Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektryk
  • Kwalifikacja: ELE.02 - Montaż, uruchamianie i konserwacja instalacji, maszyn i urządzeń elektrycznych
  • Data rozpoczęcia: 7 lutego 2026 16:54
  • Data zakończenia: 7 lutego 2026 17:15

Egzamin niezdany

Wynik: 12/40 punktów (30,0%)

Wymagane minimum: 20 punktów (50%)

Udostępnij swój wynik
Szczegółowe wyniki:
Pytanie 1

Poślizg silnika indukcyjnego osiągnie wartość 1, gdy

A. wirnik silnika będzie w bezruchu.
B. wirnik silnika zostanie dogoniony.
C. silnik zostanie zasilony prądem przeciwnym.
D. silnik znajdzie się w stanie jałowym.
Zrozumienie zasad działania silników indukcyjnych jest kluczowe dla efektywnej ich eksploatacji, dlatego warto przyjrzeć się błędnym koncepcjom, które mogą prowadzić do mylnych wniosków. W przypadku, gdy wirnik silnika zostaje dopędzony, oznacza to, że jego prędkość zbliża się do prędkości synchronizacyjnej, co prowadzi do zmniejszenia poślizgu, a nie do uzyskania wartości równej 1. Takie zjawisko występuje w silnikach, które są zasilane zmiennym prądem i wymagają odpowiedniego momentu obrotowego, aby zrównoważyć obciążenie. Z kolei pozostawienie silnika na biegu jałowym skutkuje poślizgiem mniejszym niż 1, ponieważ wirnik wciąż kręci się, choć bez obciążenia. Zasilanie silnika przeciwprądem to sytuacja, w której występuje odwrócenie kierunku prądu w uzwojeniach, co skutkuje przeciwnym działaniem momentu obrotowego, ale nie powoduje poślizgu równego 1 w klasycznym sensie. Typowym błędem myślowym jest zrozumienie poślizgu jako czegoś, co można kontrolować niezależnie od fizycznych parametrów pracy silnika. W rzeczywistości poślizg jest wskaźnikiem funkcjonowania silnika i jest ściśle powiązany z jego obciążeniem oraz dynamiką pracy. Wiedza na temat poślizgu jest zatem fundamentalna dla inżynierów i techników zajmujących się automatyką i energetyką.

Pytanie 2

Która z poniższych działań ocenia efektywność ochrony podstawowej przed porażeniem prądem elektrycznym?

A. Pomiar impedancji w pętli zwarciowej
B. Sprawdzanie wyłącznika różnicowoprądowego
C. Weryfikacja stanu izolacji podłóg
D. Pomiar rezystancji izolacji przewodów
Zrozumienie różnych metod oceny ochrony przed porażeniem prądem elektrycznym jest kluczowe dla zapewnienia bezpieczeństwa użytkowników instalacji elektrycznych. Badanie wyłącznika różnicowoprądowego polega na ocenie jego zdolności do wykrywania i odłączania prądu w przypadku wystąpienia różnicy między prądem wpływającym a wypływającym. Choć jest to istotne dla funkcjonowania ochrony, nie mierzy bezpośrednio skuteczności izolacji przewodów. Pomiar impedancji pętli zwarciowej koncentruje się na ocenieniu, jak szybko prąd zwarciowy może przepłynąć przez instalację w razie awarii, co z kolei dotyczy głównie ochrony przed zwarciami, a nie izolacji. Badanie stanu izolacji podłóg, mimo że ważne, odnosi się do aspektów związanych z bezpieczeństwem użytkowników, ale nie odnosi się do oceny izolacji przewodów elektrycznych bezpośrednio. Z tych powodów, odpowiedzi te nie mogą być uznane za prawidłowe w kontekście pytania, które dotyczy skuteczności ochrony przed porażeniem prądem elektrycznym w instalacjach elektrycznych. Dobrze zrozumiane zasady dotyczące tych metod mogą pomóc w uniknięciu niebezpiecznych sytuacji związanych z elektrycznością. Kluczowe jest, aby technicy i inżynierowie elektrycy stosowali właściwe metody pomiarowe, zgodne z aktualnymi standardami, by zapewnić kompleksowe bezpieczeństwo w każdej instalacji.

Pytanie 3

Jaki parametr trójfazowego gniazda wtyczkowego jest określany symbolem IP20?

A. Minimalny przekrój przewodów podłączonych do zacisków
B. Klasę ochronności przed porażeniem energią elektryczną
C. Najwyższą temperaturę otoczenia podczas eksploatacji
D. Stopień zabezpieczenia przed dostępem ciał stałych oraz wody
W odpowiedziach, które uznano za błędne, widać, że są w nich różne myśli, ale nie mają one nic wspólnego z tym, co naprawdę oznacza symbol IP20. Na przykład maksymalna temperatura, w jakiej urządzenie może pracować, nie ma związku z ochroną przed kurzem czy wodą; to bardziej chodzi o warunki, w jakich to działa, co może wpływać na jego działanie. Minimalny przekrój przewodów, które są podłączane do gniazd, jest ważny dla prawidłowego przewodzenia prądu, ale znowu – nie ma nic wspólnego z klasą IP, bo ta dotyczy tylko ochrony przed tym, co jest na zewnątrz. Klasa ochrony przed porażeniem prądem także dotyczy czegoś innego, co związane jest z bezpieczeństwem, ale też nie łączy się z IP. Często ludzie mylą te różne kategorie i nie zauważają, że klasy IP dotyczą tylko ochrony przed tym, co jest na zewnątrz, a inne kwestie bezpieczeństwa są zupełnie odrębne. Rozumienie klasyfikacji IP jest mega ważne, bo to pomaga w wyborze odpowiednich komponentów w instalacjach elektrycznych, co z kolei może zapobiec różnym awariom i zagrożeniom.

Pytanie 4

Jakie czynności kontrolne nie są zaliczane do oględzin urządzeń napędowych podczas ich pracy?

A. Ocena poziomu drgań oraz funkcjonowania układu chłodzenia
B. Sprawdzenie stanu łożysk i przeprowadzenie pomiarów elektrycznych
C. Kontrola zabezpieczeń i stanu osłon części wirujących
D. Weryfikacja stanu przewodów ochronnych oraz ich połączeń
Odpowiedź "Sprawdzenie stanu łożysk i pomiary elektryczne" jest poprawna, ponieważ te czynności kontrolne są zazwyczaj przeprowadzane w trakcie przeglądów technicznych, a nie podczas bieżącej eksploatacji urządzeń napędowych. W czasie ruchu maszyny, kluczowe jest monitorowanie parametrów operacyjnych, takich jak poziom drgań, ponieważ mogą one wskazywać na potencjalne problemy z wydajnością lub uszkodzenia. Kontrola poziomu drgań i działania układu chłodzenia pozwala na szybką identyfikację nieprawidłowości, które mogą prowadzić do poważnych awarii. Ochrona przewodów i odpowiednie osłony części wirujących są również istotnymi aspektami bezpieczeństwa w czasie pracy urządzenia. Zgodnie z normami, takimi jak ISO 9001, monitoring w czasie rzeczywistym oraz regularne kontrole stanu technicznego są kluczowe dla zapewnienia efektywności i bezpieczeństwa operacji. Przykładem praktycznym może być zastosowanie systemów monitorowania drgań, które w czasie rzeczywistym informują operatorów o konieczności interwencji, co pozwala na minimalizację ryzyka awarii.

Pytanie 5

Który element elektroniczny oznacza przedstawiony symbol graficzny?

