Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik analityk
  • Kwalifikacja: CHM.03 - Przygotowywanie sprzętu, odczynników chemicznych i próbek do badań analitycznych
  • Data rozpoczęcia: 31 stycznia 2026 15:01
  • Data zakończenia: 31 stycznia 2026 15:44

Egzamin zdany!

Wynik: 35/40 punktów (87,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Zgłębniki o konstrukcji przypominającej świder są wykorzystywane do pobierania próbek różnych materiałów

A. półpłynnych
B. płynnych
C. sypkich
D. ciastowatych
Wybór innych odpowiedzi, takich jak sypkie, płynne czy półpłynne, wynika z niepełnego zrozumienia właściwości materiałów oraz zastosowania zgłębnika w kształcie świdra. Materiały sypkie, takie jak piasek czy żwir, są najczęściej pobierane poprzez metody bardziej odpowiednie do ich struktury, na przykład za pomocą zgłębnika cylindrycznego. Zgłębniki te są przystosowane do uzyskiwania próbek z luźnych i sypkich materiałów, gdzie nie jest wymagane wwiercanie się w substancje o większej lepkości. W przypadku materiałów płynnych, takich jak woda czy oleje, stosuje się zupełnie inne metody, na przykład pompy lub próbniki ciśnieniowe, które są bardziej efektywne w pozyskiwaniu próbek z płynnych mediów. Natomiast materiały półpłynne, takie jak niektóre rodzaje osadów, mogą wymagać zastosowania innych narzędzi, które są bardziej odpowiednie do ich specyfiki. Typowym błędem myślowym jest założenie, że jeden typ zgłębnika może być użyty do różnych typów materiałów bez uwzględnienia ich właściwości fizycznych. Dlatego ważne jest zrozumienie, że zgłębniki w kształcie świdra są zoptymalizowane do pracy z substancjami ciastowatymi, co czyni je nieodpowiednimi do innych materiałów.

Pytanie 2

Która część małej partii materiału jest najczęściej pobierana w celu przygotowania próbki ogólnej?

A. 0,01%
B. 1%
C. 0,1%
D. 0,001%
Wybór wartości 1% jako wielkości próby może wydawać się na pierwszy rzut oka rozsądny, jednak przekracza powszechnie akceptowane standardy w zakresie pobierania próbek. W praktyce, pobieranie próbki w takiej ilości może prowadzić do nieproporcjonalnych strat materiałowych oraz do potencjalnego wprowadzenia błędu systematycznego w analizach. W przypadku materiałów o dużej zmienności, pobranie 1% może skutkować nieodpowiednią reprezentatywnością próbki, co z kolei prowadzi do błędnych wniosków na temat jakości całej partii. Podobnie, wartości takie jak 0,001% i 0,01% są zbyt małe, aby zapewnić odpowiedni poziom dokładności i reprezentatywności próbki. Przykładowo, gdy próbka jest zbyt mała, istnieje ryzyko, że nie odda ona właściwości fizykochemicznych całego materiału, co jest niezgodne z zasadami statystyki prób. Warto zwrócić uwagę, że procesy pobierania próbek powinny być zgodne z wytycznymi norm ISO 2859-1, które sugerują, że optymalna wielkość próbki powinna być określona na podstawie wielkości całej partii oraz jej jednorodności. Stąd, dobór 0,1% jako wartości standardowej w wielu branżach, zwłaszcza tam, gdzie jakość i bezpieczeństwo są kluczowe, jest rozsądnym podejściem, które minimalizuje ryzyko błędów związanych z nieodpowiednią próbą.

Pytanie 3

Na rysunku przedstawiającym płomień palnika gazowego najwyższa temperatura płomienia znajduje się w strefie

Ilustracja do pytania
A. III.
B. IV.
C. I.
D. II.
Odpowiedź IV jest prawidłowa, ponieważ najwyższa temperatura płomienia palnika gazowego występuje w stożku wtórnym, który odpowiada strefie IV na rysunku. Ta strefa charakteryzuje się pełnym wymieszaniem gazu z powietrzem, co prowadzi do intensywnej reakcji spalania. W praktyce oznacza to, że w strefie IV osiągane są najwyższe temperatury, co jest kluczowe w zastosowaniach przemysłowych, takich jak spawanie czy lutowanie, gdzie precyzyjne kontrolowanie temperatury jest niezbędne do uzyskania wysokiej jakości połączeń. Dobre praktyki w pracy z palnikami gazowymi sugerują, aby optymalizować ustawienia palnika tak, aby maksymalizować efektywność spalania w tej strefie, co przekłada się na oszczędność paliwa oraz minimalizację emisji szkodliwych substancji. Wiedza o rozkładzie temperatury w płomieniu palnika gazowego jest istotna nie tylko dla inżynierów, ale również dla techników i operatorów sprzętu, którzy muszą stosować się do standardów bezpieczeństwa i efektywności energetycznej.

