Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik budownictwa
  • Kwalifikacja: BUD.12 - Wykonywanie robót murarskich i tynkarskich
  • Data rozpoczęcia: 17 grudnia 2025 17:57
  • Data zakończenia: 17 grudnia 2025 18:19

Egzamin zdany!

Wynik: 24/40 punktów (60,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Korzystając z danych zawartych w tabeli wskaż najmniejszą dopuszczalną grubość tynku z izolacją termiczną.

Grubości tynkówŚrednia grubość
w [mm]
Dopuszczalna
najmniejsza grubość
w [mm]
dla tynków zewnętrznych2015
dla tynków wewnętrznych1510
dla jednowarstwowych tynków wewnętrznych z fabrycznie suchej zaprawy105
dla jednowarstwowych tynków chroniących przed wodą z fabrycznie suchej zaprawy1510
dla tynków z izolacją termicznązależnie od
wymagań
20
A. 20 mm
B. 10 mm
C. 15 mm
D. 5 mm
Wybierając odpowiedź 20 mm, wskazujesz na zgodność z wymaganiami dotyczącymi tynków z izolacją termiczną. Zgodnie z danymi zawartymi w tabeli, ta wartość jest najmniejszą dopuszczalną grubością, co jest kluczowe dla zapewnienia odpowiednich właściwości izolacyjnych. Tynki o grubości 20 mm są zgodne z normami budowlanymi, które określają minimalne parametry dla zapewnienia efektywności energetycznej budynków. Przykładowo, w budownictwie pasywnym, odpowiednia grubość izolacji jest niezbędna do osiągnięcia niskiego zapotrzebowania na energię do ogrzewania. Warto także zwrócić uwagę na to, że zbyt cienkie warstwy tynku mogą prowadzić do mostków termicznych, co skutkuje stratami ciepła oraz zwiększonymi kosztami ogrzewania. Dlatego też, stosowanie tynków o grubości 20 mm jest zasadne z perspektywy zarówno efektywności energetycznej, jak i długoterminowej trwałości budynku.

Pytanie 2

Zaprawę tynkarską produkowaną w zakładzie, oznaczoną symbolem R, wykorzystuje się do realizacji tynków

A. szlachetnych
B. izolujących cieplnie
C. renowacyjnych
D. jednowarstwowych zewnętrznych
Zaprawa tynkarska oznaczona symbolem R jest stosowana przede wszystkim do wykonywania tynków renowacyjnych, co jest ściśle związane z jej właściwościami. Renowacyjne tynki mają na celu przywrócenie estetyki oraz funkcjonalności powierzchni, które mogą być uszkodzone lub w złym stanie. Zaprawy te charakteryzują się wysoką przyczepnością do podłoża, elastycznością oraz odpornością na czynniki atmosferyczne, co czyni je idealnym rozwiązaniem w przypadku starszych budynków, gdzie istnieje ryzyko pęknięć lub kruszenia się tynku. W praktyce, podczas renowacji zabytków, stosuje się zaprawy R, aby zapewnić odpowiednią ochronę i trwałość elewacji, a także aby zachować tradycyjne metody budowlane. W kontekście standardów, zaprawy te powinny spełniać normy PN-EN 998-1 dotyczące zapraw do tynkowania, co gwarantuje ich wysoką jakość i odpowiednie właściwości użytkowe.

Pytanie 3

Rysunek przedstawia mury i ściany

Ilustracja do pytania
A. przeznaczone do wyburzenia.
B. istniejące.
C. wyburzone.
D. projektowane.
Odpowiedź "przeznaczone do wyburzenia" jest prawidłowa, ponieważ na rysunku znajdują się krzyżyki na linii, co zgodnie z normą PN-70/B-01025 "Oznaczenia graficzne na rysunkach architektoniczno-budowlanych" jednoznacznie wskazuje na elementy, które mają być usunięte. Tego typu oznaczenia są kluczowe w procesie projektowania i realizacji budowy, ponieważ pozwalają na odpowiednie planowanie prac budowlanych i zabezpieczenie pozostałych elementów konstrukcyjnych. Zastosowanie takich standardów ułatwia komunikację pomiędzy projektantami, wykonawcami a inwestorami. Przykładowo, podczas prac remontowych w obiektach zabytkowych, precyzyjne oznaczenie elementów do usunięcia jest niezbędne, aby uniknąć uszkodzeń cennych struktur. Umiejętność prawidłowego interpretowania rysunków architektonicznych jest istotna dla każdego profesjonalisty w branży budowlanej, co bezpośrednio wpływa na efektywność całego procesu budowlanego.

Pytanie 4

Jakiego rodzaju spoiwa używa się do produkcji betonów zwykłych?

A. Gipsowy.
B. Wapienny.
C. Cementowy.
D. Akrylowy.
Gips, akryl i wapno nie są odpowiednimi spoiwami do produkcji betonów zwykłych, a ich zastosowanie w kontekście budownictwa wymaga dokładniejszego wyjaśnienia. Gips jest materiałem stosowanym głównie do prac wykończeniowych i w suchych zabudowach, często jako składnik tynków czy gipsowych płyt, ale nie posiada właściwości wiążących wystarczających do produkcji betonu, który wymaga długotrwałej wytrzymałości. Akryl, z kolei, jest materiałem syntetycznym, który stosuje się głównie w farbach, uszczelnieniach i powłokach, ale nie jest spoiwem, a jego właściwości nie pozwalają na tworzenie trwałych struktur betonowych. Wapno, choć historycznie używane jako spoiwo w budownictwie, obecnie zastąpione zostało przez cement w produkcji betonu. Wapno ma ograniczoną wytrzymałość i długi czas wiązania, co czyni je mniej efektywnym w standardowych zastosowaniach budowlanych. Typowe błędy myślowe, które mogą prowadzić do wyboru tych materiałów jako spoiw do betonu, często wynikają z nieprecyzyjnego rozumienia ich właściwości i zastosowań w budownictwie. Dlatego kluczowe jest, aby wszyscy zaangażowani w proces budowlany posiadali solidną wiedzę na temat odpowiednich materiałów budowlanych oraz ich specyfikacji, co przyczynia się do zwiększenia jakości i bezpieczeństwa konstrukcji.

Pytanie 5

Po zakończeniu nakładania tynków gipsowych, ich odbiór może nastąpić najwcześniej po upływie

A. 4 dni
B. 2 dni
C. 7 dni
D. 5 dni
Odpowiedzi wskazujące na 5 dni, 4 dni czy 2 dni, są błędne z kilku powodów, które mają swoje korzenie w zrozumieniu procesów technologicznych związanych z tynkowaniem. Pierwszym z nich jest zbyt krótki czas potrzebny na wyschnięcie tynku gipsowego, który w praktyce wymaga minimum 5 dni, ale zalecane jest dłuższe oczekiwanie, by osiągnąć pełne utwardzenie. Krótszy czas schnięcia może prowadzić do nieodwracalnych uszkodzeń, takich jak pęknięcia czy zmniejszona przyczepność do podłoża. Ponadto, wilgotność otoczenia oraz temperatura mają kluczowe znaczenie dla procesu schnięcia. W zimnych i wilgotnych warunkach, czas schnięcia może się wydłużyć, co dodatkowo wymaga zachowania ostrożności w czasie odbioru. Przyspieszone odbiory mogą prowadzić do nieprawidłowości, które będą widoczne dopiero po pewnym czasie, co generuje dodatkowe koszty w zakresie naprawy i ponownego wykończenia tynku. Dlatego, ważne jest, by nie ignorować standardów branżowych, które jasno określają optymalny czas na odbiór tynków, co w dłuższej perspektywie zapewnia jakość i trwałość robót budowlanych.

