Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektroradiolog
  • Kwalifikacja: MED.08 - Świadczenie usług medycznych w zakresie diagnostyki obrazowej, elektromedycznej i radioterapii
  • Data rozpoczęcia: 10 lutego 2026 15:26
  • Data zakończenia: 10 lutego 2026 15:35

Egzamin zdany!

Wynik: 29/40 punktów (72,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Którym skrótem oznacza się tomografię komputerową wysokiej rozdzielczości?

A. SPECT
B. PTCA
C. HRCT
D. EPCW
Prawidłowy skrót to HRCT, czyli High Resolution Computed Tomography – po polsku tomografia komputerowa wysokiej rozdzielczości. Jest to specjalny protokół badania TK, stosowany głównie do bardzo dokładnej oceny miąższu płuc. Różni się od standardowej tomografii przede wszystkim ustawieniami technicznymi: używa się bardzo cienkich warstw (rzędu 0,5–1,5 mm), wysokiej rozdzielczości przestrzennej i odpowiednich filtrów rekonstrukcyjnych (tzw. filtry wysokiej rozdzielczości, „sharp kernel”). Dzięki temu można zobaczyć drobne struktury, jak oskrzeliki końcowe, przegrody międzypęcherzykowe czy wczesne zmiany śródmiąższowe, które na zwykłym TK mogłyby się „zgubić”. W praktyce klinicznej HRCT jest złotym standardem przy diagnostyce chorób śródmiąższowych płuc, rozedmy, zmian w przebiegu kolagenoz, sarkoidozy, a także przy ocenie powikłań po radioterapii klatki piersiowej. Bardzo często wykonuje się je w określonych fazach oddechu (wdech, czasem wydech) i z ograniczonym zakresem naświetlania, żeby zmniejszyć dawkę promieniowania, bo z natury cienkie warstwy zwiększają ekspozycję. Moim zdaniem warto zapamiętać, że HRCT to nie osobne urządzenie, tylko sposób wykonania badania na standardowym tomografie, zgodnie z zaleceniami towarzystw radiologicznych (np. standardy diagnostyki ILD). W opisach badań zawsze powinno się wyraźnie zaznaczać, że zastosowano protokół HRCT, bo ma to duże znaczenie dla dalszej interpretacji i porównywania badań w czasie.

Pytanie 2

Który typ głowicy ultrasonograficznej przedstawiono na ilustracji?

Ilustracja do pytania
A. Sektorową.
B. Konweksową.
C. Endokawitarną.
D. Liniową.
Na ilustracji widać głowicę liniową – charakterystyczną po prostokątnym, równym czołie emitera, które tworzy długi, płaski pasek kryształów piezoelektrycznych. W przekroju wiązka ma kształt prostokąta, a obraz powstaje jako równoległe linie skanowania, bez zwężania się w „wachlarz” jak w głowicach sektorowych czy konweksowych. Taka konstrukcja daje szerokie okno akustyczne tuż pod powierzchnią skóry i bardzo dobrą rozdzielczość przestrzenną w badaniu struktur położonych płytko. W praktyce klinicznej głowice liniowe stosuje się głównie do badania tkanek powierzchownych: tarczycy, sutka, moszny, naczyń (USG dopplerowskie tętnic szyjnych, żył kończyn dolnych), narządu ruchu (ścięgna, więzadła, mięśnie) oraz w ultrasonografii przyłóżkowej do oceny ściany brzucha, punkcji naczyniowych czy blokad nerwów. Z mojego doświadczenia w pracowniach diagnostycznych przyjmuje się jako dobrą praktykę, że do struktur powierzchownych wybiera się właśnie głowicę liniową o wysokiej częstotliwości, najczęściej 7,5–15 MHz, bo wyższa częstotliwość oznacza lepszą rozdzielczość kosztem głębokości penetracji, co w tym przypadku jest korzystne. W wytycznych i kursach z ultrasonografii podkreśla się, żeby przy USG naczyniowym zawsze zaczynać od głowicy liniowej, a dopiero przy bardzo głębokim położeniu naczyń rozważać inne typy. Warto też pamiętać, że płaski kształt czoła ułatwia dokładne dociśnięcie do skóry i stabilne prowadzenie głowicy wzdłuż naczyń czy ścięgien, co przekłada się na powtarzalność badania i lepszą jakość dokumentacji obrazowej.