Pytanie 4

Oblicz, jaką ilość węglanu sodu w gramach należy przygotować, aby uzyskać 500 cm3 roztworu tej soli o stężeniu 0,1000 mol/dm3.
MNa = 23 g/mol, MC = 12 g/mol, MO = 16 g/mol

A. 7,0000 g
B. 5,3000 g
C. 5,0000 g
D. 7,5000 g
Aby obliczyć masę węglanu sodu (Na2CO3) potrzebną do przygotowania 500 cm³ roztworu o stężeniu 0,1000 mol/dm³, należy najpierw obliczyć liczbę moli tej soli. Stężenie 0,1000 mol/dm³ oznacza, że w 1 dm³ (1000 cm³) roztworu znajduje się 0,1000 mola Na2CO3. Zatem, w 500 cm³ roztworu znajdować się będzie 0,0500 mola: 0,1000 mol/dm³ * 0,500 dm³ = 0,0500 mol. Następnie, należy obliczyć masę węglanu sodu, stosując wzór: masa = liczba moli * masa molowa. Masa molowa Na2CO3 wynosi: 23 g/mol (Na) * 2 + 12 g/mol (C) + 16 g/mol (O) * 3 = 106 g/mol. Zatem, masa Na2CO3 potrzebna do przygotowania roztworu wynosi: 0,0500 mol * 106 g/mol = 5,3000 g. Takie obliczenia są powszechnie wykorzystywane w laboratoriach chemicznych i są zgodne z zasadami przygotowywania roztworów. Zachowanie precyzji w obliczeniach jest kluczowe dla uzyskania pożądanych stężeń roztworów w praktyce.

Pytanie 5

200 g soli zostało poddane procesowi oczyszczania poprzez krystalizację. Uzyskano 125 g czystego produktu. Jaką wydajność miała krystalizacja?

A. 62,5%
B. 60,5%
C. 125%
D. 75%
Wydajność krystalizacji oblicza się, dzieląc masę czystego produktu przez masę surowca, a następnie mnożąc przez 100%. W tym przypadku masa czystego produktu wynosi 125 g, a masa surowca to 200 g. Obliczenia przedstawiają się następująco: (125 g / 200 g) * 100% = 62,5%. Zrozumienie wydajności krystalizacji ma kluczowe znaczenie w przemyśle chemicznym, ponieważ pozwala ocenić skuteczność procesu, co jest niezbędne do optymalizacji produkcji. Wydajność krystalizacji jest często analizowana w kontekście różnych metod oczyszczania substancji, a jej wysoka wartość wskazuje na efektywność procesu. W praktyce, osiągnięcie wysokiej wydajności krystalizacji może mieć istotne znaczenie ekonomiczne, szczególnie w sektorach takich jak farmaceutyka czy przemysł chemiczny, gdzie czystość produktu końcowego jest kluczowa dla spełnienia standardów jakości. Dlatego regularne monitorowanie wydajności procesu krystalizacji stanowi część dobrych praktyk inżynieryjnych oraz zarządzania jakością.

Pytanie 6

Materiały wykorzystywane w laboratoriach, mogące prowadzić do powstawania mieszanin wybuchowych, powinny być przechowywane

A. w izolowanych pomieszczeniach magazynów ogólnych
B. na otwartym powietrzu pod dachem
C. w specjalnie wydzielonych piwnicach murowanych
D. w różnych punktach laboratorium
Materiały stosowane w laboratoriach, które mogą tworzyć mieszaniny wybuchowe, należy przechowywać w izolowanych pomieszczeniach magazynów ogólnych ze względu na ryzyko ich niekontrolowanej reakcji, co może prowadzić do poważnych zagrożeń dla zdrowia i bezpieczeństwa. Izolacja pomieszczeń magazynowych pozwala na ograniczenie rozprzestrzeniania się ewentualnych wybuchów oraz na skuteczne zarządzanie wentylacją i monitoringiem. Przykładem mogą być laboratoria chemiczne, gdzie substancje takie jak rozpuszczalniki organiczne, materiały łatwopalne czy reagenty chemiczne muszą być przechowywane w wyspecjalizowanych pomieszczeniach, które są zgodne z przepisami BHP oraz normami takimi jak NFPA (National Fire Protection Association) czy OSHA (Occupational Safety and Health Administration). Dobre praktyki obejmują również regularne kontrole i audyty stanu magazynów, co pozwala na wczesne wykrywanie potencjalnych zagrożeń oraz zapewnienie odpowiednich środków ochrony, takich jak gaśnice i systemy alarmowe.

Pytanie 7

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 8

Skuteczny środek do osuszania

A. powinien działać wolno.
B. powinien wchodzić w reakcję z substancją suszoną i nie prowadzić do jej utlenienia.
C. nie powinien przyspieszać rozkładu suszonej substancji.
D. powinien być rozpuszczalny w cieczy, która jest suszona.
Dobry środek suszący nie powinien katalizować rozkładu substancji suszonej, ponieważ jego główną funkcją jest usunięcie wody bez wpływania negatywnego na właściwości chemiczne suszonego materiału. Katalizatory mogą przyspieszać reakcje chemiczne, co w przypadku substancji wrażliwych na utlenienie czy degradację prowadziłoby do obniżenia ich jakości oraz zmiany ich właściwości. Na przykład, w przemyśle farmaceutycznym, gdzie utrzymanie stabilności substancji czynnych jest kluczowe, stosowanie środków, które nie katalizują rozkładów jest absolutnie niezbędne. Dobre praktyki sugerują, aby wybierać środki suszące zgodne z wymaganiami danej substancji, unikając jednocześnie substancji, które mogłyby przyczynić się do degradacji. Dlatego kluczowe jest dobieranie odpowiednich metod suszenia, takich jak suszenie w próżni czy użycie substancji adsorpcyjnych, które nie mają wpływu na chemiczne właściwości suszonego materiału, co jest zgodne z normami jakościowymi takimi jak ISO 9001.