Pytanie 6

Na którym rysunku przedstawiono strop Fert?

Ilustracja do pytania
A. A.
B. C.
C. B.
D. D.
Strop Fert to innowacyjne rozwiązanie w budownictwie, które wykorzystywane jest w konstrukcjach żelbetowych. Jego unikalna konstrukcja opiera się na prefabrykowanych płytach żelbetowych, które charakteryzują się wypustkami, umożliwiającymi skuteczne zgrzewanie z monolityczną wylewką betonową. Dzięki temu, strop Fert tworzy jednorodną i wytrzymałą konstrukcję, która jest zdolna do przenoszenia znacznych obciążeń. Wykorzystanie tego typu stropów jest szczególnie popularne w budownictwie wielorodzinnym oraz obiektach użyteczności publicznej, gdzie istotna jest nie tylko nośność, ale i izolacja akustyczna oraz termiczna. Strop Fert spełnia normy PN-EN 1992, które określają zasady projektowania konstrukcji żelbetowych, a jego zastosowanie przyczynia się do podniesienia efektywności energetycznej budynków. Dodatkowo, prefabrykacja elementów stropu pozwala na skrócenie czasu realizacji budowy oraz zwiększenie precyzji wykonania, co jest zgodne z nowoczesnymi trendami w budownictwie.

Pytanie 7

Na rysunku przedstawiono rzut klatki schodowej budynku wielokondygnacyjnego. Jest to rzut

Ilustracja do pytania
A. kondygnacji ostatniej.
B. piwnic,
C. kondygnacji powtarzalnej.
D. parteru.
Zrozumienie, czym jest kondygnacja powtarzalna, jest kluczowe w analizowaniu rysunków architektonicznych. Odpowiedzi, które wskazują na parter, piwnice lub kondygnację ostatnią, są błędne z kilku istotnych powodów. Parter w budynku wielokondygnacyjnym zazwyczaj nie zawiera regularnych schodów, ponieważ jest to poziom dostępny bezpośrednio z terenu i zwykle pełni inne funkcje, takie jak wejście do budynku, lokale handlowe czy przestrzenie publiczne. Piwnice, z kolei, mają specyfikę konstrukcyjną, która często różni się od wyższych kondygnacji, związana jest z wentylacją i dostępem do naturalnego światła, co nie znajduje odzwierciedlenia w analizowanym rzucie. Kondygnacja ostatnia, z charakterystycznymi elementami takimi jak dodatkowe schody prowadzące na dach lub wejścia na tarasy, również nie pasuje do przedstawionego rysunku. W kontekście architektury, istotne jest rozróżnienie między różnymi typami kondygnacji, aby nie mylić ich funkcji oraz aspektów konstrukcyjnych. Używanie terminologii zamiast intuicyjnych skojarzeń jest kluczowe dla zrozumienia i analizy projektów budowlanych. Standardy projektowe wymuszają szczegółowe przemyślenie układu kondygnacji, co pokazuje, jak ważne jest precyzyjne podejście do interpretacji rysunków architektonicznych.

Pytanie 8

Na rysunku przedstawiony jest przekrój poprzeczny stropu

Ilustracja do pytania
A. płytowego.
B. odcinkowego.
C. Kleina.
D. Ackermana.
Wybór odpowiedzi dotyczącej stropu Ackermana, płytowego czy Kleina wskazuje na nieporozumienie w kwestii charakterystyki geometrycznej oraz materiałowej tych konstrukcji. Strop Ackermana, znany ze swojej specyfiki w budownictwie z prefabrykatów, różni się od stropu odcinkowego, gdyż jego konstrukcja opiera się na sztywnych, prostokątnych elementach, co nie pozwala na uzyskanie łukowych form. Z kolei strop płytowy, charakterystyczny dla budownictwa mieszkaniowego i biurowego, charakteryzuje się jednolitą grubością i brakiem łuków, co czyni go bardziej odpornym na różne typy obciążeń, ale nie zapewnia takich samych możliwości w zakresie rozpiętości jak strop odcinkowy. Wreszcie, strop Kleina, który jest stosunkowo rzadko używany, ma swoje unikalne właściwości konstrukcyjne i nie odpowiada przedstawionemu na rysunku przekrojowi. Typowym błędem jest pomylenie stropów o różnych kształtach i funkcjonalności, co może prowadzić do niedokładnych wniosków na temat ich zastosowania i wykonalności w projektach budowlanych. Zrozumienie różnic między tymi rodzajami stropów jest kluczowe dla ich prawidłowego doboru do konkretnego projektu budowlanego.

Pytanie 9

Aby przygotować zaprawę cementowo-wapienną w proporcji objętościowej 1:2:6 (cement:wapno:piasek), wykorzystano 20 dm3 ciasta wapiennego. Jaką ilość piasku należy dodać do tej zaprawy?

A. 0,090 m3
B. 0,009 m3
C. 0,006 m3
D. 0,060 m3
Aby obliczyć, ile piasku należy dodać do zaprawy cementowo-wapiennej o proporcjach 1:2:6, zaczynamy od zrozumienia, że proporcja odnosi się do objętości poszczególnych składników. W tym przypadku mamy 1 część cementu, 2 części wapna i 6 części piasku. Suma proporcji wynosi 1 + 2 + 6 = 9 części. Skoro użyto 20 dm3 ciasta wapiennego, które stanowi 2 części, możemy obliczyć jedną część: 20 dm3 / 2 = 10 dm3. Następnie, aby obliczyć objętość piasku, pomnożymy liczbę części piasku (6) przez objętość jednej części (10 dm3): 6 * 10 dm3 = 60 dm3. Przekształcając to na metry sześcienne, otrzymujemy 0,060 m3 piasku, co jest poprawną odpowiedzią. Tego typu obliczenia są niezbędne w budownictwie, ponieważ zachowanie właściwych proporcji składników wpływa na trwałość oraz właściwości mechaniczne zaprawy.

Pytanie 10

Na rysunku przedstawiono lico muru w wiązaniu

Ilustracja do pytania
A. wozówkowym.
B. krzyżykowym.
C. polskim.
D. główkowym,
Na tym rysunku widać lico muru w wiązaniu wozówkowym. To jeden z najczęściej stosowanych sposobów układania cegieł w budownictwie, co nie jest bez powodu. Cegły w takim wiązaniu układa się naprzemiennie, więc co druga cegła jest dłuższa, a reszta jest krótsza. Dzięki temu mamy solidniejszy mur, mniejsze ryzyko pęknięć i większą nośność całej konstrukcji. Wozówkowe wiązanie stosuje się zarówno w domach, jak i w różnych budynkach użyteczności publicznej. W praktyce, pomaga to rozkładać obciążenia na większą powierzchnię, a to jest zgodne z normami budowlanymi, jak Eurokod 6, który mówi o projektowaniu murów z cegły. Ciekawym jest, że podczas budowy ważne, żeby dłuższe cegły były układane w sposób, który zapewnia ich równomierne wsparcie, co naprawdę zwiększa trwałość całej konstrukcji.

Pytanie 11

Na podstawie tablicy 0803 oblicz ilości zapraw cementowo-wapiennych M2 i M7, potrzebnych do ręcznego wykonania tynku zwykłego kategorii II, na ścianach o łącznej powierzchni 200 m2.

