Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik mechatronik
  • Kwalifikacja: ELM.06 - Eksploatacja i programowanie urządzeń i systemów mechatronicznych
  • Data rozpoczęcia: 17 grudnia 2025 18:11
  • Data zakończenia: 17 grudnia 2025 18:12

Egzamin niezdany

Wynik: 1/40 punktów (2,5%)

Wymagane minimum: 20 punktów (50%)

Udostępnij swój wynik
Szczegółowe wyniki:
Pytanie 1

Jakie symptomy pracy jednofazowego silnika klatkowego mogą wskazywać na uszkodzenie kondensatora?

A. Trudności z uruchomieniem silnika
B. Zmiana kierunku obrotu wirnika
C. Skłonności do samoczynnego rozbiegnięcia się wirnika
D. Brak jakiejkolwiek reakcji po włączeniu zasilania
Trudności z rozruchem silnika w silniku klatkowym jednofazowym są kluczowym objawem uszkodzenia kondensatora. Kondensator pełni fundamentalną rolę w procesie rozruchu, ponieważ generuje dodatkową fazę niezbędną do rozpoczęcia pracy silnika. W przypadku awarii kondensatora, moment startowy silnika jest znacznie osłabiony, co skutkuje jego niemożnością osiągnięcia pełnych obrotów. W praktyce, silniki te wymagają odpowiednich kondensatorów, dostosowanych do ich parametrów, aby zapewnić prawidłowe działanie. W przypadku stwierdzenia trudności w rozruchu, warto sprawdzić kondensator, a także inne elementy, takie jak uzwojenia, które mogą również wpływać na wydajność silnika. Standardy branżowe zalecają regularne przeglądy kondensatorów, aby zminimalizować ryzyko awarii i zapewnić długotrwałą, stabilną pracę silnika. Wiedza o roli kondensatora i umiejętność jego diagnostyki są istotnymi umiejętnościami dla specjalistów zajmujących się naprawą i konserwacją silników elektrycznych.

Pytanie 2

Jaki symbol literowy zgodny z normą IEC 61131 jest używany w oprogramowaniu sterującym dla PLC do wskazywania jego fizycznych dyskretnych wejść?

A. R
B. I
C. S
D. Q

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź "I" jest poprawna, ponieważ zgodnie z normą IEC 61131, symbol "I" reprezentuje fizyczne wejścia dyskretne w programach sterujących PLC. Norma ta definiuje standardy dla programowalnych kontrolerów logicznych, a użycie odpowiednich symboli jest kluczowe dla zrozumienia i utrzymania systemów automatyki. Przykładowo, w praktyce inżynieryjnej, aby oznaczyć sensory, które generują sygnały cyfrowe, takie jak przyciski czy przełączniki, wykorzystuje się symbol "I". To pozwala na skuteczne adresowanie tych wejść w programie, co ma fundamentalne znaczenie dla poprawnego działania systemu. Używanie standardów IEC 61131 zapewnia spójność w projektowaniu i dokumentacji systemów automatyki, co jest niezbędne do prawidłowej integracji różnych urządzeń i komponentów w złożonych instalacjach przemysłowych. Przykładem może być system automatyzacji w fabryce, gdzie różne sensory są podłączone do PLC, a ich identyfikacja poprzez symbol "I" umożliwia łatwe śledzenie i diagnostykę w przypadku awarii.

Pytanie 3

Projektowana maszyna manipulacyjna posiada kinematykę typu PPP (TTT). Każdy z jej członów ma zakres ruchu wynoszący 1 m. Oznacza to, że efektor manipulacyjny będzie zdolny do realizacji operacji technologicznych w przestrzeni o wymiarach

A. 1 m × 1 m × 1 m
B. 2 m × 1 m × 1 m
C. 1 m × 1 m × 2 m
D. 1 m × 2 m × 1 m

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź 2 jest prawidłowa, ponieważ każdy z trzech członów maszyny manipulacyjnej typu PPP (TTT) umożliwia ruch w jednym wymiarze przestrzeni. Zasięg każdego członu wynosi 1 m, co oznacza, że efektor końcowy ma możliwość poruszania się w przestrzeni o wymiarach 1 m w każdym z kierunków. Wynikowy zasięg manipulacyjny to sześcian o boku 1 m, co idealnie odpowiada podanym wymiarom 1 m × 1 m × 1 m. W praktyce, maszyny tego rodzaju są szeroko stosowane w automatyzacji procesów produkcyjnych i montażowych, gdzie precyzyjne manipulowanie obiektami w ograniczonej przestrzeni jest kluczowe. Tego rodzaju manipulatory znajdują zastosowanie w robotyce przemysłowej, np. przy montażu delikatnych komponentów elektronicznych. Istotne jest, aby inżynierowie projektujący takie maszyny brali pod uwagę zasięg ruchu przy planowaniu operacji, co pozwala na efektywniejsze i bardziej precyzyjne działania w zakładach produkcyjnych.

Pytanie 4

Jakiego czujnika należy używać do obserwacji temperatury uzwojeń silnika elektrycznego?

A. Tensometru
B. Hallotronu
C. Warystora
D. Termistora

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Termistor jest elementem, który charakteryzuje się znaczną zmianą oporu elektrycznego w zależności od temperatury. Dzięki temu, jest idealnym czujnikiem do monitorowania temperatury uzwojeń silników elektrycznych, gdzie precyzyjne pomiary są kluczowe dla ich prawidłowego działania. W zastosowaniach przemysłowych, gdzie silniki elektryczne pracują w trudnych warunkach, termistory są wykorzystywane do zabezpieczania przed przegrzaniem, co może prowadzić do uszkodzenia silnika. Dobrą praktyką w branży jest stosowanie termistorów w obwodach ochronnych, co pozwala na automatyczne wyłączanie silnika w przypadku osiągnięcia krytycznej temperatury. Dzięki swojej prostocie i niezawodności, termistory są szeroko stosowane w różnych aplikacjach, takich jak klimatyzacja, wentylacja oraz w systemach automatyki przemysłowej. Warto również zauważyć, że termistory mogą być stosowane w różnych konfiguracjach, co czyni je wszechstronnym rozwiązaniem w monitorowaniu temperatury. Ich zastosowanie przyczynia się do zwiększenia efektywności energetycznej oraz niezawodności urządzeń elektrycznych.

Pytanie 5

Jakie środki ochrony osobistej powinien założyć pracownik przy uruchamianiu prasy pneumatycznej przeznaczonej do nitowania?

A. Szelki bezpieczeństwa
B. Okulary ochronne
C. Hełm ochronny
D. Obuwie izolacyjne

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Okulary ochronne są niezbędnym środkiem ochrony indywidualnej podczas pracy z prasą pneumatyczną do nitowania, ponieważ odpowiednio chronią oczy pracownika przed potencjalnymi zagrożeniami, takimi jak odpryski materiałów, pył czy metalowe drobiny. W przypadku pracy w środowiskach przemysłowych, gdzie odbywają się operacje związane z obróbką metali, użycie okularów ochronnych zgodnych z normami EN 166 jest kluczowe. Te normy określają wymagania dotyczące odporności na uderzenia, a także właściwości optyczne soczewek. Pracownicy powinni również zwracać uwagę na odpowiednią konserwację okularów, aby zapewnić ich skuteczność. Ponadto, w kontekście bezpieczeństwa, stosowanie okularów ochronnych w połączeniu z innymi środkami ochrony, takimi jak hełmy czy rękawice, staje się podstawą bezpiecznego środowiska pracy. Przykłady zastosowania obejmują prace w warsztatach, fabrykach czy na placach budowy, gdzie ryzyko uszkodzenia wzroku jest znaczne. Dlatego też, w każdej sytuacji potencjalnego zagrożenia dla oczu, użycie okularów ochronnych powinno być standardem.

Pytanie 6

Wskaż poprawny sposób adresowania 32 bitowej zmiennej w pamięci systemu PLC.

