Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektryk
  • Kwalifikacja: ELE.05 - Eksploatacja maszyn, urządzeń i instalacji elektrycznych
  • Data rozpoczęcia: 20 listopada 2025 00:01
  • Data zakończenia: 20 listopada 2025 00:10

Egzamin niezdany

Wynik: 12/40 punktów (30,0%)

Wymagane minimum: 20 punktów (50%)

Udostępnij swój wynik
Szczegółowe wyniki:
Pytanie 1

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 2

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 3

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 4

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 5

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 6

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 7

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 8

Obciążalność prądowa długotrwała przewodu YDY w temperaturze 30°C dla jednego ze sposobów wykonania instalacji według normy PN-IEC 60364 wynosi 46 A. Korzystając z tabeli współczynników poprawkowych obciążalności w innych temperaturach określ, jaka będzie obciążalność tego przewodu w temperaturze powietrza równej 50°C.

Tabela: współczynniki poprawkowe dla temperatury otaczającego powietrza innej niż 30°C, stosowane do obciążalności prądowej długotrwałej przewodów w powietrzu (fragment tabeli)
Temperatura otoczenia °CIzolacja
PVCXLPE i EPRMineralna
Osłona z PCV lub bez osłony, dostępna 70°CBez osłony, niedostępna 105°C
450,790,870,770,88
500,710,820,670,84
550,610,760,570,80
A. 38,64 A
B. 37,72 A
C. 30,82 A
D. 32,66 A
Obciążalność prądowa przewodu YDY w temperaturze 50°C to 32,66 A. Dlaczego tak jest? Otóż przy tej temperaturze używa się współczynnika poprawkowego dla PVC, który wynosi 0,71. Przewód w 30°C miał obciążalność 46 A, ale wyższa temperatura sprawia, że musi być ona niższa. Żeby obliczyć nową wartość, wystarczy pomnożyć 46 A przez 0,71 i mamy 32,66 A. To ważne, żeby to zrozumieć, bo przy projektowaniu instalacji elektrycznych bezpieczeństwo jest kluczowe. Jak nie zastosujesz współczynników, to przewody mogą się przeciążać, co prowadzi do ich uszkodzenia, a w najgorszym wypadku do pożaru. Na przykład w miejscach, gdzie przewody są w izolowanych lub ciasnych przestrzeniach, takie obliczenia są naprawdę istotne. Projektanci muszą znać normy, jak PN-IEC 60364, żeby wszystko było zgodne z wymaganiami i dostosowane do warunków, w jakich będą pracować.

Pytanie 9

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 10

Jakie środki ochrony przeciwporażeniowej stosuje się w przypadku uszkodzenia obwodu pojedynczego odbiornika?

A. umiejscowienie poza zasięgiem ręki
B. wyłącznie specjalne ogrodzenia
C. jedynie obudowy
D. separację elektryczną
Podczas rozważania środków ochrony przeciwporażeniowej, istotne jest zrozumienie, że samodzielne stosowanie obudów jako formy ochrony nie wystarcza, zwłaszcza w przypadku uszkodzenia obwodu. Obudowy mogą jedynie działać jako pierwsza linia obrony, ale ich skuteczność ogranicza się do sytuacji, w której są one odpowiednio zaprojektowane i wykonane z materiałów odpornych na wpływy zewnętrzne. W praktyce, nie zawsze można zagwarantować, że obudowa w pełni zablokuje dostęp do części energii elektrycznej, co czyni ją niewystarczającą jako jedyny środek ochrony. Próba zapewnienia bezpieczeństwa poprzez umieszczenie urządzenia poza zasięgiem ręki również nie może być traktowana jako skuteczna forma ochrony, ponieważ nie eliminuje ryzyka przypadkowego kontaktu z urządzeniem. Tego rodzaju podejście opiera się na błędnym założeniu, że oddalenie od źródła prądu automatycznie zwiększa bezpieczeństwo, co w rzeczywistości może tylko częściowo zredukować ryzyko. Z kolei stosowanie specjalnych ogrodzeń nie jest odpowiedzią na problem ochrony osób przed porażeniem elektrycznym. Ogrodzenia mogą być skuteczne w ochronie niewielkich obszarów, lecz nie eliminują zagrożeń związanych z niewłaściwym użytkowaniem sprzętu elektrycznego czy awarią instalacji. Takie podejście prowadzi do mylnych przekonań, które mogą skutkować poważnymi konsekwencjami zdrowotnymi, dlatego kluczowe jest stosowanie sprawdzonych rozwiązań, takich jak separacja elektryczna, które oferują rzeczywiste zabezpieczenie przed porażeniem. Wszelkie działania związane z ochroną elektryczną powinny być zgodne z normami i regulacjami, które jasno określają najlepsze praktyki w tej dziedzinie.

Pytanie 11

Jakie nastąpi zmiana w przekładni napięciowej transformatora jednofazowego, jeśli podczas jego modernizacji nawinięto o 10% więcej zwojów po stronie niskiego napięcia, nie zmieniając ilości zwojów po stronie wysokiego napięcia?