Ilustracja do pytania
A. M2 - 1,86 m3 i M7 - 0,20 m3
B. M2 - 2,06 m3 i M7 - 0,21 m3
C. M2 - 4,12 m3 i M7 - 0,42 m3
D. M2 - 3,72 m3 i M7 - 0,40 m3
Odpowiedź M2 - 3,72 m3 i M7 - 0,40 m3 jest prawidłowa, ponieważ obliczenia oparte są na danych zawartych w tabeli 0803, która określa ilości zapraw potrzebnych do tynków w zależności od ich kategorii oraz powierzchni. Dla tynku kategorii II, na 100 m2 powierzchni, potrzeba 1,86 m3 zaprawy M2 oraz 0,20 m3 zaprawy M7. Skoro w naszym przypadku mamy do czynienia z powierzchnią 200 m2, musimy po prostu podwoić te ilości. Otrzymujemy zatem 3,72 m3 zaprawy M2 i 0,40 m3 zaprawy M7. W praktyce, takie obliczenia są kluczowe dla wykonawców, ponieważ precyzyjne oszacowanie materiałów pozwala na uniknięcie zarówno strat finansowych, jak i materiałowych. W branży budowlanej, zgodność z normami i dobrymi praktykami zapewnia nie tylko efektywność, ale także bezpieczeństwo stosowanych materiałów.

Pytanie 12

Jakie są całkowite wydatki (materiałów i robocizny) na przygotowanie 5 m3 betonu, jeśli koszty materiałów do 1 m3 wynoszą 200 zł, a za robociznę należy dodać 20% wartości mieszanki?

A. 2000 zł
B. 1020 zł
C. 1200 zł
D. 2420 zł
Dobra robota z tą odpowiedzią! Jak to obliczyłeś? Koszt materiałów na 1 m3 betonu to 200 zł, więc dla 5 m3 wychodzi 1000 zł. Potem doliczyłeś robociznę, co jest super ważne, bo to 20% od materiałów, czyli dodatkowe 200 zł. Łącznie daje to 1200 zł. W budownictwie takie obliczenia to podstawa, bo bez tego łatwo można wpaść w kłopoty finansowe. Zawsze warto też mieć na uwadze, że ceny materiałów mogą się zmieniać w trakcie pracy, więc dobrze się przygotować na różne sytuacje.

Pytanie 13

Jakie konstrukcje uznawane są za obiekty inżynieryjne?

A. Obiekty przemysłowe
B. Budowle z konstrukcją szkieletową
C. Świątynie
D. Konstrukcje mostowe
Hale produkcyjne i budynki szkieletowe to też konstrukcje inżynieryjne, ale nie są obiektami inżynierskimi w takim rozumieniu, jak mosty. Hale produkcyjne służą do pracy w fabrykach, więc ich budowa skupia się na tym, jak lepiej produkować, a nie na pokonywaniu przeszkód, jakie mamy w naturze. Budynki szkieletowe, które mają stalowe lub drewniane szkielety, są bardziej związane z budownictwem mieszkalnym czy publicznym, a nie z transportem. Kościoły, które często są ogromne i piękne, skupiają się na wartościach kulturowych i religijnych, a nie na tym, żeby pozwalać na ruch czy przechodzenie nad przeszkodami. Te budowle projektuje się tak, żeby były ładne i miały sens w kontekście religijnym, co sprawia, że różnią się od mostów. Łatwo pomylić różne rodzaje budowli, bo wszystkie należą do szerokiej kategorii budowlanej. Ważne, żeby zrozumieć, że obiekty inżynieryjne są projektowane z myślą o konkretnych problemach, na przykład z transportem, co odróżnia je od innych budynków.

Pytanie 14

Kielnia to podstawowe narzędzie używane przez murarza, które służy do

A. nanoszenia zaprawy i jej wyrównywania
B. rozprowadzania zaprawy oraz oczyszczania cegieł
C. rozprowadzania zaprawy oraz jej zagęszczania
D. nanoszenia zaprawy oraz przycinania cegieł
Kielnia jest kluczowym narzędziem w pracy murarza, wykorzystywana przede wszystkim do nanoszenia zaprawy oraz jej wyrównywania na powierzchniach budowlanych. Nanoszenie zaprawy polega na precyzyjnym umieszczaniu odpowiedniej ilości mieszanki na cegłach lub innych elementach konstrukcyjnych, co jest niezbędne do prawidłowego ich łączenia. Wyrównywanie zaprawy natomiast zapewnia, że każda warstwa jest gładka i równo rozłożona, co wpływa na stabilność i estetykę całej konstrukcji. Przykładowo, podczas budowy murów lub kominów, murarz używa kielni, aby zrealizować idealny poziom i kąt, co jest zgodne z normami budowlanymi, takimi jak PN-EN 1996, które określają wymagania dotyczące trwałości i bezpieczeństwa konstrukcji. Dobrze wykonana praca z użyciem kielni nie tylko zwiększa wydajność budowy, ale także przedłuża żywotność obiektu, co jest kluczowe w branży budowlanej.

Pytanie 15

Oblicz całkowity koszt realizacji tynku maszynowego gipsowego na obu bokach ściany o wymiarach 7×3 m, jeśli koszt robocizny wynosi 19,00 zł/m2, a wydatki na materiały to 7,00 zł/m2?

A. 546,00 zł
B. 945,00 zł
C. 1386,00 zł
D. 1092,00 zł
Niepoprawne odpowiedzi mogą wynikać z błędnych założeń dotyczących obliczeń powierzchni lub kosztów. Na przykład, jeśli ktoś obliczy tylko jedną stronę ściany, mogą uzyskać koszt całkowity równy kosztowi tynku dla 21 m² zamiast 42 m². Dodatkowo, zignorowanie kosztu materiałów lub robocizny może prowadzić do znacznych niedoszacowań. Przykładowo, jeśli ktoś pomyli się w obliczeniach i weźmie pod uwagę tylko koszty robocizny, może uzyskać kwotę 798,00 zł, co jest błędne, ponieważ całkowity koszt musi uwzględniać oba składniki. Kolejnym typowym błędem jest nieprawidłowe pomnożenie jednostkowych kosztów przez całkowitą powierzchnię. Warto pamiętać, że w kosztorysach budowlanych, zgodnie z dobrymi praktykami, należy zawsze wyliczać sumy dla wszystkich części projektu, aby uniknąć nieporozumień i nieprzewidzianych wydatków. Zrozumienie, jak poprawnie obliczać koszty i jakie różne czynniki należy uwzględnić, jest kluczowe dla każdego specjalisty w branży budowlanej, ponieważ pozwala to na efektywne zarządzanie zasobami i kontrolowanie wydatków.