Ilustracja do pytania
A. Triak.
B. Diodę LED.
C. Diodę Zenera.
D. Tyrystor.
Na tym schemacie widać symbol diody z dodatkowym, charakterystycznym załamaniem linii przy katodzie. To jest właśnie graficzne oznaczenie diody Zenera, a nie typowych elementów, z którymi bywa mylona. W praktyce uczniowie często patrzą tylko na ogólny kształt symbolu i kojarzą go na przykład z triakiem albo tyrystorem, bo wiedzą, że to też są elementy półprzewodnikowe stosowane w układach mocy. Problem w tym, że triak i tyrystor mają zupełnie inne symbole: zawierają dodatkową elektrodę sterującą (bramkę), a ich struktura na rysunku jest symetryczna lub półsymetryczna względem kierunku przewodzenia. Triak przewodzi w obu kierunkach i symbolicznie pokazany jest jak dwa tyrystory połączone przeciwsobnie, z jedną wspólną bramką. Tyrystor z kolei ma wyraźnie zaznaczoną bramkę (G) oraz kierunek przewodzenia od anody do katody, ale bez żadnego „złamania” kreski jak w diodzie Zenera. Dioda LED ma inny, moim zdaniem bardzo charakterystyczny symbol: od diody wychodzą strzałki symbolizujące emisję światła. Jeśli na rysunku nie ma tych strzałek, to nie jest LED, nawet jeśli w praktyce dioda Zenera bywa montowana w obudowach podobnych gabarytowo do małych diod świecących. Z kolei zwykła dioda prostownicza ma prostą kreskę katody, bez dodatkowego zagięcia czy „ząbka”. To właśnie to zagięcie od strony katody odróżnia symbol diody Zenera od symbolu diody prostowniczej. Typowy błąd myślowy polega na tym, że ktoś widzi oznaczenia A i K, kojarzy to z diodą i zaznacza pierwszą znaną mu diodę, np. LED, bez analizy szczegółów symbolu. W technice, szczególnie przy czytaniu schematów instalacji sterowniczych i układów zasilania, takie pomyłki potrafią mocno namieszać przy diagnozie usterek. Dlatego warto wyrobić sobie nawyk zwracania uwagi na drobne elementy symbolu: obecność lub brak strzałek (LED), kształt katody (Zener), dodatkowe wyprowadzenie bramki (tyrystor, triak), symetrię układu. To są drobiazgi, ale w profesjonalnej praktyce elektryka i elektronika decydują o poprawnym zrozumieniu działania całego obwodu.

Pytanie 6

Przedstawiona na ilustracji oprawka jest przeznaczona do źródeł światła z trzonkiem

Ilustracja do pytania
A. E14
B. GU10
C. G9
D. MR11
Odpowiedzi G9, MR11 oraz E14 są nieprawidłowe, gdyż nie odpowiadają specyfikacji oprawki widocznej na ilustracji. Trzonek G9, mimo że również jest popularny w zastosowaniach oświetleniowych, charakteryzuje się inną konstrukcją, zwykle ze złączem typu wtykowego, które nie posiada bocznych wypustek. To prowadzi do błędnego wnioskowania, ponieważ G9 często bywa mylony z GU10, ale nie można ich zamieniać, ze względu na różnice w montażu i wymiarach. Z kolei MR11 to rodzaj trzonka, który jest mniejszy i stosowany w lampach o niskim napięciu, w tym w halogenowych reflektorach, co także nie ma zastosowania w przypadku oprawki przedstawionej na zdjęciu. Odpowiedź E14 wskazuje na trzonek o średnicy 14 mm, który jest szeroko stosowany w lampach i żarówkach, jednak jego konstrukcja nie pasuje do obiektu widocznego na ilustracji. Użytkownicy często popełniają błąd przy wyborze odpowiedzi, myśląc, że wszystkie trzonki są wymienne, co jest nieprawdziwe. Istnieją specyficzne normy dotyczące różnych typów trzonków, które są kluczowe dla zapewnienia poprawnego działania systemów oświetleniowych, dlatego ważne jest, aby znać różnice między tymi typami, aby skutecznie dobierać komponenty oświetleniowe.

Pytanie 7

Trasując położenie osprzętu instalacji w pomieszczeniu mieszkalnym na podstawie schematu, którego fragment przedstawiono na rysunku, należy

Ilustracja do pytania
A. gniazda umieszczać tylko w strefie przypodłogowej.
B. uwzględnić zalecenia inwestora dotyczące wysokości umieszczania wyłącznika i gniazd w pomieszczeniu.
C. gniazda umieszczać w odległości co najmniej 50 cm od krawędzi drzwi i okien.
D. wyłącznik i gniazda umieszczać na wysokości co najmniej 100 cm od podłoża.
Umieszczanie wyłączników i gniazd na wysokości co najmniej 100 cm od podłoża, jak sugeruje jeden z błędnych podejść, nie zawsze jest zgodne z praktykami branżowymi. Choć wysokość ta może być stosowana w niektórych przypadkach, nie uwzględnia ona różnorodnych potrzeb użytkowników i specyfikacji pomieszczeń, co prowadzi do nieoptymalnych rozwiązań. Wysokość montażu powinna być dostosowana do konkretnego zastosowania – na przykład, w kuchniach i biurach, gdzie użytkownicy mogą stać lub siedzieć, istotne jest, aby gniazda były łatwo dostępne w różnej pozycji. Stawianie gniazd tylko w strefie przypodłogowej to kolejny powszechny błąd. Takie podejście może ograniczać dostępność elektryczności w miejscach, gdzie jest to konieczne, jak np. w okolicy biurka czy w pobliżu urządzeń AGD. Ponadto, umieszczanie gniazd w odległości co najmniej 50 cm od krawędzi drzwi i okien nie jest standardem, który ma powszechne zastosowanie, a w wielu przypadkach może być zbędne – istotniejsze jest zapewnienie bezpieczeństwa oraz funkcjonalności w kontekście użycia i estetyki pomieszczenia. Właściwe podejście do montażu osprzętu elektrycznego powinno koncentrować się na zrównoważeniu przepisów z indywidualnymi preferencjami użytkowników, a nie na sztywnych normach, które nie odpowiadają rzeczywistym potrzebom mieszkańców.

Pytanie 8

W układzie zasilania jakiej lampy oświetleniowej wykorzystuje się tyrystorowy system zapłonowy?

A. Rtęciowej
B. Sodowej
C. Halogenowej
D. Żarowej
Wybór żarowej, rtęciowej lub halogenowej lampy oświetleniowej jako zastosowania tyrystorowego układu zapłonowego opiera się na nieporozumieniach dotyczących charakterystyki tych źródeł światła. Lampy żarowe działają na zasadzie bezpośredniego przepływu prądu przez żarnik, co sprawia, że nie wymagają skomplikowanych układów zapłonowych. W przypadku lamp rtęciowych, ich zapłon oparty jest na innych zasadach, w tym na użyciu zapłonników gazowych, które nie są zgodne z zastosowaniem tyrystorów. Te lampy również potrzebują czasami większej mocy podczas zapłonu, co może prowadzić do niewłaściwego działania tyrystorów. Lampy halogenowe z kolei stosują nieco odmienną technologię, wykorzystując cykle odparowania, co również eliminuje potrzebę stosowania układów tyrystorowych. Typowym błędem myślowym w tym kontekście jest zakładanie, że wszystkie lampy wymagają podobnych układów zapłonowych, co prowadzi do mylnych wniosków. Ważne jest zrozumienie, że dobór odpowiednich komponentów do systemów oświetleniowych musi być oparty na ich specyficznych wymaganiach technicznych, co podkreśla konieczność dogłębnej analizy charakterystyk różnych typów lamp oraz ich zastosowań w praktyce.

Pytanie 9

Jaką wartość bezwzględną ma błąd pomiaru natężenia prądu, jeżeli multimetr pokazał wynik 35,00 mA, a producent określił dokładność urządzenia dla używanego zakresu pomiarowego jako ±(1 % +2) cyfry?

A. ±2,35 mA
B. ±0,35 mA
C. ±0,02 mA
D. ±0,37 mA
W przypadku obliczania błędu pomiarowego, niektóre osoby mogą błędnie interpretować podaną dokładność miernika. Zwykle błąd pomiarowy składa się z dwóch komponentów: błędu procentowego oraz wartości stałej. W opisywanym przypadku, dokładność miernika wynosi ±(1 % +2), co oznacza, że należy to wyraźnie zrozumieć, jako wpływ zarówno względny, jak i bezwzględny na dokładność pomiaru. Wybór wartości ±0,35 mA jako błędu pomiarowego może sugerować, że osoba skupia się wyłącznie na składniku procentowym, ignorując istotny dodatek 2 mA. Takie podejście prowadzi do zaniżenia rzeczywistego błędu, co może skutkować niepoprawnymi wnioskami w analizach eksperymentalnych. Inna niepoprawna odpowiedź, która sugeruje ±2,35 mA, wynika z nieprawidłowego zrozumienia granic błędu pomiarowego; wartość ta jest zbyt wysoka w odniesieniu do rzeczywistych pomiarów, ponieważ przy podanych wartościach, jak 35 mA, błąd powinien być znacznie mniejszy. Osoby myślące, że błąd pomiarowy może być tak duży, mogą nie zrozumieć zasadniczej różnicy pomiędzy błędem całkowitym a rzeczywistym błędem odczytu. W kontekście praktycznym, takie błędne interpretacje mogą prowadzić do efektywnych strat w projektach inżynieryjnych, gdzie dokładność pomiarów jest kluczowa dla bezpieczeństwa i efektywności urządzeń. Warto zaznaczyć, że każdy pomiar powinien być analizowany zarówno pod kątem błędów systematycznych, jak i losowych, co jeszcze bardziej podkreśla znaczenie dokładności w kontekście zastosowań przemysłowych.