A. MW101
B. ID101
C. MD101
D. IB101

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź MD101 jest prawidłowa, ponieważ odnosi się do adresowania zmiennej 32-bitowej w obszarze pamięci markerów sterowników PLC, takich jak Siemens S7. W standardzie adresowania, "M" oznacza pamięć markerów, a "D" wskazuje na dostęp do 32-bitowych danych. W praktyce programowania PLC, zrozumienie sposobu adresowania tych zmiennych jest kluczowe, aby efektywnie zarządzać pamięcią i wykonywać operacje na danych. Na przykład, gdy tworzymy program sterujący, możemy potrzebować przechowywać wartości wielokrotnych zmiennych, takich jak liczby całkowite i zmiennoprzecinkowe, co wymagają 32-bitowego adresowania. Znajomość tego aspektu pozwala na optymalizację pamięci oraz zwiększenie wydajności programów. Ważne jest, aby stosować odpowiednie konwencje adresowania zgodnie z dokumentacją producentów PLC, co zapewnia kompatybilność oraz ułatwia przyszłe modyfikacje systemu.

Pytanie 7

Na etykiecie znamionowej zasilacza, który jest podłączony do układu, widnieją informacje: INPUT 100-240 VAC; OUTPUT 12 VDC. Co to oznacza w kontekście zasilania układu?

A. 12 VDC
B. 12 VAC
C. w zakresie od 100 do 240 VDC
D. w zakresie od 100 do 240 VAC

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź '12 VDC' jest prawidłowa, ponieważ oznacza napięcie stałe, które zasilacz dostarcza do podłączonych urządzeń. W kontekście zasilaczy, oznaczenie 'OUTPUT 12 VDC' sugeruje, że napięcie wyjściowe wynosi 12 woltów w trybie prądu stałego, co jest powszechnie stosowane w wielu urządzeniach elektronicznych, takich jak kamery, routery czy systemy alarmowe. Zrozumienie napięcia wyjściowego zasilacza jest kluczowe dla zapewnienia kompatybilności z urządzeniami, które wymagają określonego napięcia do prawidłowego funkcjonowania. Przy projektowaniu układów zasilania istotne jest również przestrzeganie norm bezpieczeństwa, takich jak IEC 60950, które określają, jak powinny być skonstruowane zasilacze i jakie mają mieć zabezpieczenia. W zastosowaniach praktycznych, użycie zasilaczy o odpowiednich parametrach zapewnia nie tylko efektywność energetyczną, ale również długoterminową stabilność i niezawodność systemu.

Pytanie 8

Jaki program jest używany do projektowania obiektów w 3D?

A. Paint
B. FluidSim
C. PCschematic
D. AutoCad

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
AutoCad to zaawansowane oprogramowanie CAD (Computer-Aided Design), które jest szeroko stosowane w branżach inżynieryjnych oraz architektonicznych do tworzenia rysunków technicznych, projektów oraz modelowania 3D. Dzięki rozbudowanej funkcjonalności, AutoCad umożliwia nie tylko rysowanie obiektów w przestrzeni trójwymiarowej, ale także ich edytowanie i wizualizację. W praktyce, architekci wykorzystują AutoCad do projektowania budynków, co pozwala im na łatwe wprowadzanie zmian oraz generowanie szczegółowych rysunków wykonawczych. Inżynierowie mechanicy mogą używać tego programu do projektowania skomplikowanych mechanizmów czy urządzeń, co wymaga precyzyjnego modelowania i analizy. Warto również zaznaczyć, że AutoCad dorównuje międzynarodowym standardom branżowym, co czyni go niezastąpionym narzędziem w profesjonalnym projektowaniu oraz dokumentacji technicznej, a jego umiejętności są wysoko cenione na rynku pracy.

Pytanie 9

Którą funkcję logiczną realizuje program napisany w języku listy instrukcji?

LD (%I0.1
ANDN%I0.2
)
OR (%I0.2
ANDN%I0.1
)
ST%Q0.1
A. OR
B. NAND
C. XOR
D. NOR

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Funkcja logiczna XOR, zwana również funkcją ekskluzywnego OR, jest kluczowym elementem w programowaniu oraz w inżynierii cyfrowej. Program, który realizuje tę funkcję, operuje na dwóch zmiennych wejściowych, gdzie wynik zwróci prawdę (1) tylko wtedy, gdy dokładnie jedna z tych zmiennych jest prawdziwa (1), a druga fałszywa (0). Na przykład, w przypadku zastosowania w systemie automatyki przemysłowej, XOR może być używany do monitorowania stanu dwóch czujników, gdzie sygnał wyjściowy jest aktywowany tylko wtedy, gdy jeden czujnik wykrywa obecność obiektu, a drugi nie. Tego typu operacje są niezbędne w budowie układów decyzyjnych, które muszą reagować na zmienne stany wejściowe. Dodatkowo, zgodnie z dobrymi praktykami inżynieryjnymi, użycie funkcji XOR może znacznie uprościć projektowanie systemów logicznych, szczególnie w kontekście minimalizacji błędów w analizie funkcjonalnej. Zrozumienie i umiejętność implementacji tej funkcji logicznej jest zatem fundamentalne w pracy z systemami cyfrowymi i programowaniem.

Pytanie 10

Na rysunkach technicznych cienką linią dwupunktową oznacza się

A. linie gięcia przedmiotów ukazanych w rozwinięciu
B. powierzchnie elementów, które są poddawane obróbce powierzchniowej
C. przejścia pomiędzy jedną powierzchnią a drugą w miejscach delikatnie zaokrąglonych
D. widoczne krawędzie oraz wyraźne kontury obiektów w widokach i przekrojach

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Linie dwupunktowe cienkie na rysunkach technicznych mają kluczowe znaczenie w procesie projektowania oraz produkcji elementów mechanicznych. Oznaczają one miejsca gięcia w przedmiotach przedstawionych w rozwinięciu, co pozwala na precyzyjne określenie kierunków oraz miejsc, w których materiał powinien być zginany. Przykładowo, w procesie produkcji blacharskiej, stosowanie tych linii jest niezwykle istotne, ponieważ umożliwia wykonanie elementów o zamierzonym kształcie oraz zapewnia ich prawidłowy montaż. Współczesne standardy branżowe, takie jak ISO 128-23, podkreślają znaczenie odpowiedniego oznaczania linii gięcia w dokumentacji technicznej. Dzięki temu możliwe jest uniknięcie błędów w obróbce oraz zapewnienie zgodności z wymaganiami technicznymi. W rezultacie, zrozumienie roli linii dwupunktowych cienkich w rysunkach technicznych jest niezbędne dla każdego inżyniera i technika, co przyczynia się do efektywności procesów produkcyjnych oraz jakości finalnych wyrobów.

Pytanie 11

Przegląd instalacji hydraulicznej urządzenia mechatronicznego obejmuje

A. zmierzenie natężenia prądu w obciążeniu pompy
B. wymianę rozdzielacza
C. oczyszczenie filtra oleju w układzie
D. sprawdzenie stanu przewodów

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź "sprawdzenie stanu przewodów" jest prawidłowa, ponieważ oględziny instalacji hydraulicznej są kluczowym etapem zapewnienia bezpieczeństwa i efektywności urządzeń mechatronicznych. Podczas tych oględzin istotne jest, aby dokładnie ocenić stan przewodów, ponieważ to one odpowiadają za transport medium, takiego jak olej hydrauliczny. Uszkodzenia, przecieki czy zanieczyszczenia w przewodach mogą prowadzić do poważnych awarii, co skutkuje kosztownymi naprawami i przestojami w pracy urządzenia. Przykładem zastosowania tej wiedzy może być audyt stanu technicznego maszyn w zakładzie produkcyjnym, gdzie regularne kontrole przewodów hydraulicznych są częścią procedur utrzymania ruchu i zgodności z normami bezpieczeństwa, takimi jak ISO 9001. Dbanie o ich kondycję pozwala na uniknięcie nieprzewidzianych awarii oraz zwiększa żywotność całego systemu hydraulicznego.