Pytanie 16

W efekcie "klawiszowania" stropu na tynku sufitu w pomieszczeniu utworzyła się rysa. Usunięcie tego defektu polega w szczególności na

A. zaszpachlowaniu rysy zaprawą gipsową
B. pokryciu rysy pasem papy asfaltowej
C. pokryciu rysy pasem siatki z włókna szklanego
D. zaszpachlowaniu rysy zaprawą cementową
Zaszpachlowanie rysy zaprawą gipsową jest podejściem, które, mimo że może wydawać się logiczne, w rzeczywistości nie jest wystarczające w przypadku poważniejszych uszkodzeń, takich jak rysy wynikające z klawiszowania stropu. Zaprawa gipsowa, chociaż dobrze przylega do powierzchni i daje estetyczne wykończenie, nie jest materiałem elastycznym. W efekcie, w miejscach, gdzie występują mikro ruchy, gips może pękać, co prowadzi do konieczności powtarzania napraw. Używanie papy asfaltowej jako rozwiązania również jest nieadekwatne, ponieważ papa nie jest przeznaczona do użytku w pomieszczeniach i nie posiada właściwości wytrzymałościowych wymaganych do naprawy tynku. Zastosowanie zaprawy cementowej w tym kontekście również nie jest optymalne, gdyż cement, podobnie jak gips, nie rozwiązuje problemu związania materiału z ruchem konstrukcyjnym, a jego sztywność może pogłębiać problem. Te błędne podejścia wskazują na niezrozumienie dynamiki uszkodzeń budowlanych oraz braku znajomości materiałów, które powinny być stosowane w celu zapewnienia długotrwałej i efektywnej naprawy. Kluczowe jest, aby przy naprawach uwzględniać nie tylko estetykę, ale przede wszystkim trwałość i odporność na zmiany zachodzące w strukturze budynku.

Pytanie 17

Oblicz na podstawie rysunku powierzchnię ścianki działowej bez otworów, wiedząc, że wysokość pomieszczenia wynosi 280 cm.

Ilustracja do pytania
A. 6,71 m2
B. 9,40 m2
C. 8,95 m2
D. 8,96 m2
Obliczanie powierzchni ścianki działowej polega na zastosowaniu podstawowego wzoru geometrii, w którym mnożymy szerokość przez wysokość. W tym przypadku szerokość ścianki wynosi 320 cm, co w przeliczeniu na metry daje 3,2 m, a wysokość pomieszczenia to 280 cm, co także przelicza się na 2,8 m. Stosując wzór: powierzchnia = szerokość × wysokość, obliczamy 3,2 m × 2,8 m = 8,96 m². Takie obliczenia są kluczowe w branży budowlanej oraz architektonicznej, gdzie precyzyjne określenie powierzchni jest istotne dla kosztorysowania i planowania materiałów. Prawidłowe obliczenia powierzchni ścianki działowej pomagają w optymalizacji wykorzystania przestrzeni oraz w zapewnieniu zgodności z normami budowlanymi. Warto również pamiętać, że w praktyce uwzględnia się różne czynniki, takie jak grubość ścian, które mogą wpływać na ostateczną powierzchnię do pokrycia.

Pytanie 18

W technologii szalunku traconego, którego fragment przestawiono na rysunku, ściany wznosi się z

Ilustracja do pytania
A. betonu komórkowego na cienkowarstwowej zaprawie klejącej.
B. bloczków silikatowych na zaprawie ciepłochronnej.
C. prefabrykatów żelbetowych w deskowaniach z tektury.
D. kształtek styropianowych z rdzeniem żelbetowym.
Kształtki styropianowe z rdzeniem żelbetowym stanowią innowacyjne rozwiązanie w technologii szalunków traconych, które znacznie przyspiesza proces budowlany oraz zapewnia doskonałe właściwości izolacyjne. Szalunki tracone z tych kształtek nie tylko tworzą formę dla wylanego betonu, ale także po zakończeniu pracy pozostają integralną częścią konstrukcji, co eliminuje konieczność ich demontażu. We wnętrzu kształtek umieszczane jest zbrojenie, które po zalaniu betonem tworzy rdzeń żelbetowy, co zapewnia odpowiednią nośność i trwałość ścian. Zastosowanie tego typu szalunków jest szczególnie korzystne w budownictwie mieszkaniowym oraz przemysłowym, gdzie wymagana jest oszczędność czasu i materiałów. Technologie te są zgodne z europejskimi standardami budowlanymi, co potwierdza ich efektywność i bezpieczeństwo w zastosowaniach budowlanych. Dodatkowo, stosując kształtki styropianowe, można osiągnąć wyższe parametry energooszczędności budynku, co jest zgodne z obecnymi trendami w budownictwie ekologicznym.

Pytanie 19

Nierównomierne osiadanie budynków może prowadzić do

A. erozji fundamentów
B. pęknięcia murów
C. korozji murów
D. zawilgocenia murów
Odpowiedź "pęknięcie murów" jest poprawna, ponieważ nierównomierne osiadanie budynków prowadzi do powstawania naprężeń w konstrukcji, co może skutkować pęknięciami murów. Gdy różne części budynku osiadają w różnym tempie, powstają siły działające na elementy nośne i ściany, które mogą przekraczać ich nośność. W praktyce, aby zminimalizować ryzyko pęknięć, zaleca się przeprowadzanie odpowiednich badań geotechnicznych przed budową oraz monitorowanie stanu obiektów w trakcie ich użytkowania. Dobrą praktyką jest także stosowanie fundamentów dostosowanych do warunków gruntowych, które mogą pomóc w równomiernym rozkładzie obciążeń. Przykładem zastosowania tej wiedzy może być użycie pali fundamentowych w gruntach o niskiej nośności, co zapewnia stabilność całej konstrukcji i minimalizuje ryzyko osiadania. W standardach budowlanych zwraca się uwagę na znaczenie odpowiedniego projektowania oraz regularnych przeglądów, aby w porę wykrywać i eliminować zagrożenia związane z osiadaniem.

Pytanie 20

Wykonanie zbrojenia wieńca stropu powinno odbywać się

A. na wszystkich ścianach nośnych wokół całego stropu
B. wyłącznie na dwóch przeciwnych ścianach nośnych budynku, które wspierają strop
C. tylko na zewnętrznej ścianie budynku, na której opiera się strop
D. jedynie na ścianach osłonowych budynku
Zbrojenie wieńca stropu dotyczy kwestii stabilności i nośności konstrukcji, dlatego ograniczanie zbrojenia do tylko jednej lub dwóch ścian nośnych jest błędnym podejściem. Zastosowanie zbrojenia tylko na ścianach osłonowych lub tylko na dwóch przeciwległych ścianach nośnych może prowadzić do powstawania niekorzystnych momentów zginających, które będą skutkować pęknięciami w miejscach nieprzewidzianych. W przypadku żelbetowych stropów, obciążenia nie są przenoszone jedynie na ściany, na których strop się opiera, ale rozkładają się na całą powierzchnię stropu. W związku z tym, zbrojenie powinno być rozmieszczone w taki sposób, aby odpowiadało rozkładowi obciążeń. Ograniczone podejście do zbrojenia prowadzi do sytuacji, w której nie są brane pod uwagę dynamiczne obciążenia, takie jak wibracje, które mogą wystąpić w budynkach użytku publicznego. Praktyczne zastosowanie zbrojenia w kontekście wykonawstwa budowlanego wymaga uwzględnienia nie tylko statycznych, ale również dynamicznych aspektów, co czyni koniecznym zbrojenie na wszystkich ścianach nośnych, aby zapewnić integralność strukturalną i bezpieczeństwo obiektu. Brak odpowiedniego zbrojenia może skutkować nie tylko kosztownymi naprawami, ale także stwarzać zagrożenie dla użytkowników budynku.

Pytanie 21

Na którym rysunku przedstawiono prawidłowy kształt rysy o głębokości mniejszej niż 0,5 cm, występującej na tynku wewnętrznym, przygotowanej do uzupełnienia zaprawą?