Pytanie 10

Na rysunku przedstawiono charakterystykę wyłącznika nadmiarowo-prądowego KS6 B32/3 znajdującą się w katalogu producenta. Wyłącznik ten można zastosować do zabezpieczenia przewodów o obciążalności długotrwałej

Ilustracja do pytania
A. 34 A
B. 30 A
C. 25 A
D. 29 A
Wybór niewłaściwej obciążalności przewodów, na przykład 29 A, 25 A czy 30 A, wynika często z niewłaściwego zrozumienia zasad doboru zabezpieczeń elektrycznych. Prąd znamionowy wyłącznika nadmiarowo-prądowego KS6 B32/3 wynosi 32 A, co oznacza, że obciążalność długotrwała przewodów musi być wyższa od tej wartości, aby uniknąć sytuacji, w której wyłącznik będzie się zbyt często wyzwalał podczas normalnej pracy. Wybór 29 A to minimalna wartość, która nie spełnia wymogu większej obciążalności długotrwałej, co może prowadzić do niepożądanych wyłączeń urządzenia. Z kolei 25 A jest jeszcze bardziej nieodpowiedni, ponieważ nie tylko nie przekracza prądu znamionowego wyłącznika, ale także stwarza ryzyko uszkodzenia instalacji w przypadku krótkotrwałego wzrostu obciążenia. Wybór 30 A również jest niewłaściwy, gdyż nie zapewnia odpowiedniego marginesu, co może prowadzić do nieefektywności systemu zabezpieczeń. Podstawową zasadą projektowania instalacji elektrycznych jest zapewnienie, że każdy element systemu jest dobrany z odpowiednim zapasem, co nie tylko zwiększa bezpieczeństwo, ale również stabilność i niezawodność całej instalacji. Niezrozumienie tych zasad może prowadzić do poważnych konsekwencji, w tym ryzyka uszkodzenia sprzętu oraz zagrożenia dla użytkowników.

Pytanie 11

Przyporządkuj rodzaje trzonków świetlówek kompaktowych, w kolejności jak na rysunku.

Ilustracja do pytania
A. D.
B. A.
C. C.
D. B.
Odpowiedź B. jest poprawna, ponieważ zgodnie z przedstawionym rysunkiem, trzonki świetlówek kompaktowych są uporządkowane w oparciu o ich standardy montażowe. Trzonek B22d, który znajduje się w świetlówce nr 2, jest powszechnie stosowany w oświetleniu domowym, ze względu na łatwość w instalacji i szeroką dostępność. Użytkownicy często spotykają się z tym rodzajem trzonka w żarówkach przeznaczonych do lamp sufitowych oraz lamp stołowych. W praktyce, znajomość typów trzonków świetlówek jest kluczowa podczas zakupu nowych źródeł światła, ponieważ błędny wybór może prowadzić do problemów z kompatybilnością. Warto zaznaczyć, że różne trzonki mają różne zastosowania, co wpływa na efektywność i bezpieczeństwo użycia. Trzonek E14, E27 oraz GU10 również mają swoje specyficzne przeznaczenie i zastosowania, dlatego ważne jest, aby zrozumieć ich różnice oraz odpowiednio je dobierać, aby zapewnić optymalne warunki oświetleniowe w różnych przestrzeniach.

Pytanie 12

Ochronnik oznaczony symbolem graficznym pokazanym na rysunku reaguje na

Ilustracja do pytania
A. upływ prądu.
B. przeciążenie.
C. przepięcie.
D. zwarcie doziemne.
Wybór odpowiedzi związanych z przeciążeniem, upływem prądu lub zwarciem doziemnym pokazuje niedostateczne zrozumienie funkcji ochronników w instalacjach elektrycznych. Przeciążenie polega na przekraczaniu maksymalnej dopuszczalnej wydajności prądowej, co prowadzi do przegrzewania się przewodów, ale ochrona przed tym zjawiskiem nie jest realizowana przez ochronnik przepięciowy, lecz przez inne urządzenia, takie jak wyłączniki nadprądowe. Upływ prądu dotyczy sytuacji, gdzie prąd elektryczny ucieka z obwodu do ziemi, co może być niebezpieczne, ale również nie jest bezpośrednio kontrolowane przez ochronniki przepięciowe. Z kolei zwarcie doziemne to awaria, w której przewód fazowy styka się z ziemią, co również nie jest zadaniem ochronników przepięciowych. Te pomyłki wynikają często z braku zrozumienia specyfiki działania różnych komponentów instalacji elektrycznej oraz ich roli w zapewnieniu bezpieczeństwa. Zastosowanie ochronników przepięciowych w odpowiednich miejscach, zgodnie z obowiązującymi normami, jak PN-EN 61643-11, jest kluczowe dla ochrony przed uszkodzeniami spowodowanymi przepięciami, a nie innymi rodzajami awarii, które wymagają innych rozwiązań.

Pytanie 13

Która z podanych metod realizacji instalacji elektrycznych jest przeznaczona do użycia w lokalach mieszkalnych?

A. W kanałach podłogowych
B. Na drabinkach
C. W listwach przypodłogowych
D. Przewodami szynowymi
Prowadzenie instalacji elektrycznych za pomocą przewodów szynowych, kanałów podłogowych czy drabinek jest rozwiązaniem stosowanym w innych kontekstach, które nie zawsze są zgodne z wymogami dla pomieszczeń mieszkalnych. Przewody szynowe, choć często wykorzystywane w obiektach komercyjnych i przemysłowych, nie są zalecane do stosowania w mieszkaniach, ponieważ mogą prezentować ryzyko w zakresie estetyki, a także bezpieczeństwa użytkowników. Mieszkania zazwyczaj wymagają bardziej stonowanego i zabezpieczonego podejścia do instalacji elektrycznych. Kanały podłogowe, chociaż mogą być użyteczne w niektórych sytuacjach, mają ograniczenia związane z dostępnością i konserwacją. Ponadto ich stosowanie może prowadzić do problemów z wilgocią i zanieczyszczeniami, co z kolei wpływa negatywnie na trwałość instalacji. Drabinki, z drugiej strony, są stosowane głównie w obszarach przemysłowych i wymagają dużo przestrzeni, co czyni je niepraktycznymi dla mieszkań o ograniczonym metrażu. Typowy błąd myślowy to przekonanie, że jedynie funkcjonalność instalacji ma znaczenie, podczas gdy w kontekście mieszkań kluczowe są również aspekty estetyczne i bezpieczeństwa. Należy zatem pamiętać, że prowadzenie instalacji elektrycznych w pomieszczeniach mieszkalnych powinno być starannie przemyślane, uwzględniając zarówno przepisy, jak i potrzeby użytkowników.

Pytanie 14

W jaki sposób odbywa się sterowanie oświetleniem w układzie wykonanym według schematu montażowego przedstawionego na rysunku?

Ilustracja do pytania
A. Klawisze 1a i 2a sterują żarówką B, a klawisze 1b i 2b sterują żarówką A
B. Klawisze 1a i 1b sterują żarówką B, a klawisze 2a i 2b sterują żarówką A
C. Klawisze 1a i 2a sterują żarówką A, a klawisze 1b i 2b sterują żarówką B
D. Klawisze 1a i 1b sterują żarówką A, a klawisze 2a i 2b sterują żarówką B
Poprawna odpowiedź wskazuje, że klawisze 1a i 2a sterują żarówką B, a klawisze 1b i 2b sterują żarówką A. Taki układ jest typowym schematem dla oświetlenia schodowego, co umożliwia włączanie i wyłączanie oświetlenia z dwóch niezależnych miejsc. W praktyce, jest to szczególnie przydatne w długich korytarzach, na klatkach schodowych oraz w pomieszczeniach z dwoma wejściami. Klawisze połączone w układzie schodowym pozwalają na elastyczne zarządzanie oświetleniem, co zwiększa komfort użytkowania przestrzeni. Ważnym aspektem takiego rozwiązania jest także bezpieczeństwo, ponieważ umożliwia użytkownikom łatwe dostosowanie oświetlenia w zależności od potrzeb, co jest zgodne z zasadami ergonomii i dobrych praktyk projektowych w zakresie oświetlenia. Zastosowanie układów schodowych w obiektach publicznych, takich jak szkoły czy biura, również potwierdza ich praktyczność oraz adaptacyjność w różnych warunkach użytkowych.

Pytanie 15

Jakim z podanych rodzajów przewodów powinno się zasilić jednofazowy ruchomy odbiornik?

