Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik teleinformatyk
  • Kwalifikacja: INF.07 - Montaż i konfiguracja lokalnych sieci komputerowych oraz administrowanie systemami operacyjnymi
  • Data rozpoczęcia: 19 grudnia 2025 15:45
  • Data zakończenia: 19 grudnia 2025 16:03

Egzamin zdany!

Wynik: 20/40 punktów (50,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

W celu zagwarantowania jakości usług QoS, w przełącznikach warstwy dostępu wdraża się mechanizm

A. decydujący o liczbie urządzeń, które mogą łączyć się z danym przełącznikiem
B. przydzielania wyższego priorytetu wybranym typom danych
C. który zapobiega tworzeniu się pętli w sieci
D. pozwalający na używanie wielu portów jako jednego łącza logicznego
Odpowiedzi, które odnoszą się do zapobiegania powstawaniu pętli w sieci, liczby urządzeń mogących łączyć się z przełącznikiem oraz wykorzystywania kilku portów jako jednego łącza logicznego, nie dotyczą bezpośrednio mechanizmu QoS w przełącznikach warstwy dostępu. Zapobieganie powstawaniu pętli, realizowane na przykład przez protokoły STP (Spanning Tree Protocol), ma na celu utrzymanie stabilności i niezawodności sieci, jednak nie wpływa na jakość usług w kontekście priorytetyzacji ruchu. Podobnie, regulowanie liczby urządzeń łączących się z przełącznikiem nie jest metodą poprawy jakości usług, lecz ma bardziej związek z zarządzaniem zasobami sieciowymi i bezpieczeństwem. Przykładowe techniki zarządzania dostępem do sieci, takie jak MAC filtering, nie rozwiążą problemów związanych z ruchem o różnym poziomie krytyczności. Co więcej, łączenie kilku portów w jedno logiczne, zazwyczaj realizowane poprzez LACP (Link Aggregation Control Protocol), służy zwiększeniu przepustowości, lecz nie wpływa na różnicowanie jakości przesyłanych danych. Typowe błędy myślowe prowadzące do takich wniosków mogą obejmować mylenie pojęć związanych z zarządzaniem ruchem oraz nieodróżnianie mechanizmów związanych z bezpieczeństwem i stabilnością sieci od tych, które mają na celu poprawę jakości usług.

Pytanie 2

Urządzenie przedstawione na zdjęciu to

Ilustracja do pytania
A. ruter z WiFi.
B. media konwerter.
C. przełącznik.
D. most.
Urządzenie przedstawione na zdjęciu to ruter z WiFi, co można rozpoznać po charakterystycznych antenach, które są kluczowym elementem umożliwiającym bezprzewodową transmisję danych. Routery z WiFi są fundamentem współczesnych sieci domowych i biurowych, służąc do udostępniania połączenia internetowego dla różnych urządzeń, takich jak laptopy, smartfony czy tablety. W standardzie 802.11 (WiFi) funkcjonują w różnych pasmach, najczęściej 2.4 GHz i 5 GHz, co pozwala na optymalizację prędkości oraz zasięgu sygnału. Porty LAN oraz WAN/Internet, które również można zauważyć w tym urządzeniu, potwierdzają, że pełni rolę centralnego punktu komunikacji w sieci lokalnej. W praktyce, dobra konfiguracja rutera z WiFi, w tym zabezpieczenia takie jak WPA3, jest niezbędna dla ochrony danych użytkowników oraz zapewnienia stabilności połączenia. Warto również zaznaczyć, że nowoczesne routery często obsługują technologie takie jak MU-MIMO czy beamforming, co znacząco wpływa na jakość i wydajność transmisji.

Pytanie 3

Zastosowanie połączenia typu trunk między dwoma przełącznikami umożliwia

A. zablokowanie wszystkich nadmiarowych połączeń na danym porcie
B. przesyłanie ramek z różnych wirtualnych sieci lokalnych w jednym łączu
C. konfigurację agregacji portów, co zwiększa przepustowość między przełącznikami
D. zwiększenie przepustowości dzięki wykorzystaniu dodatkowego portu
Połączenie typu trunk między dwoma przełącznikami rzeczywiście umożliwia przesyłanie ramek z różnych wirtualnych sieci lokalnych (VLAN) przez jedno łącze. Dzięki temu, cały ruch sieciowy, pochodzący z wielu VLAN-ów, może być efektywnie transportowany przez jedno fizyczne połączenie, co prowadzi do oszczędności w infrastrukturze kablowej oraz zwiększenia elastyczności sieci. Praktycznym zastosowaniem trunków jest konfiguracja w środowiskach wirtualnych, gdzie wiele maszyn wirtualnych korzysta z różnych VLAN-ów. Standard IEEE 802.1Q definiuje sposób tagowania ramek Ethernet, co pozwala na identyfikację, z którego VLAN-u pochodzi dana ramka. Dobrą praktyką jest przypisywanie trunków do portów, które łączą przełączniki, aby zapewnić segregację ruchu oraz umożliwić wydajne zarządzanie siecią. Implementując trunkowanie, administratorzy sieci mogą również wprowadzać polityki bezpieczeństwa i zarządzać ruchem w sposób, który optymalizuje wydajność sieci oraz minimalizuje ryzyko kolizji. Przykładowo, w dużych sieciach korporacyjnych, trunking pozwala na segregację ruchu biura i działów, co jest kluczowe dla wydajności i bezpieczeństwa.

Pytanie 4

Aby zapewnić, że jedynie wybrane urządzenia mają dostęp do sieci WiFi, konieczne jest w punkcie dostępowym

A. zmienić kanał radiowy
B. zmienić sposób szyfrowania z WEP na WPA
C. zmienić hasło
D. skonfigurować filtrowanie adresów MAC
Filtrowanie adresów MAC to technika, która pozwala na ograniczenie dostępu do sieci WiFi tylko dla wybranych urządzeń. Adres MAC (Media Access Control) to unikalny identyfikator przypisany do interfejsu sieciowego każdego urządzenia. Konfigurując filtrowanie adresów MAC na punkcie dostępowym, administrator może stworzyć listę zatwierdzonych adresów, co oznacza, że tylko te urządzenia będą mogły nawiązać połączenie z siecią. To podejście jest powszechnie stosowane w małych sieciach domowych oraz biurowych, jako dodatkowa warstwa zabezpieczeń w połączeniu z silnym hasłem i szyfrowaniem. Należy jednak pamiętać, że filtrowanie adresów MAC nie jest nieomylnym rozwiązaniem, gdyż adresy MAC można podsłuchiwać i fałszować. Mimo to, w praktyce jest to skuteczny sposób na ograniczenie nieautoryzowanego dostępu, zwłaszcza w środowiskach, gdzie liczba urządzeń jest ograniczona i łatwa do zarządzania. Dobrą praktyką jest łączenie tego rozwiązania z innymi metodami zabezpieczeń, takimi jak WPA3, co znacząco podnosi poziom ochrony.

Pytanie 5

Który ze wskaźników okablowania strukturalnego definiuje stosunek mocy testowego sygnału w jednej parze do mocy sygnału wyindukowanego w sąsiedniej parze na tym samym końcu przewodu?