A. Wzrośnie o 21%
B. Spadnie o 19%
C. Wzrośnie o 10%
D. Spadnie o 10%
Zrozumienie wpływu zmiany liczby zwojów na przekładnię napięciową transformatora jest kluczowe dla prawidłowego działania układów elektrycznych. Niepoprawne odpowiedzi często wynikają z mylnych założeń dotyczących zasad działania transformatorów. Na przykład, odpowiedzi sugerujące, że przekładnia napięciowa zwiększy się o 10% lub więcej, ignorują fundamentalną zasadę działania transformatora, która mówi o proporcjonalności między liczbą zwojów a napięciem. Przy dodaniu zwojów po stronie niskiego napięcia, wzrasta liczba zwojów uzwojenia, co z kolei zmienia stosunek zwojów z uzwojenia wysokiego napięcia. To prowadzi do zmniejszenia przekładni napięciowej, co jest kluczowym aspektem, który wiele osób pomija. Odpowiedź o zmniejszeniu przekładni o 19% także jest błędna, ponieważ nie bazuje na prostych zasadach matematycznych związanych z obliczeniami przekładni. Przekładnia transformatora nie jest liniową funkcją liczby zwojów; zmiana liczby zwojów w jednym uzwojeniu wpływa na całą relację z innym uzwojeniem. Typowe błędy myślowe, które prowadzą do takich nieprawidłowych wniosków, obejmują nadmierne uproszczenie problemu lub błędne zakładanie, że zmiana w jednym z uzwojeń nie wpływa na całokształt działania transformatora. W praktyce, odpowiednia analiza wpływu zmian w transformatorach jest niezbędna dla zapewnienia ich efektywności i bezpieczeństwa w zastosowaniach przemysłowych.

Pytanie 12

Jaka jest podstawowa funkcja wyłącznika różnicowoprądowego?

A. Ochrona przed porażeniem poprzez wykrycie różnicy prądów w przewodach
B. Regulacja napięcia wyjściowego
C. Przekształcenie prądu przemiennego na stały
D. Ochrona przed przeciążeniem obwodu
Błędne odpowiedzi dotyczą innych funkcji, które nie są związane z działaniem wyłącznika różnicowoprądowego. Ochrona przed przeciążeniem obwodu to domena wyłączników nadprądowych, które reagują na przekroczenie normatywnego prądu w obwodzie, co może prowadzić do przegrzania przewodów i potencjalnego pożaru. W przeciwieństwie do wyłączników różnicowoprądowych, te urządzenia nie wykrywają różnicy prądów, ale reagują na wzrost ich wartości. Regulacja napięcia wyjściowego to zadanie stabilizatorów napięcia, które mają za zadanie utrzymać stałe napięcie na wyjściu pomimo wahań na wejściu. Nie mają one nic wspólnego z ochroną przed porażeniem prądem. Natomiast przekształcenie prądu przemiennego na stały jest funkcją prostowników, które są stosowane w zasilaczach urządzeń elektronicznych. Każde z tych urządzeń ma swoją specyficzną funkcję w systemach elektrycznych, a mylenie ich ról może prowadzić do niebezpiecznych sytuacji w eksploatacji instalacji. Dlatego ważne jest, aby rozumieć różnice w ich zastosowaniach i wiedzieć, jakie urządzenie zastosować w danej sytuacji, co jest kluczowe dla zapewnienia bezpieczeństwa i efektywności instalacji elektrycznych.

Pytanie 13

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 14

Który z wymienionych czynników dotyczących przewodów nie wpływa na wartość spadku napięcia w systemie elektrycznym?

A. Typ materiału izolacyjnego
B. Typ materiału żyły
C. Długość przewodu
D. Przekrój żył
Długość przewodu, przekrój żył oraz rodzaj materiału żyły to kluczowe czynniki, które wpływają na spadek napięcia w instalacji elektrycznej. Długość przewodu ma bezpośredni wpływ na wartość oporu, a tym samym na spadek napięcia. Im dłuższy przewód, tym większy opór, co prowadzi do większego spadku napięcia. Z tego powodu istotne jest, aby projektować instalacje z jak najkrótszymi możliwymi odcinkami przewodów, co pozwala zminimalizować straty energii. Przekrój żył jest również kluczowym parametrem, ponieważ większy przekrój przewodu prowadzi do mniejszego oporu, co w konsekwencji redukuje spadek napięcia. Wybór odpowiedniego przekroju jest regulowany przez normy, takie jak PN-IEC 60364, które określają wymagania dotyczące instalacji elektrycznych w budynkach. Rodzaj materiału żyły, czyli wybór między miedzią a aluminium, również ma znaczenie, ponieważ przewody miedziane charakteryzują się mniejszym oporem niż aluminiowe. Przykłady zastosowania tej wiedzy znajdziemy w projektach instalacji przemysłowych, gdzie precyzyjne obliczenia spadków napięcia są niezbędne do zapewnienia efektywności energetycznej oraz bezpieczeństwa działania urządzeń elektrycznych. Błędy w doborze długości, przekroju czy materiału żyły mogą prowadzić do poważnych problemów, takich jak przegrzewanie się przewodów, co może skutkować pożarami lub uszkodzeniami sprzętu.

Pytanie 15

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 16

Jakie skutki spowoduje podłączenie baterii kondensatorów równolegle do końcówek silnika asynchronicznego?

