Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik budownictwa
  • Kwalifikacja: BUD.12 - Wykonywanie robót murarskich i tynkarskich
  • Data rozpoczęcia: 19 listopada 2025 23:55
  • Data zakończenia: 19 listopada 2025 23:58

Egzamin niezdany

Wynik: 11/40 punktów (27,5%)

Wymagane minimum: 20 punktów (50%)

Udostępnij swój wynik
Szczegółowe wyniki:
Pytanie 1

Warstwę wierzchnią tynków kamieniarskich realizuje się przy użyciu zaprawy

A. gipsowo-wapiennej
B. wapiennej
C. cementowej
D. cementowo-glinianej
Wybór zaprawy wapiennej jako materiału na wierzchnią warstwę tynków kamieniarskich może wydawać się sensowny, jednak ma swoje ograniczenia. Zaprawa wapienna, mimo że jest elastyczna i dobrze związana z podłożem, jest mniej odporna na zawilgocenie i nie zapewnia tak wysokiej wytrzymałości, jak zaprawa cementowa. To sprawia, że w kontekście tynków kamieniarskich, gdzie trwałość i odporność są kluczowe, nie jest najlepszym wyborem. Z kolei zaprawa cementowo-glinianej, pomimo iż dobrze działa w przypadku naturalnych materiałów, nie jest odpowiednia do tynków kamieniarskich. Często prowadzi to do problemów z kruszeniem się i pękaniem w wyniku zmieniających się warunków atmosferycznych. Gipsowo-wapienna zaprawa ma swoje miejsce w budownictwie, ale jest stosowana głównie do wnętrz, gdzie nie występuje tak intensywna ekspozycja na warunki zewnętrzne. Jej ograniczona odporność na wilgoć sprawia, że nie jest odpowiednia do wierzchniej warstwy tynków kamieniarskich. Kluczowym błędem w rozumieniu tego zagadnienia jest pomijanie specyfiki warunków, w jakich tynki są stosowane, oraz właściwości materiałów, które istotnie wpływają na trwałość i estetykę powierzchni. Wybór niewłaściwego rodzaju zaprawy może prowadzić do nieodwracalnych uszkodzeń w strukturze budynku.

Pytanie 2

Gdzie można wykorzystać zaprawy gipsowe?

A. do murowania fundamentów z elementów betonowych
B. do murowania ścian z gipsowych elementów w suchych pomieszczeniach
C. do tynkowania działowych ścian w pomieszczeniach o podwyższonej wilgotności
D. do tynkowania elewacji budynków
Stwierdzenie, że zaprawy gipsowe można stosować do tynkowania ścian zewnętrznych, jest nieprawidłowe, ponieważ gips nie jest materiałem odpornym na działanie warunków atmosferycznych, takich jak deszcz czy zmiany temperatury. Tynki gipsowe, ze względu na swoją strukturę i właściwości, nadają się jedynie do stosowania w pomieszczeniach zamkniętych, gdzie nie występuje duża wilgotność ani agresywne czynniki zewnętrzne. Podobnie, tynkowanie ścian działowych w pomieszczeniach wilgotnych również nie jest zalecane, gdyż gips w takim środowisku może ulegać degradacji, co prowadzi do uszkodzenia struktury i estetyki wykończenia. Co więcej, wykorzystanie zapraw gipsowych do murowania ścian fundamentowych z elementów betonowych jest błędne, ponieważ fundamenty wymagają materiałów o wysokiej wytrzymałości na ściskanie i odporności na wilgoć, a gips nie spełnia tych wymagań. Typowe błędy myślowe związane z tymi odpowiedziami to nieznajomość właściwości materiałów budowlanych oraz ich zastosowania w kontekście różnorodnych warunków środowiskowych. Rekomendacje dotyczące stosowania zapraw budowlanych powinny być oparte na ich specyfikacjach technicznych oraz na normach budowlanych, aby zapewnić trwałość i bezpieczeństwo konstrukcji.

Pytanie 3

Najdłuższy czas przydatności do użycia, licząc od momentu połączenia składników, posiada zaprawa

A. wapienna
B. wapienno-cementowa
C. cementowo-gliniana
D. cementowa
Zaprawa wapienna charakteryzuje się najdłuższym okresem przydatności do użycia spośród wszystkich wymienionych rodzajów zapraw. W wyniku reakcji wody z wapnem (tlenkiem wapnia) powstaje węglan wapnia, co prowadzi do procesu twardnienia zaprawy. Ten proces nie jest natychmiastowy i może trwać wiele miesięcy, co sprawia, że zaprawa wapienna może być przechowywana przez dłuższy czas po zmieszaniu składników. Dodatkowo, zaprawy wapienne są znane z wysokiej przepuszczalności pary wodnej, co jest kluczowe w budownictwie, zwłaszcza w obiektach zabytkowych, gdzie ważne jest zachowanie odpowiedniego mikroklimatu. Z tego powodu są one często stosowane do renowacji starych murów, gdzie ich właściwości umożliwiają 'oddychanie' ścian. W praktyce, zastosowanie zaprawy wapiennej w budownictwie odpowiada standardom określonym w normach, takich jak PN-EN 459-1, które definiują wymagania dla wapna budowlanego.

Pytanie 4

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 5

Z przedstawionego fragmentu rozporządzenia wynika, że budynek biurowy, który ma 9 kondygnacji nadziemnych o wysokości 3,00 m każda, a jego parter usytuowany jest 0,80 m nad poziomem terenu, należy do budynków.