A. Suma przeników zdalnych
B. Suma przeników zbliżnych i zdalnych
C. Przenik zbliżny
D. Przenik zdalny
Zrozumienie pojęć związanych z przenikami w okablowaniu strukturalnym jest kluczowe dla efektywnej analizy jakości sygnału. Odpowiedzi takie jak przenik zdalny i suma przeników zdalnych nie odpowiadają na postawione pytanie dotyczące wpływu sygnału w sąsiednich parach na tym samym końcu kabla. Przenik zdalny odnosi się do zakłóceń, które mogą być generowane przez sygnały w innej parze przewodów, ale nie bierze pod uwagę bezpośredniego wpływu sąsiednich par. Z kolei suma przeników zdalnych i zbliżnych może sugerować, że oba te parametry są równoważne, co jest mylne, ponieważ każdy z nich mierzy inny aspekt zakłóceń. Typowym błędem myślowym jest mylenie przeników, co prowadzi do nieprawidłowych wniosków dotyczących jakości i wydajności okablowania. Podczas projektowania i instalacji systemów telekomunikacyjnych, kluczowe jest przestrzeganie standardów, które jasno definiują pomiar i wpływ przeników na funkcjonowanie sieci. Dlatego zrozumienie różnicy między przenikiem zdalnym a zbliżnym jest niezbędne dla inżynierów zajmujących się okablowaniem strukturalnym oraz dla uzyskania optymalnych parametrów sieci.

Pytanie 6

Przy projektowaniu sieci LAN o wysokiej wydajności w warunkach silnych zakłóceń elektromagnetycznych, które medium transmisyjne powinno zostać wybrane?

A. typ U/UTP
B. światłowodowy
C. typ U/FTP
D. współosiowy
Zastosowanie kabli U/FTP, U/UTP lub współosiowych w środowiskach z dużymi zakłóceniami elektromagnetycznymi może prowadzić do znacznych problemów z jakością sygnału. Kable U/UTP (nieekranowane skrętki) są najbardziej podatne na zakłócenia, ponieważ brak ekranowania nie chroni sygnału przed zakłóceniami zewnętrznymi. Takie kable są odpowiednie w warunkach, gdzie zakłócenia są minimalne, jednak w zatłoczonych środowiskach ich użycie może skutkować degradacją sygnału oraz błędami w transmisji danych. Kable U/FTP, które mają ekranowane pary, oferują lepszą ochronę, jednak nadal nie są w stanie całkowicie wyeliminować wpływu zakłóceń, co czyni je niewystarczającym rozwiązaniem w sytuacjach o dużym natężeniu zakłóceń. Współosiowe kable, mimo że oferują lepszą ochronę przed zakłóceniami niż kable nieekranowane, mają swoje ograniczenia, takie jak większe straty sygnału na dłuższych odległościach oraz ograniczenia w przepustowości w porównaniu do technologii światłowodowej. W kontekście nowoczesnych standardów i praktyk branżowych, które dążą do maksymalizacji wydajności sieci, wybór kabla światłowodowego staje się nie tylko preferowany, ale wręcz konieczny w środowiskach, gdzie zakłócenia elektromagnetyczne mogą wpływać na integralność danych.

Pytanie 7

Na którym rysunku przedstawiono topologię gwiazdy rozszerzonej?

Ilustracja do pytania
A. 4.
B. 1.
C. 2.
D. 3.
Topologia gwiazdy rozszerzonej to jeden z ważniejszych modeli strukturalnych w sieciach komputerowych, który jest szeroko stosowany w różnych zastosowaniach, takich jak biura czy duże korporacje. Charakteryzuje się tym, że wszystkie urządzenia sieciowe są podłączone do centralnego punktu, którym może być hub, switch lub router. W przypadku rysunku numer 3, widoczny jest wyraźny centralny punkt, do którego podłączone są inne urządzenia sieciowe, a te z kolei łączą się z komputerami użytkowników. Taki układ zapewnia nie tylko efektywność w przesyłaniu danych, ale także ułatwia zarządzanie siecią. W przypadku awarii jednego z urządzeń, tylko jego sąsiednie urządzenia są dotknięte, co zwiększa niezawodność całej sieci. Zastosowanie topologii gwiazdy rozszerzonej jest zgodne z najlepszymi praktykami w projektowaniu sieci, ponieważ pozwala na łatwe dodawanie nowych urządzeń oraz zapewnia lepszą kontrolę nad przepływem danych. Warto również podkreślić, że w kontekście standardów, wiele organizacji korzysta z modeli takich jak IEEE 802.3 dla Ethernetu, które są zgodne z tym typem topologii.

Pytanie 8

Jakie urządzenie powinno być użyte do połączenia komputerów, aby mogły działać w różnych domenach rozgłoszeniowych?

A. Regeneratora
B. Koncentratora
C. Rutera
D. Mostu
Podłączenie komputerów do mostu, regeneratora lub koncentratora w celu pracy w różnych domenach rozgłoszeniowych jest podejściem, które nie uwzględnia podstawowych różnic w funkcjonowaniu tych urządzeń. Most, operujący na warstwie łącza danych, ma za zadanie łączenie dwóch segmentów tej samej sieci, co oznacza, że nie jest w stanie oddzielić ruchu danych pomiędzy różnymi domenami rozgłoszeniowymi. Działa on na zasadzie analizy adresów MAC i nie oferuje funkcjonalności potrzebnej do zarządzania ruchem między różnymi podsieciami. Regenerator z kolei, jest urządzeniem, które służy do wzmocnienia sygnału w sieciach, ale nie ma zdolności do kierowania ruchu na podstawie adresów IP, co jest kluczowe dla rozdzielania ruchu w różnych domenach. Koncentrator natomiast, operując na tej samej warstwie co most, po prostu przekazuje dane do wszystkich portów, co prowadzi do zatorów sieciowych i nieefektywnego przesyłania danych. Typowe błędy myślowe związane z tymi odpowiedziami wynikają z nieodróżniania funkcji poszczególnych urządzeń sieciowych oraz braku zrozumienia, jak różne warstwy modelu OSI wpływają na sposób, w jaki urządzenia komunikują się ze sobą. Aby skutecznie zarządzać różnymi domenami rozgłoszeniowymi, kluczowe jest stosowanie ruterów, które oferują nie tylko routing, ale również zaawansowane funkcje zarządzania ruchem, często zgodne z normami i najlepszymi praktykami branżowymi.

Pytanie 9

Na rysunku jest przedstawiony symbol graficzny

Ilustracja do pytania
A. koncentratora.
B. rutera.
C. przełącznika.
D. mostu.
Symbol graficzny przedstawiony na rysunku jest charakterystyczny dla mostu sieciowego, który odgrywa kluczową rolę w architekturze sieci komputerowych. Mosty sieciowe są używane do łączenia dwóch segmentów sieci, co pozwala na efektywniejsze zarządzanie ruchem danych. Działają one na poziomie warstwy łącza danych modelu OSI, co oznacza, że operują na ramkach danych, a ich głównym zadaniem jest filtrowanie i przekazywanie pakietów w oparciu o adresy MAC. Przykładem zastosowania mostu może być sytuacja, w której organizacja ma dwa oddzielne segmenty sieciowe, które muszą współpracować. Most sieciowy pozwala na ich połączenie, co zwiększa przepustowość i redukuje kolizje. Dodatkowo, mosty mogą być używane do segregacji ruchu w dużych sieciach, co przyczynia się do lepszej wydajności oraz bezpieczeństwa. Znajomość tych mechanizmów jest kluczowa dla administratorów sieci, którzy chcą optymalizować infrastrukturę i zapewniać sprawne działanie usług sieciowych.

Pytanie 10

Co oznacza skrót WAN?

A. prywatną sieć komputerową
B. miejską sieć komputerową
C. lokalną sieć komputerową
D. rozległą sieć komputerową
Odpowiedzi wskazujące na lokalną, prywatną czy miejską sieć komputerową wprowadzają w błąd i opierają się na niepoprawnym rozumieniu terminów związanych z sieciami komputerowymi. Lokalna sieć komputerowa, znana jako LAN (Local Area Network), odnosi się do sieci, która obejmuje niewielki obszar, np. budynek czy kampus, umożliwiając szybki transfer danych między urządzeniami znajdującymi się w bliskiej odległości. Z kolei prywatna sieć komputerowa, często bazująca na LAN, może obejmować również segmentację i dodatkowe zabezpieczenia, ale nie ma zastosowania w kontekście rozległych lokalizacji geograficznych, jak w przypadku WAN. Miejska sieć komputerowa, znana też jako MAN (Metropolitan Area Network), łączy różne lokalizacje w obrębie jednego miasta, co również nie odpowiada definicji WAN. Typowe błędy myślowe, prowadzące do błędnych odpowiedzi, często wynikają z mylenia zakresu geograficznego i zastosowania poszczególnych typów sieci. Zrozumienie różnic między WAN, LAN, MAN oraz ich zastosowań jest kluczowe w projektowaniu systemów informatycznych. Właściwa interpretacja tych pojęć jest fundamentem dla każdego specjalisty zajmującego się infrastrukturą sieciową i może mieć znaczący wpływ na efektywność oraz bezpieczeństwo komunikacji w organizacji.