A. Pobór mocy biernej z sieci będzie mniejszy
B. Pobór mocy czynnej z sieci ulegnie zwiększeniu
C. Częstotliwość prądu w silniku wzrośnie
D. Napięcie na końcówkach silnika się zmniejszy
Włączenie baterii kondensatorów równolegle do zacisków silnika asynchronicznego prowadzi do zmniejszenia poboru mocy biernej z sieci. Kondensatory wprowadzają do obwodu moc czynną, co kompensuje ubytek mocy biernej generowanej przez silnik. Silniki asynchroniczne, zwłaszcza te o dużych mocach, często wykazują znaczny pobór mocy biernej, co powoduje obciążenie sieci elektroenergetycznej. Dlatego wprowadzenie baterii kondensatorów nie tylko poprawia współczynnik mocy, ale także zwiększa efektywność energetyczną całego systemu. W praktyce zastosowanie kondensatorów do kompensacji mocy biernej jest szeroko stosowane w przemyśle, gdzie obciążenia są zmienne, a ich odpowiednia konfiguracja pozwala na znaczące oszczędności kosztów związanych z energią elektryczną oraz redukcję strat w sieci. Ponadto, zgodnie z normami IEC 61000, stabilizacja współczynnika mocy jest kluczowym elementem w celu poprawy jakości energii w systemach elektroenergetycznych.

Pytanie 17

Podczas wymiany uszkodzonego przewodu PEN w instalacji o napięciu do 1 kV, która jest trwale zamontowana, należy pamiętać, aby nowy przewód miał przekrój co najmniej

A. 16 mm2 Cu lub 16 mm2 Al
B. 16 mm2 Cu lub 10 mm2 Al
C. 10 mm2 Cu lub 16 mm2 Al
D. 10 mm2 Cu lub 10 mm2 Al
Zastosowanie nieodpowiednich przekrojów przewodów w instalacjach elektrycznych prowadzi do wielu problemów, w tym do zwiększonego ryzyka awarii i zagrożeń związanych z bezpieczeństwem. Wybór przewodu 16 mm2 Cu lub 16 mm2 Al, jak wskazano w pierwszej opcji, jest niepoprawny, ponieważ nie uwzględnia różnic w przewodności między miedzią a aluminium. Miedź ma znacznie lepsze właściwości przewodzące niż aluminium, co oznacza, że przewody miedziane mogą być cieńsze przy tej samej dopuszczalnej obciążalności prądowej. Kolejna błędna opcja, czyli 10 mm2 Cu lub 10 mm2 Al, również nie spełnia wymogów bezpieczeństwa, ponieważ przewody aluminiowe o przekroju 10 mm2 nie są wystarczające do prawidłowego funkcjonowania w instalacjach o napięciu do 1 kV, co jest wyraźnie określone w normach branżowych. Najczęstsze błędy myślowe prowadzące do takich wniosków wynikają z braku zrozumienia różnic w materiałach oraz ich właściwości elektrycznych. Użytkownicy często mylą minimalne przekroje z maksymalnymi wartościami, co prowadzi do niewłaściwej kalkulacji wymagań dla instalacji. W praktyce, ignorowanie norm dotyczących przekrojów przewodów może prowadzić do przegrzewania się, a w skrajnych przypadkach do pożarów, dlatego kluczowe jest stosowanie się do obowiązujących standardów i wytycznych w celu zapewnienia bezpieczeństwa zarówno ludzi, jak i mienia.

Pytanie 18

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 19

Jaką wielkość należy zmierzyć, aby ocenić skuteczność zabezpieczeń podstawowych w elektrycznej instalacji o napięciu znamionowym do 1 kV?

A. Impedancji zwarciowej
B. Rezystancji uziomu
C. Napięcia krokowego
D. Rezystancji izolacji
Pomiar rezystancji izolacji jest kluczowym elementem oceny skuteczności ochrony podstawowej w instalacjach elektrycznych, szczególnie w tych o napięciu znamionowym do 1 kV. Odpowiedni poziom rezystancji izolacji zapewnia, że nie występują niepożądane przepływy prądu do ziemi, co mogłoby prowadzić do porażenia prądem lub uszkodzenia urządzeń. Zgodnie z normą PN-EN 60364-6, minimalna rezystancja izolacji powinna wynosić co najmniej 1 MΩ dla systemów o napięciu do 1 kV, co gwarantuje odpowiednie bezpieczeństwo. Przykładem zastosowania tego pomiaru jest przeprowadzanie testów przed oddaniem do użytkowania nowej instalacji, a także regularne kontrole w celu wykrycia degradacji izolacji na skutek starzenia się materiałów, wilgoci czy innych czynników zewnętrznych. Dzięki tym pomiarom można zminimalizować ryzyko awarii, co jest szczególnie istotne w obiektach użyteczności publicznej oraz w środowiskach przemysłowych, gdzie bezpieczeństwo użytkowników ma kluczowe znaczenie.

Pytanie 20

Jak wpłynie na napięcie dolnej strony transformatora wzrost liczby aktywnych zwojów w uzwojeniu górnym, przy niezmienionym napięciu zasilania?