Pytanie 3

Jednostką indukcji magnetycznej jest

A. tesla (T)
B. weber (Wb)
C. om (Ω)
D. kulomb (C)
Prawidłową jednostką indukcji magnetycznej (nazywanej też gęstością strumienia magnetycznego) w układzie SI jest tesla (T). Indukcja magnetyczna B opisuje „siłę” pola magnetycznego w danym miejscu, czyli jak mocno to pole oddziałuje na ładunki elektryczne w ruchu lub na przewodnik z prądem. Formalnie 1 tesla to taka indukcja magnetyczna, przy której na przewód o długości 1 m, ustawiony prostopadle do linii pola i przewodzący prąd 1 A, działa siła 1 N. Wzór, który to ładnie pokazuje, to F = B · I · l · sinα. W praktyce, w technice medycznej, z indukcją magnetyczną spotykasz się głównie przy rezonansie magnetycznym (MR). Typowe skanery kliniczne mają pola 1,5 T albo 3 T, a w badaniach naukowych używa się nawet 7 T i więcej. Im większa wartość tesli, tym silniejsze pole magnetyczne, lepszy sygnał i potencjalnie wyższa rozdzielczość obrazów, ale też większe wymagania dotyczące ochrony i bezpieczeństwa. W dokumentacji producentów magnesów, cewek gradientowych czy systemów do MR zawsze podaje się natężenie pola właśnie w teslach, zgodnie z normami i standardami (np. IEC dotyczące bezpieczeństwa MR). Dobrą praktyką w pracy z aparaturą jest świadome odróżnianie jednostek: tesla odnosi się do pola magnetycznego, gauss to starsza jednostka spoza SI (1 T = 10 000 G), a weber służy do opisu całkowitego strumienia magnetycznego, a nie jego gęstości. Moim zdaniem warto mieć to w głowie, bo potem łatwiej czytać instrukcje urządzeń, wytyczne BHP i opisy stref bezpieczeństwa w pracowni MR.

Pytanie 4

W ułożeniu do rentgenografii AP stawu kolanowego promień główny pada

A. prostopadle na podstawę rzepki.
B. prostopadle na wierzchołek rzepki.
C. pod kątem 30° na podstawę rzepki.
D. pod kątem 30° na wierzchołek rzepki.
Prawidłowe ułożenie do projekcji AP stawu kolanowego zakłada, że promień główny pada prostopadle na wierzchołek rzepki. Chodzi o to, żeby centralna wiązka przechodziła przez oś stawu kolanowego, mniej więcej na poziomie szpary stawowej, a punktem orientacyjnym na skórze jest właśnie wierzchołek rzepki. Przy takim ustawieniu unikamy sztucznego wydłużenia lub skrócenia struktur kostnych, a odwzorowanie szpary stawowej jest możliwie najbardziej zbliżone do rzeczywistości anatomicznej. W standardach opisów projekcji AP kolana podkreśla się, że promień powinien być prostopadły do kasety i do płaszczyzny stawu, bez dodatkowej angulacji, chyba że mamy szczególne wskazania (np. ocena określonych powierzchni stawowych lub pacjent z deformacją osi kończyny). W praktyce technik ustawia pacjenta w pozycji leżącej na plecach lub stojącej, kończyna dolna wyprostowana, rzepka skierowana do przodu, a kaseta pod kolanem. Centralny promień kieruje dokładnie na wierzchołek rzepki – to jest wygodny, łatwy do znalezienia punkt orientacyjny, który dobrze pokrywa się z osią stawu. Moim zdaniem warto to sobie skojarzyć: AP kolana – prostopadle – wierzchołek rzepki. Dzięki temu uzyskujemy poprawną ocenę przynasad kości udowej i piszczeli, szerokości szpary stawowej, ewentualnych zwężeń w chorobie zwyrodnieniowej, ustawienia rzepki względem bloczka kości udowej. To ma bezpośrednie przełożenie na jakość diagnostyki, bo ortopeda czy radiolog od razu widzi, czy obraz jest wykonany zgodnie z zasadami, czy coś jest zniekształcone przez złe pozycjonowanie.

Pytanie 5

Który obszar napromieniania w radioterapii oznacza się skrótem PTV?

A. Obszar guza.
B. Obszar leczony.
C. Zaplanowany obszar napromieniania.
D. Kliniczny obszar napromieniania.
Prawidłowo – PTV to właśnie zaplanowany obszar napromieniania (Planning Target Volume). W radioterapii stosuje się kilka zdefiniowanych objętości: GTV (Gross Tumor Volume – makroskopowy guz), CTV (Clinical Target Volume – kliniczny obszar napromieniania, czyli guz plus strefa możliwego mikroskopowego nacieku) oraz właśnie PTV. PTV powstaje z CTV przez dodanie odpowiednich marginesów bezpieczeństwa, które mają uwzględnić niepewności: ruchy pacjenta, ruchomość narządów (np. oddech, perystaltyka), błędy ustawienia, ograniczenia systemu unieruchomienia czy dokładności aparatu. Moim zdaniem to jedno z kluczowych pojęć w planowaniu, bo decyduje, czy dawka rzeczywiście trafi tam, gdzie trzeba, w każdych typowych warunkach leczenia. W praktyce planowania na systemie TPS (Treatment Planning System) fizyk medyczny i lekarz radioterapeuta wyznaczają najpierw GTV i CTV na obrazach TK (często z fuzją z MR lub PET), a dopiero potem definiują PTV, np. CTV + 5 mm marginesu izotropowego albo bardziej złożone marginesy anisotropowe. W protokołach klinicznych i wytycznych (np. ICRU Report 50/62, nowsze ICRU 83) bardzo mocno podkreśla się, że dawka referencyjna musi pokryć PTV w określonym procencie objętości, np. 95% PTV otrzymuje 95% dawki przepisanej. Dzięki temu można kontrolować, czy napromienianie jest wystarczająco jednorodne i czy nie ma nieakceptowalnych niedowiązań w obrębie celu. W nowoczesnych technikach jak IMRT czy VMAT całe kształtowanie rozkładu dawki, optymalizacja planu, analiza DVH i kontrola jakości są wykonywane właśnie w odniesieniu do PTV. W praktyce klinicznej technik radioterapii, ustawiając pacjenta na aparacie, tak naprawdę pilnuje, aby w każdym dniu leczenia PTV znalazło się w polu wiązek zgodnie z planem, a nie tylko „sam guz”, który i tak jest często niewidoczny w obrazowaniu portalowym lub CBCT.