A. OMYp 3×1,5 mm2
B. YDY 3×1,5 mm2
C. LGu 3×1,5 mm2
D. YDYt 3×1,5 mm2
OMYp 3×1,5 mm2 to odpowiedni typ przewodu do zasilania jednofazowego odbiornika ruchomego, ponieważ charakteryzuje się on wysoką elastycznością oraz odpornością na uszkodzenia mechaniczne. Przewód OMYp jest stosowany głównie w instalacjach tymczasowych oraz w miejscach, gdzie przewody mogą być narażone na różne warunki atmosferyczne i mechaniczne. Zastosowanie przewodu z gumowym izolowaniem sprawia, że jest on odporny na działanie olejów, smarów oraz substancji chemicznych, co czyni go idealnym rozwiązaniem w przemyśle oraz w różnych aplikacjach budowlanych. W praktyce, przewody OMYp są stosowane w zasilaniu maszyn, urządzeń elektrycznych oraz narzędzi, które są używane w ruchu. Dodatkowo, zgodnie z normą PN-EN 50525-2-21, przewody te muszą spełniać określone wymagania dotyczące bezpieczeństwa i funkcjonalności, co podkreśla ich niezawodność w zastosowaniach wymagających mobilności.

Pytanie 16

Jakie są minimalne wartości napięć znamionowych, jakie powinien posiadać przewód użyty do instalacji jednofazowej w sieci 230/400 V, prowadzonej w otworach prefabrykowanych budynków?

A. 300/300 V
B. 600/1000 V
C. 300/500 V
D. 450/750 V
Wybór napięcia dla przewodów elektrycznych to bardzo ważna sprawa, bo wpływa na ich bezpieczeństwo i niezawodność. Przewody o napięciach 600/1000 V, 300/500 V i 300/300 V nie nadają się do instalacji jednofazowych przy 230/400 V, bo nie spełniają minimalnych wymogów. Takie 600/1000 V są robione do cięższych warunków, więc są drogie i niepotrzebne tam, gdzie wystarczą przewody 450/750 V. Natomiast 300/500 V i 300/300 V mają za małe wartości, co zwiększa ryzyko uszkodzeń i awarii. Użycie takich przewodów w instalacjach jednofazowych może prowadzić do problemów z bezpieczeństwem, jak przepięcia czy porażenia. Wiem, że często to wynika z braku wiedzy o standardach w branży. Ważne jest, żeby projektanci i instalatorzy rozumieli te specyfikacje, by uniknąć niebezpiecznych sytuacji i zapewnić, że instalacje elektryczne będą działać długo i sprawnie.

Pytanie 17

Które czynności powinien wykonać elektryk, posiadający uprawnienia do eksploatacji urządzeń i instalacji do 1 kV, przed wymianą uszkodzonego wyłącznika nadprądowego B16 w obwodzie gniazd wtyczkowych, aby nie pozbawić zasilania płyty grzewczej i piekarnika?

Ilustracja do pytania
A. Wyłączyć wszystkie wyłączniki nadprądowe.
B. Wyłączyć rozłącznik izolacyjny FR 304 32 A i wyłącznik nadprądowy S304 B16.
C. Wyłączyć wyłącznik różnicowoprądowy P312 B25A.
D. Wyłączyć wszystkie wyłączniki różnicowoprądowe.
Wyłączenie wszystkich wyłączników różnicowoprądowych lub nadprądowych przed wymianą uszkodzonego wyłącznika nadprądowego B16 może prowadzić do niezamierzonych konsekwencji. Wybierając tę opcję, wprowadza się ryzyko, że zasilanie w całym obwodzie zostanie przerwane, co może być nieodpowiednie w sytuacji, gdy inne urządzenia, takie jak płyta grzewcza czy piekarnik, również są zasilane z tej samej instalacji. Wyłączając wszystkie wyłączniki, nie tylko ryzykuje się utratę zasilania w lokalach, ale także narusza się zasady efektywności energetycznej i dobrych praktyk przy pracy z instalacjami elektrycznymi. Ponadto, wyłączanie wszystkich wyłączników jest nieefektywne i czasochłonne, co w praktyce staje się uciążliwe, zwłaszcza w obiektach komercyjnych, gdzie ciągłość zasilania jest kluczowa. W kontekście ochrony przeciwporażeniowej, wyłącznik różnicowoprądowy powinien być regularnie testowany, a jego wyłączenie powinno być uzasadnione potrzebą konserwacji lub naprawy tylko w określonych obwodach. Z tego powodu, nieprzemyślane wyłączenie wszystkich zabezpieczeń narusza zasady bezpieczeństwa i efektywności w zarządzaniu instalacjami elektrycznymi.

Pytanie 18

Który z wymienionych elementów należy do dodatkowej ochrony przed porażeniem elektrycznym?

A. Dodatkowe miejscowe wyrównawcze połączenia ochronne
B. Samoczynne wyłączenie zasilania
C. Uniedostępnianie (umieszczenie poza zasięgiem ręki)
D. Bardzo niskie napięcie ze źródła bezpiecznego
Uniedostępnianie, czyli umieszczenie urządzeń elektrycznych poza zasięgiem ręki, jest jedną z metod ochrony, jednak nie stanowi uzupełniającej ochrony przeciwporażeniowej. W rzeczywistości, polega ono na fizycznym oddzieleniu użytkownika od potencjalnych zagrożeń, co może w pewnych sytuacjach zwiększać bezpieczeństwo, ale nie eliminuje ryzyka całkowicie. Ponadto, taka metoda nie jest skuteczna w przypadku sytuacji awaryjnych, gdzie dostęp do urządzeń elektrycznych jest niezbędny do ich wyłączenia. Samoczynne wyłączenie zasilania to kolejna strategia, która ma na celu zminimalizowanie skutków porażenia prądem, ale jej skuteczność jest uzależniona od wykrycia awarii, co nie zawsze jest gwarantowane. Bardzo niskie napięcie ze źródła bezpiecznego również jest metodą ochrony, lecz nie jest to metoda uzupełniająca, a podstawowa koncepcja, która sama w sobie nie wystarcza do zapewnienia pełnej ochrony. Dobre praktyki w zakresie ochrony przeciwporażeniowej wymagają zastosowania złożonych systemów zabezpieczeń, w tym połączeń wyrównawczych, co pokazuje, że ignorowanie tych podstawowych zasad może prowadzić do błędnych wniosków i zwiększonego ryzyka w sytuacjach awaryjnych.

Pytanie 19

Na którym rysunku przedstawiono oprawę oświetleniową rastrową?

Ilustracja do pytania
A. B.
B. C.
C. A.
D. D.
Oprawa oświetleniowa rastrowa, jak wskazuje poprawna odpowiedź, odgrywa kluczową rolę w zapewnieniu efektywnego oświetlenia w różnych przestrzeniach, takich jak biura, hale produkcyjne czy sale wykładowe. Charakteryzuje się ona specyficzną konstrukcją rastrową, której celem jest równomierne rozprowadzanie światła oraz zmniejszenie efektu olśnienia. W oprawie oznaczonej jako B dostrzegamy zastosowanie takiej osłony, co jest zgodne z normami oświetleniowymi, np. PN-EN 12464-1, które podkreślają znaczenie komfortu użytkowników w środowisku pracy. Praktycznym zastosowaniem oświetlenia rastrowego jest jego umiejscowienie w przestrzeniach biurowych, gdzie odpowiednie rozproszenie światła zmniejsza zmęczenie wzroku oraz poprawia efektywność pracy. Warto również zaznaczyć, że tego typu oprawy są dostępne w różnych wariantach, co pozwala na ich dopasowanie do specyficznych potrzeb architektonicznych i użytkowych, przy jednoczesnym zachowaniu estetyki wnętrza.

Pytanie 20

Aby zrealizować instalację zasilającą dla urządzeń, które potrzebują do działania napięcia AC 230V, w rurkach podtynkowych w pomieszczeniu, gdzie temperatura osiąga 100 °C, należy zastosować przewody oznaczone symbolem

A. DY 100
B. DYc 750
C. DY 700
D. DYc 150
Przewody oznaczone symbolem DYc 750 są przeznaczone do pracy w warunkach wysokotemperaturowych, co czyni je odpowiednim wyborem do instalacji zasilającej w pomieszczeniach, gdzie temperatura może osiągnąć 100°C. Symbol "DY" wskazuje na przewody elastyczne, a litera "c" oznacza, że przewody te są odporne na działanie wysokich temperatur. W praktyce, przewody DYc 750 często stosuje się w instalacjach przemysłowych oraz w aplikacjach, gdzie istnieje ryzyko wystąpienia ekstremalnych warunków temperaturowych. Stosowanie odpowiednich przewodów jest kluczowe dla zapewnienia bezpieczeństwa oraz długoterminowej wydajności systemu zasilania. Przewody te są zgodne z normami PN-EN 50525, które określają wymagania dla przewodów elektrycznych, i powinny być używane w miejscach, gdzie są narażone na wysokie temperatury, aby zminimalizować ryzyko uszkodzeń oraz pożaru.