Pytanie 9

Piktogram nie jest konieczny dla

A. mieszanin samoreaktywnych typu G
B. substancji, które powodują korozję metali
C. substancji, które mają działanie drażniące na oczy
D. substancji, które działają drażniąco na skórę
Mieszaniny samoreaktywne typu G to substancje, które nie wymagają stosowania piktogramów, ponieważ są one klasyfikowane w inny sposób niż substancje drażniące. Zgodnie z rozporządzeniem CLP (Classification, Labelling and Packaging), piktogramy są stosowane do oznaczania substancji, które posiadają określone właściwości niebezpieczne, takie jak drażniące działanie na oczy czy skórę. Mieszaniny samoreaktywne typu G, do których zalicza się substancje mogące ulegać niekontrolowanym reakcjom chemicznym, są klasyfikowane na podstawie ich właściwości fizykochemicznych i nie są objęte wymaganiami dotyczącymi piktogramów. Przykładem może być pewien rodzaj azotanu, który, będąc samoreaktywnym, nie wymaga dodatkowego oznakowania ostrzegawczego, o ile nie wykazuje innych zagrożeń. Dobrą praktyką w obszarze zarządzania substancjami chemicznymi jest znajomość ich klasyfikacji oraz odpowiednich przepisów, co pozwala na bezpieczne ich stosowanie w przemyśle oraz laboratoriach.

Pytanie 10

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 11

Jaką masę siarczanu(VI) miedzi(II)-woda(1/5) należy poddać suszeniu, aby otrzymać 300 g soli bezwodnej?

CuSO4 · 5H2O → CuSO4 + 5H2O
(MCuSO4·5H2O = 249,5 g/mol, MCuSO4 = 159,5 g/mol, MH2O = 18,0 g/mol)
A. 469,3 g
B. 210,0 g
C. 584,1 g
D. 390,5 g
Odpowiedź 469,3 g jest prawidłowa, ponieważ obliczenia opierają się na stosunku mas molowych soli bezwodnej i uwodnionej. Siarczan(VI) miedzi(II) w postaci uwodnionej (CuSO4·5H2O) zawiera cząsteczki wody, które muszą zostać usunięte podczas procesu suszenia, aby uzyskać sól bezwodną (CuSO4). Masy molowe: CuSO4 wynoszą około 159,61 g/mol, a CuSO4·5H2O to 249,68 g/mol. Stosując proporcje, można ustalić, że masa siarczanu(VI) miedzi(II)-woda, potrzebna do uzyskania 300 g soli bezwodnej, wynosi około 469,3 g. Praktyczne zastosowanie tej wiedzy jest istotne w laboratoriach chemicznych, gdzie precyzyjne przygotowanie roztworów i soli jest kluczowe dla uzyskania wiarygodnych wyników badań. Dobre praktyki laboratoryjne sugerują, aby zawsze przeprowadzać obliczenia masy przed rozpoczęciem doświadczenia, co pozwala uniknąć błędów i strat materiałowych.

Pytanie 12

Wskaż zbiór substancji, które po rozpuszczeniu w wodzie stają się elektrolitami?

A. Glukoza, kwas azotowy(V), wodorotlenek wapnia
B. Cukier, sól stołowa, ocet
C. Chlorek sodu, wodorotlenek sodu, kwas siarkowy(VI)
D. Kwas solny, gliceryna, tlenek siarki(VI)
Prawidłowa odpowiedź to chlorek sodu, wodorotlenek sodu oraz kwas siarkowy(VI), ponieważ są to substancje, które w rozpuszczalniku wodnym dysocjują na jony. Elektrolity to substancje, które w roztworach wodnych przewodzą prąd elektryczny dzięki obecności naładowanych cząsteczek – jonów. Chlorek sodu (NaCl) po rozpuszczeniu w wodzie dissocjuje na jony sodu (Na+) i jony chlorkowe (Cl-), co czyni go doskonałym elektrolitem, często stosowanym w przemyśle spożywczym oraz w procesach biologicznych. Wodorotlenek sodu (NaOH) również rozkłada się na jony Na+ i OH-, co czyni go silnym elektrolitem, wykorzystywanym w wielu procesach chemicznych, w tym w produkcji mydeł i detergentów. Kwas siarkowy(VI) (H2SO4) w wodzie dissocjuje, tworząc jony H+ oraz jony SO4^2-, co sprawia, że jest jednym z najsilniejszych elektrolitów i znajduje zastosowanie w akumulatorach kwasowo-ołowiowych oraz w przemyśle chemicznym. Zrozumienie roli elektrolitów jest kluczowe nie tylko w chemii, ale również w biologii oraz medycynie, gdzie ich równowaga ma istotne znaczenie dla funkcjonowania organizmu.

Pytanie 13

Odpady z rozpuszczalników organicznych, takich jak benzen czy aceton, zawierające co najmniej 80% danego rozpuszczalnika, należy

A. połączyć z ziemią okrzemkową i przekazać do utylizacji.
B. poddać recyklingowi w celu odzyskania rozpuszczalnika.
C. odprowadzać bezpośrednio do kanalizacji.
D. zniszczyć poprzez zastosowanie odpowiednich procesów.
Odpady z rozpuszczalników organicznych, takich jak benzen czy aceton, które mają przynajmniej 80% tego rozpuszczalnika, powinny być poddawane recyklingowi. To naprawdę zgodne z zasadami zrównoważonego rozwoju i tego, jak powinniśmy zarządzać odpadami. Recykling pozwala nam na ich ponowne wykorzystanie w przemysłowych procesach, dzięki czemu zmniejszamy ilość śmieci i ograniczamy potrzebę pozyskiwania nowych surowców. W praktyce chodzi o różne metody, jak destylacja, które pomagają odzyskać czysty rozpuszczalnik. Na przykład w przemyśle lakierniczym często korzysta się z takich procesów, co jest korzystne, bo zmniejsza koszty i wpływ na środowisko. Pamiętaj, że zgodnie z prawem, te odpady są klasyfikowane jako niebezpieczne, więc dobre zarządzanie nimi i ich recykling są naprawdę kluczowe dla zdrowia ludzi i ochrony naszej planety.