A. Nie ulegnie zmianie
B. Zmniejszy się
C. Spadnie do zera
D. Wzrośnie
Zrozumienie działania transformatora wymaga znajomości podstawowych zasad dotyczących napięcia, zwojów oraz ich wzajemnych relacji. Odpowiedzi sugerujące, że napięcie się nie zmieni, mogą wynikać z błędnego założenia, że liczba zwojów nie ma wpływu na napięcie wyjściowe. Takie podejście ignoruje fundamentalne zasady transformacji energii. W rzeczywistości, napięcie na uzwojeniu dolnym jest bezpośrednio związane z liczbą zwojów w uzwojeniu górnym. Jeśli liczba zwojów w uzwojeniu górnym wzrasta, napięcie na dolnym uzwojeniu musi się obniżyć, aby zachować równowagę w transformatorze. Z kolei twierdzenie, że napięcie wzrośnie, jest oparte na niewłaściwym zrozumieniu mechanizmu działania transformatora, gdzie zwiększenie liczby zwojów w jednym uzwojeniu automatycznie nie prowadzi do wzrostu napięcia w innym. Ostatnia możliwość, że napięcie spadnie do zera, może być wynikiem skrajnego myślenia, które nie uwzględnia faktu, że transformator, przy odpowiednim zasilaniu, zawsze wytwarza pewne napięcie na uzwojeniu dolnym, choć może być ono mniejsze niż w przypadku mniejszej liczby zwojów w uzwojeniu górnym. Dobrą praktyką w analizie układów elektrycznych jest zawsze uwzględnianie proporcji i zależności między poszczególnymi elementami, co pozwala na lepsze zrozumienie działania i przewidywanie konsekwencji zmian w układzie.

Pytanie 21

Aby zmierzyć rezystancję izolacji w instalacji elektrycznej, trzeba wyłączyć zasilanie, zablokować włączniki instalacyjne oraz

A. odłączyć odbiorniki
B. podłączyć odbiorniki
C. odłączyć uziemienie
D. uziemić instalację
Odpowiedzi, które sugerują uziemienie instalacji lub podłączenie odbiorników, są błędne z kilku powodów. Uziemienie podczas pomiaru rezystancji izolacji jest niewłaściwe, ponieważ może prowadzić do przepływu prądu przez uziemienie, co zafałszuje wyniki pomiaru i uniemożliwi ocenę stanu izolacji. Standardy bezpieczeństwa, takie jak PN-IEC 60364, wskazują, że przed pomiarami należy całkowicie odłączyć zasilanie i wyeliminować wszelkie potencjalne ścieżki przewodzenia prądu, w tym uziemienie. Podłączenie odbiorników w trakcie pomiaru również jest niewłaściwe, gdyż może to stworzyć dodatkowe obciążenie, które zakłóci ocenę stanu izolacji. Często zdarza się, że technicy pomijają ten kluczowy krok, sądząc, że pomiar można przeprowadzić bez demontażu odbiorników, co prowadzi do błędnych wniosków o jakości izolacji. Podczas przeprowadzania pomiarów rezystancji izolacji, ważne jest, aby przestrzegać procedur, które zapewniają dokładność i bezpieczeństwo. Pamiętajmy, że prawidłowe podejście do pomiarów nie tylko zapewnia zgodność z normami, ale także chroni przed potencjalnymi uszkodzeniami sprzętu oraz zagrożeniem dla użytkowników.

Pytanie 22

Urządzenia elektryczne o klasie ochrony 0 mogą być stosowane wyłącznie w sytuacji

A. korzystania z nich pod nadzorem technicznym ze strony dostawcy energii elektrycznej
B. wcześniejszego zweryfikowania efektywności ochrony w instalacji
C. zasilania ich z gniazd z ochronnym bolcem uziemiającym
D. wdrożenia ochrony przed porażeniem w formie separacji elektrycznej lub izolacji miejsca wykonywania pracy
Zasilanie urządzeń elektrycznych klasy 0 z gniazd wyposażonych w ochronny bolec uziemiający jest podejściem błędnym, ponieważ sama obecność bolca nie zapewnia ochrony przed porażeniem, gdyż urządzenia te nie posiadają żadnej formy ochrony izolacyjnej. Klasa 0 oznacza, że urządzenie nie ma dodatkowej izolacji ani zabezpieczeń, co czyni je narażonym na porażenie elektryczne w przypadku uszkodzenia. Zastosowanie nadzoru technicznego ze strony dostawcy energii elektrycznej również nie gwarantuje bezpieczeństwa, ponieważ jest to odpowiedzialność użytkownika, aby zapewnić odpowiednie warunki eksploatacyjne. Ponadto wcześniejsze sprawdzenie skuteczności ochrony w instalacji nie ma zastosowania, jeśli urządzenia nie są zaprojektowane z myślą o ochronie przed porażeniem. Stosunek do wymagań zawartych w polskich normach budowlanych oraz wytycznych dotyczących użytkowania urządzeń elektrycznych jest kluczowy - błędne założenia mogą prowadzić do poważnych wypadków. Dlatego istotne jest, aby przed użyciem urządzeń klasy 0, bardzo dokładnie ocenić ich stan oraz warunki użytkowania, a nie polegać na nieadekwatnych metodach ochrony.

Pytanie 23

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 24

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 25

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 26

Którą z poniższych czynności pracownik ma prawo wykonać bez zlecenia osób nadzorujących jego pracę?