Pytanie 12

Zanieczyszczony element filtra oleju doprowadził do znacznego obniżenia efektywności układu smarowania. Co należy w takim przypadku zrobić?

A. usunąć zanieczyszczenia z wkładu filtra za pomocą szczotki drucianej
B. wymienić wkład lub filtr
C. wyczyścić wkład filtra za pomocą wody destylowanej
D. przedmuchać wkład filtra przy użyciu sprężonego powietrza

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wymiana wkładu lub filtru oleju jest kluczowym krokiem w utrzymaniu prawidłowej wydajności układu smarowania silnika. Zanieczyszczenia gromadzące się w filtrze mogą prowadzić do poważnych problemów, takich jak zatarcie silnika, które może być wynikiem niewłaściwego smarowania. Wymieniając wkład, eliminujemy wszelkie zanieczyszczenia, co przywraca odpowiedni przepływ oleju i zapewnia jego skuteczną dystrybucję do wszystkich elementów silnika. Zgodnie z najlepszymi praktykami branżowymi, filtry oleju powinny być wymieniane zgodnie z harmonogramem ustalonym przez producenta pojazdu lub co określoną ilość przejechanych kilometrów, co zwykle wynosi od 10 000 do 15 000 km. Regularna wymiana oleju i filtrów nie tylko zwiększa wydajność silnika, ale także prolonguje jego żywotność, co jest kluczowe dla ekonomiki eksploatacji pojazdu. Dodatkowo, stosowanie wysokiej jakości filtrów uznawanych przez renomowane marki wpływa na efektywność i zabezpieczenie silnika przed uszkodzeniami.

Pytanie 13

Jaką metodę pomiaru zastosowano w celu zmierzenia temperatury pracy urządzenia mechatronicznego, przy użyciu elementu pomiarowego Pt100?

A. Kontaktową termoelektryczną
B. Bezkontaktową pirometryczną
C. Kontaktową rezystancyjną
D. Bezkontaktową termowizyjną

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź kontaktowa rezystancyjna jest poprawna, ponieważ czujnik Pt100 działa na zasadzie pomiaru oporu elektrycznego, który zmienia się w zależności od temperatury. W praktyce, w przypadku urządzeń mechatronicznych, czujniki tego typu są powszechnie stosowane do monitorowania temperatury w różnych aplikacjach, takich jak systemy HVAC, przemysłowe urządzenia przetwórcze czy automatyka przemysłowa. Standard Pt100 odnosi się do czujników, które mają nominalny opór 100 omów w temperaturze 0°C i ich charakterystyka oporowa jest liniowości opisana w przybliżeniu przez równanie Callendara-Van Dusena. Dzięki zastosowaniu czujników rezystancyjnych można uzyskać wysoką dokładność pomiaru, co jest zgodne z dobrymi praktykami w zakresie jakości pomiarów. Dlatego w większości przypadków, gdzie wymagana jest precyzyjność, to właśnie czujniki oporowe, jak Pt100, są preferowanym rozwiązaniem.

Pytanie 14

Które z wymienionych w tabeli czynności wchodzą w zakres oględzin napędu mechatronicznego, w którym elementem wykonawczym (napędowym) jest silnik komutatorowy?

Lp.Czynność
1.Sprawdzanie skuteczności chłodzenia elementów energoelektronicznych
2.Sprawdzanie stanu pierścieni ślizgowych i komutatorów
3.Pomiar temperatury obudowy i łożysk
4.Sprawdzanie stanu szczotek i szczotkotrzymaczy
5.Sprawdzanie jakości połączeń elementów urządzenia
A. 1, 2, 3
B. 1, 2, 4
C. 2, 3, 5
D. 2, 4, 5

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź, która wskazuje na czynności 2, 4 i 5, jest poprawna, ponieważ te działania są kluczowe dla oceny stanu silnika komutatorowego w napędzie mechatronicznym. Sprawdzanie stanu pierścieni ślizgowych i komutatorów (2) pozwala na ocenę ich zużycia i efektywności przewodzenia prądu, co ma bezpośredni wpływ na pracę silnika. W przypadku stanu szczotek i szczotkotrzymaczy (4), ich właściwe działanie jest niezbędne do zapewnienia stabilnego kontaktu elektrycznego, co przekłada się na wydajność i żywotność silnika. Ostatnia czynność, czyli kontrola jakości połączeń elementów urządzenia (5), jest również niezbędna, ponieważ luźne lub uszkodzone połączenia mogą prowadzić do przerw w zasilaniu i awarii całego systemu. Dobre praktyki w zakresie konserwacji i diagnostyki napędów mechatronicznych zalecają regularne wykonywanie tych czynności, aby zapobiegać awariom i zapewnić optymalne działanie systemu. Oględziny te są zatem fundamentalne w kontekście zarówno prewencji, jak i diagnostyki usterek.

Pytanie 15

W jednofazowym silniku indukcyjnym napędzającym urządzenie mechatroniczne uszkodzeniu uległ kondensator pracy o parametrach znamionowych 2,5 uF / 450 V. Którym z wymienionych kondensatorów należy zastąpić uszkodzony, aby naprawić urządzenie?

Dane techniczne:
Napięcie znamionowe450 V
Częstotliwość znamionowa50 ÷ 60 Hz
Tolerancja pojemności±5%
Oczekiwana żywotność10 000 h (HPFNT)
Stopień ochronyIP00
ModelPojemność [μF]Wymiary D x H [mm]
MK 450-1130 x 57
MK 450-1,51,530 x 57
MK 450-2230 x 57
MK 450-2,52,530 x 57
MK 450-101035 x 57
MK 450-12,512,535 x 70
MK 450-202040 x 70
MK 450-252540 x 70
MK 450-505040 x 70
A. MK 450-20
B. MK 450-25
C. MK 450-2
D. MK 450-2,5

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Kondensator oznaczony jako 'MK 450-2,5' jest poprawnym zamiennikiem uszkodzonego kondensatora o parametrach 2,5 uF / 450 V. Kluczowym czynnikiem przy doborze kondensatora jest zgodność zarówno z pojemnością, jak i napięciem znamionowym. W przypadku silników indukcyjnych, kondensatory są niezbędne do poprawnego rozruchu i funkcjonowania silnika, dlatego ich wybór ma fundamentalne znaczenie. Zastosowanie kondensatora o niewłaściwej pojemności może prowadzić do obniżenia wydajności silnika lub jego uszkodzenia. W praktyce, zastosowanie kondensatora MK 450-2,5, który spełnia te wymagania, zapewnia optymalną pracę silnika oraz minimalizuje ryzyko awarii. Warto również pamiętać, że stosowanie kondensatorów o wyższej pojemności lub napięciu może nie być zalecane, gdyż może to prowadzić do nieprawidłowego działania systemu. Zgodnie z normami branżowymi, należy zawsze dobierać komponenty zgodnie z ich specyfikacją techniczną. W przypadku wątpliwości, warto konsultować się z dokumentacją producenta lub specjalistą.

Pytanie 16

Trójfazowy silnik indukcyjny klatkowy zasilany nominalnym napięciem uruchamia się i działa prawidłowo, lecz po obciążeniu zbyt mocno się nagrzewa. W jaki sposób można ustalić przyczynę?