Pytanie 21

W układzie przedstawionym na rysunku, po podłączeniu odbiornika, zadziałał wyłącznik różnicowoprądowy. Przyczyną tego jest

Ilustracja do pytania
A. nieprawidłowe połączenie przewodu neutralnego i ochronnego.
B. zwarcie między przewodem fazowym i ochronnym
C. zwarcie między przewodem neutralnym i ochronnym.
D. pojawienie się napięcia na części metalowej normalnie nieprzewodzącej.
Zrozumienie mechanizmu działania wyłączników różnicowoprądowych jest kluczowe dla prawidłowej interpretacji sytuacji przedstawionej w pytaniu. Odpowiedź sugerująca zwarcie między przewodem neutralnym a ochronnym jest błędna, gdyż w takim przypadku wyłącznik nie zareagowałby. Zwarcie to nie wiąże się z różnicą prądów, która jest podstawą działania tych zabezpieczeń. Z kolei wariant dotyczący zwarcia między przewodem fazowym a ochronnym również nie jest trafny, ponieważ takie zwarcie najczęściej prowadzi do zadziałania zabezpieczeń nadprądowych, a nie różnicowoprądowych. Warto zauważyć, że nieprawidłowe połączenie przewodu neutralnego i ochronnego może prowadzić do poważnych problemów z bezpieczeństwem, jednak nie będzie to głównym powodem działania wyłącznika różnicowoprądowego. Typowym błędem w rozumieniu tego zagadnienia jest mylenie funkcji różnych rodzajów zabezpieczeń. Wyłącznik różnicowoprądowy ma na celu ochronę przed skutkami upływu prądu, a nie przed zwarciami. W praktyce, gdy urządzenie elektryczne generuje napięcie na obudowie, wyłącznik różnicowoprądowy działa jako pierwsza linia obrony przed porażeniem, co wyraźnie wskazuje na znaczenie jego prawidłowego działania oraz instalacji zgodnie z obowiązującymi normami bezpieczeństwa.

Pytanie 22

W celu wyrównania potencjałów na elementach metalowych, występujących w budynku, które w normalnych warunkach nie są częścią obwodu elektrycznego, należy zainstalować element oznaczony cyfrą

Ilustracja do pytania
A. 5
B. 1
C. 7
D. 3
Podejście do wyboru odpowiedzi wskazanych w pozostałych opcjach, takich jak 3, 5 czy 7, jest mylące, ponieważ nie uwzględnia kluczowego aspektu wyrównania potencjałów w kontekście bezpieczeństwa elektrycznego. W praktyce, wiele osób może mylnie sądzić, że wystarczy zastosować jakiekolwiek połączenia metalowe, aby osiągnąć wyrównanie potencjałów, co jest nieprawidłowe. Połączenie wyrównawcze nie tylko musi być wykonane, ale także powinno być odpowiednio zaprojektowane. Wybór niewłaściwego elementu, jak wskazano w innych odpowiedziach, może prowadzić do sytuacji, w których nie zostaną spełnione normy bezpieczeństwa. Przykładowo, elementy takie jak rury czy obudowy urządzeń powinny być połączone w sposób zapewniający jednorodność potencjału, co jest osiągane właśnie przez szynę wyrównawczą. Inne opcje mogą sugerować, że wystarczyłoby używać istniejących elementów instalacji, co w rzeczywistości może zwiększyć ryzyko powstania niebezpiecznych różnic potencjałów. Wybór niewłaściwego podejścia, jak stosowanie izolowanych połączeń czy brak odpowiednich połączeń do uziemienia, może prowadzić do niebezpiecznych sytuacji, które są niezgodne z dobrą praktyką branżową oraz normami, takimi jak PN-IEC 60364 dotyczące instalacji elektrycznych w budynkach. Dlatego kluczowe jest zrozumienie, że tylko odpowiednio zaprojektowana i zainstalowana szyna wyrównawcza zapewnia bezpieczeństwo oraz minimalizuje ryzyko porażeń elektrycznych.

Pytanie 23

Jakie są przyczyny automatycznego wyłączenia wyłącznika instalacyjnego po mniej więcej 10 minutach od włączenia obwodu odbiorczego w instalacji elektrycznej?

A. Zwarcie bezimpedancyjne
B. Przepięcie
C. Przeciążenie
D. Prąd błądzący
Przeciążenie obwodu elektrycznego jest jedną z najczęstszych przyczyn samoczynnego zadziałania wyłącznika instalacyjnego. Przeciążenie następuje w momencie, gdy obciążenie podłączone do obwodu przekracza jego dopuszczalną wartość prądową. Wyłączniki instalacyjne, zgodnie z normami PN-EN 60898, są zaprojektowane w taki sposób, aby chronić instalację przed uszkodzeniem w wyniku zbyt dużego natężenia prądu. W przypadku obwodów o niskiej impedancji, takie jak instalacje oświetleniowe czy gniazdka, obciążenie może wzrosnąć w wyniku uruchomienia wielu urządzeń jednocześnie, co prowadzi do przeciążenia. Gdy prąd przekracza wartość znamionową wyłącznika, mechanizm wyłączający uruchamia się automatycznie, co zapobiega ewentualnym uszkodzeniom kabli czy urządzeń. W praktyce, ważne jest, aby przed podłączeniem nowych urządzeń do instalacji, upewnić się, że całkowite obciążenie nie przekroczy wartości znamionowej wyłącznika, co jest kluczowe w zarządzaniu energią i zapewnieniu bezpieczeństwa instalacji elektrycznych.

Pytanie 24

Którego klucza należy użyć do przymocowania urządzenia elektrycznego do podłoża przy użyciu wkrętów, jak przedstawiony na ilustracji?

Ilustracja do pytania
A. Ampulowego.
B. Oczkowego.
C. Nasadowego.
D. Płaskiego.
Odpowiedź "Ampulowego" jest prawidłowa, ponieważ klucz ampulowy (inaczej klucz imbusowy) jest specjalnie zaprojektowany do pracy z wkrętami, które posiadają gniazdo sześciokątne wewnętrzne. Tego rodzaju wkręty są powszechnie stosowane w urządzeniach elektrycznych, co czyni klucz ampulowy niezwykle przydatnym narzędziem w wielu zastosowaniach. Dzięki konstrukcji klucza, który idealnie pasuje do gniazda wkrętu, można osiągnąć wysoki moment dokręcenia, co jest kluczowe dla zapewnienia stabilności zamocowanego urządzenia. W praktyce, użycie klucza ampulowego przy dokręcaniu wkrętów w urządzeniach elektrycznych zmniejsza ryzyko uszkodzenia elementów, ponieważ klucz nie zsuwa się z gniazda, co jest częstym problemem przy użyciu kluczy nasadowych czy oczkowych. Warto pamiętać, że nieodpowiednie narzędzie może prowadzić do uszkodzeń wkrętów oraz szkodliwych dla struktury zamocowanego urządzenia. Dlatego, wybierając odpowiedni klucz, należy kierować się jego specyfiką oraz standardami branżowymi dotyczącymi montażu i konserwacji urządzeń elektrycznych.

Pytanie 25

Na którym rysunku przedstawiono świetlówkę kompaktową?

Ilustracja do pytania
A. D.
B. A.
C. C.
D. B.
Wybór odpowiedzi A, B lub C może wynikać z nieporozumienia dotyczącego różnic między różnymi rodzajami lamp. Tradycyjne żarówki mają inny, bardziej okrągły kształt i emitują światło w sposób mniej efektywny, co może prowadzić do błędnego utożsamiania ich z świetlówkami kompaktowymi. Odpowiedzi te nie odzwierciedlają charakterystycznych cech świetlówek typu CFL, które są projektowane z myślą o maksymalizacji wydajności oraz minimalizacji zużycia energii. Innym częstym błędem jest pomylenie świetlówki kompaktowej z innymi rodzajami lamp, np. LED, które również oferują oszczędność energii, ale mają zupełnie inny kształt i budowę. Kluczowe dla rozróżnienia tych lamp jest zrozumienie ich konstrukcji oraz zasad działania. Świetlówki kompaktowe wykorzystują gaz i fosfor, co sprawia, że są bardziej skomplikowane w produkcji i wymagają innej technologii niż tradycyjne żarówki. Osoby, które mylnie identyfikują świetlówki kompaktowe, mogą nie doceniać ich zalet w kontekście oszczędności energii oraz wpływu na środowisko. W związku z powyższym, istotne jest, aby przed podjęciem decyzji o wyborze odpowiedniego źródła światła, zrozumieć ich zastosowanie i korzyści, jakie mogą przynieść w codziennym użytkowaniu.