A. Zamiana izolatora na linii napowietrznej nn
B. Gaszenie pożaru urządzenia elektrycznego
C. Zlokalizowanie uszkodzeń w linii kablowej nn
D. Renowacja rozdzielnicy po likwidacji pożaru
Pozostałe czynności, takie jak wymiana izolatora na linii napowietrznej nn, remont rozdzielnicy po ugaszeniu pożaru oraz lokalizowanie uszkodzeń w linii kablowej nn, wymagają wcześniejszego polecenia osób dozorujących. Wymiana izolatora na linii napowietrznej nn jest pracą, która może wiązać się z dużym ryzykiem, w tym ryzykiem porażenia prądem elektrycznym. Takie zadanie powinno być zlecane przez wykwalifikowanych przełożonych, którzy mogą ocenić, czy warunki do pracy są wystarczająco bezpieczne. Podobnie, remont rozdzielnicy po ugaszeniu pożaru wymaga nie tylko oceny sytuacji przez osoby dozorujące, ale także upewnienia się, że wszystkie niebezpieczne elementy zostały odpowiednio zabezpieczone. Pracownicy muszą być świadomi, że prowadzenie prac w strefach potencjalnie niebezpiecznych, bez odpowiedniego nadzoru i polecenia, może prowadzić do poważnych wypadków. Lokalne przepisy BHP oraz wewnętrzne regulacje firmy ściśle określają, że takie działania powinny być prowadzone zgodnie z wytycznymi i pod nadzorem odpowiednich specjalistów, aby zapewnić bezpieczeństwo wszystkich pracowników. Typowe błędy myślowe prowadzące do wniosków o samodzielnym podejmowaniu takich działań często wynikają z niedostatecznego zrozumienia procedur bezpieczeństwa oraz roli nadzoru w procesach roboczych.

Pytanie 27

W jakim trybie pracy silnik asynchroniczny osiąga najmniejszy współczynnik mocy?

A. Biegu jałowego
B. Zwarcia awaryjnego
C. Obciążenia znamionowego
D. Zwarcia pomiarowego
W stanie biegu jałowego silnik asynchroniczny pracuje bez obciążenia, co prowadzi do niskiego współczynnika mocy. W tym trybie, silnik zużywa moc bierną, co skutkuje niską efektywnością energetyczną. W rzeczywistości, współczynnik mocy może wynosić zaledwie 0,1 do 0,2, co oznacza, że tylko niewielka część energii elektrycznej jest przekształcana w moc użyteczną. Zastosowanie tego trybu jest ograniczone, ale w niektórych sytuacjach, jak w przypadku urządzeń uruchamianych w warunkach niskiego obciążenia, mogą występować momenty pracy w biegu jałowym. W praktyce, dla poprawy efektywności energetycznej, często stosuje się kondensatory, które kompensują moc bierną, co pozwala zwiększyć współczynnik mocy do bardziej akceptowalnych wartości. Ponadto, znajomość tego zjawiska jest kluczowa przy projektowaniu układów zasilania oraz przy wyborze odpowiednich urządzeń i komponentów w systemach elektronicznych i elektrycznych, co jest zgodne z normami takimi jak IEC 60034 dotyczące maszyn elektrycznych.

Pytanie 28

Który przekrój przewodu jest najczęściej używany do tworzenia obwodów gniazd wtyczkowych w podtynkowych instalacjach mieszkaniowych?

A. 1,5 mm2
B. 4 mm2
C. 2,5 mm2
D. 1 mm2
Wybór niewłaściwego przekroju przewodu do obwodów gniazd wtyczkowych może być wynikiem kilku błędnych założeń. Przewód o przekroju 1,5 mm2 jest często stosowany w obwodach oświetleniowych, ale nie jest wystarczający do zasilania gniazd, które mogą obsługiwać urządzenia o wyższym poborze prądu. Taki przekrój nie zapewnia odpowiedniej przewodności, co skutkuje jego przegrzewaniem, a w skrajnych przypadkach może prowadzić do uszkodzenia instalacji lub nawet pożaru. Z kolei przewód o przekroju 4 mm2, mimo że zapewnia większą przewodność, może być nadmierny dla standardowego obciążenia gniazd wtyczkowych, co nie jest ekonomiczne i może utrudniać montaż w standardowych kanałach instalacyjnych. Użycie przewodu 1 mm2 jest zdecydowanie niewłaściwe, ponieważ nie spełnia norm dotyczących bezpieczeństwa w instalacjach elektrycznych, co stawia użytkowników w niebezpiecznej sytuacji. Zastosowanie niewłaściwego przekroju przewodu może prowadzić do nieefektywności energetycznej, zwiększonego ryzyka awarii oraz nieprzestrzegania obowiązujących norm, co jest istotnym zagadnieniem dla każdego elektryka i projektanta instalacji.

Pytanie 29

W celu sprawdzenia poprawności działania dwóch wyłączników różnicowoprądowych EFI-2 25/0,03 zmierzono ich różnicowe prądy zadziałania. Na podstawie wyników pomiarów zamieszczonych w tabeli określ poprawność działania tych wyłączników.