A. Sprawdzić współosiowość wałów silnika oraz maszyny napędzanej
B. Zmierzyć wartość napięcia w linii zasilającej
C. Sprawdzić swobodę obracania się wirnika w stojanie
D. Zmierzyć prąd pobierany przez silnik oraz napięcie na zaciskach w czasie pracy

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Pomiar prądu pobieranego przez silnik oraz napięcia na zaciskach podczas jego pracy jest kluczowym krokiem w diagnozowaniu problemów związanych z nadmiernym nagrzewaniem się silnika indukcyjnego trójfazowego klatkowego. Wysokie wartości prądu mogą wskazywać na przeciążenie silnika, co jest jednym z głównych czynników prowadzących do przegrzewania. Przykładowo, jeśli silnik działa w warunkach, które wymagają od niego większej mocy niż nominalna, to może to prowadzić do wzrostu temperatury oraz uszkodzenia uzwojenia. Z kolei pomiar napięcia na zaciskach pozwala ocenić, czy silnik otrzymuje odpowiednią ilość energii. Niewłaściwe napięcie może być wynikiem problemów w instalacji elektrycznej, co również wpływa na wydajność silnika. W praktyce, zgodnie z normami, warto regularnie przeprowadzać takie pomiary jako część rutynowej konserwacji, aby zminimalizować ryzyko awarii oraz przedłużyć żywotność urządzenia. Monitorowanie tych parametrów jest zgodne z dobrymi praktykami w utrzymaniu ruchu i pozwala na wczesne wykrywanie problemów, co jest kluczowe w środowisku przemysłowym.

Pytanie 17

Jakie ciśnienie powietrza powinno panować w komorze siłownika jednostronnego działania o powierzchni tłoka A = 0,005 m2 oraz sprawności η = 0,7, aby siła przenoszona przez tłoczysko wynosiła F = 2100 N? (F = η· p · A)

A. 8 bar
B. 6 bar
C. 7 bar
D. 5 bar

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź 6 bar jest poprawna, ponieważ zgodnie z równaniem F = η·p·A możemy obliczyć ciśnienie powietrza w komorze siłownika. W naszym przypadku mamy siłę F równą 2100 N, sprawność η równą 0,7 oraz powierzchnię tłoka A równą 0,005 m². Podstawiając te wartości do wzoru, otrzymujemy p = F / (η·A) = 2100 N / (0,7·0,005 m²) = 6 bar. Dzięki tym obliczeniom możemy stwierdzić, że ciśnienie 6 bar jest wystarczające do przeniesienia zadanego obciążenia. Takie obliczenia są kluczowe w projektowaniu układów hydraulicznych, gdzie precyzyjne oszacowanie ciśnienia roboczego pozwala na zapewnienie efektywności oraz bezpieczeństwa działania siłowników. W praktyce, odpowiednie ciśnienie ma wpływ na dynamikę ruchu oraz na żywotność komponentów systemu, a także na oszczędność energii.

Pytanie 18

Jakiego rodzaju zabieg konserwacyjny należy przeprowadzić, aby chronić płytkę drukowaną przed korozją?

A. Krótkotrwale zanurzyć płytkę w chlorku żelaza
B. Pokryć płytkę warstwą pasty termoprzewodzącej
C. Obwód drukowany pokryć pastą lutowniczą
D. Pokryć płytkę warstwą lakieru izolacyjnego

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Pokrycie płytki drukowanej warstwą lakieru izolacyjnego jest kluczowym zabiegiem konserwacyjnym mającym na celu ochronę przed korozją. Lakier izolacyjny tworzy trwałą, wodoodporną powłokę, która zabezpiecza metalowe ścieżki oraz elementy elektroniczne przed działaniem wilgoci oraz substancji chemicznych. W praktyce, zastosowanie lakieru izolacyjnego jest standardową procedurą w produkcji elektroniki, szczególnie w urządzeniach narażonych na wysoką wilgotność, jak na przykład w sprzęcie przemysłowym czy motoryzacyjnym. Stosowanie takiego zabezpieczenia nie tylko wydłuża żywotność komponentów, ale również zmniejsza ryzyko awarii związanych z korozją. Przykłady zastosowania lakierów izolacyjnych obejmują ich wykorzystanie w płytkach PCB stosowanych w elektronice użytkowej oraz w systemach telekomunikacyjnych, gdzie długotrwała niezawodność jest kluczowa. Zgodnie z normami IPC-610, pokrycie warstwą izolacyjną jest zalecane dla wszystkich aplikacji narażonych na korozję.

Pytanie 19

W jakim celu stosuje się enkodery w systemach automatyki?

A. Poprawa jakości dźwięku
B. Pomiar przemieszczenia i prędkości
C. Zwiększanie mocy silnika
D. Redukcja zużycia energii

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Enkodery są niezbędnym elementem w systemach automatyki, ponieważ pozwalają na precyzyjny pomiar przemieszczenia i prędkości. Te urządzenia przetwarzają ruch mechaniczny na sygnał elektryczny, co umożliwia dokładne śledzenie pozycji i ruchu elementów w maszynach. Na przykład w robotyce, enkodery są używane do precyzyjnej kontroli położenia ramion robotów, co jest kluczowe dla dokładności i powtarzalności operacji. W przemyśle maszynowym, enkodery pomagają monitorować prędkość obrotową silników, co jest istotne dla synchronizacji procesów produkcyjnych. Stosowanie enkoderów to standard w branży automatyki, ponieważ ich zdolność do dostarczania dokładnych danych w czasie rzeczywistym znacząco poprawia efektywność i bezpieczeństwo systemów przemysłowych. Enkodery mogą być inkrementalne lub absolutne, w zależności od potrzeb aplikacji, co dodatkowo zwiększa ich wszechstronność. Dzięki temu, firmy mogą implementować bardziej zaawansowane systemy sterowania, które są w stanie dynamicznie reagować na zmiany w procesie produkcyjnym, optymalizując tym samym działanie całego systemu.

Pytanie 20

Jaką z wymienionych czynności można przeprowadzić podczas pracy silnika prądu stałego?

A. Wymienić szczotki komutatora
B. Wyczyścić łopatki wentylatora
C. Przeczyścić odpowiednimi środkami elementy wirujące silnika
D. Dokręcić śruby mocujące silnik do podłoża

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Dokręcanie śrub mocujących silnik do podłoża w czasie pracy silnika prądu stałego jest czynnością bezpieczną, ponieważ nie wpływa na działanie samego silnika ani nie zagraża jego integralności. W praktyce, silnik powinien być odpowiednio zamocowany, aby uniknąć drgań i potencjalnych uszkodzeń. W sytuacjach, gdy silnik pracuje, można przeprowadzać różne czynności, które nie ingerują w jego układ elektryczny czy mechaniczny. W przypadku niewłaściwego zamocowania, silnik może ulegać uszkodzeniom mechanicznym, co w dłuższej perspektywie prowadzi do awarii. Dlatego dobrym zwyczajem jest regularne sprawdzanie mocowania silnika oraz ich stanu, co jest zgodne z najlepszymi praktykami w zakresie konserwacji. Warto również zaznaczyć, że zgodnie z normami bezpieczeństwa, wszelkie inne prace elektryczne powinny być wykonywane wyłącznie po odłączeniu urządzenia od zasilania, co pozwala uniknąć poważnych wypadków.

Pytanie 21

W jakim celu przeprowadza się diagnostykę systemów mechatronicznych?

A. Zwiększenie złożoności systemu
B. Identyfikacja i usuwanie usterek
C. Zmniejszenie wymiarów urządzeń
D. Optymalizacja kosztów produkcji

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Diagnostyka systemów mechatronicznych jest kluczowym elementem ich eksploatacji. Głównym celem przeprowadzania diagnostyki jest identyfikacja i usuwanie usterek. W kontekście urządzeń mechatronicznych, które składają się z elementów mechanicznych, elektronicznych oraz informatycznych, szybka i precyzyjna identyfikacja awarii jest nieoceniona. Dzięki niej możemy nie tylko wykryć istniejące problemy, ale także zapobiec przyszłym awariom poprzez monitorowanie stanu systemu. Nowoczesne systemy diagnostyczne często korzystają z zaawansowanych technik, takich jak analiza drgań czy termografia, które pozwalają na nieinwazyjne wykrywanie problemów. Praktyczne zastosowanie tej wiedzy można dostrzec w przemyśle motoryzacyjnym, gdzie diagnostyka pozwala na bieżąco monitorować stan pojazdu i zapobiegać awariom na drodze. Warto również wspomnieć o standardach branżowych, takich jak ISO 13379, które opisują metody diagnostyki systemów mechanicznych. Prawidłowo przeprowadzona diagnostyka zwiększa niezawodność i bezpieczeństwo systemów, co jest kluczowe w wielu aplikacjach przemysłowych.