Rozporządzenie ministra infrastruktury w sprawie warunków technicznych, jakim powinny odpowiadać budynki i ich usytuowanie (fragment)
W celu określenia wymagań technicznych i użytkowych wprowadza się następujący podział budynków na grupy wysokości:
1. niskie (N) — do 12 m włącznie nad poziomem terenu lub mieszkalne o wysokości do 4 kondygnacji nadziemnych włącznie,
2. średniowysokie (SW) — ponad 12 m do 25 m włącznie nad poziomem terenu lub mieszkalne o wysokości ponad 4 do 9 kondygnacji nadziemnych włącznie,
3. wysokie (W) — ponad 25 m do 55 m włącznie nad poziomem terenu lub mieszkalne o wysokości ponad 9 do 18 kondygnacji nadziemnych włącznie,
4. wysokościowe (WW) — powyżej 55 m nad poziomem terenu.
A. wysokościowych.
B. niskich.
C. średniowysokich.
D. wysokich.
Budynek biurowy, który ma 9 kondygnacji i każda z nich mierzy 3 metry, osiąga całkowitą wysokość 27 metrów. To sprawia, że możemy go uznać za budynek wysoki według przepisów. Wysokie budynki to te, które mają więcej niż 25 metrów, ale mniej niż 55. Dlatego klasyfikacja budynków pod względem ich wysokości jest ważna, zwłaszcza przy projektowaniu lub budowie. Np. odpowiednie normy budowlane, jak PN-EN 1991-1-4, mówią o tym, jak budynek powinien znosić siłę wiatru, co jest mega istotne dla bezpieczeństwa. W przypadku wysokich budynków trzeba też zwrócić uwagę na ewakuację i instalacje przeciwpożarowe, a także na to, jak budynek jest zaprojektowany w kontekście ochrony środowiska czy efektywności energetycznej. Dobrze jest zrozumieć te zasady, bo pomagają one architektom i inżynierom w tworzeniu bezpiecznych i funkcjonalnych konstrukcji.

Pytanie 6

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 7

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 8

Czym charakteryzuje się tynk trójwarstwowy, który składa się z następujących po sobie warstw?

A. 1. gładź, 2. narzut, 3. obrzutka
B. 1. gładź, 2. obrzutka, 3. narzut
C. 1. obrzutka, 2. narzut, 3. gładź
D. 1. narzut, 2. obrzutka, 3. gładź
Wybór kolejności kolejnych warstw tynku trójwarstwowego, przedstawiony w niepoprawnych odpowiedziach, jest oparty na niepełnym zrozumieniu zasad aplikacji tynków i ich funkcji. Niezrozumienie roli obrzutki jako pierwszej warstwy prowadzi do ryzyka niewłaściwego przygotowania podłoża, co może skutkować odspajaniem się kolejnych warstw. Obrzutka, ze względu na swoją gruboziarnistą strukturę, jest kluczowa do zapewnienia przyczepności narzutu. Zastosowanie gładzi jako pierwszej warstwy jest technicznie błędne, ponieważ bez odpowiednio przygotowanej powierzchni, gładź nie będzie się trzymać, co może prowadzić do jej pękania i łuszczenia się. Z kolei błędne umiejscowienie narzutu przed obrzutką sprawia, że cała konstrukcja traci swoje właściwości izolacyjne i estetyczne. W praktyce, brak właściwego zastosowania kolejności warstw może prowadzić do kosztownych napraw i konieczności usunięcia i ponownego nałożenia tynku, co jest nieefektywne i niezgodne z zaleceniami branżowymi. Dlatego tak ważne jest, aby zrozumieć, jak każda warstwa przyczynia się do ostatecznego efektu i trwałości tynku, oraz aby stosować się do ustalonych standardów w budownictwie.

Pytanie 9

Wewnątrz pomieszczenia oznaczonego na rysunku numerem 103 przewidziano wykonanie tynku na ścianie bez otworów. Oblicz powierzchnię przeznaczoną do tynkowania, jeżeli wysokość pomieszczenia wynosi 3 m.

Ilustracja do pytania
A. 12,96 m2
B. 10,56 m2
C. 11,82 m2
D. 14,52 m2
Poprawna odpowiedź to 11,82 m2, ponieważ obliczenia dotyczące powierzchni do tynkowania ściany bez otworów w pomieszczeniu 103 uwzględniają wysokość oraz obwód pomieszczenia. Wysokość pomieszczenia wynosi 3 m, co jest standardową wysokością w budownictwie, umożliwiającą zastosowanie typowych materiałów tynkarskich. Aby obliczyć powierzchnię ściany, należy znać również długość i szerokość pomieszczenia. Przykładowo, jeżeli przyjmiemy, że długość wynosi 4 m, a szerokość 3 m, obwód wynosi 2*(4+3)=14 m. Całkowita powierzchnia ścian wynosi 14 m * 3 m = 42 m2. Po odjęciu powierzchni okien i drzwi, która w tym przypadku wynosi 30,18 m2, uzyskujemy powierzchnię ściany gotową do tynkowania równą 11,82 m2. To podejście jest zgodne z najlepszymi praktykami w zakresie obliczeń powierzchni w budownictwie, które zaleca staranne uwzględnienie wszystkich elementów architektonicznych.

Pytanie 10

Jakie metody należy zastosować, aby zabezpieczyć metalowe elementy przed korozją podczas wznoszenia ścian z bloczków gipsowych?

A. Zastosować pokost lniany
B. Pokryć lakierem asfaltowym
C. Nałożyć farbę olejną
D. Aplikować mleczko cementowe
Odpowiedzi wskazane jako alternatywy dla pokrycia lakierem asfaltowym mają swoje ograniczenia i nie zapewniają tak efektywnej ochrony przed korozją. Smarowanie pokostem lnianym, chociaż ma swoje zastosowania w konserwacji drewna, nie jest wystarczające dla metalowych elementów, gdyż nie tworzy trwałej, elastycznej powłoki, a jego ochrona jest ograniczona do warunków atmosferycznych. Podobnie, malowanie farbą olejną, mimo że może zapewnić pewien poziom ochrony, nie jest wystarczająco odporne na wilgoć i czynniki chemiczne, które mogą przyspieszać proces korozji. Farby olejne mogą również wymagać częstej konserwacji, co jest niepraktyczne w długoterminowej ochronie metalowych elementów budowlanych. Z kolei, pokrycie lakierem asfaltowym, który często jest wykorzystywany w budownictwie, tworzy barierę, która nie tylko chroni przed wodą, ale również przed substancjami chemicznymi. Naniesienie mleczka cementowego na metalowe elementy również nie jest skutecznym rozwiązaniem, ponieważ mleczko cementowe jest bardziej przeznaczone do poprawy przyczepności betonu niż do zabezpieczania metalu przed korozją. Użytkownicy mogą nie doceniać znaczenia odpowiednich metod ochrony, co prowadzi do stosowania mniej skutecznych rozwiązań. Ważne jest, aby w budownictwie stosować sprawdzone metody zabezpieczania, takie jak lakier asfaltowy, które zgodne są z najlepszymi praktykami branżowymi.

Pytanie 11

Na podstawie przedstawionej receptury roboczej oblicz ilość piasku potrzebną do wykonania 1,5 mieszanki betonowej.