Wyłącznik różnicowoprądowyZmierzony prąd różnicowy IΔ
mA
135
225
A. Oba wyłączniki sprawne.
B. 1 – niesprawny, 2 – sprawny.
C. Oba wyłączniki niesprawne.
D. 1 – sprawny, 2 – niesprawny.
Wiele błędnych odpowiedzi wynika z nieporozumień dotyczących zasad działania wyłączników różnicowoprądowych. Często mylnie zakłada się, że jeśli wyłącznik zadziałał przy wartości prądu innej niż jego nominalna, to jest on sprawny, co jest absolutnie nieprawdziwe. Wyłącznik różnicowoprądowy powinien zadziałać przy maksymalnej wartości prądu różnicowego, która w tym przypadku wynosi 30 mA. Zadziałanie wyłącznika nr 1 przy wartości 35 mA oznacza, że nie spełnia on norm i stanowi zagrożenie dla użytkowników. Warto także zwrócić uwagę na powiązania między różnymi parametrami wyłączników a standardami bezpieczeństwa. Zastosowanie wyłączników, które działają przy wartościach prądów różnicowych wyższych niż wymagane, narusza zasady BHP i może prowadzić do tragicznych skutków. Ponadto, w odpowiedziach, które sugerują, że oba wyłączniki są niesprawne lub oba sprawne, brakuje właściwej analizy parametrów zadziałania. Każdy wyłącznik powinien być oceniany indywidualnie na podstawie przeprowadzonych testów, a nie na podstawie ogólnych założeń, co jest kluczowe dla zapewnienia bezpieczeństwa instalacji elektrycznych.

Pytanie 30

Obwody zasilające gniazda wtyczkowe o maksymalnym prądzie 32 A powinny być chronione przez wyłącznik RCD o prądzie różnicowym nominalnym

A. 1 000 mA
B. 30 mA
C. 500 mA
D. 100 mA
Wybór wyłącznika RCD o wyższych wartościach prądu różnicowego, jak 100 mA czy 500 mA, jest niewłaściwy dla obwodów zasilających gniazda wtyczkowe. Wyłączniki o takich wartościach są projektowane głównie do ochrony przed pożarami, a nie bezpośrednio przed porażeniem elektrycznym. Zastosowanie RCD 100 mA może być użyteczne w obwodach, które zasilają urządzenia o dużym poborze mocy, gdzie ryzyko porażenia jest mniejsze, jednak nie zapewnia odpowiedniej ochrony użytkowników w miejscach o podwyższonej wilgotności. Z kolei wyłączniki 500 mA są stosowane w obwodach przemysłowych, gdzie ochrona przed pożarem jest kluczowa, ale w kontekście domowych gniazd wtyczkowych, ich użycie jest nieodpowiednie. RCD 30 mA jest odpowiedzialny za reagowanie na drobne różnice w prądzie, co jest kluczowe dla ochrony ludzi, podczas gdy wyższe wartości mogą nie wykryć niebezpiecznych sytuacji, zanim dojdzie do poważnych konsekwencji. Dlatego stosowanie wyłącznika RCD o znamionowym prądzie różnicowym 30 mA jest zgodne z zaleceniami norm oraz praktykami, które mają na celu ochronę użytkowników przed porażeniem elektrycznym w codziennym życiu.

Pytanie 31

Zamiana przewodu OWY 2,5 mm2 na YKY 2,5 mm2 w odbiorniku ruchomym doprowadzi do

A. wzrostu wytrzymałości mechanicznej przewodu
B. obniżenia obciążalności prądowej
C. zmiany wytrzymałości mechanicznej przewodu
D. podniesienia obciążalności prądowej
Wybór odpowiedzi dotyczącej zmniejszenia obciążalności prądowej przewodu jest błędny, gdyż obciążalność prądowa nie jest bezpośrednio związana z typem przewodu, ale raczej z jego konstrukcją oraz materiałem, z którego został wykonany. W przypadku przewodów YKY, ze względu na zastosowane materiały i budowę, mają one często wyższą obciążalność prądową w porównaniu do OWY, co może prowadzić do fałszywych wniosków o ich wydajności. Ponadto, stwierdzenie, że zmiana przewodu powoduje zmniejszenie mechanicznej wytrzymałości, ignoruje kluczowe różnice w projektowaniu tych przewodów. Przewody YKY, mimo że są sztywniejsze, są również projektowane z myślą o lepszej ochronie przed działaniem czynników zewnętrznych, takich jak wilgoć czy chemikalia, co może podnieść ich długoterminową niezawodność w trudnych warunkach. Kolejną pomyłką jest twierdzenie o zmniejszeniu wytrzymałości mechanicznej. Przewody YKY, mimo dość sztywnej konstrukcji, często stosuje się w przemyśle, gdzie są narażone na intensywne warunki pracy, co wymaga ich wytrzymałości. Logicznym błędem w myśleniu jest założenie, że sztywność oznacza słabość; w rzeczywistości, odpowiedni dobór przewodów do danego zastosowania jest kluczowy. W praktyce, decyzje dotyczące wyboru przewodów powinny opierać się na szczegółowej analizie ich właściwości, zgodności z normami oraz realnym zastosowaniu w danym środowisku.