Ilustracja do pytania
A. D.
B. A.
C. B.
D. C.
Rysunki B, C i D przedstawiają kształty rys, które nie spełniają wymogów dotyczących naprawy tynków wewnętrznych. Kształt rysy ma kluczowe znaczenie dla powodzenia naprawy. W przypadku rys przedstawionych w tych odpowiedziach można zauważyć, że są one zbyt wąskie lub mają kształt zamknięty, co prowadzi do osłabienia przyczepności zaprawy. Tego rodzaju geometria rysy może powodować, że zaprawa nie będzie mogła się skutecznie wtopić w podłoże, co zwiększa ryzyko oderwania się materiału naprawczego w przyszłości. Często popełniane błędy w ocenie kształtu rysy to nieuwzględnienie zasady, że rysa powinna być rozwarta, aby umożliwić materiałowi naprawczemu swobodne wnikanie i zakotwiczenie. Ponadto, w przypadku napraw tynków wewnętrznych, ważne jest, aby stosować materiały zgodne z obowiązującymi normami, takimi jak PN-EN 13914-1, które wskazują na konieczność odpowiedniego przygotowania rysy oraz doboru materiałów naprawczych. Ignorowanie tych zasad prowadzi do błędnych wniosków i może skutkować koniecznością ponownej naprawy, co wiąże się z dodatkowymi kosztami oraz czasem. Dlatego tak istotne jest, aby dokładnie analizować kształt rysy przed przystąpieniem do prac naprawczych.

Pytanie 22

Aby naprawić pęknięcie zwykłego tynku o głębokości przekraczającej 0,5 cm, należy poszerzyć rysę i nawilżyć ją wodą, a następnie

A. zatarć gęstoplastyczną zaprawą gipsową
B. wypełnić dwiema warstwami zaprawy, z której tynk został wykonany
C. wypełnić dwiema warstwami gipsowego zaczynu
D. zatarć gęstoplastyczną zaprawą cementową
Odpowiedź dotycząca wypełnienia pęknięcia dwiema warstwami zaprawy, z której wykonano tynk, jest prawidłowa, ponieważ zapewnia ona najlepszą zgodność z istniejącą strukturalną i estetyczną charakterystyką tynku. Proces naprawy pęknięcia powinien rozpocząć się od starannego poszerzenia rysy, co umożliwia lepszą przyczepność materiałów naprawczych. Następnie, po zwilżeniu rysy wodą, ważne jest, aby zastosować zaprawę, która jest zgodna z oryginalnym materiałem tynku. Wypełniając pęknięcie dwiema warstwami zaprawy, która była użyta do wykonania tynku, zapewniamy jednolitość w składzie chemicznym oraz w strukturze materiału, co zmniejsza ryzyko wystąpienia dalszych pęknięć. Praktyka ta jest szeroko stosowana w budownictwie, gdyż umożliwia uzyskanie lepszej trwałości i estetyki naprawy. Ponadto, przy użyciu odpowiednich technik aplikacji, takich jak zatarcie, można uzyskać równą powierzchnię, co jest istotne dla zachowania estetyki i funkcjonalności ściany.

Pytanie 23

Na rysunku przedstawiono elementy rusztowania

Ilustracja do pytania
A. choinkowego.
B. warszawskiego.
C. na kozłach.
D. rurowo-złączkowego.
Wybór odpowiedzi, która wskazuje na rusztowanie choinkowe, rurowo-złączkowe lub na kozłach, jest wynikiem niezrozumienia podstawowych różnic pomiędzy tymi typami rusztowań. Rusztowanie choinkowe, na przykład, jest charakterystyczne dla prac, które wymagają wsparcia w formie bardziej zaawansowanej konstrukcji, często stosowane w trudniejszych warunkach terenowych, jednak jego cechy budowy diametralnie różnią się od tych, które można zauważyć na przedstawionym rysunku. Z kolei rusztowanie rurowo-złączkowe, które jest bardziej złożone pod względem konstrukcyjnym i wymaga specyficznych złączek, nie pasuje do prostoty i przejrzystości rusztowania warszawskiego. Typowe błędy myślowe, które prowadzą do wyboru nieprawidłowej odpowiedzi obejmują niedostateczne zrozumienie najważniejszych zasad konstrukcji rusztowań oraz ich zastosowania w praktyce. Warto zwrócić uwagę, że każdy typ rusztowania ma swoje unikalne zastosowania, dostosowane do specyfiki prac budowlanych. Niezrozumienie tego może prowadzić do wyboru niewłaściwego rozwiązania, co w konsekwencji może wpłynąć na bezpieczeństwo i efektywność prac budowlanych. Przy dokonywaniu wyboru należy kierować się nie tylko wyglądem, ale także funkcjonalnością oraz zgodnością z powszechnie przyjętymi normami budowlanymi.

Pytanie 24

Jakie jest spoiwo mineralne powietrzne?

A. cement portlandzki
B. wapno hydrauliczne
C. cement hutniczy
D. gips budowlany
Cement hutniczy, gips budowlany, cement portlandzki oraz wapno hydrauliczne to materiały budowlane, które różnią się nie tylko składem chemicznym, ale również właściwościami oraz zastosowaniem w budownictwie. Cement hutniczy, znany również jako cement blastyczny, to materiał, który uzyskuje się w wyniku przetwarzania klinkieru cementowego z dodatkiem żużla. Jego główną cechą jest znacznie niższa zawartość wapnia w porównaniu do cementu portlandzkiego, co wpływa na jego właściwości wiążące i czas twardnienia. To spoiwo hydrauliczne, więc zachowuje swoje właściwości w kontakcie z wodą, co sprawia, że nie jest odpowiednie jako spoiwo mineralne powietrzne. Cement portlandzki, będący najczęściej stosowanym rodzajem cementu w budownictwie, również charakteryzuje się działaniem hydraulicznym. Jego wiązanie zachodzi w wyniku reakcji z wodą, co czyni go nieodpowiednim przykładem spoiwa mineralnego powietrznego. Wapno hydrauliczne jest spoiwem, które również twardnieje w obecności wody, a jego zastosowanie ogranicza się do określonych rodzajów budowli, w których wymagane są specyficzne właściwości chemiczne i fizyczne. W przypadku tych materiałów, typowe błędy myślowe polegają na myleniu ich funkcji i właściwości, co prowadzi do nieprawidłowych wniosków o możliwości ich zastosowania jako spoiw mineralnych powietrznych. Warto zwrócić uwagę na znaczenie dokładnego rozumienia klasyfikacji materiałów budowlanych, aby właściwie dobrać je do zastosowań w budownictwie.

Pytanie 25

Na rysunku przedstawiono układ cegieł w

Ilustracja do pytania
A. narożniku murów o grubości 2½ i 1½ cegły.
B. narożniku murów o grubości 2½ i 2½ cegły.
C. przenikających się murach o grubości 2½ i 1½ cegły.
D. przenikających się murach o grubości 2½ i 2½ cegły.
Wybór jednej z pozostałych odpowiedzi może wynikać z nieprawidłowej analizy rysunku oraz braku zrozumienia podstawowych zasad dotyczących układu murów. Odpowiedzi, które sugerują przenikające się mury, są błędne, ponieważ na rysunku widoczny jest wyraźny narożnik, a nie miejsce, gdzie mury się przenikają. Przenikające się mury, zazwyczaj wykorzystywane w bardziej skomplikowanych konstrukcjach, wymagają zastosowania specjalnych technik układania cegieł oraz zrozumienia, jak różne grubości muru wpływają na ich zachowanie pod obciążeniem. Ponadto, błędne odpowiedzi mogą wynikać z typowego błędu myślowego, polegającego na myleniu grubości murów. Na przykład, odpowiedzi sugerujące jedynie mury o grubości 2½ cegły ignorują fakt, że na rysunku widoczny jest mur o grubości 1½ cegły. Takie nieścisłości mogą prowadzić do poważnych konsekwencji w praktyce budowlanej, gdzie niewłaściwe zaplanowanie grubości murów może wpłynąć na stabilność całej konstrukcji. Dlatego ważne jest, aby dokładnie analizować rysunki oraz znać zasady dotyczące układania cegieł, aby unikać takich pomyłek.

