizować ryzyko porażenia prądem oraz innych niebezpieczeństw związanych z niewłaściwym działaniem instalacji elektrycznych.

Pytanie 39

Jakie oznaczenia oraz jaka minimalna wartość prądu znamionowego powinna mieć wkładka topikowa stosowana do ochrony przewodów przed skutkami zwarć i przeciążeń w obwodzie jednofazowego bojlera elektrycznego o parametrach: PN = 3 kW, UN = 230 V?

A. gG 16 A
B. gB 20 A
C. aM 20 A
D. aR 16 A
Wybór wkładki topikowej aR 16 A, aM 20 A lub gB 20 A nie jest odpowiedni dla opisanego obwodu bojlera elektrycznego, co wynika z różnych właściwości tych zabezpieczeń. Wkładki aR są zaprojektowane do ochrony przed zwarciami, ale charakteryzują się niższą tolerancją na przeciążenia, co może prowadzić do ich zbyt wczesnego wyłączenia w sytuacjach wystąpienia chwilowych, ale niegroźnych przeciążeń, typowych dla urządzeń grzewczych. W przypadku wkładek aM, które są stosowane głównie w obwodach silnikowych, ich zastosowanie w instalacjach o charakterze grzewczym nie jest zalecane. Dodatkowo, wkładki gB, przeznaczone do obwodów z urządzeniami o dużych prądach rozruchowych, mogą być zbyt dużą wartością dla obwodu bojlera, co stwarza ryzyko braku ochrony przy rzeczywistym przeciążeniu. Niezrozumienie specyfiki wkładek topikowych i ich zastosowania w praktyce często prowadzi do nieodpowiednich wyborów, które mogą zagrażać bezpieczeństwu użytkowników oraz powodować uszkodzenia urządzeń. Dlatego, aby zapewnić właściwe zabezpieczenie, należy stosować wkładki topikowe gG, które gwarantują odpowiednią ochronę przed zwarciami i przeciążeniami w instalacjach grzewczych.

Pytanie 40

Z którym zaciskiem będzie połączony zacisk 41 stycznika K2 według przedstawionego schematu montażowego?

Ilustracja do pytania
A. Z zaciskiem A2 stycznika K1
B. Z zaciskiem 22 stycznika K1
C. Z zaciskiem 4 listwy zaciskowej X1
D. Z zaciskiem 3 listwy zaciskowej X1
Wybór zacisku 3 listwy zaciskowej X1 jako poprawnej odpowiedzi jest uzasadniony analizą schematu montażowego, który jasno pokazuje połączenie pomiędzy tym zaciskiem a zaciskiem 41 stycznika K2. W praktyce, prawidłowe połączenie zacisków jest kluczowe dla zapewnienia właściwego działania systemów elektrycznych. W przypadku styczników, ich poprawne podłączenie wpływa na stabilność i bezpieczeństwo całego obwodu. W standardach branżowych, takich jak normy IEC 60947, zwraca się uwagę na znaczenie właściwego oznaczenia i połączeń w systemach automatyki, co pozwala na uniknięcie błędów w instalacji oraz ułatwia diagnostykę i konserwację. Zastosowanie logicznego podejścia do analizy schematu oraz znajomość standardów elektrycznych pomagają w skutecznym projektowaniu i wdrażaniu systemów, co jest niezbędne w każdej pracy zawodowej związanej z elektryką.