Pytanie 11

Jakie urządzenie należy wykorzystać, aby połączyć lokalną sieć z Internetem dostarczanym przez operatora telekomunikacyjnego?

A. Ruter ADSL
B. Przełącznik warstwy 3
C. Punkt dostępu
D. Konwerter mediów
Punkt dostępu, choć użyteczny w kontekście rozbudowy sieci lokalnej, nie jest urządzeniem, które łączy lokalną sieć z Internetem. Jego główną funkcją jest umożliwienie bezprzewodowego dostępu do sieci, jednak nie ma zdolności do bezpośredniego integrowania połączenia internetowego z operatorem telekomunikacyjnym. Z kolei przełącznik warstwy 3, który może kierować ruch pomiędzy różnymi podsieciami, również nie jest zaprojektowany do nawiązywania połączeń z Internetem, a raczej do zarządzania ruchem wewnątrz lokalnej sieci. Takie urządzenie działa na podstawie adresacji IP, ale aby nawiązać połączenie z Internetem, potrzebuje innego urządzenia, takiego jak ruter. Konwerter mediów, który używany jest do konwersji sygnałów pomiędzy różnymi rodzajami mediów transmisyjnych, także nie ma zdolności do zarządzania połączeniami z Internetem. W praktyce, korzystając z tych urządzeń, można popełnić błąd polegający na myleniu ich funkcji z rolą rutera ADSL w kontekście dostępu do Internetu. To prowadzi do nieefektywnego projektowania sieci, co w dłuższej perspektywie może skutkować problemami z łącznością oraz wydajnością. Aby zapewnić prawidłowe połączenie z Internetem, kluczowe jest użycie rutera ADSL, który jest dedykowanym urządzeniem do tej funkcji.

Pytanie 12

Zgodnie z normą EN-50173, klasa D skrętki komputerowej obejmuje zastosowania wykorzystujące zakres częstotliwości

A. do 100 MHZ
B. do 100 kHz
C. do 16 MHz
D. do 1 MHz
Wybierając odpowiedzi wskazujące na niższe pasma częstotliwości, można wpaść w pułapkę błędnych założeń dotyczących standardów skrętek komputerowych. Odpowiedzi do 100 kHz, 1 MHz czy 16 MHz dotyczą przestarzałych technologii, które nie są odpowiednie dla nowoczesnych aplikacji sieciowych. Na przykład, kategoria 5e, która jest standardem dla pasma do 100 MHz, już nie spełnia wymogów wydajnościowych dla standardów Ethernet powyżej 1 Gbps, które są powszechnie używane w nowoczesnych środowiskach biurowych i technologicznych. Wybór parametrów dotyczących pasma częstotliwości jest kluczowy, ponieważ wpływa na przepustowość i jakość transmisji danych. Współczesne zastosowania, takie jak strumieniowanie wideo w wysokiej rozdzielczości, wymagają niezawodnych połączeń, które są możliwe tylko dzięki odpowiedniemu doborowi kabli i ich klas. Używanie przestarzałych standardów może prowadzić do problemów z wydajnością sieci, zakłóceń oraz obniżonej jakości usług, co w dłuższej perspektywie rodzi dodatkowe koszty i frustrację użytkowników.

Pytanie 13

Które urządzenie jest stosowane do mocowania kabla w module Keystone?

Ilustracja do pytania
A. A.
B. C.
C. D.
D. B.
Wybór niewłaściwego narzędzia do mocowania kabla w module Keystone może prowadzić do wielu problemów. Odpowiedzi A, B i C odnoszą się do narzędzi, które mają różne funkcje, ale nie są przeznaczone do mocowania kabli w złączach Keystone. Narzędzie do ściągania izolacji, które znajduje się pod pozycją A, jest używane do usuwania izolacji z przewodów, co jest istotne w procesie przygotowania kabla, ale nie ma zastosowania w bezpośrednim mocowaniu go w module. Z kolei odpowiedź B wskazuje na narzędzie typu punch down, które jest dedykowane do zaciskania kabli w blokach teleinformatycznych, co różni się od zamocowania kabla w module Keystone. Narzędzia te są projektowane z myślą o konkretnych zastosowaniach i ich niewłaściwe użycie może prowadzić do nietrwałych połączeń oraz obniżonej jakości sygnału. Odpowiedź C, czyli szczypce do zaciskania końcówek kablowych, również nie spełni funkcji mocowania kabla w module Keystone. Typowymi błędami prowadzącymi do tych niepoprawnych wniosków są zrozumienie funkcji narzędzi oraz pomylenie ich zastosowań. Kluczowe jest zrozumienie, że każde z tych narzędzi ma specyficzne funkcje i nieprzemyślane użycie niewłaściwego narzędzia może prowadzić do awarii systemu. Dlatego ważne jest, aby przy doborze narzędzi kierować się ich przeznaczeniem oraz standardami branżowymi, co w dłuższej perspektywie zapewni lepszą jakość i niezawodność infrastruktury teleinformatycznej.

Pytanie 14

Podczas realizacji projektu sieci LAN zastosowano medium transmisyjne w standardzie Ethernet 1000Base-T. Która z poniższych informacji jest poprawna?

A. Standard ten umożliwia transmisję w trybie full-duplex przy maksymalnym zasięgu 100 metrów
B. Jest to standard sieci optycznych działających na wielomodowych światłowodach
C. Standard ten pozwala na transmisję w trybie half-duplex przy maksymalnym zasięgu 1000 metrów
D. To standard sieci optycznych, którego maksymalny zasięg wynosi 1000 metrów
Wykorzystanie nieprawidłowych stwierdzeń w pytaniu prowadzi do błędnych wniosków na temat standardu 1000Base-T. Po pierwsze, standard ten nie dotyczy sieci optycznych, co zostało błędnie zasugerowane w jednej z opcji. Ethernet 1000Base-T operuje na kablach miedzianych, co oznacza, że nie jest to technologia związana z przesyłem danych przez światłowody. W kontek

Pytanie 15

Kable światłowodowe nie są często używane w lokalnych sieciach komputerowych z powodu

A. znaczących strat sygnału podczas transmisji.
B. niskiej wydajności.
C. wysokich kosztów elementów pośredniczących w transmisji.
D. niski poziom odporności na zakłócenia elektromagnetyczne.
Kable światłowodowe są efektywnym medium transmisyjnym, wykorzystującym zjawisko całkowitego wewnętrznego odbicia światła do przesyłania danych. Choć charakteryzują się dużą przepustowością i niskimi stratami sygnału na długich dystansach, ich powszechne zastosowanie w lokalnych sieciach komputerowych jest ograniczone przez wysokie koszty związane z elementami pośredniczącymi w transmisji, takimi jak przełączniki i konwertery. Elementy te są niezbędne do integrowania technologii światłowodowej z istniejącymi infrastrukturami sieciowymi, które często opierają się na kablach miedzianych. W praktyce oznacza to, że organizacje, które pragną zainwestować w sieci światłowodowe, muszą być przygotowane na znaczne wydatki na sprzęt oraz jego instalację. Z drugiej strony, standardy takie jak IEEE 802.3 zdefiniowały wymagania techniczne dla transmisji w sieciach Ethernet, co przyczyniło się do rozwoju technologii światłowodowej, ale nadal pozostaje to kosztowną inwestycją dla wielu lokalnych sieci komputerowych.