Pytanie 26

Jakim preparatem powinno się pokryć powierzchnię tynku, który się osypuje i pyli, aby go wzmocnić?

A. Barwiącym
B. Gruntującym
C. Antyadhezyjnym
D. Penetrującym
Wybór niewłaściwego preparatu do wzmocnienia osypującego się tynku może prowadzić do poważnych problemów z trwałością i estetyką wykonanego wykończenia. Preparaty barwiące, mimo że mogą poprawić wygląd powierzchni, nie mają właściwości, które mogłyby wzmocnić tynk. Ich podstawowa funkcja polega na nadawaniu koloru, a nie na poprawie przyczepności czy stabilności strukturalnej. Użytkownicy mogą błędnie sądzić, że barwa poprawi kondycję tynku, jednak to podejście nie rozwiązuje problemu osypywania się materiału. Preparaty antyadhezyjne, z kolei, są stosowane w celu zapobiegania przyleganiu materiałów, co jest całkowicie nieadekwatne w kontekście wzmocnienia tynku. Tego rodzaju produkty mogą prowadzić do dalszego osypywania się, ponieważ nie wspierają integracji nowych warstw z już istniejącym podłożem. Na koniec, preparaty penetrujące, choć mogą być przydatne w niektórych zastosowaniach, w przypadku kruszącego się tynku nie zastąpią zalet gruntów. Mogą one jedynie wniknąć w strukturę tynku, ale nie zapewnią wymaganej przyczepności dla nowych warstw. Użytkownicy często mylą funkcje tych preparatów, co skutkuje nieodpowiednim doborem środków, a tym samym pogorszeniem jakości wykonanych prac budowlanych. Dlatego tak ważne jest zrozumienie, jakie właściwości posiadają poszczególne preparaty i jakie są ich właściwe zastosowania.

Pytanie 27

Tynk klasy IV wykonuje się

A. dwuwarstwowo, wygładzając packą na ostro
B. trójwarstwowo, wygładzając packą na gładko
C. dwuwarstwowo, wygładzając packą styropianową
D. trójwarstwowo, wygładzając packą obłożoną filcem
Tynk kategorii IV, który jest zacierany packą na gładko, charakteryzuje się wysoką jakością wykończenia, co jest istotne w przypadku powierzchni, które mają być estetyczne oraz funkcjonalne. Trójwarstwowe wykonanie tynku zapewnia odpowiednią grubość oraz stabilność, co jest kluczowe w kontekście izolacyjności termicznej i akustycznej budynku. Proces ten obejmuje nałożenie pierwszej warstwy, zwanej podkładem, która ma za zadanie stworzyć odpowiednią bazę dla kolejnych warstw. Następnie nakładana jest druga warstwa, która z kolei wygładza powierzchnię i przygotowuje ją do ostatecznego zacierania. Zastosowanie packi na gładko pozwala uzyskać jednorodną, estetyczną powierzchnię, która jest łatwa do malowania i ma wysoką odporność na uszkodzenia mechaniczne. Przykładem zastosowania tynku kategorii IV mogą być elewacje budynków mieszkalnych lub użyteczności publicznej, gdzie estetyka odgrywa kluczową rolę oraz na takich powierzchniach, jak klatki schodowe, gdzie trwałość i łatwość w utrzymaniu czystości są priorytetowe.

Pytanie 28

Betonowe podłoże, które ma być tynkowane, powinno charakteryzować się równą powierzchnią oraz

A. suche i chropowate
B. zwilżone i gładkie
C. zwilżone i chropowate
D. suche i gładkie
Odpowiedzi, które sugerują, że podłoże powinno być suche, są nieprawidłowe, ponieważ sucha powierzchnia nie zapewnia odpowiedniego przyczepności tynku. W przypadku podłoża suchego, tynk może nie przywierać właściwie, co prowadzi do jego odspajania się z powierzchni betonu. To zjawisko jest szczególnie widoczne w warunkach, gdy wykończenie jest narażone na zmienne warunki atmosferyczne, takie jak wilgoć czy zmiany temperatury. Ponadto, odpowiedzi wskazujące na gładkie podłoże mogą prowadzić do błędnego wniosku, że tynk nie wymaga chropowatej struktury dla dobrej przyczepności. Gładkie podłoża nie stwarzają odpowiednich warunków dla mechanicznego wiązania, co może skutkować powstawaniem pęknięć i deformacji w wyniku obciążeń mechanicznych. W praktyce, tynkowanie na gładkich powierzchniach wymaga zastosowania dodatkowych metod zapewniających przyczepność, co zwiększa koszty i czas pracy. Zrozumienie znaczenia przygotowania podłoża betonowego jest kluczowe dla uzyskania trwałych i estetycznych efektów pracy, w oparciu o zasady zawarte w normach budowlanych, takich jak PN-EN 13914, które podkreślają rolę chropowatości i wilgotności w kontekście aplikacji tynków.

Pytanie 29

Jakie narzędzia są przeznaczone do demontażu ścian?

A. Paca, młotek z gumowym zakończeniem
B. Kilof, oskard, młot pneumatyczny
C. Strug, szpachla, wiertarka o niskich obrotach
D. Przecinak, kielnia, młotek do murowania
Kilof, oskard i młot pneumatyczny to jakby must-have w rozbiórce ścian, zwłaszcza jak robisz coś w budowlance czy remoncie. Kilof to takie mocne narzędzie, które świetnie sobie radzi z twardymi materiałami jak beton czy cegła. Z kolei oskard ma szersze ostrze i jest super do zdzierania tynku albo rozdzielania konstrukcji. Młot pneumatyczny to już technologia, bo używa sprężonego powietrza, żeby zrobić duże uderzenie i to naprawdę przyspiesza rozbiórkę, zwłaszcza jak mamy do czynienia z grubymi ściankami. Ważne jest, żeby używać tych narzędzi mądrze, czyli dbać o bezpieczeństwo, zakładać odpowiednią odzież ochronną i ogólnie trzymać porządek w miejscu pracy. Dobrze zaplanowana rozbiórka, z właściwymi narzędziami w ręku, może znacznie zmniejszyć ryzyko uszkodzeń i sprawi, że wszystko pójdzie sprawniej.

Pytanie 30

Na podstawie wymiarów podanych na rysunku oblicz powierzchnię ściany nośnej wewnętrznej w pokoju, jeżeli wysokość pomieszczenia wynosi 2,90 m.

Ilustracja do pytania
A. 9,42 m2
B. 11,02 m2
C. 9,22 m2
D. 10,49 m2
Aby obliczyć powierzchnię ściany nośnej wewnętrznej, kluczowe jest zrozumienie, że powierzchnia ta jest wynikiem pomnożenia długości ściany przez jej wysokość. W tym przypadku, długość ściany wynosi 3,80 m, a wysokość pomieszczenia to 2,90 m. Stosując wzór: powierzchnia = długość × wysokość, otrzymujemy: 3,80 m × 2,90 m = 11,02 m2, co jest wartością prawidłową. W kontekście architektonicznym, znajomość takich obliczeń jest niezbędna nie tylko dla estetyki, ale także dla stabilności i efektywności energetycznej budynków. W obliczeniach tych uwzględnia się również materiały budowlane oraz ich właściwości, co jest istotne podczas planowania prac budowlanych. Należy pamiętać, że poprawne pomiary oraz obliczenia wpływają na późniejsze etapy budowy, takie jak wykończenie wnętrz czy montaż instalacji. Warto również zwrócić uwagę, że zgodność z normami budowlanymi i standardami, takimi jak PN-EN 1991-1-1, jest niezbędna dla zapewnienia bezpieczeństwa i trwałości konstrukcji.