Pytanie 22

Z wykonywanego przez sterownik PLC programu wynika, że pojawienie się stanu wysokiego na wejściu I0.1 (S3) sterownika spowoduje uaktywnienie wyjścia Q0.1 (H2) z opóźnieniem czasowym równym

Ilustracja do pytania
A. 1 sekunda.
B. 5 sekund.
C. 3 sekundy.
D. 2 sekundy.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Poprawna odpowiedź to 2 sekundy. Z analizy programu sterownika PLC wynika, że opóźnienie czasowe, które występuje przed aktywacją wyjścia Q0.1 (H2), jest związane z blokiem T2, który ma ustawiony czas 2 sekundy. Tego rodzaju rozwiązania są powszechnie stosowane w automatyce przemysłowej, gdzie precyzyjne zarządzanie czasem jest kluczowe do zapewnienia efektywności procesów. Blok T1, z czasem 3 sekundy, nie wpływa bezpośrednio na aktywację Q0.1, a jedynie służy do innych celów w programie. W praktyce, umiejętność czytania schematów i zrozumienia, jak poszczególne bloki interakcji wpływają na cały system, jest niezbędna dla inżynierów automatyków i techników. Zastosowanie bloków czasowych w programowaniu PLC pozwala na zrealizowanie bardziej skomplikowanych operacji oraz dostosowanie systemów do wymagań produkcji, co jest zgodne z najlepszymi praktykami w branży.

Pytanie 23

Który z parametrów nie jest uwzględniony w specyfikacji technicznej frezarki numerycznej CNC?

A. Liczba wrzecion [szt.]
B. Maksymalna prędkość ruchu dla poszczególnych osi [m/s]
C. Dokładność pozycjonowania [mm]
D. Gramatura wtrysku [g/cykl]

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Freza numeryczna CNC jest zaawansowanym narzędziem wykorzystywanym w obróbce skrawaniem, a jej specyfikacja techniczna obejmuje kluczowe parametry, które wpływają na wydajność i precyzję obróbki. Liczba wrzecion, powtarzalność pozycjonowania oraz maksymalna prędkość ruchu dla poszczególnych osi są przykładami kluczowych wskaźników, które bezpośrednio wpływają na jakość i efektywność procesu produkcyjnego. Na przykład, wyższa powtarzalność pozycjonowania skutkuje lepszą dokładnością wykonania detali, co jest niezbędne w przemysłowej produkcji precyzyjnych komponentów. Z kolei maksymalna prędkość ruchu osi określa, jak szybko maszyna może przemieszczać narzędzie robocze, co w przypadku produkcji seryjnej przekłada się na krótszy czas realizacji zleceń. Gramatura wtrysku [g/cykl] dotyczy procesów wtrysku tworzyw sztucznych, a nie obróbki skrawaniem, dlatego nie stanowi ona parametru specyfikacji frezarki CNC. Zrozumienie tych różnic jest kluczowe dla skutecznego projektowania i optymalizacji procesów produkcyjnych w zakładach przemysłowych.

Pytanie 24

Ile poziomów kwantyzacji oraz jaka jest rozdzielczość napięciowa przetwornika A/C użytego w urządzeniu mechatronicznym o zakresie pomiarowym 0÷10 V i dokładności 10 bitów?

A. 256 poziomów kwantyzacji i rozdzielczość napięciowa 39,06 mV
B. 2048 poziomów kwantyzacji i rozdzielczość napięciowa 4,88 mV
C. 1024 poziomów kwantyzacji i rozdzielczość napięciowa 9,76 mV
D. 512 poziomów kwantyzacji i rozdzielczość napięciowa 19,53 mV

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Przetwornik A/C o rozdzielczości 10 bitów umożliwia przetwarzanie sygnału wejściowego na 1024 poziomy kwantyzacji, co jest wynikiem obliczenia 2^10. Każdy poziom odpowiada konkretnej wartości napięcia, a w przypadku skali pomiarowej 0÷10 V, rozdzielczość napięciowa wynosi około 9,76 mV. Oznacza to, że najmniejsza różnica napięcia, którą można rozróżnić, wynosi właśnie 9,76 mV. Taki przetwornik znajduje zastosowanie w wielu urządzeniach mechatronicznych, gdzie precyzyjny pomiar napięcia jest kluczowy, na przykład w systemach automatyki przemysłowej, czujnikach temperatury czy systemach monitorowania parametrów w czasie rzeczywistym. Zrozumienie działania przetworników A/C oraz ich parametrów, takich jak rozdzielczość i poziomy kwantyzacji, jest niezbędne dla inżynierów projektujących nowoczesne systemy, które muszą współpracować z różnorodnymi sygnałami analogowymi. W praktyce stosuje się te przetworniki w aplikacjach, gdzie wymagane jest dokładne odwzorowanie zmiennych sygnałów analogowych na wartości cyfrowe, co pozwala na dalsze przetwarzanie i analizy danych.

Pytanie 25

Aby otrzymać poprawny wynik pomiaru temperatury przy użyciu czujnika termoelektrycznego, należy zagwarantować

A. kompensację zmian temperatury, która jest mierzona
B. odpowiednią polaryzację napięcia zasilającego czujnik
C. odpowiednią wartość napięcia zasilającego czujnik
D. kompensację zmian temperatury odniesienia

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Kompensacja zmian temperatury odniesienia jest kluczowym aspektem w pomiarach temperatury z wykorzystaniem czujników termoelektrycznych, takich jak termopary. Wynika to z faktu, że różnica temperatury między punktem pomiaru a punktem odniesienia ma istotny wpływ na dokładność uzyskiwanych wyników. W praktyce oznacza to, że aby uzyskać wiarygodne odczyty, konieczne jest zapewnienie stabilnych warunków otoczenia, w których czujnik termoelektryczny jest zainstalowany. Dobre praktyki w branży zakładają stosowanie kompensacji poprzez zastosowanie czujników referencyjnych, które pozwalają na automatyczne korekty wyników pomiarów. Ponadto, w kontekście norm międzynarodowych, takich jak IEC 584, istotne jest, aby czujniki były montowane i eksploatowane zgodnie z zaleceniami producenta. Takie podejście nie tylko zwiększa dokładność pomiarów, ale także wydłuża żywotność czujników. Przykładem zastosowania kompensacji zmian temperatury odniesienia jest przemysł petrochemiczny, gdzie precyzyjne pomiary temperatury są kluczowe dla zapewnienia bezpieczeństwa i efektywności procesów technologicznych.

Pytanie 26

Na podstawie fragmentu instrukcji serwisowej wskaż prawdopodobną przyczynę nieprawidłowej pracy urządzenia, jeżeli na jego wyświetlaczu wyświetla się kod błędu E5.