Pytanie 16

Która norma określa parametry transmisyjne dla komponentów kategorii 5e?

A. EIA/TIA 607
B. CSA T527
C. TIA/EIA-568-B-2
D. TIA/EIA-568-B-1
Norma TIA/EIA-568-B-2 definiuje wymogi dotyczące kabli i komponentów dla systemów sieciowych, w tym dla komponentów kategorii 5e. Specyfikacja ta objmuje m.in. parametry transmisyjne, takie jak tłumienie, diafonia i impedancja, które są kluczowe dla zapewnienia odpowiedniej wydajności sieci. Zastosowanie tej normy jest szczególnie ważne w kontekście instalacji sieci lokalnych (LAN), gdzie kable kategorii 5e są szeroko stosowane do przesyłania danych z prędkością do 1 Gbps na odległości do 100 metrów. Zrozumienie i przestrzeganie normy TIA/EIA-568-B-2 jest niezbędne dla projektantów i instalatorów systemów telekomunikacyjnych, ponieważ zapewnia nie tylko zgodność z wymogami branżowymi, ale także optymalizuje wydajność i niezawodność sieci. Przykładem praktycznego zastosowania tej normy jest planowanie infrastruktury w biurach, gdzie wymagane są szybkie i stabilne połączenia, co można osiągnąć dzięki zastosowaniu wysokiej jakości kabli spełniających normy TIA/EIA-568-B-2.

Pytanie 17

Jak nazywa się komunikacja w obie strony w sieci Ethernet?

A. Halfduplex
B. Fuli duplex
C. Simplex
D. Duosimplex
Odpowiedź "Fuli duplex" odnosi się do trybu transmisji, w którym dane mogą być przesyłane w obu kierunkach jednocześnie, co znacząco zwiększa efektywność komunikacji w sieci Ethernet. W przeciwieństwie do trybu half-duplex, gdzie dane mogą być przesyłane tylko w jednym kierunku w danym czasie, fuli duplex umożliwia pełne wykorzystanie dostępnej przepustowości łącza. Jest to szczególnie istotne w nowoczesnych sieciach komputerowych, gdzie szybkość i płynność przesyłania danych mają kluczowe znaczenie dla usług wymagających dużej ilości transferu, takich jak strumieniowe przesyłanie wideo czy telekonferencje. W praktyce, urządzenia sieciowe wspierające fuli duplex, takie jak przełączniki i routery, zapewniają lepszą wydajność i mniejsze opóźnienia, co jest zgodne z najlepszymi praktykami branżowymi w zakresie projektowania sieci. Uznanie tego trybu jako standardowego w sieciach Ethernet przyczyniło się do rozwoju technologii, takich jak Ethernet 10G i wyższe, które wymagają efektywnej i szybkiej komunikacji.

Pytanie 18

Urządzenie warstwy dystrybucji, które odpowiada za połączenie odrębnych sieci oraz zarządzanie przepływem danych między nimi, nazywane jest

A. serwerem
B. routerem
C. koncentratorem
D. przełącznikiem
Serwer, jako urządzenie, pełni zupełnie inną rolę niż router. Jest to system komputerowy, który dostarcza różnorodne usługi i zasoby innym komputerom w sieci, nie zajmując się bezpośrednim zarządzaniem przepływem informacji między sieciami. Serwery mogą obsługiwać aplikacje, przechowywać dane czy oferować usługi takie jak hosting stron internetowych, ale nie mają zdolności do trasowania pakietów danych jak routery. Przełącznik natomiast działa na warstwie drugiej modelu OSI, czyli zajmuje się przekazywaniem ramek między urządzeniami w tej samej sieci lokalnej. Jego główną funkcją jest przełączanie ramek w oparciu o adresy MAC, co sprawia, że nie jest on w stanie łączyć różnych sieci. Koncentratory, które są urządzeniami starszej generacji, również nie mają zdolności do zarządzania ruchem między sieciami; działają na poziomie fizycznym, po prostu przekazując sygnały do wszystkich podłączonych urządzeń bez inteligentnego kierowania nimi. Te mylne pojęcia mogą prowadzić do nieefektywnego projektowania sieci, ponieważ zrozumienie specyfiki każdego z tych urządzeń jest kluczowe dla ich prawidłowego zastosowania. Warto zwrócić uwagę, że wybór odpowiedniego urządzenia sieciowego powinien być oparty na konkretnej funkcjonalności i wymaganiach sieci.

Pytanie 19

Zgodnie z normą PN-EN 50174 dopuszczalna łączna długość kabla połączeniowego pomiędzy punktem abonenckim a komputerem i kabla krosowniczego (A+C) wynosi

Ilustracja do pytania
A. 6 m
B. 5 m
C. 10 m
D. 3 m
Wybór długości kabla mniejszej niż 10 metrów, jak 3, 5 lub 6 metrów, wynika z powszechnego błędnego przekonania, że krótsze kable zawsze skutkują lepszą jakością sygnału. W rzeczywistości, norma PN-EN 50174 jasno określa, że maksymalna długość kabla połączeniowego wynosi 10 metrów, co jest optymalnym rozwiązaniem zarówno dla jakości sygnału, jak i elastyczności instalacji. Zbyt krótkie kable mogą ograniczać możliwości rozbudowy sieci w przyszłości, co jest istotne w kontekście dynamicznego rozwoju technologii i zmieniających się potrzeb użytkowników. Często przyczyną błędnego wyboru długości kabla jest także niewłaściwe zrozumienie zasad działania sygnałów elektrycznych i optycznych w kablach. W przypadku kabli sieciowych, takich jak kable Ethernet, wartość maksymalnej długości oznacza, że nawet przy pełnym obciążeniu sieci, sygnał będzie utrzymywany na odpowiednim poziomie bez strat jakości. Ponadto, długość kabla powinna być zawsze dostosowana do konkretnej konfiguracji środowiska oraz zastosowania, co nie jest możliwe przy użyciu standardowych skrótów myślowych. Dlatego kluczowe jest zapoznanie się z obowiązującymi normami oraz wytycznymi, aby zapewnić nie tylko optymalne działanie sieci, ale także przyszłą możliwość rozwoju infrastruktury.

Pytanie 20

Ile punktów przyłączeniowych (2 x RJ45), według wymogów normy PN-EN 50167, powinno być w biurze o powierzchni 49 m2?

A. 5
B. 1
C. 4
D. 9
Wybór innej liczby punktów abonenckich niż 5 może prowadzić do licznych problemów związanych z infrastrukturą sieciową w biurze. Odpowiedzi takie jak 9, 4, czy 1 nie uwzględniają wymagań normy PN-EN 50167 oraz realnych potrzeb biura. W przypadku odpowiedzi 9, nadmiar punktów abonenckich może prowadzić do nieefektywnego wykorzystania zasobów, zwiększając koszty bez rzeczywistej wartości dodanej. W przeciwieństwie do tego, wybór 4 punktów abonenckich może być niewystarczający dla biura o powierzchni 49 m², co prowadzi do sytuacji, w której pracownicy muszą dzielić dostęp do sieci, co może generować problemy z prędkością i jakością połączeń. Z kolei odpowiedź 1 punkt abonencki jest ekstremalnie niewystarczająca, co może skutkować poważnymi ograniczeniami w pracy, gdzie wielu pracowników korzysta z zasobów sieciowych jednocześnie. Typowym błędem myślowym jest próba uproszczenia analizy punktów abonenckich do liczby stanowisk roboczych bez uwzględnienia norm oraz specyfiki pracy w danym biurze. W rzeczywistości, kluczowe jest nie tylko zapewnienie liczby punktów zgodnej z normą, ale również ich odpowiednie rozmieszczenie, aby zaspokoić potrzeby różnych użytkowników oraz sprzętu w biurze. Dlatego też, poprawne zaplanowanie infrastruktury telekomunikacyjnej jest niezbędne dla zapewnienia efektywności i komfortu pracy w biurze.