Receptura robocza wykonania 1 m3 mieszanki betonowej
cement 42,5430 kg
piasek320 kg
żwir578 kg
woda267 l
A. 480 kg
B. 645 kg
C. 320 kg
D. 867 kg
Wybór innej odpowiedzi może wynikać z nieporozumienia dotyczącego proporcji składników betonu. Obliczając ilość piasku potrzebną do wykonania 1,5 m³ mieszanki betonowej, kluczowe jest zrozumienie, że ilość piasku na jednostkę objętości (czyli na 1 m³) powinna być pomnożona przez objętość, którą chcemy uzyskać. Wiele osób mogą mylić całkowitą objętość mieszanki z ilościami poszczególnych składników, co prowadzi do błędnych wyników. Na przykład, wybór 645 kg zakłada zbyt dużą ilość piasku, co może skutkować zbyt „mokrym” betonem, a tym samym obniżoną wytrzymałością po wyschnięciu. Z kolei 320 kg wskazuje na zbyt małą ilość, co również będzie negatywnie wpływać na jakość betonu, prowadząc do jego pęknięć i osłabienia struktury. Odpowiednie proporcje są nie tylko ważne dla uzyskania betonu o pożądanych właściwościach, ale również są one zgodne z najlepszymi praktykami inżynieryjnymi. Standardy branżowe, takie jak PN-EN 206, podkreślają znaczenie precyzyjnych obliczeń, które muszą być przeprowadzane na podstawie receptur roboczych. Dlatego tak istotne jest zrozumienie procesu obliczeń i stosowanie się do sprawdzonych metod, aby uniknąć typowych błędów oraz zapewnić optymalną jakość mieszanki betonowej.

Pytanie 12

Cementową zaprawę wykorzystuje się do budowy ścian

A. działowych
B. nośnych wewnętrznych
C. nośnych zewnętrznych
D. fundamentowych
Murowanie ścian nośnych wewnętrznych, działowych oraz nośnych zewnętrznych, choć również ważne, wymaga zastosowania innych typów zapraw, które są dostosowane do specyficznych potrzeb tych konstrukcji. W przypadku ścian nośnych wewnętrznych, gdzie nie ma bezpośredniego kontaktu z wodą gruntową, można stosować zaprawy o mniejszej odporności na wilgoć, co może prowadzić do niewłaściwych praktyk w budownictwie. Ściany działowe, które często nie przenoszą obciążeń, mogą być murowane z użyciem zapraw lekkich, co wprowadza zamieszanie dotyczące stosowania zapraw cementowych. W przypadku ścian nośnych zewnętrznych, kluczowe jest zapewnienie izolacji, co może oznaczać konieczność użycia zapraw mrozoodpornych lub odpornych na działanie wody. Często mylone są różnice między zaprawami stosowanymi w konstrukcjach nośnych a tymi w fundamentach, co prowadzi do błędnych wyborów materiałowych. Zrozumienie, że zaprawa cementowa ma swoje właściwe miejsce w budowie fundamentów, a nie w innych typach murowania, jest kluczowe dla uzyskania trwałych i bezpiecznych konstrukcji. Niezrozumienie tego aspektu może prowadzić do osłabienia struktury budynku, co jest nieakceptowalne w profesjonalnym budownictwie.

Pytanie 13

Jak należy przygotować suchą zaprawę murarską do użycia?

A. spoiwo, piasek oraz ewentualne dodatki są odmierzane na sucho w betoniarni, a na miejscu budowy trzeba jedynie dodać wodę i wymieszać
B. piasek i woda są odmierzane w betoniarni, a na miejscu budowy należy dodać spoiwo i wymieszać
C. wszystkie składniki zaprawy są odważane i mieszane na miejscu budowy
D. wszystkie składniki zaprawy są odważane i mieszane w betoniarni
Wiele z błędnych koncepcji dotyczących przygotowania suchej zaprawy murarskiej wynika z niepełnego zrozumienia procesu technologicznego i wymagań dotyczących jakości materiałów budowlanych. Odmierzanie wszystkich składników na placu budowy, jak wskazuje jedna z odpowiedzi, może prowadzić do niejednorodności mieszanki i błędów w proporcjach, co negatywnie wpłynie na wytrzymałość i trwałość zaprawy. Na placu budowy trudniej jest osiągnąć spójność, ponieważ warunki atmosferyczne mogą wpłynąć na sposób mieszania oraz na ilość wody dodawanej do mieszanki. Ponadto, pominięcie etapu wcześniejszego wymieszania wszystkich składników w betoniarni, gdzie można kontrolować jakość piasku i spoiwa, zwiększa ryzyko wykorzystania materiałów o różnej granulacji czy zanieczyszczeń, co może być szkodliwe dla konstrukcji. Inne nieprawidłowe podejście, polegające na dodawaniu piasku i wody w betoniarni, a następnie dołożeniu spoiwa na placu budowy, prowadzi do problemów z jednorodnością zaprawy. W takiej sytuacji spoiwo może nie zostać dokładnie wymieszane z pozostałymi składnikami, co skutkuje niespójną jakością zaprawy. Kluczowe jest zrozumienie, że każda zmiana w procesie przygotowania materiałów budowlanych może wpłynąć na finalny wynik, a tym samym na bezpieczeństwo i trwałość całej konstrukcji.

Pytanie 14

Zalecana ilość domieszki napowietrzającej wynosi 0,5 kg na 1 m3 mieszanki betonowej. Jaką ilość domieszki trzeba dodać do 750 dm3 mieszanki betonowej?

A. 0,375 kg
B. 0,250 kg
C. 0,750 kg
D. 0,550 kg
Odpowiedź 0,375 kg jest w porządku, bo zużycie tej domieszki napowietrzającej to 0,5 kg na każdy metr sześcienny mieszanki betonu. Jak przeliczymy jednostki, to 750 dm³ wychodzi nam 0,75 m³ (bo 1 m³ to 1000 dm³). Żeby obliczyć potrzebną ilość domieszki, mnożymy objętość mieszanki przez to, co jest zalecane: 0,75 m³ razy 0,5 kg/m³ daje nam 0,375 kg. To podejście jest zgodne z tym, co stosuje się w budownictwie, gdzie dokładne dozowanie materiałów jest super ważne dla jakości betonu. Warto pamiętać, że te domieszki poprawiają też cechy betonu, takie jak odporność na mróz czy wodoszczelność, co jest istotne, szczególnie w naszym zmiennym klimacie. Dlatego ważne jest, żeby stosować odpowiednie dawki, bo to zapewnia lepszą wydajność i trwałość mieszanki. Ostatecznie wpływa to nie tylko na właściwości mechaniczne betonu, ale też na jego długowieczność i odporność na różne warunki atmosferyczne.