KODY BŁĘDÓW
NrKod błęduProblem
1.E1Usterka czujnika temperatury pomieszczenia
2.E2Usterka czujnika temperatury wymiennika zewn.
3.E3Usterka czujnika temperatury wymiennika wewn.
4.E4Usterka silnika jednostki wewnętrznej lub problem
z sygnałem zwrotnym
5.E5Brak komunikacji między jednostkami wewn. i zewn.
6.F0Usterka silnika prądu stałego wentylatora jednostki zewn.
7.F1Uszkodzenie modułu IPM
8.F2Uszkodzenie modułu PFC
9.F3Problem ze sprężarką
10.F4Błąd czujnika temperatury przegrzania
11.F5Zabezpieczenie temperatury głowicy sprężarki
12.F6Błąd czujnika temperatury otoczenia jednostki zewn.
13.F7Zabezpieczenie przed zbyt wysokim lub za niskim na-
pięciem zasilania
14.F8Błąd komunikacji modułów jednostki zewnętrznej
15.F9Błąd pamięci EEPROM jednostki zewnętrznej
16.FABłąd czujnika temperatury ssania
(uszkodzenie zaworu 4 drogowego)
A. Uszkodzenie modułu IPM.
B. Brak komunikacji między jednostkami.
C. Problem ze sprężarką.
D. Błąd czujnika temperatury ssania.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Kod błędu E5, oznaczający 'Brak komunikacji między jednostkami wewn. i zewn.', wskazuje na istotny problem w systemach HVAC, gdzie współpraca i wymiana informacji między jednostkami są kluczowe dla prawidłowego funkcjonowania. W przypadku, gdy urządzenie nie może nawiązać komunikacji, może to prowadzić do braku synchronizacji w działaniu systemu, a tym samym do nieefektywnej pracy lub całkowitego zatrzymania. W praktyce, przed podjęciem dalszych kroków diagnostycznych, warto najpierw sprawdzić połączenia kablowe oraz zasilanie jednostek, co jest zgodne z dobrymi praktykami serwisowymi. W przypadku potwierdzenia braku komunikacji, zastosowanie narzędzi do testowania sygnałów komunikacyjnych (np. oscyloskopy) może pomóc w zdiagnozowaniu, czy problem leży w uszkodzeniu kabla, czy w jednym z modułów sterujących. Działania te są niezbędne, aby zapewnić działanie systemu na najwyższym poziomie efektywności oraz minimalizować ryzyko awarii w przyszłości.

Pytanie 27

Jakie urządzenie stosuje się do pomiaru rezystancji izolacji w systemach mechatronicznych?

A. multimetr
B. omomierz
C. induktor pomiarowy
D. mostek pomiarowy

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Induktor pomiarowy jest kluczowym narzędziem wykorzystywanym do pomiaru rezystancji izolacji w urządzeniach mechatronicznych, ponieważ jego konstrukcja i działanie umożliwiają uzyskanie precyzyjnych wyników, co jest niezwykle istotne dla zapewnienia bezpieczeństwa użytkowników. Pomiar rezystancji izolacji pozwala na ocenę stanu technicznego izolacji elektrycznej, co jest zgodne z wymogami norm takich jak PN-EN 60204-1 dotyczących bezpieczeństwa maszyn. Induktor pomiarowy działa na zasadzie wytwarzania pola elektromagnetycznego, co pozwala na pomiar rezystancji w sposób nieniszczący. Użycie prądu stałego w tym narzędziu eliminuje wpływ efektów pojemnościowych, co jest kluczowe w przypadku izolacji, gdzie wyniki pomiarów mogą być znacznie zafałszowane przez inne urządzenia pomiarowe. Przykładem praktycznego zastosowania induktora pomiarowego może być badanie stanów izolacji w silnikach elektrycznych czy systemach automatyki, gdzie ryzyko awarii izolacji może prowadzić do poważnych konsekwencji, w tym do awarii całego systemu. Warto również zaznaczyć, że odpowiednie pomiary i ich analiza mogą przyczynić się do zwiększenia efektywności energetycznej urządzeń mechatronicznych poprzez wczesne wykrywanie problemów z izolacją.

Pytanie 28

Który z poniższych komponentów jest używany w układach sterowania do konwersji sygnałów analogowych na cyfrowe?

A. Przetwornik A/C
B. Silnik elektryczny
C. Transformator
D. Zawór proporcjonalny

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Przetwornik analogowo-cyfrowy, znany jako A/C (ang. ADC - Analog to Digital Converter), jest kluczowym elementem w systemach mechatronicznych, ponieważ pozwala na przekształcenie sygnałów analogowych na cyfrowe. W praktyce oznacza to, że sygnały, które są ciągłe w czasie i mogą przyjmować nieskończoną liczbę wartości, są zamieniane na sygnały cyfrowe, które są dyskretne i mogą być przetwarzane przez systemy cyfrowe, takie jak mikroprocesory czy sterowniki PLC. To umożliwia efektywne zarządzanie i kontrolowanie procesów przemysłowych. Przetworniki A/C znajdują zastosowanie w wielu dziedzinach, takich jak automatyka przemysłowa, robotyka oraz systemy pomiarowe. Dzięki nim możemy precyzyjnie monitorować i reagować na zmiany w układzie, co jest niezbędne w złożonych systemach mechatronicznych. Przykładem zastosowania jest odczyt wartości czujników takich jak temperatury, ciśnienia czy wilgotności, które są następnie interpretowane przez system sterujący w celu podjęcia odpowiednich działań. Standardy branżowe wymagają, by takie przetworniki charakteryzowały się wysoką dokładnością i szybkością przetwarzania, co jest kluczowe dla zachowania jakości i precyzji działania systemów.

Pytanie 29

Prawidłowo strukturę kinematyczną PPO (TTR) urządzenia manipulacyjnego przedstawiono na

Ilustracja do pytania
A. rysunku 3.
B. rysunku 2.
C. rysunku 1.
D. rysunku 4.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Prawidłowa odpowiedź wskazuje na rysunek 1, który dokładnie ilustruje kinematyczną strukturę PPO (TTR) urządzenia manipulacyjnego. W tym przypadku rysunek przedstawia dwa przeguby obrotowe, które są reprezentowane przez okręgi, oraz jeden przegub liniowy, oznaczony kwadratem. Taka konfiguracja jest typowa dla urządzeń manipulacyjnych, w których przeguby obrotowe zapewniają ruch w wielu kierunkach, a przegub liniowy umożliwia ruch wzdłuż prostej linii. Zrozumienie tej struktury jest kluczowe dla inżynierów zajmujących się projektowaniem robotów oraz automatyzacji procesów. W praktyce, projektowanie urządzeń manipulacyjnych zgodnie z tym modelem pozwala na zwiększenie efektywności operacyjnej, co jest zgodne z najlepszymi praktykami w branży robotyki, gdzie każda z tych konfiguracji jest dostosowywana w oparciu o konkretne wymagania aplikacji. Dodatkowo, znajomość struktur kinematycznych pozwala na lepsze modelowanie ruchów, co jest istotne w programowaniu robotów oraz w symulacjach ruchu.

Pytanie 30

Który z poniższych kwalifikatorów działań w metodzie SFC odnosi się do uzależnień czasowych?

A. N
B. R
C. L
D. S

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Kwalifikator 'L' w metodzie SFC (Sequential Function Chart) odnosi się do opóźnienia czasowego, co jest kluczowym mechanizmem w programowaniu sterowników PLC. Umożliwia on wprowadzenie zaplanowanego opóźnienia przed przejściem do następnego kroku w sekwencji działań. Jest to niezwykle istotne w aplikacjach, gdzie synchronizacja i czas reakcji mają krytyczne znaczenie, na przykład w systemach automatyki przemysłowej. W praktyce, zastosowanie opóźnienia może być użyte do zapewnienia, że sprzęt wykonawczy ma wystarczająco dużo czasu na zakończenie jednego zadania przed rozpoczęciem kolejnego, co minimalizuje ryzyko błędów i kolizji. Na przykład, w systemie linii produkcyjnej, może być niezbędne, aby roboty miały czas na przeniesienie komponentów, zanim uruchomi się kolejny proces. Użycie kwalifikatora 'L' jest zgodne z najlepszymi praktykami projektowania systemów automatyki, gdzie czas i synchronizacja działań są kluczowe dla efektywności i bezpieczeństwa operacji.

Pytanie 31

Przedstawiony na rysunku element układu zasilającego urządzenie mechatroniczne jest pompą

Ilustracja do pytania
A. rotacyjną.
B. śrubową.
C. łopatkową.
D. mimośrodową.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Pompa śrubowa, którą wskazałeś, jest typowym rozwiązaniem w przemyśle ze względu na swoją efektywność w przetłaczaniu różnych rodzajów cieczy, w tym tych o dużej lepkości. Dzięki zastosowaniu dwóch śrub obracających się w przeciwnych kierunkach, pompa ta zapewnia stabilny przepływ medium, co jest kluczowe w aplikacjach, gdzie wymagana jest precyzyjna kontrola dozowania. Przykładowe zastosowanie pompy śrubowej można znaleźć w przemyśle chemicznym, gdzie często przetwarzane są agresywne substancje. Dodatkowo, pompy te charakteryzują się niskim poziomem pulsacji, co minimalizuje ryzyko uszkodzenia przetłaczanego medium oraz komponentów systemu. Warto wspomnieć, że pompy śrubowe są zgodne z wieloma standardami branżowymi, co zapewnia ich wysoką jakość i niezawodność. Użycie takich urządzeń w zastosowaniach przemysłowych nie tylko zwiększa wydajność procesów, ale również przyczynia się do zmniejszenia kosztów operacyjnych, przez co zyskują coraz większe uznanie wśród inżynierów i techników.