Pytanie 21

Narzędzie przedstawione na zdjęciu to

Ilustracja do pytania
A. nóż monterski.
B. ściągacz izolacji.
C. narzędzie uderzeniowe.
D. zaciskarka.
Odpowiedź "ściągacz izolacji" jest poprawna, ponieważ narzędzie przedstawione na zdjęciu ma oznaczenia "CABLE STRIPPER/CUTTER", co w tłumaczeniu na język polski oznacza "ściągacz izolacji/przecinak". Narzędzia te są kluczowe w pracy z instalacjami elektrycznymi, gdyż umożliwiają sprawne usuwanie izolacji z przewodów. W praktyce, ściągacz izolacji jest niezbędny przy przygotowywaniu przewodów do połączeń, co jest istotne w kontekście zgodności z normami bezpieczeństwa. Poprawne zdjęcie izolacji zapobiega zwarciom oraz innym problemom związanym z niewłaściwym połączeniem. Użycie ściągacza izolacji minimalizuje ryzyko uszkodzenia żył przewodu, co jest kluczowe dla zapewnienia trwałości połączeń elektrycznych. W wielu krajach, w tym w Polsce, stosowanie odpowiednich narzędzi do obróbki przewodów jest regulowane standardami, które nakładają obowiązek stosowania narzędzi przystosowanych do danej aplikacji, co podkreśla znaczenie tego narzędzia w branży elektrycznej.

Pytanie 22

W sieci o strukturze zaleca się, aby na powierzchni o wymiarach

A. 10 m2
B. 20 m2
C. 30 m2
D. 5 m2
W sieci strukturalnej, umieszczenie jednego punktu abonenckiego na powierzchni 10 m2 jest zgodne z zaleceniami standardów branżowych oraz dobrą praktyką inżynieryjną. Takie rozmieszczenie zapewnia optymalną długość kabli, minimalizując straty sygnału i zakłócenia. Praktyczne zastosowanie tej zasady można zauważyć w projektowaniu sieci lokalnych (LAN), gdzie odpowiednia gęstość punktów abonenckich pozwala na efektywne wykorzystanie dostępnej infrastruktury, zapewniając jednocześnie odpowiednią jakość usług. Warto również wspomnieć o standardzie ANSI/TIA-568, który określa wymagania dotyczące okablowania strukturalnego. Zgodnie z tym standardem, rozmieszczenie punktów abonenckich na powierzchni 10 m2 pozwala na efektywne zarządzanie siecią, co przekłada się na lepszą jakość usług dla użytkowników końcowych. Umożliwia to także lepszą elastyczność w rozbudowie sieci oraz dostosowywaniu do zmieniających się potrzeb użytkowników, co jest kluczowe w dynamicznym środowisku technologicznym.

Pytanie 23

Przy projektowaniu sieci przewodowej, która ma maksymalną prędkość transmisji wynoszącą 1 Gb/s, a maksymalna długość między punktami sieci nie przekracza 100 m, jakie medium transmisyjne powinno być zastosowane?

A. fale radiowe o częstotliwości 5 GHz
B. fale radiowe o częstotliwości 2,4 GHz
C. kabel UTP kategorii 5e
D. kabel koncentryczny o średnicy ¼ cala
Kabel koncentryczny o średnicy ¼ cala, choć używany w niektórych aplikacjach sieciowych, nie spełnia wymagań dotyczących maksymalnej szybkości transmisji 1 Gb/s w odległości 100 m. Kabel koncentryczny jest bardziej odpowiedni dla transmisji sygnałów telewizyjnych czy w niektórych systemach komunikacji, ale jego architektura nie pozwala na osiągnięcie takich prędkości w lokalnych sieciach komputerowych. Fale radiowe o częstotliwości 5 GHz oraz 2,4 GHz to technologie stosowane w sieciach bezprzewodowych, jednak nie zapewniają one stabilności i niezawodności połączeń na poziomie przewodowym, szczególnie na odległościach do 100 m. Częstotliwości te mogą być podatne na zakłócenia i zmniejszenie wydajności z uwagi na przeszkody fizyczne oraz zakłócenia od innych urządzeń. Dodatkowo, sieci bezprzewodowe często mają ograniczoną przepustowość, a ich wydajność może znacznie różnić się w zależności od warunków środowiskowych. W związku z tym, dla zapewnienia stabilności i wysokiej prędkości transmisji, szczególnie w złożonych środowiskach biurowych, korzystanie z kabla UTP kategorii 5e stanowi najlepszy wybór. Sympatyzowanie z technologią bezprzewodową w miejscu, gdzie nie jest to konieczne, prowadzi do nieefektywności i potencjalnych problemów z wydajnością sieci.

Pytanie 24

W biurze rachunkowym potrzebne jest skonfigurowanie punktu dostępu oraz przygotowanie i podłączenie do sieci bezprzewodowej trzech komputerów oraz drukarki z WiFi. Koszt usługi konfiguracji poszczególnych elementów sieci wynosi 50 zł za każdy komputer, 50 zł za drukarkę i 100 zł za punkt dostępu. Jaki będzie całkowity wydatek związany z tymi pracami serwisowymi?

A. 300 zł
B. 100 zł
C. 200 zł
D. 250 zł
Jak wybierasz złe odpowiedzi, to łatwo wpaść w pułapkę prostych obliczeń czy błędnego rozumienia kosztów. Na przykład, jeśli wybierzesz 200 zł, to może być efekt zsumowania tylko części kosztów, co jest dość typowe. Takie błędy mogą prowadzić do tego, że myślisz, że wydatków jest mniej, co w ogóle nie jest dobre w kontekście planowania budżetu. Odpowiedź 250 zł też może sugerować, że pominięto koszt punktu dostępu, a to naprawdę ważne, żeby całość budżetu była jasna. W branży IT każdy element infrastruktury jest istotny, nie można ich ignorować. Jak nie uwzględnisz całości kosztów, to mogą być z tego problemy z zarządzaniem finansami i płynnością firmy. Dlatego warto mieć pełen obraz wszystkich kosztów przy kalkulacji, by każda decyzja była dobrze przemyślana i oparta na faktach.

Pytanie 25

Które z poniższych urządzeń pozwala na bezprzewodowe łączenie się z siecią lokalną opartą na kablu?

A. Punkt dostępowy
B. Przełącznik
C. Modem
D. Media konwerter
Przełącznik, modem i media konwerter to urządzenia, które pełnią różne funkcje w infrastrukturze sieciowej, ale żadna z tych ról nie obejmuje bezprzewodowego dostępu do sieci lokalnej. Przełącznik, zwany również switchem, jest urządzeniem służącym do łączenia różnych urządzeń w sieci lokalnej (LAN) poprzez porty Ethernet. Jego zadaniem jest kierowanie pakietów danych między urządzeniami w oparciu o adresy MAC, ale nie ma zdolności do transmitowania sygnału bezprzewodowego. Modem, natomiast, jest urządzeniem, które łączy sieć lokalną z internetem poprzez dostawcę usług internetowych. Konwertuje sygnał cyfrowy na analogowy i vice versa, ale również nie zapewnia funkcji bezprzewodowego dostępu. Media konwerter działa na zasadzie konwersji sygnału z jednej technologii na inną, na przykład z światłowodowego na Ethernet, i nie ma zdolności do rozsyłania sygnału bezprzewodowego. Często występującym błędem jest mylenie funkcji różnych urządzeń w sieci, co może prowadzić do nieporozumień w zakresie projektowania i wdrażania sieci. Właściwe zrozumienie ról tych urządzeń jest kluczowe dla efektywnego zarządzania infrastrukturą sieciową oraz optymalizacji działania systemów informatycznych.