Pytanie 32

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 33

Na wartość impedancji pętli zwarcia w systemie sieciowym TN-C mają wpływ

A. rodzaj zamontowanych ochronników przeciwprzepięciowych
B. liczba zamontowanych ochronników przeciwprzepięciowych
C. pole przekroju poprzecznego żył przewodów
D. wytrzymałość napięciowa izolacji przewodów
Wartość impedancji pętli zwarcia w układzie sieciowym TN-C jest ściśle związana z polem przekroju poprzecznego żył przewodów. Pole to wpływa na opór przewodzenia prądu, co z kolei ma istotne znaczenie dla działania zabezpieczeń w przypadku zwarcia. Przewody o większym przekroju charakteryzują się mniejszym oporem, co pozwala na szybsze zadziałanie zabezpieczeń, takich jak wyłączniki nadprądowe. W praktyce oznacza to, że zwiększenie przekroju przewodów w instalacji elektrycznej może poprawić bezpieczeństwo, zmniejszając ryzyko uszkodzenia urządzeń oraz zapewniając lepszą ochronę osób. W Polskich Normach i europejskich standardach, takich jak PN-HD 60364-5-54, podkreśla się znaczenie odpowiedniego doboru przekrojów przewodów w kontekście ich zastosowania, zwłaszcza w instalacjach narażonych na zwarcia. Dlatego kluczowe jest, aby projektanci instalacji elektrycznych zwracali uwagę na te aspekty, aby zapewnić optymalną funkcjonalność oraz bezpieczeństwo systemów elektrycznych.

Pytanie 34

Który z poniższych kabli nadaje się do realizacji instalacji siłowej osadzonej w tynku w konfiguracji sieci TN-S?

A. YStY 5xl mm2
B. YSLY 3x2,5 mm2
C. YADY 3x4 mm2
D. YDYżo 5x2,5 mm2
Wybór przewodów YADY 3x4 mm2, YSLY 3x2,5 mm2 oraz YStY 5xl mm2 na instalację siłową w układzie TN-S niesie za sobą szereg nieprawidłowych koncepcji. Przewód YADY, mimo że ma większy przekrój, jest przeznaczony głównie do instalacji sygnalizacyjnych i telekomunikacyjnych, co nie spełnia wymogów dla instalacji siłowej. YSLY to przewód ekranowany, którego zastosowanie w takim układzie jest ograniczone i niewłaściwe dla zasilania, ponieważ nie zapewnia odpowiedniej ochrony przed przeciążeniem i zwarciem. Z kolei YStY to przewód z żyłami aluminiowymi, który w kontekście instalacji siłowych nie jest zalecany, ponieważ aluminium ma gorsze właściwości przewodzenia prądu oraz może prowadzić do problemów z połączeniami, co w efekcie zwiększa ryzyko awarii. Wybór niewłaściwego przewodu do instalacji siłowych może skutkować przegrzewaniem się przewodów oraz stwarzać zagrożenie dla bezpieczeństwa użytkowników. Dlatego kluczowe jest, aby do instalacji siłowych stosować przewody zgodne z normami oraz dobrymi praktykami branżowymi, co pozwala na zapewnienie zarówno efektywności, jak i bezpieczeństwa systemu elektrycznego.

Pytanie 35

Która z poniższych czynności nie jest częścią badań eksploatacyjnych silnika elektrycznego?

A. Pomiar rezystancji uzwojeń stojana
B. Pomiar napięcia zasilającego
C. Weryfikacja stanu ochrony przeciwporażeniowej
D. Przeprowadzenie próbnego rozruchu urządzenia
Analizując pozostałe czynności, które zostały wymienione, można zauważyć, że zarówno pomiar rezystancji uzwojeń stojana, jak i sprawdzenie stanu ochrony przeciwporażeniowej są niezwykle istotnymi elementami w kontekście diagnostyki silników elektrycznych. Pomiar rezystancji uzwojeń dostarcza informacji o stanie izolacji oraz zużyciu uzwojeń, co jest kluczowe dla przewidywania żywotności silnika. Na przykład, niska rezystancja może sugerować uszkodzenie izolacji, co prowadzi do ryzyka zwarcia. Kolejnym ważnym aspektem jest ochrona przeciwporażeniowa, która ma na celu zapewnienie bezpieczeństwa operatorów. Sprawdzenie stanu ochrony jest wymagane przez normy, takie jak IEC 60204-1, które określają wymagania dotyczące bezpieczeństwa sprzętu elektrycznego w maszynach. Rozruch próbny to ostatni krok w procesie, który pozwala na testowanie silnika w rzeczywistych warunkach operacyjnych, co pozwala zidentyfikować ewentualne problemy w jego działaniu. Ignorowanie tych czynności może prowadzić do poważnych konsekwencji, w tym awarii silnika oraz zagrożeń dla bezpieczeństwa pracy. Dlatego kluczowe jest zrozumienie, że każda z wymienionych czynności ma swoje miejsce i znaczenie w kontekście eksploatacji silnika elektrycznego.

Pytanie 36

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 37

Jakie będą konsekwencje obniżenia wartości napięcia zasilającego silnik indukcyjny o kilka procent, gdy pracował on z napięciem znamionowym i obciążeniem mocą nominalną przy niezmiennej częstotliwości i stałym, niezależnym od prędkości obrotowej momencie obciążenia?