Pytanie 14

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 15

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 16

Aby przeprowadzić analizę jakościową, próbkę mosiądzu należy roztworzyć w stężonym kwasie

A. azotowym(V)
B. chlorowodorowym
C. siarkowym(VI)
D. bromowodorowym
Roztwarzanie mosiądzu w stężonym kwasie azotowym(V) jest prawidłowym podejściem, ponieważ kwas ten jest silnym utleniaczem, zdolnym do rozkładu mosiądzu, który jest stopem miedzi i cynku. Kwas azotowy(V) powoduje utlenienie miedzi do tlenków miedzi oraz rozpuszczenie cynku, a reakcja ta prowadzi do powstania azotanu miedzi i azotanu cynku. Stosowanie kwasu azotowego w analizie jakościowej ma zastosowanie w laboratoriach chemicznych oraz w przemyśle metalurgicznym, gdzie dokładna analiza składników stopów jest kluczowa dla kontrolowania jakości produktów. Na przykład, w procesach produkcji i recyklingu metali nieżelaznych, analiza jakościowa przy użyciu kwasu azotowego pozwala na dokładne określenie proporcji składników w stopach, co ma istotne znaczenie dla ich dalszego przetwarzania oraz zastosowania. W pracy laboratoryjnej należy pamiętać o zachowaniu odpowiednich środków ostrożności, ponieważ kwas azotowy jest substancją silnie żrącą i toksyczną, co wymaga stosowania odpowiednich zabezpieczeń osobistych oraz procedur BHP.

Pytanie 17

Symbol "In" znajduje się na

A. kolbach miarowych i wskazuje na sprzęt kalibrowany "na wlew"
B. biuretach i oznacza sprzęt kalibrowany "na wlew"
C. kolbach miarowych i wskazuje na sprzęt kalibrowany "na wylew"
D. pipetach i oznacza sprzęt kalibrowany "na wylew"
Dobra robota! Odpowiedź, którą wybrałeś, jest całkiem trafna. Symbol 'In' rzeczywiście oznacza kolby miarowe, które służą do dokładnego mierzenia objętości cieczy. Kalibracja 'na wlew' jest kluczowa, bo chodzi o to, żeby zmierzyć ciecz do poziomu krawędzi menisku. To ma ogromne znaczenie, zwłaszcza w chemii, gdzie precyzja jest na wagę złota. W laboratoriach często korzysta się z kolb, żeby mieć pewność, że każdy eksperyment jest powtarzalny i wyniki są wiarygodne. Jak napełniasz kolbę do oznaczenia, to wiesz, że używasz całej tej objętości cieczy, co minimalizuje ryzyko błędów. Dlatego warto znać te symbole, bo to podstawa w pracy każdego chemika.

Pytanie 18

Próbka, którą analizujemy, to bardzo rozcieńczony wodny roztwór soli nieorganicznych, który ma być poddany analizie. Proces, który można zastosować do zagęszczenia tego roztworu, to

A. ekstrakcji
B. destylacji
C. sublimacji
D. krystalizacji
Destylacja jest procesem, który polega na podgrzewaniu cieczy, w wyniku czego powstają pary, które następnie są skraplane i zbierane jako ciecz. Jest to jedna z najczęściej stosowanych metod zatężania roztworów, szczególnie w przypadku roztworów wodnych soli nieorganicznych. W praktyce laboratoria chemiczne wykorzystują destylację do separacji składników roztworów, co pozwala na uzyskanie czystszych substancji oraz na analizę ich stężenia. W destylacji kluczowe jest dobranie odpowiedniego układu aparatu destylacyjnego, takiego jak destylator prosty czy destylator frakcyjny, w zależności od różnic w temperaturze wrzenia substancji. Przykłady zastosowania destylacji obejmują przemysł chemiczny, gdzie stosuje się ją do oczyszczania rozpuszczalników oraz w laboratoriach analitycznych do przygotowywania próbek do dalszych badań. Zgodnie z normami ISO, destylacja jest uznawana za metodę wysokowydajną i efektywną, co czyni ją niezbędnym narzędziem w chemii analitycznej.

Pytanie 19

Zdjęcie przedstawia oparzenie cieplne

Ilustracja do pytania
A. IVo
B. Io
C. IIo
D. IIIo
Na zdjęciu przedstawione jest oparzenie II stopnia, które charakteryzuje się obecnością pęcherzy oraz zaczerwienieniem skóry. Oparzenia II stopnia są wynikiem uszkodzenia naskórka oraz części skóry właściwej, co prowadzi do pojawienia się pęcherzy wypełnionych płynem. W praktyce klinicznej, ocena stopnia oparzenia jest kluczowa dla wyboru odpowiedniego leczenia. Oparzenia I stopnia, które przejawiają się jedynie zaczerwienieniem, można leczyć z użyciem dostępnych bez recepty preparatów, takich jak maści na oparzenia. Oparzenia III i IV stopnia wymagają natomiast interwencji chirurgicznej oraz długotrwałej rehabilitacji. Warto również zwrócić uwagę na standardy postępowania w przypadku oparzeń, które obejmują m.in. chłodzenie rany, unikanie stosowania lodu bezpośrednio na skórę oraz konsultację medyczną w przypadku rozległych oparzeń. Dobrą praktyką jest także edukacja w zakresie pierwszej pomocy, aby w sytuacji wystąpienia oparzenia, szybko i skutecznie zareagować, minimalizując skutki uszkodzenia skóry.