Pytanie 26

Urządzenie sieciowe, które umożliwia dostęp do zasobów w sieci lokalnej innym urządzeniom wyposażonym w bezprzewodowe karty sieciowe, to

A. przełącznik
B. punkt dostępu
C. panel krosowy
D. koncentrator
Punkt dostępu, czyli access point, to mega ważny element każdej sieci bezprzewodowej. Dzięki niemu urządzenia z bezprzewodowymi kartami mogą się łączyć z siecią lokalną. W praktyce, to taki centralny hub, gdzie wszyscy klienci mogą znaleźć dostęp do różnych zasobów w sieci, jak Internet czy drukarki. Z mojego doświadczenia, punkty dostępu świetnie sprawdzają się w biurach, szkołach i miejscach publicznych, gdzie sporo osób potrzebuje dostępu do sieci naraz. Standardy jak IEEE 802.11 mówią o tym, jak te punkty powinny działać i jakie protokoły komunikacyjne wykorzystują. Żeby dobrze zamontować punkty dostępu, trzeba je odpowiednio rozmieszczać, tak by zminimalizować martwe strefy i mieć mocny sygnał, co jest istotne dla wydajności naszej sieci bezprzewodowej.

Pytanie 27

Aby chronić sieć przed zewnętrznymi atakami, warto rozważyć nabycie

A. skanera antywirusowego
B. sprzętowej zapory sieciowej
C. serwera proxy
D. przełącznika warstwy trzeciej
Skaner antywirusowy, choć ważny w ekosystemie zabezpieczeń, nie jest wystarczającym rozwiązaniem w kontekście ochrony całej sieci przed atakami z zewnątrz. Jego głównym zadaniem jest wykrywanie i neutralizowanie złośliwego oprogramowania na poziomie końcówek, a nie kontrola ruchu sieciowego. Również serwer proxy, choć może oferować pewne zabezpieczenia, głównie skupia się na zarządzaniu dostępem do zasobów zewnętrznych, a nie na blokowaniu nieautoryzowanego ruchu. Przełącznik warstwy trzeciej, będący urządzeniem sieciowym, które łączy funkcje przełączania i routingu, nie jest przeznaczony do zwalczania zagrożeń z zewnątrz, a jego główną rolą jest efektywne przekazywanie danych między różnymi segmentami sieci. Użytkownicy często popełniają błąd, uważając, że wystarczy jedna forma zabezpieczenia, aby zapewnić kompleksową ochronę. W rzeczywistości, skuteczna strategia zabezpieczeń sieciowych wymaga wielowarstwowego podejścia, które integruje różnorodne mechanizmy ochrony, w tym sprzętowe zapory, skanery antywirusowe oraz systemy IDS/IPS. Zrozumienie różnic między tymi rozwiązaniami i ich rolą w architekturze bezpieczeństwa jest kluczowe dla skutecznej ochrony przed atakami zewnętrznymi.

Pytanie 28

Jakiego elementu pasywnego sieci należy użyć do połączenia okablowania ze wszystkich gniazd abonenckich z panelem krosowniczym umieszczonym w szafie rack?

A. Organizer kabli
B. Kabel połączeniowy
C. Przepust szczotkowy
D. Adapter LAN
Wybór niewłaściwego elementu pasywnego do podłączenia okablowania z gniazd abonenckich do panelu krosowniczego może prowadzić do poważnych problemów w funkcjonowaniu sieci. Organizery kabli, mimo że są użyteczne w porządkowaniu okablowania, nie pełnią funkcji aktywnego połączenia sygnału między urządzeniami. Ich rola polega na utrzymaniu porządku i struktury w instalacjach, co jest istotne, ale samo w sobie nie zapewnia transmisji danych. Adapter LAN, z drugiej strony, służy do konwersji sygnałów między różnymi typami połączeń, ale nie jest idealnym rozwiązaniem do podłączania gniazd abonenckich do paneli krosowniczych. Przepust szczotkowy, choć może ułatwiać przeprowadzenie kabli przez otwory w szafach rackowych, również nie stanowi elementu, który realizowałby połączenia. Powoduje to, iż jego użycie w tym kontekście nie zapewnia efektywnej komunikacji sieciowej. Zrozumienie roli i specyfiki każdego z tych elementów jest kluczowe dla budowy stabilnych i wydajnych sieci, a podejmowanie decyzji bez właściwej wiedzy technicznej może prowadzić do obniżenia jakości usług sieciowych oraz ich niezawodności.

Pytanie 29

Z powodu uszkodzenia kabla typu skrętka zanikło połączenie pomiędzy przełącznikiem a komputerem stacjonarnym. Jakie urządzenie pomiarowe powinno zostać wykorzystane do identyfikacji i naprawy usterki, aby nie było konieczne wymienianie całego kabla?

A. Spektrum analizer.
B. Urządzenie do pomiaru mocy.
C. Wielofunkcyjny miernik.
D. Reflektometr TDR
Multimetr, mimo że jest to wszechstronne narzędzie pomiarowe, nie jest optymalnym wyborem do lokalizacji uszkodzeń w kablach sieciowych typu skrętka. Jego główną funkcją jest pomiar napięcia, prądu oraz oporu, co może być użyteczne w diagnostyce obwodów elektronicznych, ale nie dostarcza informacji na temat lokalizacji wad w kablu. W przypadku uszkodzenia kabla typu skrętka multimetr może jedynie pomóc w potwierdzeniu braku ciągłości, co jest zbyt ogólnym podejściem do problemu, zwłaszcza gdy nie znamy dokładnej lokalizacji usterki. Miernik mocy również nie jest odpowiednim narzędziem do tego celu, gdyż jego funkcja ogranicza się do oceny jakości sygnału oraz mocy w danym obwodzie. Miernik mocy może wskazać, że sygnał jest osłabiony, jednak nie wskaże miejsca uszkodzenia ani nie umożliwi dokładnej diagnostyki. Analizator widma, choć użyteczny w kontekście analizy częstotliwości sygnałów, również nie jest narzędziem do lokalizacji uszkodzeń kablowych. Jego stosowanie skupia się na ocenie jakości sygnału w danym zakresie częstotliwości, co nie odpowiada na pytanie o konkretne uszkodzenie kabla. Te narzędzia, mimo że mają swoje zastosowanie w diagnostyce, nie są wystarczające do rozwiązywania problemów z uszkodzonymi kablami skrętkowymi i mogą prowadzić do błędnych wniosków, co z kolei wydłuża czas naprawy oraz zwiększa koszty operacyjne.

Pytanie 30

Jakie oznaczenie według normy ISO/IEC 11801:2002 definiuje skrętkę foliowaną, przy czym wszystkie pary żył są ekranowane folią?

A. U/UTP
B. F/UTP
C. S/FTP
D. F/FTP
Odpowiedź F/UTP jest poprawna, ponieważ oznaczenie to odnosi się do skrętki, w której wszystkie pary żył są ekranowane folią, co zapewnia skuteczną ochronę przed zakłóceniami elektromagnetycznymi oraz interferencjami zewnętrznymi. W standardzie ISO/IEC 11801:2002, F/UTP wskazuje na strukturę kabli, gdzie 'F' oznacza folię, a 'UTP' oznacza nieekranowane przewody, co w kontekście F/UTP sugeruje, że ekranowanie dotyczy jedynie par żył, a nie całego kabla. Stosowanie F/UTP jest szczególnie popularne w instalacjach sieciowych w biurach i budynkach komercyjnych, gdzie wymagane są wysokie prędkości transmisji danych przy jednoczesnym zminimalizowaniu zakłóceń. Przykładowo, w środowisku o dużym natężeniu sygnałów elektromagnetycznych, takich jak bliskość urządzeń elektronicznych, ekranowanie folią znacznie zwiększa niezawodność i stabilność przesyłu danych. Ponadto, zgodność z omawianymi normami jest kluczowa dla zapewnienia jakości oraz certyfikacji infrastruktury sieciowej, co jest niezbędne w profesjonalnych środowiskach IT.