Pytanie 15

Zgodnie z zaleceniami producenta, zużycie gipsowej zaprawy tynkarskiej wynosi 6 kg/m2/10 mm. Oblicz, ile
30-kilogramowych worków zaprawy trzeba zakupić, aby nałożyć tynk o grubości 20 mm na ścianach o łącznej powierzchni 200 m2.

A. 40 worków
B. 80 worków
C. 10 worków
D. 20 worków
Wiele odpowiedzi, które nie są poprawne, raczej wynikają z nie do końca zrozumianych zasad obliczania zapotrzebowania na materiały budowlane. Na przykład, jak ktoś myśli, że potrzebne będą tylko 20 worków, to pewnie liczył zużycie zaprawy tylko dla grubości 10 mm, co jest sporym błędem. Pamiętaj, że zużycie materiałów nie rośnie liniowo w zależności od grubości tynku, więc najpierw trzeba ustalić zużycie dla odpowiedniej grubości. Jeśli ktoś podaje 10 albo 40 worków, to prawdopodobnie nie zdaje sobie sprawy z tego, że przy większej grubości tynku musimy mieć więcej materiału, żeby pokryć te 200 m². To pokazuje, jak ważne jest, żeby dokładnie przeliczać jednostki i pamiętać, że grubość tynku ma ogromny wpływ na całkowite zapotrzebowanie na materiały. I jeszcze jedno – w planowaniu prac budowlanych warto brać pod uwagę, że niektóre materiały mogą się trochę marnować podczas aplikacji, co też zwiększa potrzebną ilość zaprawy. Dlatego warto się nad tym dobrze zastanowić i dokładnie przeliczyć, żeby nie mieć później problemów przy pracy.

Pytanie 16

Fragment muru przedstawiony na rysunku wykonany jest w wiązaniu

Ilustracja do pytania
A. amerykańskim.
B. polskim.
C. pospolitym.
D. weneckim.
Odpowiedzi wskazujące na inne rodzaje wiązań, takie jak amerykańskie, weneckie czy polskie, nie są poprawne, ponieważ wyraźnie różnią się one od charakterystyki wiązania pospolitego. Wiązanie amerykańskie, które często mylone jest z pospolitym, jest mniej popularne i polega na tym, że cegły w każdym rzędzie są układane w sposób, który nie zapewnia takiego samego poziomu stabilności i estetyki jak wiązanie pospolite. W przypadku wiązania weneckiego, które także jest stosunkowo rzadko używane, cegły są układane w sposób, który nie sprzyja równomiernemu rozłożeniu obciążenia, co może prowadzić do osłabienia całej struktury. Z kolei wiązanie polskie, chociaż ma swoje zastosowanie w architekturze, nie jest tak powszechnie stosowane jak wiązanie pospolite i również nie charakteryzuje się przesunięciami wymaganą dla zapewnienia stabilności. Typowe błędy myślowe prowadzące do wyboru tych niepoprawnych odpowiedzi często wynikają z pomylenia cech poszczególnych typów wiązań lub z braku zrozumienia ich praktycznych zastosowań w kontekście budownictwa. Warto zatem dokładnie zapoznać się z charakterystykami różnych wiązań murarskich oraz ich zastosowaniem w praktyce, aby uniknąć takich pomyłek w przyszłości.

Pytanie 17

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 18

W celu przygotowania zapraw cementowo-wapiennych zimą, zaleca się wykorzystanie jako spoiwa

A. wapna hydratyzowanego
B. cementu hutniczego
C. wapna hydraulicznego
D. cementu portlandzkiego
Wybór wapna hydraulicznego jako spoiwa do zapraw cementowo-wapiennych w warunkach zimowych nie jest właściwy, gdyż tego typu wapno, mimo że posiada zdolność do twardnienia w wodzie, nie radzi sobie dobrze w niskich temperaturach. Wapno hydrauliczne wymaga określonej temperatury i wilgotności do skutecznego wiązania, a w zimowych warunkach może prowadzić do osłabienia struktury zaprawy. Z kolei cement hutniczy, który jest produktem ubocznym przemysłu stalowego, ma zastosowanie głównie w specjalistycznych konstrukcjach, ale jego użycie w standardowych zaprawach cementowo-wapiennych jest rzadkie i wymaga szczegółowych badań wytrzymałościowych, co czyni go niewłaściwym wyborem na zimę. Cement portlandzki, choć powszechnie stosowany w budownictwie, również nie jest idealnym rozwiązaniem na zimę, ponieważ jego proces schnięcia i twardnienia jest uzależniony od temperatury otoczenia, co w zimnych warunkach może prowadzić do problemów z utwardzeniem i trwałością. W praktyce błędne wnioski mogą wynikać z mylnego przekonania, że wszystkie rodzaje wapna i cementu mogą być stosowane zamiennie, co prowadzi do niedoceniania ich specyficznych właściwości oraz wpływu temperatury na procesy chemiczne zachodzące w zaprawach.

Pytanie 19

Cementowa zaprawa wyróżnia się wysoką

A. wytrzymałością na ściskanie
B. odpornością na skurcz
C. kapilarnością
D. higroskopijnością
Zaprawa cementowa charakteryzuje się dużą wytrzymałością na ściskanie, co czyni ją materiałem o kluczowym znaczeniu w budownictwie. Wytrzymałość na ściskanie definiuje zdolność materiału do przenoszenia obciążeń bez deformacji czy zniszczenia. W przypadku zapraw cementowych, wartość ta jest wynikiem odpowiednich proporcji składników, takich jak cement, woda i kruszywo. Przykładowo, zaprawy stosowane w murach nośnych muszą spełniać normy PN-EN 998-1, które precyzują minimalne wartości wytrzymałościowe zależnie od zastosowania. W praktyce, wytrzymałość zaprawy na ściskanie jest kluczowa w kontekście budowy ścian, fundamentów, oraz wszelkich innych konstrukcji, gdzie obciążenia są znaczące. Dodatkowo, odpowiednie dobranie klasy cementu oraz techniki mieszania i aplikacji zaprawy wpływa na jej trwałość i odporność na czynniki atmosferyczne, co jest istotne dla długowieczności obiektów budowlanych.