Pytanie 6

Na którym z zapisów EKG została uwidoczniona fala Pardee'go?

A. Zapis 1
Ilustracja do odpowiedzi A
B. Zapis 3
Ilustracja do odpowiedzi B
C. Zapis 2
Ilustracja do odpowiedzi C
D. Zapis 4
Ilustracja do odpowiedzi D
Na przedstawionych zapisach łatwo się pomylić, bo wszystkie pokazują jakieś odchylenia od typowego, książkowego EKG, ale tylko zapis 3 spełnia kryteria fali Pardee’go, czyli uniesienia odcinka ST typowego dla ostrego zawału z uniesieniem ST. W innych zapisach widzimy zmiany, które mogą sugerować różne stany – od przerostów, przez zaburzenia przewodzenia, aż po nieswoiste zaburzenia repolaryzacji – ale nie mają one klasycznego, ciągłego, kopulastego uniesienia ST z gładkim przejściem w dodatnią falę T. Typowym błędem jest utożsamianie każdego wyższego załamka R lub poszerzonego zespołu QRS z falą Pardee’go. Fala Pardee’go nie dotyczy zespołu QRS, tylko odcinka ST i kształtu całego kompleksu ST–T. Często też myli się ją z tzw. wczesną repolaryzacją, gdzie ST jest uniesiony, ale zwykle w odprowadzeniach przedsercowych u młodych osób, z wyraźnym punktem J i raczej wklęsłym do góry kształtem. W zawale ST-elevated uniesienie jest zwykle bardziej kopulaste, wypukłe, powiązane z objawami klinicznymi (ból zamostkowy, duszność, poty) i często towarzyszą mu inne cechy, np. załamki Q w późniejszej fazie czy zmiany lustrzane w przeciwległych odprowadzeniach. Z mojego doświadczenia dużym problemem jest też skupianie się tylko na jednym odprowadzeniu. Standardem jest ocena uniesienia ST w co najmniej dwóch sąsiednich odprowadzeniach – dopiero wtedy mówimy o obrazie zawału STEMI. W pozostałych zapisach z pytania brakuje tego typowego, równomiernego, kopulastego uniesienia ST, przez co nie spełniają one kryteriów fali Pardee’go, mimo że na pierwszy rzut oka „coś tam jest nie tak”. W praktyce warto więc nie tylko patrzeć na wysokość ST, ale też na jego kształt, kontekst kliniczny i rozmieszczenie zmian w różnych odprowadzeniach.

Pytanie 7

Obrazy MR kręgosłupa szyjnego przedstawiają etap planowania badania warstw

Ilustracja do pytania
A. strzałkowych.
B. osiowych.
C. skośnych.
D. czołowych.
W tym zadaniu łatwo się pomylić, bo na ekranie do planowania badań MR zwykle widzimy kilka płaszczyzn naraz i sporo linii cięcia, które wyglądają podobnie. Wiele osób automatycznie kojarzy takie poziome linie z warstwami osiowymi, bo w tomografii komputerowej to właśnie obrazy poprzeczne są najbardziej klasyczne. W rezonansie magnetycznym kręgosłupa szyjnego schemat pracy jest jednak trochę inny: osiowe przekroje są oczywiście wykonywane, ale standardowe, kluczowe sekwencje planuje się najpierw w płaszczyznach strzałkowej i czołowej. Odpowiedź sugerująca warstwy skośne wynika zwykle z obserwacji, że linie na podglądzie nie są idealnie poziome względem ekranu. To jednak nie oznacza, że mamy do czynienia z płaszczyzną skośną w sensie klinicznym. W MR bardzo często ustawiamy płaszczyzny anatomicznie, czyli równolegle do osi długiej kręgosłupa, trzonów kręgów czy krążków międzykręgowych. Na monitorze wygląda to jak lekkie nachylenie, ale w nomenklaturze nadal jest to płaszczyzna czołowa, tylko dostosowana do naturalnej krzywizny szyi. Pojawia się też czasem skojarzenie ze strzałkowymi, bo użytkownik patrzy na obraz, na którym widoczny jest profil kręgosłupa i linie przecinające go z boku. Trzeba jednak pamiętać, że planowanie warstw odbywa się zazwyczaj na dwóch obrazach referencyjnych jednocześnie: na przykład na strzałkowym ustawiamy zakres góra–dół i kąt, a na osiowym albo czołowym – ich rozkład w poprzek. To może mylić i sugerować inną płaszczyznę niż w rzeczywistości. W poprawnym rozumieniu tematu kluczowe jest odwołanie się do definicji: warstwy osiowe są prostopadłe do długiej osi kręgosłupa, warstwy strzałkowe biegną równolegle do niej z podziałem na lewo–prawo, a warstwy czołowe dzielą ciało na część przednią i tylną. Na prezentowanych obrazach celem jest właśnie taki podział, co wskazuje na płaszczyznę czołową. Typowym błędem myślowym jest patrzenie tylko na orientację linii względem ekranu, a nie względem anatomii pacjenta – w praktyce MR zawsze liczy się ta druga perspektywa.