Pytanie 26

Jaki rodzaj złączki stosowanej w instalacjach elektrycznych przedstawiono na rysunku?

Ilustracja do pytania
A. Samozaciskową.
B. Skrętną.
C. Gwintową.
D. Śrubową.
Odpowiedź "Samozaciskową" jest poprawna, ponieważ przedstawiona złączka instalacyjna rzeczywiście jest złączką samozaciskową. Złączki tego typu charakteryzują się prostym mechanizmem, który umożliwia szybkie i wygodne połączenie przewodów bez konieczności używania narzędzi. Wystarczy włożyć przewód do otworu zaciskowego, a mechanizm samozaciskowy automatycznie zaciska przewód, co zapewnia stabilne połączenie. Tego rodzaju złączki są powszechnie stosowane w instalacjach elektrycznych, ponieważ przyspieszają proces montażu oraz eliminują ryzyko niewłaściwego użycia narzędzi, które mogą uszkodzić przewody. Złączki samozaciskowe znajdują zastosowanie w różnych obszarach, od instalacji domowych po przemysłowe systemy elektryczne. Warto zaznaczyć, że ich stosowanie jest zgodne z zasadami bezpieczeństwa, ponieważ zapewniają one solidne połączenia, które są niezbędne dla bezpiecznego funkcjonowania instalacji elektrycznych.

Pytanie 27

Wskaż symbol graficzny monostabilnego łącznika przyciskowego z zestykiem NO.

Ilustracja do pytania
A. Symbol 2.
B. Symbol 3.
C. Symbol 4.
D. Symbol 1.
Monostabilny łącznik przyciskowy z zestykiem NO (normalnie otwartym) jest kluczowym elementem w wielu systemach elektrycznych i automatyce. Symbol 1 przedstawia ten łącznik, ilustrując otwarty styk, który zamyka się po naciśnięciu przycisku, co jest zgodne z zasadami oznaczania w normach IEC 60617. W praktyce, tego rodzaju łączniki są powszechnie używane w urządzeniach, które wymagają chwilowego włączenia obwodu, jak na przykład w urządzeniach sterujących, alarmach czy systemach oświetleniowych. Dzięki swojej konstrukcji, monostabilne przyciski są bardziej energooszczędne, ponieważ nie wymagają stałego zasilania do utrzymania stanu włączenia. Zrozumienie tego symbolu i funkcji jest kluczowe dla właściwego projektowania i implementacji systemów elektrycznych. Używanie poprawnych symboli graficznych w dokumentacji technicznej jest istotne dla komunikacji między inżynierami i technikami, co wpływa na jakość i bezpieczeństwo instalacji elektrycznych.

Pytanie 28

Którą klasę ochronności posiadają urządzenia posiadające izolację podstawową oraz izolację dodatkową o konstrukcji uniemożliwiającej powstanie uszkodzenia grożącego porażeniem w warunkach normalnego użytkowania podczas założonego czasu trwałości wyrobu?

A. Klasę I
B. Klasę II
C. Klasę III
D. Klasę 0
To pytanie dotyczy klasyfikacji ochronności urządzeń elektrycznych, czyli sposobu, w jaki konstrukcja urządzenia chroni użytkownika przed porażeniem prądem. Bardzo częsty błąd polega na mieszaniu pojęć: jedni patrzą tylko na napięcie pracy, inni tylko na obecność przewodu ochronnego, a jeszcze inni w ogóle nie zwracają uwagi na izolację i jej rodzaje. Tymczasem w treści pytania jest wyraźnie mowa o izolacji podstawowej oraz izolacji dodatkowej, i to w takiej konstrukcji, która uniemożliwia powstanie niebezpiecznego uszkodzenia w normalnych warunkach eksploatacji. Urządzenia klasy 0 praktycznie nie są już dopuszczane w normalnych instalacjach. Mają one tylko izolację podstawową, bez przewodu ochronnego i bez dodatkowych środków ochrony. W razie pojedynczego uszkodzenia izolacji obudowa może się znaleźć pod napięciem i nie ma żadnego zapasowego zabezpieczenia. To jest sprzeczne z opisem w pytaniu, gdzie mowa właśnie o konstrukcji odpornej na pojedyncze uszkodzenie. Klasa I kojarzy się wielu osobom z „bezpieczniejszą”, bo jest przewód ochronny PE i zacisk ochronny. Ale w klasie I podstawową ochronę daje izolacja podstawowa plus połączenie dostępnych metalowych części z przewodem ochronnym. Jeżeli dojdzie do przebicia na obudowę, prąd zwarciowy ma spowodować szybkie zadziałanie zabezpieczenia nadprądowego lub różnicowoprądowego. Nie ma tu jednak mowy o izolacji dodatkowej tak zaprojektowanej, żeby sama konstrukcja uniemożliwiała groźne uszkodzenie. Dlatego to nie pasuje do opisu w pytaniu. Klasa III natomiast opiera się na zasilaniu bardzo niskim napięciem bezpiecznym SELV/PELV, zazwyczaj poniżej 50 V AC lub 120 V DC w suchych warunkach, i jeszcze niższym w środowisku o zwiększonym zagrożeniu. Kluczowe jest tu właśnie obniżenie napięcia, a nie podwójna czy wzmocniona izolacja obudowy. Urządzenia klasy III często wymagają specjalnego zasilacza, który sam może być klasy II, ale samo urządzenie nie musi mieć podwójnej izolacji w rozumieniu definicji z norm ochrony przeciwporażeniowej. Typowy błąd myślowy polega na tym, że ktoś widzi brak przewodu ochronnego i od razu zakłada klasę 0, albo odwrotnie – widzi obudowę z tworzywa i myśli o klasie III, bo „to pewnie niskie napięcie”. Prawidłowe rozróżnienie wymaga spojrzenia na rodzaj zastosowanej izolacji, obecność lub brak przewodu PE i symboli na tabliczce znamionowej. W pytaniu podkreślono właśnie: izolacja podstawowa plus dodatkowa, konstrukcja uniemożliwiająca groźne uszkodzenie – to jest definicja klasy II, a inne odpowiedzi po prostu nie spełniają tych warunków z punktu widzenia norm PN-EN dotyczących ochrony przeciwporażeniowej.

Pytanie 29

Który licznik należy zamontować w instalacji elektrycznej, aby umożliwić przedpłatowy system rozliczania energii elektrycznej?

Ilustracja do pytania
A. C.
B. D.
C. A.
D. B.
Wybór niewłaściwego licznika do instalacji elektrycznej, jak w przypadku odpowiedzi A, C czy D, może prowadzić do poważnych problemów w zakresie zarządzania zużyciem energii. Liczniki, które nie są przystosowane do systemu przedpłatowego, nie mogą umożliwić użytkownikom wprowadzania kodów doładowujących, co jest kluczowym elementem tego systemu. Liczniki tradycyjne, które są powszechnie instalowane w domach, umożliwiają jedynie pomiar zużycia energii bez interakcji ze stroną użytkownika w zakresie przedpłat. Takie urządzenia są zgodne z innymi standardami, ale nie mają funkcjonalności, która jest istotna w kontekście nowoczesnych systemów zarządzania energią. Typowym błędem myślowym jest założenie, że każdy licznik energii może funkcyjnie zastąpić licznik przedpłatowy. Różnice te są kluczowe, szczególnie w sytuacjach, gdy użytkownicy chcą mieć większą kontrolę nad swoimi wydatkami. Aby wdrożyć skuteczny system zarządzania energią w budynkach mieszkalnych czy komercyjnych, konieczne jest zrozumienie specyfiki liczników i ich przeznaczenia. Dlatego właściwy wybór licznika, który wspiera system przedpłatowy, jest nie tylko kwestią techniczną, ale również finansową.