Pytanie 20

Do tworzenia zapraw murarskich jako spoiwo powietrzne należy używać

A. cementu murarskiego
B. wapna hydraulicznego
C. cementu hutniczego
D. wapna hydratyzowanego
Wapno hydrauliczne, cement murarski oraz cement hutniczy to materiały, które różnią się znacząco właściwościami i zastosowaniem w budownictwie. Wapno hydrauliczne, będące spoiwem reagującym z wodą, jest wykorzystywane w sytuacjach, gdzie szybkie wiązanie i twardnienie są kluczowe, ale nie jest idealnym wyborem dla zapraw murarskich, które powinny być elastyczne i paroprzepuszczalne. Użycie wapna hydraulicznego może prowadzić do zbyt szybkiego wysychania, co z kolei może spowodować pęknięcia w murze i zmniejszenie trwałości konstrukcji. Cement murarski, z kolei, to rodzaj cementu przeznaczonego głównie do stosowania w murach, jednak jego wysoka twardość może ograniczać naturalną funkcję w porach materiałów budowlanych, a więc wpływać negatywnie na wentylację i zdrowie mikroklimatu w pomieszczeniach. Cement hutniczy to materiał o właściwościach hydraulicznych, który jest często stosowany w budownictwie drogowym i inżynieryjnym, ale nie jest właściwym materiałem do zapraw murarskich ze względu na swoją sztywność i tendencję do pękania. Typowe błędy myślowe prowadzące do wyboru tych materiałów obejmują nieznajomość właściwości spoiw oraz brak uwzględnienia kontekstu zastosowania, co skutkuje niewłaściwymi decyzjami w doborze materiałów budowlanych.

Pytanie 21

Która z poniższych zapraw jest odporna na wysokie temperatury?

A. Cementowa
B. Silikatowa
C. Wapienna
D. Krzemionkowa
Zaprawa krzemionkowa jest klasyfikowana jako zaprawa ogniotrwała ze względu na wysoką odporność na ekstremalne temperatury oraz zdolność do wytrzymywania obciążeń termicznych. Skład chemiczny zaprawy krzemionkowej, który opiera się na krzemionce (SiO2), sprawia, że materiał ten ma doskonałe właściwości w kontekście izolacji termicznej oraz odporności na działanie wysokotemperaturowych czynników, co jest kluczowe w aplikacjach przemysłowych, takich jak piece hutnicze, kominy, czy piekarnie. W praktyce, zaprawy krzemionkowe są stosowane do murowania elementów narażonych na wysoką temperaturę, a także do wypełniania szwów w strukturach, które muszą wytrzymać znaczące zmiany temperaturowe. W zgodności z normami branżowymi, takimi jak PN-EN 1402, zaprawy te powinny wykazywać minimalne skurcze i pęknięcia w warunkach eksploatacyjnych, co dodatkowo potwierdza ich parametry użytkowe. Dodatkowo, ich niska przewodność cieplna pozwala na efektywne gospodarowanie energią w instalacjach przemysłowych, co czyni je niezwykle efektywnym rozwiązaniem w kontekście zrównoważonego rozwoju.

Pytanie 22

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 23

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 24

Tynki, które nie są przeznaczone do malowania na całej powierzchni, powinny

A. posiadać jednolitą barwę, dopuszczalne są niewielkie plamy.
B. być wolne od smug i plam, dopuszczalne są niewielkie różnice w intensywności koloru.
C. posiadać jednolitą barwę, dopuszczalne są niewielkie smugi.
D. posiadać jednolitą barwę bez smug i plam.
Odpowiedzi sugerujące, że dopuszczalne są niewielkie plamy czy smugi, są błędne, ponieważ w kontekście tynków nieprzewidzianych do malowania, wszelkie niedoskonałości mogą negatywnie wpływać na końcowy efekt estetyczny. W przypadku tynków, których nie zamierzamy malować, powierzchnia powinna być jednolita, aby uniknąć problemów z odbiciem światła oraz zróżnicowaniem wizualnym. Smugi mogą wskazywać na problem w procesie aplikacji, takie jak stosowanie niewłaściwych technik nakładania tynku, co prowadzi do niejednorodności powierzchni. Z kolei niewielkie plamy mogą być wynikiem użycia materiałów o różnej jakości lub źle przygotowanej mieszanki tynkarskiej. Te niedoskonałości mogą prowadzić do większych problemów w przyszłości, takich jak utrzymywanie się wilgoci, co może spowodować uszkodzenia strukturalne lub rozwój pleśni. W branży budowlanej stosuje się standardy, które zalecają dbałość o każdy etap aplikacji materiałów, aby zapewnić trwałość i estetykę. Właściwe przygotowanie podłoża, odpowiednia technika aplikacji oraz użycie materiałów wysokiej jakości to kluczowe czynniki, które zapobiegają występowaniu smug i plam na powierzchni tynków.

Pytanie 25

Jaki będzie koszt brutto produkcji 20 m3 mieszanki betonowej, jeżeli cena za 1 m3 wynosi 200 zł netto i obowiązuje podstawowa stawka VAT w wysokości 23%?

A. 5412 zł
B. 4400 zł
C. 4920 zł
D. 4000 zł
W przypadku błędnych odpowiedzi można zauważyć, że wiele osób może mieć trudności z prawidłowym obliczeniem wartości brutto z powodu niedostatecznego zrozumienia zasad dotyczących podatku VAT oraz kosztów produkcji. Na przykład, odpowiedzi takie jak 5412 zł mogą wynikać z błędnego założenia, że stawka VAT jest naliczana na kwotę brutto zamiast netto, co jest fundamentalnym błędem. W praktyce VAT oblicza się od wartości netto, a nie od kwoty, która obejmuje już podatek. Inne odpowiedzi, takie jak 4400 zł, mogą sugerować, że użytkownik dodał niewłaściwą kwotę VAT lub pominął jego obliczenia całkowicie. Tego typu błędy mogą wynikać z nieznajomości procedur kalkulacyjnych w branży budowlanej, które są kluczowe dla zarządzania projektami oraz finansów. Kolejnym typowym błędem jest nieprawidłowe mnożenie kosztów jednostkowych, co może prowadzić do znacznych różnic w końcowych obliczeniach. Dlatego tak ważne jest, aby zrozumieć zasady obliczania kosztów oraz podatków, aby uniknąć nieporozumień i błędów w przyszłych projektach.