Pytanie 20

Urządzeniem pomiarowym nie jest

A. termometr
B. eksykator
C. konduktometr
D. pehametr
Eksykator jest urządzeniem, które nie służy do pomiarów, lecz do przechowywania substancji w warunkach obniżonego ciśnienia atmosferycznego lub w atmosferze kontrolowanej. Używany jest w laboratoriach chemicznych do zabezpieczania materiałów wrażliwych na wilgoć, powietrze lub inne czynniki atmosferyczne. Na przykład, eksykator może być stosowany do przechowywania substancji higroskopijnych, takich jak sól kuchenną, aby zapobiec ich nawilżeniu i degradacji. W praktyce, eksykatory często zawierają substancje osuszające, które pomagają utrzymać odpowiednie warunki w ich wnętrzu. W odróżnieniu od konduktometru, pH-metra i termometru, które są zaprojektowane do wykonywania precyzyjnych pomiarów fizykochemicznych, eksykator pełni jedynie funkcję przechowalniczą, co czyni go przyrządem niepomiarowym według standardów metrologicznych.

Pytanie 21

Gęstość próbki cieczy wyznacza się przy użyciu

A. piknometru
B. biurety
C. refraktometru
D. spektrofotometru
Prawidłowa odpowiedź to piknometr, który jest instrumentem służącym do pomiaru gęstości cieczy. Działa na zasadzie porównania masy próbki cieczy z jej objętością. Piknometr jest precyzyjnym narzędziem wykorzystywanym w laboratoriach chemicznych do określania gęstości różnych substancji, co jest kluczowe w wielu dziedzinach, takich jak chemia analityczna, petrochemia, a także w przemyśle spożywczym. Na przykład, w przemyśle naftowym, znajomość gęstości olejów jest niezbędna do oceny ich jakości oraz do obliczeń dotyczących transportu. Piknometr jest zgodny z normami ASTM D287 oraz ISO 3507, co zapewnia wiarygodność wyników. Warto również zwrócić uwagę, że pomiar gęstości za pomocą piknometrów jest często preferowany ze względu na jego wysoką dokładność i powtarzalność wyników, w porównaniu do innych metod, takich jak pomiar przy użyciu hydrometru, który może być mniej precyzyjny w przypadku cieczy o złożonej strukturze chemicznej.

Pytanie 22

W laboratorium chemicznym przewody instalacji rurowych są oznaczane różnymi kolorami, zgodnie z obowiązującymi normami. Polska Norma PN-70 N-01270/30 określa kolor dla wody jako

A. żółty
B. zielony
C. czerwony
D. niebieski
Kolory oznaczeń przewodów w instalacjach rurowych mają kluczowe znaczenie dla zachowania bezpieczeństwa w laboratoriach oraz innych obiektach przemysłowych. Zastosowanie niewłaściwych barw prowadzi do potencjalnych niebezpieczeństw, które mogą wynikać z błędnego zrozumienia, jakie medium płynie w danej rurze. Odpowiedzi, takie jak "niebieski", "żółty" czy "czerwony", nie są zgodne z normą PN-70 N-01270/30, co może prowadzić do poważnych konsekwencji. Kolor niebieski zwykle stosuje się do oznaczania instalacji z wodą pitną, co może być mylące w kontekście wody technicznej czy roboczej. Z kolei kolor żółty często używany jest do oznaczania substancji toksycznych lub niebezpiecznych, co stwarza ryzyko nieprawidłowego rozpoznania instalacji. Kolor czerwony z kolei zazwyczaj kojarzy się z substancjami łatwopalnymi lub instalacjami związanymi z ogniem, co w kontekście wody byłoby skrajnie mylące. Warto zauważyć, że typowe błędy w interpretacji kolorów wynikają często z niedostatecznej znajomości standardów oraz norm, jak również z niewłaściwego podejścia do kwestii bezpieczeństwa w laboratoriach. Zrozumienie jakie kolory identyfikują konkretne substancje jest fundamentalne dla zachowania wysokich standardów bezpieczeństwa i minimalizacji ryzyka wypadków.

Pytanie 23

Wody pobrane ze studni powinny być przewożone w szczelnie zamkniętych butelkach z przezroczystego materiału

A. szklanych, w temperaturze około 20°C
B. z tworzywa sztucznego, w temperaturze około 20°C
C. z tworzywa sztucznego, w temperaturze około 4°C
D. szklanych, w temperaturze około 30°C
Odpowiedź dotycząca użycia butelek z tworzywa sztucznego, w temperaturze około 4°C, jest zgodna z zaleceniami dotyczącymi transportu próbek wody. Tworzywo sztuczne, takie jak polipropylen lub PET, jest preferowane, ponieważ jest lekkie, odporne na pęknięcia i dobrze zabezpiecza próbki przed zanieczyszczeniami. Przechowywanie próbek w niskiej temperaturze, około 4°C, minimalizuje rozwój mikroorganizmów i stabilizuje skład chemiczny wody, co jest kluczowe dla wiarygodności analizy. W praktyce zaleca się, aby próbki były transportowane w ciągu maksymalnie 24 godzin od pobrania, aby zminimalizować ryzyko zmiany parametrów analitycznych. Dobre praktyki laboratoria wodociągowego wskazują, że każda próbka powinna być odpowiednio oznakowana i zarejestrowana, co ułatwia późniejsze śledzenie wyników analizy. W takich sytuacjach warto korzystać z wytycznych takich jak Standard ISO 5667 dotyczący pobierania próbek wody, co zapewnia jakość i wiarygodność uzyskiwanych danych.

Pytanie 24

W tabeli zestawiono objętości molowe czterech gazów odmierzone w warunkach normalnych.
Dla którego spośród wymienionych w tabeli gazów objętość molowa najbardziej odchyla się od wartości obliczonej dla gazu doskonałego?