Pytanie 8

Na przekroju poprzecznym TK mózgu strzałką wskazano obszar

Ilustracja do pytania
A. hyperdensyjny w płacie czołowym.
B. hypodensyjny w płacie czołowym.
C. hypodensyjny w móżdżku.
D. hyperdensyjny w móżdżku.
Na przedstawionym przekroju poprzecznym TK głowy widoczny jest obraz w projekcji osiowej na poziomie tylnego dołu czaszki. Strzałka wyraźnie wskazuje strukturę położoną w obrębie móżdżku, poniżej półkul mózgowych i powyżej otworu wielkiego. Z mojego doświadczenia w opisywaniu takich badań najczęstszy błąd to pomylenie tego poziomu z płatami potylicznymi, ale tutaj widać typowy układ półkul móżdżku i robaka móżdżku. Zaznaczony obszar jest jaśniejszy niż prawidłowa tkanka móżdżku, czyli ma większą gęstość w jednostkach Hounsfielda – mówimy więc, że jest hyperdensyjny. W TK bez kontrastu taka hyperdensyjna zmiana w móżdżku najczęściej sugeruje świeży krwotok śródmózgowy lub krwotok do guza. W praktyce klinicznej rozpoznanie hyperdensyjnego ogniska w móżdżku ma duże znaczenie, bo krwotok w tej lokalizacji może szybko dawać wzrost ciśnienia śródczaszkowego i ucisk pnia mózgu. Standardowo, zgodnie z dobrymi praktykami radiologicznymi, opisując taki obraz, zwraca się uwagę na lokalizację (półkula móżdżku, robak), gęstość zmiany, obecność obrzęku, przemieszczenie struktur pośrodkowych i ewentualne poszerzenie układu komorowego. Warto też pamiętać, że hyperdensyjny obszar w TK może wynikać nie tylko z krwi, ale też z zwapnień, materiału kontrastowego lub ciała obcego, dlatego zawsze ocenia się kontekst kliniczny i porównuje z innymi warstwami oraz z wcześniejszymi badaniami. Moim zdaniem to pytanie dobrze uczy podstawowego odruchu: najpierw lokalizacja anatomiczna (tu móżdżek), dopiero potem charakter densyjny (hyper- czy hypodensyjny).

Pytanie 9

Przedstawiony obraz został zarejestrowany podczas wykonania

Ilustracja do pytania
A. badania radioizotopowego.
B. tomografii komputerowej.
C. pozytonowej tomografii emisyjnej.
D. rezonansu magnetycznego.
Przedstawiony obraz to klasyczna scyntygrafia kośćca – czyli wynik badania radioizotopowego układu kostnego. Widać całe ciało w projekcji przedniej i tylnej, z równomiernym, dość „ziarnistym” rozkładem znacznika w kościach, bez typowych dla TK czy MR przekrojów poprzecznych. W medycynie nuklearnej nie oglądamy samej anatomii jak w RTG czy TK, tylko rozkład radiofarmaceutyku, który pokazuje metabolizm i aktywność biologiczną tkanek. Tutaj najczęściej stosuje się 99mTc-MDP lub inny fosfonian znakowany technetem, który gromadzi się w kościach proporcjonalnie do ich ukrwienia i przebudowy. Dzięki temu takie badanie jest bardzo czułe w wykrywaniu przerzutów do kości, świeżych złamań, zmian zapalnych czy jałowej martwicy. W praktyce klinicznej scyntygrafia całego szkieletu jest standardem np. w onkologii (rak piersi, prostata, nerki), ortopedii i reumatologii. Obraz z gammakamery ma niską rozdzielczość anatomiczną, ale wysoką czułość funkcjonalną. Z mojego doświadczenia dobrą praktyką jest zawsze kojarzyć: widok „szkieletu w całości”, obraz dwuwymiarowy, bez warstw, o charakterystycznej „szarej” skali i opis typu „przód/tył” – to najczęściej właśnie scyntygrafia. W odróżnieniu od TK czy MR, pacjent dostaje dożylnie radiofarmaceutyk, czeka się zwykle 2–3 godziny na wychwyt w kościach, a potem wykonuje się powolny skan całego ciała gammakamerą. W nowocześniejszych pracowniach łączy się to potem z TK (tzw. SPECT/CT), ale sam obraz szkieletu, jak na tym przykładzie, pochodzi z klasycznej gammakamery, czyli z badania radioizotopowego.