Pytanie 30

Narzędziem niezbędnym do wymiany łącznika pokazanego na zdjęciu jest wkrętak

Ilustracja do pytania
A. TROX
B. płaski.
C. PH2
D. z bitem M8
Wybór odpowiedzi innej niż wkrętak płaski wskazuje na nieporozumienie dotyczące rodzaju narzędzi stosowanych w instalacjach elektrycznych. Odpowiedzi takie jak TROX, PH2 czy z bitem M8 nie są odpowiednie w kontekście typowego wyłącznika instalacyjnego z zaciskiem śrubowym. Wkrętak TROX, pomimo że jest narzędziem stosowanym w niektórych zastosowaniach, nie jest przeznaczony do standardowych wyłączników instalacyjnych. Z kolei końcówka PH2, będąca rodzajem wkrętaka krzyżowego, jest używana głównie do śrub z gniazdem krzyżowym, które są rzadziej spotykane w wyłącznikach instalacyjnych. Odpowiedź dotycząca bitu M8 odnosi się do zastosowania wkrętaków z końcówkami o dużych rozmiarach, co jest całkowicie nieodpowiednie w kontekście standardowych zacisków dostępnych w wyłącznikach elektrycznych. Te błędne odpowiedzi wskazują na powszechne nieporozumienia w zakresie narzędzi potrzebnych do wykonywania prac elektrycznych, gdzie kluczowa jest znajomość specyfiki zamocowań w różnych urządzeniach. Używanie niewłaściwych narzędzi nie tylko może prowadzić do uszkodzeń, ale też stwarza zagrożenie dla bezpieczeństwa, co jest nie do zaakceptowania w profesjonalnych pracach elektroinstalacyjnych. Zrozumienie tych różnic jest kluczowe dla skutecznego i bezpiecznego podejścia do pracy z instalacjami elektrycznymi.

Pytanie 31

Na którym rysunku pokazano jednofazowy wyłącznik różnicowoprądowy?

Ilustracja do pytania
A. C.
B. D.
C. B.
D. A.
Jednofazowy wyłącznik różnicowoprądowy, przedstawiony na rysunku A, pełni kluczową rolę w ochronie instalacji elektrycznych przed porażeniem prądem oraz w zapobieganiu pożarom spowodowanym przez prądy upływowe. Główną cechą wyróżniającą to urządzenie są dwa zaciski przyłączeniowe, które odpowiadają za podłączenie przewodów fazowego i neutralnego, a także charakterystyczny przycisk testowy oznaczony literą 'T', który pozwala na sprawdzenie poprawności działania wyłącznika. W praktyce, jednofazowe wyłączniki różnicowoprądowe są powszechnie stosowane w domowych instalacjach elektrycznych, zwłaszcza w obwodach z gniazdami, aby zabezpieczyć użytkowników przed potencjalnymi zagrożeniami. Zgodnie z normami branżowymi, takie urządzenia powinny być montowane w każdym nowym budynku, co znacząco zwiększa poziom bezpieczeństwa użytkowników. Dodatkowo, regularne testowanie tych wyłączników jest kluczowe dla zapewnienia ich sprawności, dlatego rekomenduje się przeprowadzanie testów co najmniej raz na trzy miesiące.

Pytanie 32

Elementy którego silnika elektrycznego przedstawiono na rysunku?

Ilustracja do pytania
A. Indukcyjnego pierścieniowego.
B. Jednofazowego z kondensatorem pracy.
C. Indukcyjnego klatkowego.
D. Komutatorowego prądu stałego.
Wybór nieprawidłowych odpowiedzi wskazuje na pewne nieporozumienia dotyczące różnych typów silników elektrycznych i ich konstrukcji. Silnik indukcyjny pierścieniowy to konstrukcja, która wykorzystuje wirnik z pierścieniami, co jest charakterystyczne dla silników o mocy dużej, używanych głównie w aplikacjach przemysłowych, gdzie wymagana jest wysoka moc startowa. Typowe zastosowanie to napędy dużych maszyn, gdzie istotne są parametry takie jak moment obrotowy. Z kolei silnik komutatorowy prądu stałego charakteryzuje się innym sposobem przekształcania energii - wykorzystuje komutatory do zmiany kierunku prądu w uzwojeniach wirnika, co sprawia, że jest bardziej skomplikowany konstrukcyjnie i wymaga więcej konserwacji. Silniki jednofazowe z kondensatorem pracy używane są głównie w domowych zastosowaniach, takich jak małe pompy czy wentylatory, ale ich budowa i zasada działania znacząco różnią się od silników indukcyjnych klatkowych. Typowe błędy myślowe to mylenie zastosowania tych silników oraz nieodpowiednie przypisywanie ich cech do danej konstrukcji. Wiedza o różnicach między tymi typami silników jest kluczowa dla efektywnego doboru odpowiedniego silnika do konkretnej aplikacji w przemyśle czy gospodarstwie domowym.

Pytanie 33

Na którym rysunku przedstawiono prawidłowy, zgodny z zasadami BHP sposób wykonania połączenia przewodu z żyłą w postaci drutu w zacisku śrubowym?

Ilustracja do pytania
A. B.
B. D.
C. A.
D. C.
Wybór innej odpowiedzi, mimo że na pierwszy rzut oka może wydawać się logiczny, często prowadzi do nieprawidłowych praktyk, które mogą zagrażać bezpieczeństwu instalacji. Niewłaściwe ułożenie drutu w zacisku lub jego zbyt słabe dokręcenie może skutkować niepełnym kontaktem, co prowadzi do zwiększonego oporu elektrycznego, a w konsekwencji do przegrzewania się połączenia. Należy także pamiętać, że niewłaściwe zagięcie drutu, które nie umożliwia jego pełnego przylegania do powierzchni styku, stwarza ryzyko wypadnięcia żyły z zacisku. Takie błędy są szczególnie niebezpieczne w kontekście urządzeń, które są narażone na wibracje lub ruch, gdzie może dochodzić do poluzowania złączki. Przykładowo, w zastosowaniach przemysłowych, takie jak montaż silników elektrycznych, poprawne połączenie jest kluczowe dla ich długowieczności i efektywności. Z tego powodu, każde połączenie powinno być wykonane zgodnie z zaleceniami producentów oraz obowiązującymi normami, co zapewnia nie tylko bezpieczeństwo, ale również funkcjonalność całej instalacji elektrycznej. Praktyczne umiejętności związane z prawidłowym wykonaniem połączeń są zatem niezbędne w każdej pracy związanej z elektrycznością.

Pytanie 34

Które źródło światła przedstawiono na rysunku?

Ilustracja do pytania
A. Lampę neonową.
B. Żarówkę wolframową.
C. Żarówkę halogenową.
D. Świetlówkę kompaktową.
Odpowiedzi, które wskazują na inne źródła światła, mogą wydawać się na pierwszy rzut oka logiczne, jednak każda z nich posiada cechy, które różnią się od świetlówki kompaktowej. Żarówka halogenowa jest ulepszoną wersją żarówki tradycyjnej, która działa na zasadzie podgrzewania włókna tungstenowego. Choć ma wyższą wydajność niż standardowe żarówki żarowe, jej kształt i działanie nie są zgodne z tym, co przedstawiono na zdjęciu. Żarówka wolframowa, tak jak halogenowa, również wykorzystuje włókno, emitując ciepłe światło, ale jej kształt jest znacznie bardziej okrągły i nie przyjmuje postaci spiralnej. Lampa neonowa, z drugiej strony, jest zupełnie innym typem źródła światła; wykorzystuje gaz neonowy do emisji charakterystycznych kolorów, jednak nie posiada cech świetlówki kompaktowej. Typowe błędy myślowe w tym kontekście obejmują myślenie, że ponieważ źródła światła różnią się jedynie w kilku aspektach, można je utożsamiać. Ważne jest, aby zrozumieć podstawowe różnice w budowie i działaniu różnych typów źródeł światła, co pozwala na świadome ich dobieranie w zależności od potrzeb oświetleniowych i energetycznych. W kontekście nowoczesnych rozwiązań oświetleniowych, znajomość tych różnic jest kluczowa dla efektywnego projektowania systemów oświetleniowych oraz optymalizacji kosztów energii.

Pytanie 35

Na rysunku przedstawiono schemat

Ilustracja do pytania
A. wyłącznika schodowego.
B. wyłącznika różnicowoprądowego.
C. programowalnego przełącznika czasowego.
D. łącznika zmierzchowego.
Wybór odpowiedzi innej niż wyłącznik różnicowoprądowy wskazuje na nieporozumienia dotyczące funkcji i budowy różnych urządzeń elektrycznych. Programowalny przełącznik czasowy to urządzenie, które pozwala na automatyczne włączanie i wyłączanie obwodów elektrycznych w określonym czasie, co jest zupełnie inną funkcjonalnością niż zabezpieczanie przed porażeniem prądem. Łącznik zmierzchowy z kolei działa na zasadzie aktywacji oświetlenia w zależności od natężenia światła, co również nie ma nic wspólnego z ochroną przed upływem prądu. Wyłącznik schodowy, stosowany w instalacjach oświetleniowych, umożliwia sterowanie jednym źródłem światła z dwóch miejsc, jednak nie pełni funkcji zabezpieczających. Kluczowym błędem jest nieznajomość zasad działania wyłączników różnicowoprądowych, które są zaprojektowane specjalnie do wykrywania niebezpiecznych różnic prądów. Niezrozumienie tego zagadnienia może prowadzić do nieodpowiedniego doboru urządzeń w instalacjach elektrycznych, co z kolei może zwiększać ryzyko wypadków oraz zagrożeń dla zdrowia i życia. Wiedza na temat funkcji każdego z tych urządzeń jest kluczowa dla zapewnienia bezpieczeństwa w infrastrukturze elektrycznej.