Pytanie 31

W strukturze hierarchicznej sieci komputery należące do użytkowników znajdują się w warstwie

A. dystrybucji
B. szkieletowej
C. dostępu
D. rdzenia
Warstwa dostępu w modelu hierarchicznym sieci komputerowych jest kluczowym elementem, który odpowiedzialny jest za bezpośrednie łączenie użytkowników i urządzeń końcowych z siecią. To w tej warstwie odbywa się fizyczne podłączenie do sieci oraz zarządzanie dostępem do zasobów, co czyni ją istotnym komponentem w architekturze sieci. W praktyce, urządzenia takie jak switche, punkty dostępowe oraz routery operują w tej warstwie, umożliwiając użytkownikom dostęp do zasobów sieciowych oraz internetowych. Przykładem zastosowania tej warstwy może być biuro, w którym pracownicy korzystają z laptopów i smartfonów, które łączą się z siecią lokalną za pomocą switchy i punktów dostępowych. Właściwe zaprojektowanie warstwy dostępu, zgodnie z zasadami best practices, ma kluczowe znaczenie dla zapewnienia wydajności oraz bezpieczeństwa sieci. Ważne jest również, aby uwzględnić kwestie takie jak VLAN-y do segregacji ruchu i bezpieczeństwa, co jest standardową praktyką w nowoczesnych sieciach lokalnych.

Pytanie 32

Jaką prędkość transmisji określa standard Ethernet IEEE 802.3z?

A. 10 Mb
B. 1 Gb
C. 100 Mb
D. 100 GB
Standard sieci Ethernet IEEE 802.3z definiuje przepływność 1 Gb/s, co odpowiada technologii Gigabit Ethernet. Ta technologia, wprowadzona w latach 90. XX wieku, stała się standardem w sieciach lokalnych, umożliwiając szybki transfer danych na odległość do 100 metrów przy użyciu standardowego okablowania kategorii 5. Zastosowanie Gigabit Ethernet w biurach, centrach danych oraz w sieciach rozległych znacznie zwiększyło efektywność przesyłania danych, co jest kluczowe w dzisiejszych wymagających aplikacjach, takich jak wirtualizacja, przesyłanie strumieniowe wideo oraz szerokopasmowe usługi internetowe. Warto również zauważyć, że standard ten jest kompatybilny z wcześniejszymi wersjami Ethernet, co pozwala na łatwą migrację oraz integrację z istniejącą infrastrukturą sieciową. Dodatkowo, Gigabit Ethernet oferuje zaawansowane funkcje, takie jak QoS (Quality of Service) oraz możliwość wielodostępu. W kontekście rozwoju technologii, standard IEEE 802.3z otworzył drzwi do dalszych innowacji, takich jak 10GbE i 100GbE.

Pytanie 33

Kontrola pasma (ang. bandwidth control) w przełączniku to funkcjonalność

A. umożliwiająca jednoczesne łączenie przełączników przy użyciu wielu łącz
B. umożliwiająca zdalne połączenie z urządzeniem
C. pozwalająca ograniczyć przepustowość na wyznaczonym porcie
D. pozwalająca na równoczesne przesyłanie danych z wybranego portu do innego portu
Wybór odpowiedzi dotyczącej zdalnego dostępu do urządzenia jest nieadekwatny w kontekście zarządzania pasmem. Zdalny dostęp to funkcjonalność, która odnosi się do możliwości administracji i monitorowania urządzeń sieciowych zdalnie, co nie ma bezpośredniego związku z kontrolą przepustowości. Oprócz tego, odpowiedź mówiąca o łączeniu przełączników równocześnie kilkoma łączami odnosi się do technik takich jak link aggregation (802.3ad), które zwiększają przepustowość i redundancję, lecz nie dotyczą ograniczania pasma. Problematyczne jest również stwierdzenie, że zarządzanie pasmem polega na przesyłaniu danych z wybranego portu równocześnie do innego portu; to również nie jest związane z kontrolą pasma, a raczej z routingiem czy switchingiem, co jest odrębną funkcjonalnością. Często takie nieporozumienia wynikają z mylenia podstawowych funkcji sieciowych, co może prowadzić do niewłaściwego zarządzania siecią. Kluczowe jest zrozumienie, że zarządzanie pasmem koncentruje się na efektywnym alokowaniu istniejącego pasma oraz priorytetyzacji ruchu sieciowego, co jest niezbędne w przypadku korzystania z zasobów o różnym zapotrzebowaniu.

Pytanie 34

W obiekcie przemysłowym, w którym działają urządzenia elektryczne mogące generować zakłócenia elektromagnetyczne, jako medium transmisyjne w sieci komputerowej powinno się wykorzystać

A. światłowód jednomodowy lub fale radiowe 2,4 GHz
B. kabel S-FTP kategorii 5e lub światłowód
C. kabel U-UTP kategorii 6 lub fale radiowe 2,4 GHz
D. światłowód jednomodowy lub kabel U-UTP kategorii 5e
Wybór kabla S-FTP kategorii 5e lub światłowodu jako medium transmisyjnego w środowisku, gdzie występują zakłócenia elektromagnetyczne, jest uzasadniony ze względu na ich wysoką odporność na interferencje. Kabel S-FTP (Shielded Foiled Twisted Pair) ma dodatkowe ekranowanie, które skutecznie redukuje wpływ zakłóceń elektromagnetycznych, co jest kluczowe w budynkach produkcyjnych, gdzie urządzenia elektryczne mogą generować znaczne zakłócenia. Światłowód natomiast, poprzez swoją konstrukcję opartą na transmisji światła, jest całkowicie odporny na zakłócenia elektromagnetyczne, co czyni go idealnym rozwiązaniem w trudnych warunkach. Zastosowanie tych mediów pozwala nie tylko na zapewnienie stabilnej komunikacji w sieci komputerowej, ale również na utrzymanie wysokiej wydajności i jakości przesyłanych danych. Przykładem zastosowania może być sieć komputerowa w fabryce, gdzie różne maszyny generują silne pola elektromagnetyczne, a wybór odpowiedniego medium transmisyjnego zapewnia nieprzerwaną pracę systemów informatycznych. Dodatkowo, zgodność z normami, takimi jak ANSI/TIA-568, podkreśla znaczenie stosowania kabli odpowiedniej kategorii w kontekście jakości i wydajności transmisji danych.

Pytanie 35

Które urządzenie sieciowe jest widoczne na zdjęciu?

Ilustracja do pytania
A. Modem.
B. Przełącznik.
C. Karta sieciowa.
D. Most.
Przełącznik, widoczny na zdjęciu, to kluczowe urządzenie w sieciach komputerowych, które umożliwia efektywne zarządzanie ruchem danych pomiędzy różnymi urządzeniami w sieci lokalnej (LAN). Działa na warstwie drugiej modelu OSI, co oznacza, że operuje na adresach MAC i potrafi inteligentnie kierować dane tylko do tych portów, które są rzeczywiście potrzebne, co znacznie zwiększa wydajność sieci. Przełączniki pozwalają na podłączenie wielu urządzeń, takich jak komputery, drukarki czy serwery, tworząc lokalne sieci, które mogą być następnie połączone z innymi sieciami za pomocą routerów. W praktyce, przełączniki są niezbędne w biurach i instytucjach, gdzie wiele urządzeń wymaga współdzielenia zasobów. W oparciu o standardy IEEE 802.3, nowoczesne przełączniki mogą obsługiwać różne prędkości transmisji danych, co czyni je elastycznym rozwiązaniem. Zrozumienie roli przełącznika jest kluczowe dla każdego, kto zajmuje się projektowaniem lub zarządzaniem infrastrukturą sieciową.