Pytanie 10

Na ilustracji przedstawiono pozycjonowanie pacjentki do badania mammograficznego w projekcji

Ilustracja do pytania
A. dolinowej.
B. stycznej.
C. kleopatry.
D. skośnej.
Prawidłowo rozpoznana została projekcja skośna (MLO – mediolateral oblique), która jest jedną z dwóch podstawowych projekcji w mammografii skriningowej i klinicznej. Na ilustracji widać charakterystyczne ustawienie: głowica i płyta dociskowa są ustawione pod kątem, a pierś wraz z fałdem pachowym jest „wyciągnięta” na detektor. Technicznie chodzi o to, żeby w tej projekcji uwidocznić jak najdłuższy odcinek tkanki gruczołowej, w tym ogon Spence’a, czyli fragment piersi wchodzący w dół pachowy. To właśnie w tej okolicy często lokalizują się zmiany nowotworowe, dlatego poprawne pozycjonowanie ma kluczowe znaczenie. W praktyce technik ustawia wysokość aparatu tak, aby kąt nachylenia płyty kompresyjnej był zbliżony do kąta nachylenia mięśnia piersiowego większego. Następnie dąży do tego, by na obrazie mięsień piersiowy był widoczny aż do poziomu brodawki lub niżej, a brodawka była możliwie w projekcji bocznej (bez rotacji). Z mojego doświadczenia to właśnie projekcja skośna jest najtrudniejsza technicznie, ale jednocześnie najbardziej diagnostyczna, bo obejmuje największą objętość gruczołu. Standardy jakości, m.in. EUREF i wytyczne Polskiego Towarzystwa Radiologicznego, mocno podkreślają, że prawidłowo wykonane MLO musi pokazywać dobrze ujęty fałd pachowy, brak zagięć skóry i odpowiednią kompresję piersi. Dzięki temu radiolog może wiarygodnie ocenić mikrozwapnienia, zgrubienia, architekturę miąższu oraz porównać symetrię obu piersi. W codziennej pracy warto wyrobić sobie nawyk kontroli kilku punktów: widoczność mięśnia piersiowego, położenie brodawki, równomierną kompresję i brak „ścięcia” górnych części piersi – to praktyczne kryteria dobrej projekcji skośnej.

Pytanie 11

Na schemacie oznaczono

Ilustracja do pytania
A. zespół QRS
B. zespół QS
C. odstęp RR
D. odstęp PP
Na schemacie strzałka obejmuje odległość między wierzchołkami dwóch kolejnych załamków R, czyli właśnie odstęp RR. W zapisie EKG to podstawowy parametr służący do oceny częstości i regularności rytmu serca. Mierzymy go od szczytu jednego załamka R do szczytu następnego załamka R w tym samym odprowadzeniu. Na standardowym papierze EKG (prędkość 25 mm/s) 1 mała kratka to 0,04 s, a 1 duża kratka 0,20 s. Dzięki temu z odstępu RR można bardzo szybko wyliczyć częstość pracy serca: 300 podzielone przez liczbę dużych kratek między załamkami R daje orientacyjną wartość tętna w uderzeniach na minutę. W praktyce, w pracowni diagnostyki elektromedycznej, technik bardzo często patrzy właśnie na regularność odstępów RR, żeby odróżnić rytm zatokowy od arytmii, np. migotania przedsionków, gdzie odstępy RR są wyraźnie nieregularne. Moim zdaniem to jedna z pierwszych rzeczy, które warto sobie „wyrobić w oku” przy oglądaniu EKG – równiutkie, powtarzalne odstępy RR zwykle sugerują uporządkowany rytm. W monitorach kardiologicznych, holterach czy defibrylatorach automatycznych algorytmy komputerowe też bazują w dużej mierze na analizie kolejnych odstępów RR, żeby wykrywać tachykardię, bradykardię czy pauzy. Dobre nawyki: zawsze mierz RR na kilku cyklach, w różnych fragmentach zapisu, bo lokalne artefakty albo pojedyncze pobudzenia dodatkowe mogą łatwo zafałszować ocenę, jeśli spojrzy się tylko na jedno miejsce.