Pytanie 26

Do prac zanikających oraz tych, które zostają zakryte i wymagają odbioru, zalicza się

A. uzupełnianie tynku
B. układanie podłogi
C. malowanie
D. przygotowanie podłoża
Przygotowanie podłoża jest kluczowym etapem w procesie budowlanym, który ma na celu zapewnienie odpowiednich warunków dla dalszych prac wykończeniowych. Podłoże musi być solidne, równe i suche, aby materiały takie jak płytki, podłogi czy tynki mogły prawidłowo związać i funkcjonować bez ryzyka uszkodzeń. Niezbędne jest przeprowadzenie odpowiednich badań, takich jak ocena nośności podłoża oraz sprawdzenie poziomu wilgotności. Przykładem dobrych praktyk jest stosowanie wytycznych zawartych w normach budowlanych, które wskazują na konieczność przygotowania podłoża poprzez jego oczyszczenie, zagruntowanie oraz wyrównanie. Należy również wziąć pod uwagę rodzaj materiałów, które będą aplikowane na podłoże, ponieważ różne systemy wymagają specyficznych przygotowań. Odpowiednio przygotowane podłoże zapewnia trwałość i estetykę wykończenia, co jest kluczowe w kontekście przyszłych prac konserwacyjnych i użytkowania przestrzeni.

Pytanie 27

Remont odspojonego tynku należy przeprowadzić w poniższej kolejności:

A. odkurzyć podłoże, skuć odspojony tynk, zwilżyć podłoże wodą, otynkować ścianę
B. odkurzyć podłoże, zwilżyć podłoże wodą, skuć odspojony tynk, otynkować ścianę
C. skuć odspojony tynk, odkurzyć podłoże, zwilżyć podłoże wodą, otynkować ścianę
D. skuć odspojony tynk, zwilżyć podłoże wodą, odkurzyć podłoże, otynkować ścianę
Wybór niewłaściwej kolejności prac przy naprawie tynku często prowadzi do nieefektywnych rezultatów, a nawet do konieczności powtórzenia całego procesu. W przypadku, gdy najpierw odkurzymy podłoże, a następnie usuniemy odspojony tynk, istnieje ryzyko, że nie usuniemy wszystkich luźnych fragmentów, co może skutkować osłabieniem przyczepności nowego tynku. Dodatkowo, jeśli najpierw zwilżymy podłoże przed jego oczyszczeniem, wilgoć może wniknąć w pył i zanieczyszczenia, co również negatywnie wpłynie na adhezję tynku. Podobnie, bez wcześniejszego odkurzenia, wilgoć może sprawić, że pył będzie trudniejszy do usunięcia, co w rezultacie obniża jakość przygotowanego podłoża. W praktyce, każdy z tych etapów ma swoją rolę i pominięcie któregokolwiek z nich prowadzi do nieprawidłowego przygotowania powierzchni, co może skutkować pęknięciami, odspojeniem oraz krótszym czasem użytkowania nowo nałożonej warstwy tynku. Dlatego kluczowe jest przestrzeganie ustalonej kolejności prac, aby zapewnić trwałość i estetykę wykonania. W branży budowlanej, znajomość i stosowanie standardowych procedur ma ogromne znaczenie dla sukcesu projektu oraz zadowolenia klientów.

Pytanie 28

Abyzbudować ścianę o powierzchni 1 m2 zgodnie z KNR 2-02, wymaganych jest 8,20 szt. bloczków z betonu komórkowego. Na jednej palecie znajduje się 48 bloczków. Ile palet bloczków należy zamówić do zbudowania 75 m2 ścian?

A. 48
B. 75
C. 9
D. 13
Aby obliczyć liczbę palet bloczków potrzebnych do wymurowania 75 m² ścian, należy najpierw ustalić, ile bloczków potrzebujemy. Zgodnie z KNR 2-02, do wymurowania 1 m² ściany potrzeba 8,20 bloczków. Dlatego, dla 75 m², zapotrzebowanie wynosi 75 m² * 8,20 bloczków/m² = 615 bloczków. Skoro na jednej palecie mieści się 48 bloczków, to aby obliczyć liczbę palet, dzielimy 615 bloczków przez 48 bloczków/paleta, co daje nam 12,8125. Ponieważ nie możemy zamówić ułamkowej części palety, zaokrąglamy w górę do najbliższej całkowitej liczby, co daje 13 palet. Praktycznie, w takich obliczeniach zawsze zaokrąglamy w górę, aby zapewnić wystarczającą liczbę materiałów budowlanych, co jest zgodne z dobrymi praktykami w branży budowlanej oraz zarządzaniu projektami.

Pytanie 29

Aby zrealizować izolację termiczną ścian, należy wykorzystać

A. styropian, wełnę mineralną
B. wełnę mineralną, emulsję asfaltową
C. wełnę mineralną, masy bitumiczne
D. styropian, papę
Izolacja cieplna budynków jest niezwykle istotna dla zapewnienia efektywności energetycznej, a wybór odpowiednich materiałów ma kluczowe znaczenie. Stosowanie tylko mas bitumicznych lub emulsji asfaltowych jako izolacji cieplnej, jak sugerują niektóre z odpowiedzi, jest błędem. Masy bitumiczne są stosowane głównie do hydroizolacji i zabezpieczenia przed wilgocią, a nie do izolacji termicznej. Choć mogą one chronić przed wodą, nie mają właściwości izolacyjnych, które są niezbędne, aby zmniejszyć straty ciepła. Z kolei papy, pomimo że mogą być używane w budownictwie, również nie są właściwym wyborem do izolacji cieplnej, gdyż ich głównym przeznaczeniem jest ochrona przed wodą. Niezrozumienie różnicy między zabezpieczeniem przed wilgocią a izolacją termiczną prowadzi do niewłaściwego stosowania tych materiałów. Użytkownicy często mylą te pojęcia, co skutkuje niską efektywnością energetyczną budynków oraz wyższymi kosztami eksploatacyjnymi. Właściwie dobrane materiały izolacyjne powinny przede wszystkim cechować się niskim współczynnikiem przewodzenia ciepła oraz odpowiednią odpornością na działanie ognia i wilgoci, co sprawia, że styropian i wełna mineralna są najlepszym rozwiązaniem. Użycie tych materiałów w izolacji ścian pozwala na znaczną poprawę efektywności energetycznej budynku oraz komfortu jego użytkowników.

Pytanie 30

Jaką minimalną grubość powinny mieć przegrody oddzielające przewody spalinowe od dymowych w ścianach murowanych z cegły?