Pytanie 36

Który z urządzeń umożliwia bezpośredni pomiar cos 9?

A. Fazomierz
B. Waromierz
C. Watomierz
D. Omomierz
Watomierz, omomierz i waromierz to przyrządy, które pełnią różne funkcje, ale nie są odpowiednie do bezpośredniego pomiaru cos φ. Watomierz mierzy moc elektryczną, co jest istotne w kontekście zużycia energii, ale nie informuje nas o kącie fazowym. Zrozumienie tego narzędzia jest kluczowe, jednak nie można go używać do oceny współczynnika mocy, ponieważ wymaga to pomiaru zarówno prądu, jak i napięcia, a także ich faz. Omomierz, z kolei, służy do pomiaru oporu, co w przypadku prądów zmiennych jest niewłaściwe, ponieważ nie uwzględnia on aspektu fazowego. Użycie omomierza w kontekście pomiaru cos φ może prowadzić do mylnych wniosków i błędów w ocenie stanu obwodu. Waromierz, który jest narzędziem do pomiaru energii w obwodach prądu zmiennego, także nie dostarcza informacji o fazie, co czyni go nieprzydatnym w tym kontekście. Wielu użytkowników może myśleć, że wystarcza pomiar mocy lub oporu, jednak te podejścia pomijają kluczowy aspekt, jakim jest kąt fazowy, co jest fundamentalne dla zrozumienia efektywności energetycznej. W praktyce, nieznajomość różnicy między tymi przyrządami a fazomierzem może prowadzić do poważnych problemów w diagnostyce i zarządzaniu systemami elektrycznymi.

Pytanie 37

Jakiego urządzenia należy użyć do pomiaru rezystancji izolacji w instalacji elektrycznej?

A. Watomierza
B. Megaomomierza
C. Megawoltomierza
D. Omomierza
Wybór nieodpowiednich przyrządów pomiarowych do oceny rezystancji izolacji może prowadzić do poważnych konsekwencji zarówno dla bezpieczeństwa, jak i funkcjonalności instalacji elektrycznej. Watomierz, wykorzystujący zjawisko pomiaru mocy w obwodach elektrycznych, nie jest przeznaczony do oceny stanu izolacji. Jego zastosowanie ogranicza się do pomiaru energii elektrycznej, co jest całkowicie odmiennym zadaniem. Omomierz, mimo że mierzy opór, jest stosowany przy normalnych warunkach pracy, co oznacza, że nie uwzględnia on stanu izolacji pod wpływem wysokich napięć, które są kluczowe w tym kontekście. W przypadku megawoltomierza, jest to urządzenie służące do pomiaru napięcia, a nie rezystancji, co czyni go zupełnie nieprzydatnym w tym aspekcie. Typowym błędem jest założenie, że każdy przyrząd pomiarowy, który mierzy opór, spełni wymagania dla pomiaru izolacji, podczas gdy w rzeczywistości tylko megaomomierz, działający w odpowiednich warunkach napięciowych, może dostarczyć wiarygodne dane. Właściwe zrozumienie zastosowania każdego z tych urządzeń oraz ich ograniczeń jest kluczowe dla zapewnienia bezpieczeństwa w instalacjach elektrycznych.

Pytanie 38

Przed dokonaniem pomiaru rezystancji izolacji w instalacji elektrycznej najpierw należy odciąć napięcie zasilające, a potem

A. zamontować do opraw źródła światła, włączyć odbiorniki jednofazowe do gniazd wtyczkowych, włączyć silniki trójfazowe
B. usunąć z opraw źródła światła, wyłączyć odbiorniki jednofazowe z gniazd wtyczkowych, odłączyć silniki trójfazowe
C. zamontować do opraw źródła światła, wyłączyć odbiorniki jednofazowe z gniazd wtyczkowych, włączyć silniki trójfazowe
D. usunąć z opraw źródła światła, włączyć odbiorniki jednofazowe do gniazd wtyczkowych, odłączyć silniki trójfazowe
To, co napisałeś, jest trochę nie tak. Wybór złej sekwencji działań przed pomiarem rezystancji izolacji może prowadzić do różnych kłopotów, zarówno z bezpieczeństwem, jak i z jakością wyników. Na przykład, jeśli nie wymontujesz źródeł światła i nie wyłączysz jednofazowych odbiorników, to narażasz się na ryzyko porażenia prądem. Włączenie ich przed testem może dać złe wyniki i stwarza niebezpieczeństwo dla osoby przeprowadzającej pomiar. To jest sprzeczne z zasadą, że trzeba upewnić się, że wszystko jest odcięte od prądu. Dobrze jest pamiętać, że podłączanie urządzeń bez wcześniejszego ich rozłączenia może wprowadzić niechciane napięcia do obwodu, co grozi uszkodzeniem sprzętu pomiarowego i może wprowadzić zamieszanie w diagnozowaniu stanu izolacji. Często takie pomyłki wynikają z braku wiedzy o odpowiednich zasadach bezpieczeństwa oraz testów elektrycznych, co może prowadzić do błędów w pomiarach, a nawet do zagrożenia dla zdrowia i życia. Dlatego ważne jest, żeby zawsze trzymać się ustalonych norm i dobrych praktyk przed przystąpieniem do jakichkolwiek prac związanych z instalacją elektryczną.

Pytanie 39

Przyrząd przedstawiony na rysunku służy do

Ilustracja do pytania
A. wyznaczania trasy przewodów.
B. sprawdzania ciągłości żył przewodów.
C. szacowania długości przewodów.
D. pomiaru rezystancji żył przewodów.
Odpowiedzi, które wskazują na wyznaczanie trasy przewodów, szacowanie długości przewodów czy pomiar rezystancji żył, nie uwzględniają fundamentalnych zasad działania urządzeń pomiarowych w elektryce. Wyznaczanie trasy przewodów wymaga zastosowania innych narzędzi, takich jak lokalizatory kabli, które działają na zasadzie detekcji sygnałów w przewodach. Te urządzenia nie są w stanie ocenić ciągłości obwodu, a jedynie lokalizować przewody w ścianach czy ziemi. Szacowanie długości przewodów natomiast wiąże się z użyciem taśmy mierniczej lub innego urządzenia mierniczego, co różni się od funkcji testera ciągłości. Pomiar rezystancji żył wymaga zastosowania specjalistycznych multimetrach, które są w stanie dokonać pomiaru wartości oporu elektrycznego, lecz nie zajmują się bezpośrednio sprawdzaniem ciągłości obwodu. Typowe błędy, prowadzące do tych nieprawidłowych wniosków, to mylenie funkcji różnych urządzeń pomiarowych oraz niewłaściwe zrozumienie ich zastosowania w praktyce. Zrozumienie, jaki dokładnie rodzaj przyrządów jest potrzebny w konkretnych sytuacjach, jest kluczowe dla efektywnej pracy w obszarze elektryki.

Pytanie 40

Przewód zastosowany na odcinku obwodu elektrycznego wskazanym strzałką powinien mieć żyły o izolacjach w kolorze

Ilustracja do pytania
A. żółtozielonym, niebieskim i czarnym lub brązowym.
B. żółtozielonym i czarnym lub brązowym.
C. niebieskim i czarnym lub brązowym.
D. tylko czarnym lub brązowym.
Odpowiedź "tylko czarnym lub brązowym" jest prawidłowa, ponieważ zgodnie z normami PN-IEC 60446 dotyczącymi kolorystyki izolacji przewodów elektrycznych, przewody fazowe powinny być oznaczone kolorami czarnym, brązowym lub szarym. W kontekście obwodów elektrycznych, przewody fazowe są tymi, które przenoszą prąd do urządzeń, dlatego ich identyfikacja jest kluczowa dla bezpieczeństwa i prawidłowego działania instalacji. W praktyce, stosowanie przewodów o odpowiednich kolorach izolacji jest wymogiem, który ma na celu zapobieganie pomyłkom podczas instalacji oraz serwisowania systemów elektrycznych. Na przykład, gdy elektryk pracuje nad naprawą lub modernizacją instalacji, znajomość kolorów przewodów fazowych pozwala na szybkie i bezbłędne zidentyfikowanie, które przewody są pod napięciem, co minimalizuje ryzyko porażenia prądem. Dlatego też, wybierając przewody do instalacji, zawsze należy kierować się zasadami określonymi w normach, aby zapewnić bezpieczeństwo i zgodność z przepisami.