Pytanie 12

Do zdjęcia rentgenowskiego kręgosłupa piersiowego w projekcji AP pacjenta należy ułożyć

A. na brzuchu, tak by promień centralny padał na środek mostka.
B. na brzuchu, tak by promień centralny padał na wyrostek mieczykowaty mostka.
C. na plecach, tak by promień centralny padał na wyrostek mieczykowaty mostka.
D. na plecach, tak by promień centralny padał na środek mostka.
Prawidłowa odpowiedź wynika z zasad standardowego pozycjonowania do zdjęcia RTG kręgosłupa piersiowego w projekcji AP. Pacjent powinien leżeć na plecach (pozycja na wznak), z kręgosłupem możliwie równolegle do stołu, bez rotacji barków i miednicy. Promień centralny kieruje się na środek mostka, czyli mniej więcej na poziom Th6–Th7, co pozwala objąć na obrazie cały odcinek piersiowy w projekcji przednio–tylnej. Dzięki takiemu ułożeniu centralne promieniowanie przechodzi osiowo przez trzon kręgosłupa piersiowego, a nie ucieka za bardzo w stronę szyi albo lędźwi. Moim zdaniem ważne jest, żeby kojarzyć, że w projekcji AP odcinka piersiowego orientujemy się właśnie mostkiem, a nie np. wyrostkiem mieczykowatym. W praktyce technik często palpacyjnie wyszukuje ręką środek mostka i tam kieruje promień centralny, korygując odległość ognisko–film i ewentualne podkładki pod głowę czy kolana, żeby wyrównać krzywizny kręgosłupa. Dobre praktyki mówią też o ustawieniu kasety tak, by górna krawędź sięgała mniej więcej do poziomu C7, a dolna obejmowała przejście piersiowo–lędźwiowe. W literaturze i wytycznych z zakresu techniki RTG (np. standardowe atlasy projekcji) podkreśla się, że projekcja AP odcinka piersiowego wykonywana na leżąco na plecach poprawia stabilność pacjenta, ogranicza ruchy oddechowe i zmniejsza ryzyko poruszenia obrazu. W pozycji leżącej łatwiej też zastosować prawidłową kolimację, ochronę gonad, tarczycy (tam gdzie to możliwe) i dopasować parametry ekspozycji do stosunkowo dużej grubości klatki piersiowej. To wszystko przekłada się na jakość diagnostyczną zdjęcia i bezpieczeństwo pacjenta.

Pytanie 13

Jaki kolor ma warstwa korowa kości w badaniu MR na obrazie T1- zależnym?

A. Ciemnoszary.
B. Jasnoszary.
C. Biały.
D. Czarny.
Prawidłowo – w klasycznym badaniu MR, w sekwencji T1-zależnej, warstwa korowa kości (czyli zbita kość korowa) jest praktycznie zawsze czarna. Wynika to z jej budowy: kość zbita zawiera bardzo mało wolnych protonów wodoru (prawie brak wody i tłuszczu), a to właśnie protony wodoru odpowiadają za sygnał w rezonansie. Jeśli nie ma protonów zdolnych do wzbudzenia, to nie ma też sygnału – dlatego korowa kość daje tzw. sygnał zerowy i na obrazie T1 wygląda jak czarna obwódka wokół kości gąbczastej. W praktyce klinicznej jest to fajny punkt orientacyjny: na T1 można łatwo odróżnić czarną, cienką warstwę korową od jaśniejszego szpiku żółtego w środku kości, który zawiera tłuszcz i przez to jest jasny. W opisach badań MR przyjmuje się, że prawidłowa korowa kość jest hipointensywna (bardzo niskiego sygnału) we wszystkich standardowych sekwencjach, zarówno T1, jak i T2, STIR czy PD. Jeśli gdzieś widzimy, że „kość korowa” nagle nie jest czarna, tylko robi się szarawa lub pojawia się w niej sygnał, to jest to sygnał alarmowy – może świadczyć o złamaniu, nacieczeniu nowotworowym, obrzęku lub artefakcie. Z mojego doświadczenia, dobrą praktyką jest zawsze porównywanie grubości i ciągłości tej czarnej obwódki na sąsiednich przekrojach. W nauce MR warto też pamiętać, że czarne są nie tylko kości korowe, ale też powietrze i niektóre struktury z przepływem szybkiego krwi (tzw. flow void), więc interpretacja zawsze musi uwzględniać anatomię i kontekst kliniczny.