Pytanie 32

Zakłada się, że projektowane urządzenie mechatroniczne będzie umieszczone w obudowie IP 65. Oznacza to, że

Stopnie ochrony IP zgodnie z normą PN-EN 60529
OznaczenieOchrona przed wnikaniem do urządzeniaOznaczenieOchrona przed wodą
IP 0Xbrak ochronyIP X0brak ochrony
IP 1Xobcych ciał stałych
o średnicy > 50 mm
IP X1kapiąca
IP 2Xobcych ciał stałych
o średnicy > 12,5 mm
IP X2kapiąca – odchylenie obudowy
urządzenia do 15°
IP 3Xobcych ciał stałych
o średnicy > 2,5 mm
IP X3opryskiwaną pod kątem
odchylonym max. 60° od
pionowego
IP 4Xobcych ciał stałych
o średnicy > 1 mm
IP X4rozpryskiwaną ze wszystkich
kierunków
IP 5Xpyłu w zakresie
nieszkodliwym dla
urządzenia
IP X5laną strumieniem
IP 6Xpyłu w pełnym zakresieIP X6laną mocnym strumieniem
----------------IP X7przy zanurzeniu krótkotrwałym
IP X8przy zanurzeniu ciągłym
A. nie będzie chronione przed wodą.
B. posiadać będzie najwyższy stopień ochrony przed wodą.
C. nie będzie chronione przed pyłem.
D. posiadać będzie najwyższy stopień ochrony przed pyłem.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź, że projektowane urządzenie mechatroniczne posiada najwyższy stopień ochrony przed pyłem, jest poprawna. Oznaczenie IP 65 wskazuje, że urządzenie jest w pełni chronione przed pyłem (stopień 6) oraz odporniejsze na strumień wody z dowolnego kierunku (stopień 5). Taki poziom ochrony jest szczególnie istotny w aplikacjach, gdzie urządzenia muszą funkcjonować w trudnych warunkach, na przykład w zakładach przemysłowych, gdzie kurz i zanieczyszczenia są powszechne. W przypadku urządzeń montowanych na zewnątrz, standard IP 65 zapewnia również ich dłuższą żywotność oraz niezawodność. Warto zaznaczyć, że zgodnie z normą PN-EN 60529, oznaczenia IP są kluczowe dla wyboru odpowiedniego sprzętu do zastosowań wymaganego poziomu ochrony. Na przykład, w automatyce przemysłowej, zastosowanie urządzeń z wysokim stopniem ochrony jest niezbędne w celu zapewnienia osób i sprzętu przed potencjalnymi zagrożeniami. Użytkownicy powinni zawsze zwracać uwagę na parametry IP przed zakupem, aby dostosować je do specyficznych warunków operacyjnych.

Pytanie 33

Jaki jest główny cel stosowania symulatorów w edukacji mechatronicznej?

A. Zwiększenie kosztów nauki
B. Zwiększenie doświadczenia praktycznego bez ryzyka uszkodzenia sprzętu
C. Zwiększenie złożoności nauczania
D. Ograniczenie liczby studentów w laboratorium

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Symulatory w edukacji mechatronicznej odgrywają kluczową rolę, pozwalając uczniom zdobywać praktyczne doświadczenie bez ryzyka uszkodzenia kosztownego sprzętu. W praktyce mechatroniki często operujemy złożonymi systemami, gdzie błąd może prowadzić do znacznych strat materialnych. Dzięki symulatorom studenci mogą eksperymentować i popełniać błędy w kontrolowanym środowisku, co sprzyja procesowi uczenia się. Przykładowo, symulacje mogą obejmować programowanie sterowników PLC, gdzie każda pomyłka może zostać natychmiast poprawiona bez wpływu na rzeczywisty proces produkcyjny. Jest to również zgodne z najlepszymi praktykami branżowymi, gdzie symulacje wykorzystywane są na szeroką skalę do testowania nowych rozwiązań przed ich implementacją w rzeczywistych warunkach. Z mojego doświadczenia wynika, że symulacje pozwalają na lepsze zrozumienie teorii poprzez praktykę, co jest nieocenione w złożonych dziedzinach, takich jak mechatronika. Dzięki nim studenci mogą również ćwiczyć reakcje na nietypowe sytuacje, co jest trudne do zrealizowania w rzeczywistych warunkach laboratoryjnych.

Pytanie 34

Jakie urządzenie pomiarowe powinno być użyte do określenia lepkości oleju hydraulicznego w systemie mechatronicznym?

A. Wiskozymetr
B. Higrometr
C. Wakuometr
D. Pirometr

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wiskozymetr jest kluczowym przyrządem pomiarowym wykorzystywanym w wielu dziedzinach inżynierii i technologii, szczególnie w przemyśle mechatronicznym, gdzie precyzyjne pomiary lepkości są niezbędne do zapewnienia prawidłowego działania systemów hydraulicznych. Lepkość oleju hydraulicznego odgrywa istotną rolę w pracy układów hydraulicznych, gdyż wpływa na efektywność przenoszenia mocy oraz stabilność operacyjną urządzeń. W praktyce, wiskozymetry stosuje się do określenia, jak olej reaguje na różne warunki temperaturowe, co jest kluczowe dla optymalizacji jego właściwości roboczych. W branży inżynieryjnej standardy, takie jak ASTM D445, określają metody pomiaru lepkości, co zapewnia powtarzalność i wiarygodność wyników. Zrozumienie właściwości lepkości olejów hydraulicznych pozwala inżynierom na dobór odpowiednich materiałów oraz dostosowanie parametrów pracy maszyn, co przyczynia się do zwiększenia ich wydajności oraz żywotności.

Pytanie 35

Który z poniższych typów czujników używany jest do wykrywania pozycji tłoka siłownika beztłoczyskowego, na którym zamontowane są magnesy?

A. Ultradźwiękowy
B. Tensometryczny
C. Kontaktronowy
D. Indukcyjny

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Czujnik kontaktronowy to urządzenie, które działa na zasadzie reakcji na pole magnetyczne, które zmienia się w wyniku ruchu tłoka siłownika beztłoczyskowego z zamontowanymi magnesami. Urządzenie to składa się z dwóch styków zamkniętych w szklanej obudowie, które otwierają się lub zamykają w momencie oddziaływania z polem magnetycznym. Dzięki tej zasadzie działania, czujnik kontaktronowy jest idealnym rozwiązaniem do monitorowania położenia tłoka, ponieważ umożliwia precyzyjne określenie jego pozycji bez kontaktu mechanicznego, co eliminuje zużycie elementów mechanicznych. W praktyce, czujniki te są szeroko stosowane w automatyzacji przemysłowej, zwłaszcza w aplikacjach wymagających wysokiej niezawodności, takich jak systemy pneumatyczne i hydrauliczne. Warto również zauważyć, że czujniki kontaktronowe są zgodne z różnymi standardami przemysłowymi, co czyni je popularnym wyborem w wielu aplikacjach inżynieryjnych.

Pytanie 36

Która z wymienionych metod jest stosowana podczas przeprowadzania początkowego testowania programu stworzonego dla robota przemysłowego?