Pytanie 31

Który z rodzajów tynków jest stosowany do finalizacji powierzchni elewacji podczas ocieplania budynku płytami styropianowymi w systemie BSO (Bezspoinowym Systemie Ocieplania)?

A. Cementowo-wapienny
B. Akrylowy
C. Gipsowo-wapienny
D. Cementowy
Wybór tynków cementowo-wapiennych, cementowych czy gipsowo-wapiennych w kontekście ocieplania budynków płytami styropianowymi nie jest odpowiedni z kilku powodów. Tynki cementowo-wapienne i cementowe, mimo że są powszechnie stosowane w budownictwie, nie oferują takiej elastyczności jak tynki akrylowe. Ich twarda struktura może prowadzić do pęknięć w momencie, gdy budynek poddawany jest ruchom, a zmiany temperatury mogą wpływać na integralność tynku. Tynki gipsowo-wapienne, z kolei, nie są zalecane do zastosowań zewnętrznych, ponieważ gips jest materiałem higroskopijnym, co oznacza, że wchłania wilgoć, co może prowadzić do osłabienia struktury tynku. Dodatkowo, tynki te mają ograniczoną odporność na czynniki atmosferyczne. W przypadku elewacji, gdzie wymagana jest nie tylko estetyka, ale także trwałość i odporność na działanie warunków zewnętrznych, tynki akrylowe pojawiają się jako jedyne sensowne rozwiązanie. Często popełniany błąd to założenie, że każdy typ tynku jest uniwersalny i można go stosować w każdej sytuacji; w rzeczywistości, wybór odpowiedniego tynku powinien być dokładnie dostosowany do specyfiki budynku i jego lokalizacji.

Pytanie 32

Oblicz wydatki na robociznę wzniesienia 100 m2 ścian obiektu z pustaków Porotherm, mając na uwadze, że czas potrzebny na wykonanie 1 m2 muru z tych pustaków wynosi 1,15 h, przy założonym 10-godzinnym czasie pracy, a wynagrodzenie murarza to 140 zł.

A. 1 610 zł
B. 1 232 zł
C. 2 012 zł
D. 1 410 zł
Koszt robocizny wymurowania 100 m2 ścian z pustaków Porotherm oblicza się na podstawie nakładu czasu oraz stawki za roboczogodzinę murarza. W przypadku, gdy nakład czasu na wykonanie 1 m2 muru wynosi 1,15 h, to dla 100 m2 potrzebujemy 115 h (1,15 h/m2 x 100 m2). Przy 10-godzinnym systemie pracy, murarz wykonuje 10 m2 w ciągu jednego dnia, co oznacza, że na wymurowanie 100 m2 potrzeba 10 dni (100 m2 ÷ 10 m2/dzień). Przy stawce 140 zł za dniówkę, całkowity koszt robocizny wynosi 10 dni x 140 zł/dzień, co daje 1400 zł. Jednak, przy dokładnym przeliczeniu czasu pracy, koszt robocizny powinien być obliczony jako (115 h x 14 zł/h) co daje nam 1610 zł. To podejście uwzględnia zarówno stawkę godzinową, jak i efektywność pracy w danym systemie. W budownictwie kluczowe jest dokładne oszacowanie czasu pracy, aby uniknąć niedoszacowania kosztów projektu."

Pytanie 33

Całkowita powierzchnia dwóch ścian o rozmiarach 4,0 x 2,5 x 0,25 m, wykonanych z cegły ceramicznej pełnej na zaprawie cementowej, jest równa

A. 5,0 m2
B. 20,0 m2
C. 2,5 m2
D. 10,0 m2
Często pojawia się błąd, który może prowadzić do złych wyników, a mianowicie niewłaściwe zrozumienie tego, co to jest powierzchnia. Niektórzy użytkownicy mylą jednostki miary albo po prostu się gubią w obliczeniach, przez co wychodzą im nieprawidłowe wartości. Przykładowo odpowiedzi, które mówią, że łączna powierzchnia to 5,0 m2, 2,5 m2 czy 10,0 m2, mogą wynikać z błędów, jak np. liczenie tylko jednej ściany albo używanie złych wymiarów. Kiedy chcemy obliczyć całkowitą powierzchnię dwóch ścian, ważne jest, żeby pamiętać, że każda z nich ma swoje wymiary, które trzeba pomnożyć, a potem zsumować. Niektórzy mogą też nie zdawać sobie sprawy, że powierzchnie ścian liczymy w metrach kwadratowych, a nie w metrach, co prowadzi do pomyłek przy konwersji jednostek. Dodatkowo, warto mieć na uwadze kontekst, w jakim używamy tych obliczeń, bo w budownictwie precyzyjne wyliczenia są naprawdę istotne dla dalszego przebiegu projektu, jak dobór materiałów czy wycena kosztów budowy. Dlatego uczestnicy szkoleń i testów powinni szczególnie zwracać uwagę na praktyczne zastosowanie wzorów oraz na skutki błędnych obliczeń w całym procesie budowlanym.

Pytanie 34

Na której ilustracji przedstawiono mieszadło przeznaczone do przygotowania zaprawy murarskiej?

Ilustracja do pytania
A. Na ilustracji 1.
B. Na ilustracji 4.
C. Na ilustracji 3.
D. Na ilustracji 2.
Mieszadło przedstawione na ilustracji 4 jest klasycznym przykładem urządzenia przeznaczonego do przygotowania zaprawy murarskiej. Jego konstrukcja z dwiema spiralnymi łopatkami zapewnia efektywne mieszanie składników, co jest kluczowe w procesie tworzenia zaprawy o właściwej konsystencji i jednorodności. Zastosowanie mieszadła z spiralnymi łopatkami pozwala na dokładne wymieszanie cementu, piasku oraz wody, co przekłada się na optymalne parametry mechaniczne zaprawy. W praktyce, mieszadło to jest szeroko stosowane w budownictwie, zwłaszcza przy wznoszeniu murów czy tynków, gdzie jednorodność zaprawy ma kluczowe znaczenie dla trwałości konstrukcji. Warto zwrócić uwagę, że standardy budowlane zalecają użycie mieszadeł o odpowiedniej konstrukcji do różnorodnych aplikacji, co zapewnia nie tylko wydajność, ale również bezpieczeństwo pracy. Mieszadła o spiralnej budowie są uznawane za najlepszą praktykę w przygotowaniu zapraw murarskich, dlatego rozpoznanie ich na podstawie ilustracji jest istotnym elementem wiedzy praktycznej w branży budowlanej.