Pytanie 14

Na obrazie scyntygrafii perfuzyjnej serca strzałką wskazano ścianę

Ilustracja do pytania
A. boczną serca.
B. dolną serca.
C. przegrodową serca.
D. przednią serca.
W scyntygrafii perfuzyjnej serca kluczowe jest zrozumienie, jak sztucznie „ustandaryzowano” położenie serca na obrazie. To nie jest klasyczne RTG w projekcji PA, tylko rekonstrukcja tomograficzna, w której lewa komora jest ustawiona według przyjętych osi: krótkiej, długiej pionowej i długiej poziomej. Na załączonym obrazie mamy przekrój w osi krótkiej (short axis), który pokazuje pierścień mięśnia lewej komory. Producent lub pracownia dodaje zwykle po prawej stronie pasek orientacyjny z opisem: „Septal – Lateral” oraz „Anterior – Inferior”. To jest coś w rodzaju legendy mapy. Typowy błąd polega na tym, że ktoś patrzy na obraz jak na zwykłe zdjęcie klatki piersiowej i automatycznie zakłada, że góra to ściana przednia, dół to dolna, lewa strona ekranu to ściana boczna, a prawa to przegroda. W scyntygrafii tak nie wolno zgadywać – trzeba oprzeć się na opisie orientacji. Jeśli spojrzymy na legendę obok obrazu, wyraźnie widać, że po lewej stronie pierścienia oznaczono „Septal”, czyli ścianę przegrodową, a po prawej „Lateral”, czyli boczną. Odpowiedzi wskazujące ścianę przednią lub dolną wynikają najczęściej z mylenia różnych przekrojów: w przekrojach w osi długiej pionowej przednia i dolna są rzeczywiście u góry i u dołu, ale tutaj mamy inną płaszczyznę. Z mojego doświadczenia sporo osób też „odwraca” obraz w pamięci, bo myśli o anatomii w projekcji echo serca, co dodatkowo miesza. Dobre praktyki w medycynie nuklearnej mówią jasno: przed oceną perfuzji należy zawsze potwierdzić kierunek osi, sprawdzić legendę oraz, jeśli jest dostępny, widok 3D lub mapę biegunową. To pozwala uniknąć pomyłek w lokalizacji ubytków perfuzji, a więc błędów w rozpoznawaniu niedokrwienia konkretnych ścian: przedniej, dolnej, bocznej czy właśnie przegrodowej. Dlatego odpowiedzi wskazujące ścianę przednią, boczną lub dolną w tym konkretnym obrazie są po prostu niezgodne z przyjętą orientacją i prowadziłyby do błędnej interpretacji badania.

Pytanie 15

Obiektywną metodą badania słuchu jest audiometria

A. wysokoczęstotliwościowa.
B. mowy.
C. impedancyjna.
D. tonalna.
Prawidłowa odpowiedź to audiometria impedancyjna, bo jest to badanie obiektywne, czyli takie, w którym wynik nie zależy od reakcji i współpracy pacjenta, tylko od pomiaru parametrów fizycznych układu słuchowego. W audiometrii impedancyjnej mierzy się impedancję akustyczną ucha środkowego – głównie ruchomość błony bębenkowej i łańcucha kosteczek oraz odruchy mięśnia strzemiączkowego. W praktyce wykonuje się tympanometrię i badanie odruchu z mięśnia strzemiączkowego. Pacjent nie musi naciskać przycisku ani sygnalizować, że coś słyszy – aparat rejestruje zmiany ciśnień i odbitego dźwięku samodzielnie. To jest kluczowe np. u małych dzieci, osób udających niedosłuch albo pacjentów nieprzytomnych. W protokołach otolaryngologicznych i audiologicznych audiometria impedancyjna jest standardem w diagnostyce niedosłuchów przewodzeniowych (np. wysiękowe zapalenie ucha środkowego, otoskleroza), perforacji błony bębenkowej, dysfunkcji trąbki słuchowej. Pozwala szybko ocenić, czy problem jest w uchu środkowym, czy raczej w uchu wewnętrznym. Moim zdaniem to jedno z bardziej „technicznych” badań słuchu, bo operator musi umieć dobrze uszczelnić przewód słuchowy, ustawić ciśnienie i poprawnie zinterpretować krzywą tympanometryczną (typ A, B, C itd.). W pracy technika elektroradiologii bardzo często łączy się audiometrię tonalną z impedancyjną, ale właśnie ta druga daje nam obiektywny obraz funkcji ucha środkowego, zgodnie z dobrymi praktykami i rekomendacjami audiologicznymi.