GazSO2CHCl3(para)O3NH3
Objętość molowa (dm3/mol)21,8922,6021,622,08
A. Ozonu.
B. Tlenku siarki(IV).
C. Chloroformu.
D. Amoniaku.
Ozon (O3) ma objętość molową, która w warunkach normalnych odchyla się od wartości teoretycznej, typowej dla gazu doskonałego, bardziej niż pozostałe gazy wymienione w pytaniu. Dla gazów doskonałych zakłada się, że ich cząsteczki nie oddziałują ze sobą oraz że zajmują objętość zero, co nie ma miejsca w rzeczywistości. Ozon, ze względu na swoją strukturę i bardziej złożoną budowę cząsteczkową, wykazuje znaczące interakcje między cząsteczkami, co prowadzi do odchyleń od wzorów gazu doskonałego. W praktyce, szczególnie w chemii atmosferycznej, zrozumienie tych odchyleń ma kluczowe znaczenie dla modelowania reakcji chemicznych i procesów, takich jak fotochemiczne zachowanie ozonu w atmosferze. Wiedza ta jest niezbędna dla naukowców i inżynierów zajmujących się ochroną środowiska, ponieważ ozon jest zarówno gazem o działaniu prozdrowotnym w górnych warstwach atmosfery, jak i zanieczyszczeniem w niższych warstwach, co sprawia, że jego analiza jest kluczowa dla oceny jakości powietrza i skutków zdrowotnych. Dodatkowo, znajomość objętości molowej ozonu ma zastosowanie w wielu dziedzinach, w tym w meteorologii i farmakologii, gdzie precyzyjne pomiary gazów są kluczowe dla skutecznych interwencji oraz badań.

Pytanie 25

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 26

Reagenty o najwyższej czystości to reagenty

A. spektralnie czyste.
B. czyste do badań.
C. chemicznie czyste.
D. czyste.
Odpowiedź "spektralnie czyste" jest uznawana za właściwą, ponieważ odnosi się do odczynnika, który został oczyszczony w takim stopniu, że jego czystość jest wystarczająca do zastosowań w spektroskopii oraz innych czułych analizach chemicznych. W praktyce oznacza to, że odczynniki te mają bardzo niskie stężenia zanieczyszczeń, co jest kluczowe dla uzyskania dokładnych i powtarzalnych wyników w badaniach. W laboratoriach analitycznych i badawczych, gdzie precyzja wyników jest niezbędna, stosuje się odczynniki spektralnie czyste, aby uniknąć wpływu niepożądanych substancji na reakcje chemiczne lub pomiary. Przykładem może być analiza chromatograficzna, gdzie obecność zanieczyszczeń może prowadzić do fałszywych wyników. W standardach ISO oraz w pracach dotyczących analizy chemicznej, podkreśla się wagę używania odczynników o specjalistycznej czystości, co stanowi najlepszą praktykę w laboratoriach zajmujących się badaniami jakości oraz badaniami ilościowymi substancji chemicznych.

Pytanie 27

Piktogram ukazujący czaszkę oraz skrzyżowane kości piszczelowe jest typowy dla substancji o działaniu

A. narkotycznym
B. korodującym na metale
C. żrącym dla skóry
D. toksycznym dla skóry
Piktogram przedstawiający czaszkę i skrzyżowane piszczele jest powszechnie stosowany do oznaczania substancji, które mają działanie toksyczne na skórę. Oznaczenie to informuje użytkowników o ryzyku, jakie niesie ze sobą kontakt danego związku chemicznego z ciałem. Substancje toksyczne mogą powodować poważne uszkodzenia, a w niektórych przypadkach nawet prowadzić do śmierci, jeśli nie zostaną odpowiednio zabezpieczone. Przykłady substancji, które mogą być oznaczone tym piktogramem, to niektóre pestycydy, rozpuszczalniki organiczne czy chemikalia wykorzystywane w laboratoriach. Zgodnie z obowiązującymi standardami, takimi jak GHS (Globalnie Zharmonizowany System Klasyfikacji i Oznakowania Chemikaliów), prawidłowe oznaczenie substancji jest kluczowym elementem zapewnienia bezpieczeństwa w miejscu pracy oraz w codziennym użytkowaniu chemikaliów. Właściwe zrozumienie i respektowanie tych oznaczeń jest niezbędne do minimalizacji ryzyka zatrucia lub poparzeń chemicznych.

Pytanie 28

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 29

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 30

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 31

Nie należy używać gorącej wody do mycia

A. kolby miarowej
B. zlewki
C. szkiełka zegarkowego
D. kolby stożkowej
Kolba miarowa jest szklanym naczyniem laboratoryjnym, które służy do dokładnego pomiaru objętości cieczy. Z uwagi na jej konstrukcję, nagłe zmiany temperatury mogą prowadzić do uszkodzeń, takich jak pęknięcia czy odkształcenia. Gorąca woda może powodować, że szkło stanie się bardziej podatne na stres termiczny, co jest niebezpieczne, zwłaszcza w przypadku kolb miarowych, które są projektowane z myślą o precyzyjnych pomiarach. W standardach laboratoryjnych, takich jak normy ISO, zaleca się, aby naczynia wykonane ze szkła boro-krzemowego, wykorzystywane w laboratoriach, nie były narażane na nagłe zmiany temperatury. Dobrą praktyką jest mycie ich w letniej wodzie z detergentem, a następnie dokładne płukanie w wodzie destylowanej, aby zminimalizować ryzyko uszkodzenia i zapewnić dokładność pomiarów. Przy odpowiedniej konserwacji, kolby miarowe mogą służyć przez wiele lat, jednak ich właściwe użytkowanie jest kluczowe dla utrzymania ich funkcjonalności.