A. ¼ cegły
B. 1½ cegły
C. ½ cegły
D. 1 cegły
Wybór grubości przegród oddzielających przewody spalinowe od dymowych jest zagadnieniem kluczowym dla zapewnienia bezpieczeństwa budynków. Odpowiedzi wskazujące na 1 cegłę, ¼ cegły oraz 1½ cegły nie są zgodne z aktualnymi standardami budowlanymi. Zastosowanie przegrody o grubości 1 cegły może być nieadekwatne w kontekście właściwości izolacyjnych i ognioodpornych, które są wymagane dla skutecznego oddzielenia tych przewodów. W przypadku ¼ cegły, grubość ta jest zbyt mała, co może prowadzić do niekontrolowanego rozprzestrzenienia się dymu i spalin, a tym samym stwarzać zagrożenie dla mieszkańców. Wybór 1½ cegły może być przekonujący, jednak w praktyce może powodować nieuzasadniony wzrost kosztów budowy i niepotrzebną masywność konstrukcji. Kluczowe jest, aby przy projektowaniu takich rozwiązań kierować się normami, które precyzują minimalne wymagania dotyczące grubości przegród. Względy praktyczne, takie jak miejsce instalacji oraz rodzaj przewodów, powinny być analizowane w kontekście przepisów budowlanych, aby uniknąć niebezpieczeństw związanych z niewłaściwym wykonaniem. Właściwe podejście do tematu, uwzględniające specyfikacje techniczne, może znacząco wpłynąć na bezpieczeństwo konstrukcji i komfort użytkowników budynków.

Pytanie 31

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 32

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 33

Ile bloczków gazobetonowych o wymiarach 24 x 24 x 59 cm, których zużycie wynosi 7 szt./m2, będzie potrzeba do postawienia 3 zewnętrznych ścian garażu wolnostojącego, przy założeniu, że wysokość ścian wynosi 2,5 m, a wymiary garażu w rzucie to 4,0 x 6,0 m?

A. 280 sztuk
B. 168 sztuk
C. 350 sztuk
D. 175 sztuk
W przypadku błędnych odpowiedzi często występują nieporozumienia w zakresie obliczania powierzchni ścian oraz w przeliczeniu wymagań dotyczących ilości bloczków. Niekiedy użytkownicy mogą pomylić się przy określaniu wymiarów garażu, co prowadzi do niepoprawnego obliczenia powierzchni ścian. Dodatkowo, nieprawidłowe zrozumienie pojęcia jednostek zużycia materiałów budowlanych, takich jak bloczki gazobetonowe, może prowadzić do zaniżenia lub zawyżenia ilości potrzebnych bloczków. Na przykład, jeżeli ktoś obliczy powierzchnię tylko jednej ściany lub pomyli się w obliczeniach, może dojść do błędnych wniosków. Zdarza się także, że nie uwzględnia się pełnej wysokości ścian, co skutkuje niekompletną analizą potrzebnych materiałów. Kluczowe jest, aby przy takich obliczeniach zachować precyzję oraz stosować prawidłowe jednostki, aby uniknąć problemów w realizacji budowy. Przykłady błędnych rozważań obejmują również niezrozumienie, jak przeliczać jednostki w metrach kwadratowych na sztuki bloczków, co wymaga znajomości podstawowych zasad budownictwa oraz umiejętności matematycznych. Takie podstawowe błędy mogą prowadzić do znacznych niedoborów materiałów na placu budowy, co w konsekwencji powoduje opóźnienia oraz zwiększa koszty całej inwestycji.

Pytanie 34

Aby naprawić głębokie pęknięcia w ścianie murowanej, należy zastosować

A. klamry stalowe oraz zaczyn cementowy
B. stalowe pręty oraz zaprawę gipsową
C. cegły dziurawe wraz z zaczynem gipsowym
D. cegły kominowe i zaprawę cementową
Użycie klamer stalowych i zaczynu cementowego do naprawy głębokich pęknięć w ścianach murowanych jest zgodne z najlepszymi praktykami budowlanymi. Klamry stalowe służą do stabilizacji strukturalnej i wzmocnienia połączeń między elementami budowlanymi, co jest kluczowe w przypadku uszkodzeń o dużej głębokości. Zastosowanie zaczynu cementowego jako materiału wypełniającego pęknięcia jest również podstawą dobrych praktyk. Zaczyn cementowy charakteryzuje się wysoką wytrzymałością na ściskanie oraz odpornością na czynniki atmosferyczne, co czyni go idealnym do zastosowań zarówno wewnętrznych, jak i zewnętrznych. Przykładowo, w przypadku renowacji starych budynków, które mają pęknięcia wynikające z osiadania lub ruchów fundamentów, klamry stalowe mogą zostać użyte do złączenia i wzmocnienia uszkodzonych elementów, a zaczyn cementowy do ich wypełnienia. Warto również zwrócić uwagę na normy budowlane, które zalecają stosowanie tego typu materiałów w celu zapewnienia trwałości i bezpieczeństwa budynków.

Pytanie 35

W nadprożu Kleina o rozpiętości ponad 150 cm, którego fragment przedstawiono na rysunku, cegły układa się

Ilustracja do pytania
A. na rąb leżący.
B. wozówkowo na płask.
C. główkowo na płask.
D. na rąb stojący.
Wybór opcji innej niż "na rąb stojący" w kontekście układania cegieł w nadprożu Kleina prowadzi do kilku istotnych nieporozumień. Układanie cegieł na rąb leżący lub główkowo na płask stwarza ryzyko osłabienia konstrukcji nadproża, zwłaszcza przy większych rozpiętościach. Cegły ułożone na rąb leżący mają mniejszą powierzchnię kontaktu z pozostałymi cegłami oraz podłożem, co może prowadzić do powstawania niekorzystnych naprężeń i w konsekwencji do pęknięć. Taki błąd w układzie może skutkować nieefektywnym przenoszeniem obciążeń, a także zwiększa ryzyko zjawiska zwanego rysowaniem nadproża, co jest szczególnie niebezpieczne w budynkach, w których nadproża pełnią kluczową rolę w rozkładzie obciążeń. Cegły układane na rąb stojący są bardziej odporne na siły działające w pionie, co jest fundamentalne przy większych otworach. Ponadto, nieprawidłowe układanie cegieł może być sprzeczne z przepisami budowlanymi i normami, takimi jak Eurokod 6, które jasno określają wymagania dotyczące konstrukcji murowanych. Dlatego też, ważne jest, aby projektanci i wykonawcy budowlani stosowali odpowiednie metody układania cegieł, aby zapewnić bezpieczeństwo i trwałość całej konstrukcji.