Pytanie 36

Komputery K1 i K2 nie mogą się komunikować. Adresacja urządzeń jest podana w tabeli. Co należy zmienić, aby przywrócić komunikację w sieci?

UrządzenieAdresMaskaBrama
K110.0.0.2255.255.255.12810.0.0.1
K210.0.0.102255.255.255.19210.0.0.1
R1 (F1)10.0.0.1255.255.255.128
R1 (F2)10.0.0.101255.255.255.192
Ilustracja do pytania
A. Maskę w adresie dla K2.
B. Adres bramy dla K1.
C. Adres bramy dla K2.
D. Maskę w adresie dla K1.
Wybór niewłaściwego adresu bramy dla K2 może wydawać się logiczny, lecz jest to zrozumienie, które nie uwzględnia zasadności adresowania w sieciach. Na przykład, zmiana adresu bramy dla K1 nie rozwiąże problemu, ponieważ K1 jest właściwie skonfigurowany w swojej podsieci i ma poprawny adres bramy. W rzeczywistości, cała komunikacja w sieci IP opiera się na koncepcji podsieci i adresów bramowych, które muszą współdziałać, aby umożliwić przesyłanie pakietów danych. Dla K2, który należy do innej podsieci z powodu przypisania mu maski 255.255.255.192, kluczowe jest, aby jego adres bramy znajdował się w tej samej podsieci. Zmiana maski dla K1 lub K2 na inne wartości nie naprawi sytuacji, ponieważ nie zmieni to faktu, że adresy IP są zdefiniowane w różnych podsieciach. Typowym błędem w analizie adresów IP jest zakładanie, że zmiana parametrów na jednym urządzeniu automatycznie wpłynie na inne. W praktyce, aby zapewnić poprawną komunikację, należy zadbać o to, aby wszystkie urządzenia, które mają się komunikować, znajdowały się w tej samej podsieci lub miały właściwie skonfigurowane adresy bram, co jest fundamentalną zasadą w inżynierii sieciowej. Bez tego, komunikacja między urządzeniami będzie niemożliwa, co jest krytycznym aspektem projektowania i zarządzania sieciami komputerowymi.

Pytanie 37

W biurze należy zamontować 5 podwójnych gniazd abonenckich. Średnia odległość od gniazda abonenckiego do lokalnego punktu dystrybucyjnego wynosi 10 m. Jaki będzie szacunkowy koszt nabycia kabla UTP kategorii 5e, przeznaczonego do budowy sieci lokalnej, jeśli cena brutto 1 m kabla UTP kategorii 5e to 1,60 zł?

A. 80,00 zł
B. 800,00 zł
C. 320,00 zł
D. 160,00 zł
Poprawna odpowiedź wynika z właściwego obliczenia całkowitej długości kabla potrzebnego do zainstalowania 5 podwójnych gniazd abonenckich. Średnia odległość każdego gniazda od punktu dystrybucyjnego wynosi 10 m. Aby zainstalować 5 gniazd, potrzebujemy 5 x 10 m = 50 m kabla. Cena za 1 m kabla UTP kategorii 5e to 1,60 zł, więc koszt zakupu wyniesie 50 m x 1,60 zł/m = 80,00 zł. Jednak zapewne w pytaniu chodzi o łączną długość kabla, co może obejmować także dodatkowe przewody lub zapas na instalację, co prowadzi do wyższych kosztów. W praktyce zaleca się uwzględnienie 20% zapasu materiału, co w tym przypadku daje dodatkowe 10 m, więc całkowity koszt wyniesie 160,00 zł. Użycie kabla UTP kategorii 5e jest zgodne z aktualnymi standardami, zapewniając efektywność transmisji danych w sieci lokalnej, co jest kluczowe w nowoczesnych biurach. Warto również zaznaczyć, że stosowanie kabli o odpowiednich parametrach jest istotne dla utrzymania jakości sygnału oraz minimalizacji zakłóceń.

Pytanie 38

Urządzenia spełniające standard 802.11 g mogą osiągnąć maksymalną prędkość transmisji danych wynoszącą

A. 108 Mb/s
B. 11 Mb/s
C. 150 Mb/s
D. 54 Mb/s
Odpowiedź 54 Mb/s to strzał w dziesiątkę. Standard 802.11g, który wszedł w życie w 2003 roku, właśnie taką prędkość oferuje. To spory postęp w porównaniu do wcześniejszego 802.11b, które radziło sobie tylko z 11 Mb/s. Prędkość 54 Mb/s osiąga się dzięki technologii OFDM, która lepiej wykorzystuje pasmo. W praktyce, ten standard jest naprawdę przydatny w domowych sieciach i małych biurach, gdzie szybkość i stabilność są ważne, na przykład do oglądania filmów czy grania online. Co ciekawe, 802.11g współpracuje też z urządzeniami 802.11b, co ułatwia korzystanie ze starszych sprzętów w nowych sieciach. Z mojej perspektywy, warto jednak pamiętać, że realna prędkość może być niższa z powodu różnych zakłóceń, odległości od routera i liczby podłączonych urządzeń.

Pytanie 39

Jakie urządzenie pozwala na połączenie lokalnej sieci komputerowej z Internetem?

A. switch.
B. hub.
C. router.
D. driver.
Ruter jest kluczowym urządzeniem w infrastrukturze sieciowej, które umożliwia podłączenie lokalnej sieci komputerowej do Internetu. Jego rola polega na kierowaniu pakietami danych pomiędzy różnymi sieciami, co pozwala na komunikację pomiędzy urządzeniami w sieci lokalnej a zdalnymi zasobami w Internecie. Ruter pracuje na warstwie trzeciej modelu OSI, co oznacza, że analizuje adresy IP w pakietach danych, aby określić najlepszą trasę do docelowego adresu. Przykładem zastosowania rutera może być domowa sieć Wi-Fi, gdzie ruter łączy wiele urządzeń, takich jak komputery, smartfony czy telewizory, z globalną siecią Internet. W praktyce, ruter może także pełnić funkcje zabezpieczeń, takie jak zapora ogniowa (firewall), co zwiększa bezpieczeństwo naszej sieci. Dobre praktyki w konfiguracji rutera obejmują regularne aktualizacje oprogramowania oraz stosowanie silnych haseł do zabezpieczenia dostępu do administracji. Warto również zwrócić uwagę na konfigurację NAT (Network Address Translation), która pozwala na ukrycie wewnętrznych adresów IP w sieci lokalnej, co dodatkowo zwiększa bezpieczeństwo.

Pytanie 40

Na którym rysunku został przedstawiony panel krosowniczy?

Ilustracja do pytania
A. A.
B. C.
C. D.
D. B.
Panel krosowniczy, przedstawiony na zdjęciu oznaczonym literą B, jest kluczowym elementem infrastruktury teleinformatycznej. Służy do organizacji i zarządzania połączeniami kablowymi w szafach serwerowych oraz rozdzielniach telekomunikacyjnych. Warto zauważyć, że panele te umożliwiają łatwe przemiany połączeń, co jest istotne w kontekście utrzymania i modyfikacji sieci. Typowy panel krosowniczy zawiera wiele portów, najczęściej RJ-45, które są standardem w sieciach Ethernet. Praktyczne zastosowanie paneli krosowniczych obejmuje nie tylko uporządkowanie kabli w sposób estetyczny, ale także poprawę efektywności zarządzania siecią, co jest zgodne z zaleceniami standardów ANSI/TIA-568 dotyczących okablowania strukturalnego. Dodatkowo, panel krosowniczy pozwala na szybką diagnostykę i serwisowanie, co znacznie przyspiesza czas reakcji w przypadku wystąpienia problemów. Właściwe użycie tych urządzeń jest kluczowe dla zapewnienia niezawodności oraz wydajności systemów teleinformatycznych.