Pytanie 32

Zjawisko fizyczne, które polega na rozkładaniu struktury krystalicznej substancji stałej oraz przenikaniu jej cząsteczek lub jonów do cieczy, nosi nazwę

A. rozpuszczaniem
B. stapianiem
C. roztwarzaniem
D. sublimacją
Rozpuszczanie to proces, w którym substancja stała, zwana solutem, ulega rozkładowi w rozpuszczalniku, tworząc jednorodną mieszaninę, znaną jako roztwór. W czasie tego procesu, cząsteczki lub jony solutu odrywają się od sieci krystalicznej i są otaczane przez cząsteczki rozpuszczalnika. Przykładem może być rozpuszczanie soli kuchennej (NaCl) w wodzie, gdzie jony sodu i chlorkowe oddzielają się i są stabilizowane przez cząsteczki wody. Zjawisko to jest kluczowe w wielu dziedzinach, takich jak chemia analityczna, gdzie przygotowanie roztworów o określonym stężeniu jest niezbędne do przeprowadzania reakcji chemicznych i analiz. Ponadto, zrozumienie rozpuszczania ma zastosowanie w technologii, farmacji, a także biotechnologii, gdzie przygotowanie odpowiednich roztworów jest niezbędne do badań i produkcji. Znajomość procesów rozpuszczania oraz czynników wpływających na ten proces, takich jak temperatura, pH czy obecność innych substancji, jest fundamentalna dla wielu praktycznych zastosowań oraz badań naukowych.

Pytanie 33

Aby podnieść temperaturę roztworu do 330 K, jakie wyposażenie jest potrzebne?

A. statywu, siatki, zlewki, termometru z zakresem temperatur 0+100°C
B. statywu, siatki, zlewki, termometru z zakresem temperatur 0--50°C
C. trójnogu, siatki ceramicznej, zlewki, termometru z zakresem temperatur 0-+100°C
D. trójnogu, siatki ceramicznej, zlewki, termometru z zakresem temperatur 0--0°C
Poprawna odpowiedź to wykorzystanie trójnogu, siatki ceramicznej, zlewki oraz termometru z zakresem temperatur 0-+100°C. Ta konfiguracja jest właściwa, ponieważ umożliwia bezpieczne i efektywne ogrzewanie roztworu do wymaganej temperatury 330 K (około 57°C). Trójnóg zapewnia stabilność podczas ogrzewania, co jest kluczowe w laboratoriach, gdzie bezpieczeństwo jest priorytetem. Siatka ceramiczna rozkłada ciepło równomiernie, co minimalizuje ryzyko lokalnych przegrzań, które mogą prowadzić do niepożądanych reakcji chemicznych. Użycie zlewki do podgrzewania roztworu jest standardową praktyką, ponieważ zlewki wykonane z odpowiednich materiałów (np. szkło borokrzemowe) są odporne na zmiany temperatury. Termometr z zakresem 0-+100°C jest odpowiedni do monitorowania temperatury, ponieważ pozwala na bezpieczne kontrolowanie wzrostu temperatury roztworu w bezpiecznym zakresie, nie przekraczającym maksymalnej temperatury mierzonej przez termometr. W laboratoriach chemicznych kluczowe jest przestrzeganie standardów bezpieczeństwa oraz stosowanie odpowiednich narzędzi, co zapewnia nie tylko dokładność eksperymentów, ale również ochronę przed zagrożeniami związanymi z wysoką temperaturą.

Pytanie 34

Odczynnik, który nie został wykorzystany, należy zutylizować zgodnie z informacjami zawartymi na etykiecie

A. 13 maja 2017 roku
B. w czerwcu 2017 roku
C. w kwietniu 2017 roku
D. 5 maja 2017 roku
Wybór daty z maja czy kwietnia 2017 roku jest błędny, ponieważ sugeruje zakończony okres użyteczności odczynnika, co może prowadzić do niebezpiecznych sytuacji w laboratoriach. Używanie odczynników po wskazanych datach ma negatywne skutki, w tym zmniejszoną efektywność i dokładność wyników badań. Dobrą praktyką w laboratoriach jest regularne przeglądanie zapasów odczynników i usuwanie tych, które osiągnęły swoje daty ważności. Na przykład, odczynniki chemiczne mogą podlegać degradacji na skutek czynników zewnętrznych, takich jak światło, temperatura czy wilgoć, co z kolei wpływa na ich właściwości chemiczne. Utylizacja niezużytych odczynników powinna być zgodna z wytycznymi organizacji ochrony środowiska oraz lokalnymi regulacjami prawnymi. Ignorowanie tych zasad prowadzi do ryzykownych praktyk, które mogą zagrażać zdrowiu i życiu pracowników, a także prowadzić do kontaminacji środowiska. Ponadto, nieprzestrzeganie procedur dotyczących utylizacji może skutkować sankcjami prawno-administracyjnymi. Należy również podkreślić, że każda decyzja o utylizacji powinna być oparta na obiektywnej analizie stanu odczynnika oraz jego potencjalnych konsekwencji dla badań oraz bezpieczeństwa operacyjnego laboratorium.

Pytanie 35

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 36

Jak nazywa się naczynie o płaskim dnie, które wykorzystuje się do pozyskiwania substancji stałej poprzez stopniowe odparowanie rozpuszczalnika z roztworu?