A. Wzrost przeciążalności silnika oraz spadek prądu pobieranego z sieci
B. Wzrost przeciążalności silnika oraz prądu pobieranego z sieci
C. Spadek przeciążalności silnika oraz wzrostu prądu pobieranego z sieci
D. Spadek przeciążalności silnika oraz prądu pobieranego z sieci
Zmniejszenie napięcia zasilającego silnik indukcyjny prowadzi do obniżenia momentu obrotowego, co skutkuje zmniejszeniem przeciążalności silnika. Tego rodzaju silniki są projektowane w taki sposób, aby pracować w określonym zakresie napięcia. Obniżenie napięcia wpływa negatywnie na wydajność silnika, co może prowadzić do błędnego założenia, że przeciążalność wzrośnie. Odpowiedzi, które sugerują zwiększenie przeciążalności silnika, wynikają z nieporozumienia dotyczącego charakterystyki pracy silników indukcyjnych. Zwiększenie prądu pobieranego z sieci nie jest w rezultacie zjawiskiem korzystnym, gdyż może prowadzić do przegrzewania się uzwojeń i uszkodzenia izolacji. Producenci silników podkreślają, że przy spadku napięcia musimy też brać pod uwagę spadek sprawności samego urządzenia. Zmniejszenie napięcia nie tylko wpływa na prąd, ale również na aspekty termiczne silnika, co jest szczególnie istotne w kontekście standardów bezpieczeństwa. W praktyce, przy obciążeń przekraczających nominalne, silnik nie jest w stanie przenieść momentu obrotowego, co prowadzi do ryzyka jego uszkodzenia. W branżach, gdzie wymagane są precyzyjne parametry pracy, takie jak przemysł spożywczy czy chemiczny, zachowanie odpowiednich wartości napięcia zasilania jest kluczowe dla bezpieczeństwa i efektywności procesów produkcyjnych.

Pytanie 38

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 39

Który z poniższych elementów nie jest częścią transformatora energetycznego?

A. Izolatory ceramiczne
B. Uchwyty do podłączenia przewodów
C. Silnik synchroniczny
D. Rdzeń magnetyczny
Rdzeń magnetyczny jest fundamentalnym elementem każdego transformatora, pozwalającym na przenoszenie strumienia magnetycznego między uzwojeniami. Jego obecność jest niezbędna do efektywnej pracy transformatora, ponieważ umożliwia optymalną zmianę napięcia prądu. Uchwyty do podłączenia przewodów, choć mogą wydawać się mniej istotne, pełnią ważną rolę w zapewnieniu bezpiecznego połączenia elektrycznego pomiędzy uzwojeniami transformatora a zewnętrznym obwodem elektrycznym. Umożliwiają one łatwy dostęp do podłączenia i odłączenia przewodów, co jest istotne podczas instalacji i konserwacji urządzenia. Izolatory ceramiczne również są częścią transformatora, choć ich obecność może nie być tak oczywista. Służą one do izolacji elektrycznej między różnymi częściami transformatora oraz między transformatorem a jego otoczeniem. Zapobiegają one przepływowi prądu tam, gdzie nie jest to pożądane, co jest kluczowe dla bezpieczeństwa i efektywności działania urządzenia. Zrozumienie roli każdego z tych elementów jest istotne dla prawidłowej eksploatacji maszyn elektrycznych oraz unikania błędnych interpretacji ich funkcji i zastosowań. W transformatorach energetycznych każdy z tych elementów pełni specyficzną i niezbędną funkcję, co czyni je integralnymi częściami skomplikowanego systemu przetwarzania energii elektrycznej.

Pytanie 40

W tabeli przedstawiono wyniki pomiarów napięć między przewodami w sieci typu TN-C-S. Jakie uszkodzenie występuje w instalacji?

L1-N240 V
L2-N240 V
L3-N240 V
PEN-N0 V
PEN-PE10 V
A. Brak ciągłości przewodu PE
B. Przebicie izolacji między L1-N
C. Zwarcie między fazami L1-L2
D. Uszkodzenie przewodu N
Uszkodzenie przewodu N, przebicie izolacji między L1-N, czy zwarcie między fazami L1-L2 to powszechnie mylone koncepcje związane z problemami w instalacjach TN-C-S. W przypadku uszkodzenia przewodu N, napięcie na tym przewodzie zazwyczaj ulega znacznemu wzrostowi, co może prowadzić do nieprawidłowych pomiarów, ale nie wyjaśnia różnicy potencjałów między PEN a PE. Przebicie izolacji między L1 a N zazwyczaj skutkuje zwarciem lub innymi poważnymi uszkodzeniami, co również nie odzwierciedla wskazania napięcia 10 V między PEN a PE. Z kolei zwarcie między fazami, chociaż może prowadzić do poważnych awarii, nie ma związku z różnicą napięć między przewodami neutralnymi i ochronnymi. Typowym błędem myślowym jest mylenie symptomów z przyczynami; nieprawidłowy pomiar może prowadzić do fałszywych wniosków. W rzeczywistości, różnica napięcia między PEN a PE jednoznacznie wskazuje na problem z ciągłością przewodu ochronnego, a nie na uszkodzenia przewodów neutralnych czy zwarcia. Właściwe zrozumienie funkcji przewodów ułatwia diagnozowanie problemów oraz zapobiega niebezpiecznym sytuacjom w instalacjach elektroenergetycznych. Normy takie jak PN-EN 50110-1 wskazują na znaczenie monitorowania i konserwacji instalacji w celu zapewnienia ich bezpieczeństwa.