Pytanie 35

Jaką wytrzymałość ma klasa zaprawy na

A. przesuwanie
B. rozciąganie
C. ściśnięcie
D. ugięcie
Klasa zaprawy rzeczywiście odnosi się do jej wytrzymałości na ściskanie. Wytrzymałość na ściskanie jest kluczowym parametrem, który określa zdolność materiału do przenoszenia obciążeń działających w kierunku osiowym, co jest szczególnie istotne w budownictwie i inżynierii lądowej. W praktyce, zaprawy murarskie są stosowane do łączenia elementów budowlanych, takich jak cegły czy bloczki, a ich wytrzymałość na ściskanie wpływa na trwałość całej konstrukcji. Zgodnie z normami PN-EN 1015-11, wytrzymałość na ściskanie zaprawy może być klasyfikowana według różnych klas, co pozwala inżynierom na dobór odpowiedniego materiału do danego zastosowania, np. w budynkach mieszkalnych czy obiektach użyteczności publicznej. Wytrzymałość na ściskanie zaprawy jest zatem kluczowym wskaźnikiem jakości, którego pomiar przeprowadza się w warunkach laboratoryjnych, a jej znajomość pozwala na optymalizację kosztów oraz zapewnienie bezpieczeństwa konstrukcji.

Pytanie 36

Jeśli czas pracy potrzebny do wykonania 1 m2 ścianki działowej wynosi 1,4 r-g, a stawka godzinowa murarza to 15 zł, to jakie wynagrodzenie powinien otrzymać murarz za zrealizowanie 120 m2 ścianek działowych?

A. 1 680 zł
B. 3 600 zł
C. 1 800 zł
D. 2 520 zł
Aby obliczyć wynagrodzenie murarza za wykonanie 120 m2 ścianek działowych, najpierw musimy ustalić, ile roboczogodzin (r-g) jest potrzebnych do wykonania tej pracy. Ponieważ nakład robocizny na 1 m2 wynosi 1,4 r-g, to dla 120 m2 obliczamy: 120 m2 * 1,4 r-g/m2 = 168 r-g. Następnie, znając stawkę godzinową murarza wynoszącą 15 zł, obliczamy całkowite wynagrodzenie: 168 r-g * 15 zł/r-g = 2520 zł. Takie obliczenia są podstawą w branży budowlanej, gdzie precyzyjne planowanie robocizny oraz kosztów jest kluczowe dla efektywności projektów. Dobrą praktyką jest również stworzenie harmonogramu roboczego, który pozwoli na kontrolowanie postępów oraz kosztów, co minimalizuje ryzyko przekroczenia budżetu.

Pytanie 37

Wyznacz wydatki na beton towarowy potrzebny do uformowania warstwy nadbetonu o grubości 15 cm dla stropu Filigran o wymiarach 8 m × 5 m, jeśli cena 1 m3 betonu wynosi 280,00 zł?

A. 1 680,00 zł
B. 33 600,00 zł
C. 11 200,00 zł
D. 168 000,00 zł
Prawidłowa odpowiedź na to pytanie to 1 680,00 zł. Aby obliczyć koszt betonu towarowego na warstwę nadbetonu, należy najpierw obliczyć objętość betonu wymaganej do wykonania nakładki o grubości 15 cm na stropie o wymiarach 8 m x 5 m. Obliczamy objętość według wzoru: V = długość × szerokość × wysokość. W naszym przypadku wygląda to następująco: V = 8 m × 5 m × 0,15 m = 6 m³. Następnie, znając cenę za 1 m³ betonu, która wynosi 280,00 zł, możemy obliczyć całkowity koszt: 6 m³ × 280,00 zł = 1 680,00 zł. Takie obliczenia są kluczowe w branży budowlanej, ponieważ pozwalają na precyzyjne oszacowanie kosztów materiałów oraz efektywne planowanie budżetu. Warto również pamiętać o standardach jakości betonu oraz o konieczności uwzględniania strat podczas transportu i pomieszczenia, co może wpłynąć na ostateczną ilość betonu zamówionego.

Pytanie 38

Oblicz całkowity koszt realizacji tynku mozaikowego na ścianie o powierzchni 30 m2, przy założeniu, że koszt robocizny wynosi 25,00 zł/m2, a wydatki na materiały to 20,00 zł/m2?

A. 600,00 zł
B. 750,00 zł
C. 1 500,00 zł
D. 1 350,00 zł
Aby policzyć, ile będzie kosztowało zrobienie tynku mozaikowego na ścianie o powierzchni 30 m², musimy zsumować koszty robocizny i materiałów. Koszt robocizny to 25 zł za m², więc przy 30 m² wychodzi 750 zł. Koszt materiałów to 20 zł za m², co daje 600 zł. Zatem całkowity koszt wynosi 1 350 zł. W branży budowlanej to standardowe podejście do obliczeń. Dobrze jest też pamiętać o innych wydatkach, które mogą się pojawić, jak np. transport materiałów czy wynajem sprzętu – to wszystko może mieć wpływ na ostateczną cenę.

Pytanie 39

Zaprawę tynkarską produkowaną w zakładzie, oznaczoną symbolem R, wykorzystuje się do realizacji tynków

A. szlachetnych
B. jednowarstwowych zewnętrznych
C. izolujących cieplnie
D. renowacyjnych
Odpowiedź dotycząca tynków renowacyjnych jest prawidłowa, ponieważ zaprawa tynkarska oznaczona symbolem R została zaprojektowana z myślą o zastosowaniu w pracach renowacyjnych. Tynki renowacyjne są stosowane w celu przywrócenia oryginalnych właściwości estetycznych oraz ochronnych istniejących budynków, które mogą być narażone na degradację ze względu na warunki atmosferyczne lub inne czynniki. Przykłady zastosowania obejmują renowację historycznych elewacji, gdzie ważne jest zachowanie charakterystyki materiałów oryginalnych, ale również w przypadku budynków, które doznały uszkodzeń, takich jak pęknięcia czy zawilgocenie. Tynki te często zawierają specjalne dodatki, które poprawiają ich przyczepność, elastyczność oraz parametry izolacyjne, co czyni je idealnym wyborem do renowacji. Dobrze przemyślany dobór tynku renowacyjnego zgodnego z charakterystyką budynku oraz jego otoczenia jest kluczowy, a normy PN-EN 998-1 oraz PN-EN 1015-12 mogą służyć jako wytyczne w tym zakresie.

Pytanie 40

Jakie narzędzie jest używane do aplikacji tynków cienkowarstwowych na ścianie?

A. paca ze stali nierdzewnej
B. paca stalowa z ząbkami
C. kaelnia trójkątna
D. kaelnia trapezowa
Paca ze stali nierdzewnej jest narzędziem specjalistycznym, które znajduje zastosowanie w nakładaniu tynków cienkowarstwowych na ściany. Wykonana ze stali nierdzewnej, charakteryzuje się odpornością na korozję oraz trwałością, co sprawia, że jest idealna do pracy z materiałami tynkarskimi, które mogą zawierać substancje chemiczne. Jej gładka powierzchnia pozwala na równomierne rozprowadzanie tynku, co jest kluczowe dla uzyskania estetycznego i funkcjonalnego wykończenia. W praktyce, użycie pacy ze stali nierdzewnej umożliwia precyzyjne wygładzanie i formowanie tynku, co ma bezpośredni wpływ na jakość powierzchni ściany oraz jej trwałość. Zgodnie z najlepszymi praktykami w branży budowlanej, należy także pamiętać o regularnym czyszczeniu narzędzi, aby uniknąć zanieczyszczeń, które mogą wpłynąć na końcowy efekt pracy. Dodatkowa wiedza na temat różnorodnych rodzajów tynków oraz technik ich aplikacji może jeszcze bardziej usprawnić proces tynkowania, a odpowiedni dobór narzędzi jest kluczowy dla osiągnięcia pożądanych rezultatów.