A. Tygiel Schotta
B. Krystalizator
C. Kolba Kjeldahla
D. Eksykator
Krystalizator to takie płaskodenne naczynie, które często widzimy w laboratoriach chemicznych. Używamy go do uzyskiwania substancji stałej w wyniku krystalizacji, co jest dosyć fajnym procesem. Krystalizacja polega na tym, że powoli odparowujemy rozpuszczalnik z roztworu, a to sprzyja tworzeniu się ładnych kryształów. Dobrze zaprojektowane krystalizatory mają dużą powierzchnię parowania, więc to przyspiesza cały proces. W praktyce, często korzystamy z krystalizatorów, żeby oczyścić różne substancje chemiczne, ale też w produkcji soli czy związków organicznych. Z mojego doświadczenia, w laboratoriach ważne jest, żeby monitorować temperaturę i ciśnienie, bo to wpływa na efektywność krystalizacji. A jeśli chodzi o świetne wyniki, to można wspomagać wytrącanie kryształów poprzez dodanie zarodków krystalicznych – to też dobrze mieć na uwadze.

Pytanie 37

Które równanie przedstawia reakcję otrzymywania mydła?

CH3COOH + NaOH →CH3COONa + H2O2 CH3COOH + Na2O →2 CH3COONa + H2O2 C2H5COOH + 2 Na →2 C2H5COONa + H2C17H35COOH + NaOH →C17H35COONa + H2O
A. 2 C2H5COOH + 2 Na → 2 C2H5COONa + H2↑
B. 2 CH3COOH + Na2O → 2 CH3COONa + H2O
C. CH3COOH + NaOH → CH3COONa + H2O
D. C17H35COOH + NaOH → C17H35COONa + H2O
No, ta reakcja, którą podałeś, to super przykład zmydlania, a więc procesu, w którym kwasy tłuszczowe reagują z zasadami, w tym przypadku z wodorotlenkiem sodu. Z tego powodu powstaje sól kwasu tłuszczowego, czyli mydło, a przy okazji mamy jeszcze wodę. Zmydlanie to absolutny must-have w produkcji mydeł, które wszyscy używamy w domach czy w kosmetykach. Przykład? Naturalne mydła, które można robić z olejów, np. kokosowego albo oliwy z oliwek. Ważne, żeby trzymać się dobrych proporcji kwasu tłuszczowego do zasady, bo to wpływa na to, jak twarde będzie mydło, jak się pieni i jak nawilża. Zmydlanie jest też ważnym procesem w chemii, bo używa się go do produkcji różnych substancji chemicznych. Jak widać, to istotna sprawa!

Pytanie 38

Materiał uzyskany przez zmieszanie prób pobranych w ustalonych odstępach czasu określa się mianem próbki

A. ogólnej
B. ogólną okresową
C. proporcjonalnej
D. złożonej
Odpowiedzi "proporcjonalną", "złożoną" i "ogólną" są błędne z kilku powodów związanych z definicjami oraz kontekstem, w którym są używane. Próbka proporcjonalna odnosi się do próbki, która jest zbierana w sposób, który odzwierciedla proporcje różnych składników w populacji, lecz nie uwzględnia aspektu czasowego. Takie podejście może prowadzić do zniekształceń wyników, szczególnie w dynamicznych systemach, gdzie warunki mogą się zmieniać w czasie. Z kolei termin "złożona" używany jest w kontekście materiałów, które składają się z wielu różnych komponentów, ale niekoniecznie odnosi się do prób pobranych w określonych odstępach czasowych. Definicja ta jest zbyt ogólna i nie oddaje istoty badań o długoterminowym monitoringu. Ostatnia odpowiedź, "ogólna", również jest nieprecyzyjna, ponieważ nie wskazuje na regularność pobierania próbek, co jest kluczowe w kontekście analizy okresowej. Niezrozumienie tych subtelności może prowadzić do poważnych błędów w analizach, a także do niewłaściwych wniosków opartych na danych, które nie odzwierciedlają rzeczywistości. W kontekście badań naukowych oraz kontroli jakości, ważne jest, aby stosować odpowiednie metody pobierania próbek, które spełniają uzgodnione standardy i praktyki, aby wyniki były rzetelne i użyteczne.

Pytanie 39

Proces oddzielania składników jednorodnej mieszaniny, polegający na eliminacji jednego lub większej ilości składników z roztworu lub substancji stałej przy użyciu odpowiednio wybranego rozpuszczalnika, to

A. rektyfikacja
B. ekstrakcja
C. destylacja
D. adsorpcja
Ekstrakcja to taki proces, w którym oddzielamy składniki z jednorodnej mieszaniny, używając rozpuszczalnika, który potrafi rozpuścić jeden lub więcej z tych składników. To ma dość szerokie zastosowanie w różnych dziedzinach, jak chemia, farmacja czy przemysł spożywczy. Na przykład, kiedy produkuje się olejki eteryczne, ekstrakcja jest super ważna, żeby uzyskać czyste związki zapachowe z roślin. W laboratoriach chemicznych wykorzystuje się ekstrakcję faz ciekłych, żeby oczyścić różne związki chemiczne z mieszanin, a w analizach środowiskowych też się korzysta z ekstrakcji, żeby wyciągnąć zanieczyszczenia z próbek wód czy gleb. Ekstrakcja jest zgodna z dobrymi praktykami laboratoryjnymi, co znaczy, że zaleca się używanie odpowiednich rozpuszczalników i ciekawie też dostosowywać warunki temperaturowe oraz ciśnieniowe, żeby uzyskać jak najlepsze wyniki i nie tracić składników. Warto dodać, że ekstrakcja może być przeprowadzana w różnych skalach - od małych eksperymentów w laboratoriach po duże procesy przemysłowe, co czyni ją naprawdę wszechstronnym narzędziem.

Pytanie 40

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.