A. Ręczne odtwarzanie ruchów, krok po kroku z prędkością ruchu ustawioną na 20%
B. Automatyczne odtwarzanie ruchów z prędkością ruchu ustawioną na 100%
C. Automatyczne odtwarzanie ruchów, z prędkością ruchu ustawioną na 20%
D. Ręczne odtwarzanie ruchów, krok po kroku z prędkością ruchu ustawioną na 100%

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Ręczne odtwarzanie ruchów krok po kroku z prędkością ruchu ustawioną na 20% jest kluczowym etapem w procesie testowania programów dla robotów przemysłowych. Taki sposób testowania umożliwia inżynierom dokładne obserwowanie zachowania robota w kontrolowanym środowisku, co pozwala na wczesne wykrywanie ewentualnych błędów w programie. Przy tak niskiej prędkości można zminimalizować ryzyko uszkodzenia robota oraz otoczenia, co jest szczególnie ważne w kontekście bezpieczeństwa. W praktyce, manualne testowanie ruchów umożliwia także dostosowanie programu do specyficznych wymagań zadania, a także optymalizację trajektorii ruchu robota. W przypadku wykrycia błędów, inżynierowie mogą łatwo wprowadzić zmiany w programie, a następnie przetestować je w tym samym trybie. Takie podejście jest zgodne z najlepszymi praktykami w branży automatyzacji przemysłowej, które zalecają przeprowadzanie testów w sposób sekwencyjny przed przejściem do pełnej automatyzacji.

Pytanie 37

Co obejmuje zakres pomiarowy czujnika?

A. maksymalna różnica pomiędzy wartością zmierzoną a rzeczywistą
B. zakres wartości czynników wejściowych, które dany czujnik jest w stanie zmierzyć
C. najniższa wartość czynników wejściowych, która jest możliwa do pomiaru
D. wykres ilustrujący zależność między wartościami: wejściową i wyjściową czujnika

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Zakres pomiarowy czujnika to kluczowe pojęcie w technologii pomiarowej, definiujące przedział wartości, w którym dany czujnik może prawidłowo funkcjonować. Odpowiedź "przedział wartości wielkości wejściowych czujnika, jaki może być mierzony danym czujnikiem" precyzyjnie opisuje, że każdy czujnik ma określone granice, wewnątrz których jego pomiary są wiarygodne. Na przykład, czujnik temperatury może mieć zakres od -50°C do 150°C, co oznacza, że wartości poza tym przedziałem mogą być niedokładne lub całkowicie niemożliwe do zmierzenia. Zrozumienie zakresu pomiarowego jest niezbędne przy doborze odpowiednich czujników do konkretnego zastosowania, co jest zgodne z praktykami inżynieryjnymi i normami branżowymi, takimi jak ISO 9001. W praktyce, wybór czujnika z nieodpowiednim zakresem pomiarowym może prowadzić do błędów w danych, co może mieć poważne konsekwencje w różnych dziedzinach przemysłu, takich jak automatyka czy monitorowanie procesów chemicznych.

Pytanie 38

Podczas korzystania z urządzenia podłączonego do sieci jednofazowej 230 V z odpowiednim wyłącznikiem instalacyjnym, po zakończeniu pracy zauważono, że wtyczka oraz gniazdo są mocno rozgrzane. Najbardziej prawdopodobnym powodem tego zjawiska jest

A. zwarcie w urządzeniu
B. zwarcie w instalacji zasilającej gniazdo wtyczkowe
C. przerwa w obwodzie zasilającym gniazdo wtyczkowe
D. luźne zaciski gniazda lub poluzowane kable zasilające

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Z mojego doświadczenia, luźne zaciski w gniazdach i źle podłączone przewody to najczęstsze powody, dla których wtyczka czy gniazdko się nagrzewają. Kiedy coś nie jest dobrze dokręcone, opór w miejscu styku rośnie i to sprawia, że pojawia się ciepło. Z czasem, taka sytuacja może doprowadzić do uszkodzenia zarówno wtyczki, jak i gniazdka, a nawet istnieje ryzyko pożaru. Dlatego ważne jest, aby regularnie sprawdzać, czy wszystko jest w porządku z połączeniami elektrycznymi i trzymać się norm, takich jak PN-IEC 60364. Dobrze jest też korzystać z dobrych jakościowo materiałów i właściwych narzędzi przy instalacji czy konserwacji, bo to pomaga zapewnić trwałość połączeń. Na przykład, w gniazdach siłowych, warto używać gniazd z blokadami, żeby nie doszło do przypadkowego poluzowania. Zrozumienie tych zasad to klucz do bezpieczeństwa w instalacjach elektrycznych.

Pytanie 39

W jakiej kondycji powinny być przedstawiane styki przekaźników oraz styczników w schematach ideowych układów sterowania stycznikowo-przekaźnikowego?

A. Niewzbudzonym
B. Przełączania
C. Wzbudzonym
D. Wyłączania

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Styki przekaźników i styczników na schematach ideowych układów sterowania stycznikowo-przekaźnikowego powinny być przedstawione w stanie niewzbudzonym, ponieważ jest to stan domyślny, który odzwierciedla, że dany element nie jest w chwili obecnej aktywowany. Prezentowanie styków w tym stanie pozwala na jasne zrozumienie schematu przez techników oraz inżynierów, którzy mogą na pierwszy rzut oka ocenić, jakie elementy są włączone lub wyłączone w danym układzie. W praktyce, identyfikacja stanu niewzbudzonego jest kluczowa w projektowaniu oraz diagnostyce systemów automatyki, ponieważ umożliwia szybkie zlokalizowanie potencjalnych problemów. Na przykład, podczas analizy schematu, technik może natrafić na elementy, które powinny być w stanie nieaktywnym, co wskazuje na konieczność ich uruchomienia w kontekście rozwiązywania usterek. Przestrzeganie tej zasady jest zgodne z międzynarodowymi standardami, takimi jak IEC 60617, które definiują sposób przedstawiania symboli w dokumentacji elektronicznej. Warto także wspomnieć, że niewłaściwe oznaczenie stanu styków może prowadzić do błędów w montażu i programowaniu, co w konsekwencji wpłynie na bezpieczeństwo i efektywność działania instalacji.

Pytanie 40

Na podstawie przedstawionych danych katalogowych narzędzia skrawającego wskaż wartość głębokości warstwy skrawanej, którą należy ustawić w obrabiarce CNC dla obróbki zgrubnej.

Rodzaj obróbkiDokładność obróbkiChropowatość powierzchni
(Ra) μm
Zakres posuwów
mm/obr
Zakres
głębokości
mm
Obróbka dokładnaIT6-IT90,32÷1,250,05÷0,30,5÷2
Obróbka średniodokładnaIT9-IT112,5÷50,2÷0,52÷4
Obróbka zgrubnaIT12-IT1410÷40≥0,4≥4
A. 0,8 mm
B. 2,0 mm
C. 0,5 mm
D. 5,0 mm

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wartość głębokości warstwy skrawanej, którą należy ustawić w obrabiarce CNC dla obróbki zgrubnej, wynosi 5,0 mm. Zgodnie z danymi katalogowymi, podczas obróbki zgrubnej zaleca się głębokości skrawania wynoszące co najmniej 4 mm, co czyni tę odpowiedź poprawną. Ustalenie optymalnej głębokości skrawania jest kluczowe dla efektywności procesu obróbczy. Zbyt mała głębokość może prowadzić do wydłużenia czasu obróbki oraz niższej efektywności materiałowej, podczas gdy zbyt duża głębokość może powodować nadmierne obciążenie narzędzia, co w skrajnych przypadkach prowadzi do jego uszkodzenia. W praktyce, głębokość skrawania powinna być dostosowywana do rodzaju materiału oraz rodzaju narzędzia. Przykładowo, w obróbce stali narzędziowej często stosuje się głębokości skrawania w zakresie 5-10 mm, co zwiększa wydajność procesu i zmniejsza ryzyko przegrzania narzędzi. Dla zachowania wysokiej jakości obróbki, warto również monitorować stan narzędzia podczas pracy oraz stosować odpowiednie chłodziwa, co wpływa na jego trwałość i efektywność skrawania.