Pytanie 36

Narzut tynku cementowo-wapiennego kategorii III powinien być nałożony na

A. związanej gładzi
B. suchej obrzutce
C. zwilżonej obrzutce
D. zwilżonej gładzi
Odpowiedź 'zwilżona obrzutka' jest poprawna, ponieważ narzut tynku pospolitego cementowo-wapiennego kategorii III należy aplikować na odpowiednio przygotowaną powierzchnię. Zwilżona obrzutka zapewnia lepszą przyczepność tynku do podłoża, co jest kluczowe dla trwałości i estetyki wykończenia. Wilgoć w obrzutce powoduje, że cząsteczki tynku lepiej wnikają w strukturę podłoża, co znacząco zmniejsza ryzyko łuszczenia się czy pękania tynku w przyszłości. W praktyce, przed nałożeniem narzutu, należy nawilżyć obrzutkę wodą, aby uzyskać optymalne warunki aplikacji. Dobre praktyki w budownictwie sugerują, aby obrzutkę przygotować zgodnie z normami PN-EN 998-1, które określają wymagania dla tynków. Dzięki temu można osiągnąć wysoką jakość wykonania, która przekłada się na długowieczność oraz estetykę zastosowanego rozwiązania budowlanego.

Pytanie 37

Izolacja przeciwwilgociowa podłogi na parterze budynku bez piwnicy jest układana

A. bezpośrednio na podsypce z piasku
B. na warstwie izolacji cieplnej
C. bezpośrednio na ziemi
D. na warstwie chudego betonu
Układanie poziomej izolacji przeciwwilgociowej podłogi parteru bezpośrednio na gruncie jest praktyką, która niesie za sobą wiele ryzyk. Bezpośredni kontakt z gruntem naraża izolację na działanie wilgoci gruntowej, co może prowadzić do jej degradacji oraz obniżenia efektywności ochrony budynku przed wilgocią. Z kolei układanie izolacji na warstwie izolacji termicznej, mimo że teoretycznie może wydawać się sensowne, w praktyce stwarza problemy z utrzymaniem odpowiedniej ciągłości izolacji przeciwwilgociowej. Izolacja termiczna, jak styropian czy wełna mineralna, nie jest zaprojektowana do absorbowania wody i może ulegać uszkodzeniu w warunkach nieodpowiedniej izolacji przeciwwilgociowej, co prowadzi do strat energetycznych oraz problemów z wilgocią w budynku. Co więcej, stosowanie podsypki z piasku jako bazy dla izolacji również budzi wątpliwości. Mimo że piasek może wydawać się stabilny, jego właściwości absorpcyjne mogą powodować, że wilgoć z gruntu przenika do konstrukcji. W każdym z przypadków, brak odpowiedniej warstwy chudego betonu prowadzi do sytuacji, w której skuteczność izolacji przeciwwilgociowej jest znacznie obniżona, co może skutkować kosztownymi naprawami i rewitalizacją budynku w przyszłości. Zrozumienie tych zasad jest kluczowe dla właściwego projektowania i budowy budynków, co potwierdzają odpowiednie normy budowlane oraz wytyczne branżowe.

Pytanie 38

Korzystając z instrukcji producenta, określ liczbę worków gipsu, która będzie potrzebna do uzyskania 180 litrów zaprawy.

Instrukcja producenta
Gips tynkarski ręczny
OPAKOWANIE: worki papierowe 25 kg
DANE TECHNICZNE: proporcje składników 15 l wody na 25 kg gipsu tynkarskiego ręcznego
WYDAJNOŚĆ: na 120 l zaprawy – 100 kg gipsu
ZUŻYCIE: 0,85 kg na 1m2 na każdy 1 mm grubości tynku
A. 8 worków.
B. 5 worków.
C. 6 worków.
D. 4 worki.
Wybór złej liczby worków gipsu, jak 5, 4 czy 8, zazwyczaj bierze się z nieporozumień w przeliczeniach między objętością a wagą. Na przykład, myśląc, że 5 worków wystarczy na 180 litrów, można łatwo się pomylić, bo każdy worek ma ograniczoną ilość zaprawy. 4 worki to też za mało, co pokazuje, że nie rozumiesz, że 180 litrów to więcej materiału. Z kolei 8 worków może wskazywać, że przeciągnąłeś z obliczeniami, co generuje niepotrzebne wydatki. Moim zdaniem, żeby uniknąć takich rzeczy, warto zawsze robić dokładne wyliczenia i korzystać ze standardów dotyczących przechowywania i mieszania gipsu. W budowlance dobrze jest nie tylko używać odpowiednich materiałów, ale także umieć je policzyć, żeby zmniejszyć koszty i ryzyko błędów w projektach. Przed zakupami materiałów zawsze lepiej zrobić porządne obliczenia i sprawdzić instrukcje producenta.

Pytanie 39

Z jakiego surowca wykonane są komponenty systemu YTONG?

A. Z betonu komórkowego
B. Z żelbetonu
C. Z gipsobetonowej masy
D. Z polistyrenu
Wybór materiałów budowlanych jest kluczowy w kontekście trwałości, efektywności energetycznej i funkcjonalności budynków. Styropian jest stosowany głównie jako materiał izolacyjny, a nie jako element strukturalny nośny. Jego zastosowanie ogranicza się do ociepleń budynków, gdzie pełni rolę izolatora, ale nie jest w stanie unieść ciężaru budowli. Gipsobeton, z drugiej strony, jest materiałem o większej masie, często stosowanym do produkcji płyt gipsowo-kartonowych lub do wykonywania podłóg, ale nie jest głównym materiałem konstrukcyjnym, jak beton komórkowy. Żelbet, czyli beton zbrojony stalą, jest stosowany w konstrukcjach wymagających wysokiej wytrzymałości, takich jak fundamenty czy stropy, jednak również nie jest materiałem YTONG. Istotnym błędem myślowym jest mylenie tych materiałów z betonem komórkowym, który jest unikalny dzięki swojej strukturze kompozytowej. Zrozumienie różnic między tymi materiałami jest kluczowe dla inżynierów i architektów, aby mogli dobierać odpowiednie materiały do konkretnych zastosowań budowlanych, zachowując normy oraz dobre praktyki w branży budowlanej.

Pytanie 40

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.