Pytanie 16

W technice napromieniania SSD mierzona jest odległość źródła promieniowania

A. od izocentrum aparatu terapeutycznego.
B. od napromienianego guza.
C. od stołu aparatu terapeutycznego.
D. od punktu zdefiniowanego na skórze pacjenta.
W technice SSD (source–skin distance) kluczowe jest właśnie to, że odległość mierzona jest od źródła promieniowania do punktu zdefiniowanego na skórze pacjenta. Ten punkt na skórze odpowiada zwykle punktowi referencyjnemu pola, np. środkowi wiązki lub miejscu, gdzie chcemy mieć określoną głębokość dawki. Moim zdaniem warto od razu zapamiętać: w SSD zawsze „patrzymy” na skórę, a nie na izocentrum. To odróżnia tę technikę od techniki SAD (source–axis distance), gdzie bazujemy na odległości do izocentrum aparatu terapeutycznego. W praktyce klinicznej technik ustawia pacjenta tak, aby SSD miało konkretną wartość, np. 100 cm, mierzoną do tatuażu, znacznika laserowego albo markera narysowanego na skórze. To ten punkt zdefiniowany na skórze jest geometrycznym punktem odniesienia do obliczeń dawki, tabel PDD (percent depth dose) i parametrów pola. Dzięki stałej SSD możemy korzystać z tablic procentowej dawki w głąb, które zakładają określoną odległość źródło–skóra, co upraszcza planowanie w prostszych technikach 2D albo w niektórych polach dodatkowych. Z mojego doświadczenia w radioterapii dobre ustawienie SSD przekłada się na powtarzalność napromieniania i zgodność rzeczywistej dawki z planem. W standardach i podręcznikach z radioterapii (np. klasyczne opisy teleterapii megawoltowej) technika SSD jest opisana właśnie jako metoda, w której główną kontrolowaną wielkością geometryczną jest odległość do skóry, a skorygowanie tej odległości o grubość tkanek pozwala wyznaczyć głębokość PTV i odpowiednio dobrać dawkę. W nowoczesnych ośrodkach SSD nadal jest używana np. przy polach skóry, piersi czy prostych polach paliatywnych. Dobra praktyka to zawsze oznaczenie na skórze punktu, do którego mierzymy SSD, i sprawdzanie go codziennie, a nie sugerowanie się jedynie pozycją stołu czy odczytem z konsoli.

Pytanie 17

Jednym z kryteriów poprawnie wykonanego badania spirometrycznego jest czas trwania natężonego wydechu, który powinien wynosić u osób powyżej 10 roku życia co najmniej

A. 4 sekundy.
B. 6 sekund.
C. 2 sekundy.
D. 3 sekundy.
Prawidłowo: jednym z kluczowych kryteriów poprawnie wykonanego badania spirometrycznego u osób powyżej 10. roku życia jest minimalny czas trwania natężonego wydechu (tzw. FVC manewr), który powinien wynosić co najmniej 6 sekund. Ten wymóg wynika z międzynarodowych standardów, m.in. wytycznych ATS/ERS, które określają warunki akceptowalności i powtarzalności spirometrii. Chodzi o to, żeby pacjent zdążył faktycznie „opróżnić” płuca, a krzywa wydechu osiągnęła wyraźny plateau, czyli wypłaszczenie przepływu, świadczące o zakończeniu wydechu. Jeśli wydech trwa zbyt krótko, to objętość wymuszona (FVC) jest zaniżona, a wtedy wskaźniki takie jak FEV1/FVC czy interpretacja obturacji i restrykcji robią się po prostu niewiarygodne. W codziennej praktyce, przy badaniu osób dorosłych i młodzieży, technik powinien pilnować nie tylko samego czasu 6 sekund, ale też kształtu krzywej i zachowania pacjenta. Często trzeba mocno dopingować: „jeszcze, jeszcze, nie przerywać”, bo pacjenci mają tendencję do kończenia wydechu za wcześnie, jak tylko poczują dyskomfort. Moim zdaniem dobra kontrola tego parametru to połowa sukcesu w spirometrii, bo bez pełnego wydechu możemy przeoczyć np. obturację w małych oskrzelach. Warto też pamiętać, że u niektórych osób, np. z ciężką obturacją, wydech spontanicznie trwa nawet dłużej niż 6 sekund i to też jest cenna informacja kliniczna. W pracowni spirometrycznej dobrą praktyką jest dokumentowanie, czy kryterium 6 sekund i plateau zostało spełnione, bo ma to wpływ na to, czy opis badania będzie uznany za wiarygodny przez lekarza pulmonologa.

Pytanie 18

W której technice obrazowania zostają zarejestrowane jednocześnie dwa przeciwbieżne kwanty promieniowania gamma o równej energii 511 keV?

A. Pozytonowej tomografii emisyjnej.
B. Tomografii emisyjnej pojedynczego fotonu.
C. Tomografii komputerowej.
D. Scyntygrafii dynamicznej.
Prawidłowa odpowiedź to pozytonowa tomografia emisyjna (PET), bo tylko w tej technice wykorzystuje się zjawisko anihilacji pozyton–elektron i rejestruje się jednocześnie dwa przeciwbieżne fotony gamma o energii 511 keV. W PET radiofarmaceutyk emituje pozytony, które po bardzo krótkiej drodze w tkance zderzają się z elektronami. W wyniku anihilacji masa cząstek zamienia się w energię i powstają dwa kwanty promieniowania gamma lecące w prawie dokładnie przeciwnych kierunkach, każdy właśnie o energii 511 keV. Detektory PET ułożone w pierścień rejestrują te dwa fotony w tzw. koincydencji czasowej. Dzięki temu aparat wie, że zdarzenie pochodzi z jednej linii między dwoma detektorami (linia odpowiedzi – LOR), co pozwala bardzo precyzyjnie odtworzyć rozkład radioznacznika w organizmie. W praktyce klinicznej PET stosuje się głównie w onkologii, kardiologii i neurologii – np. do wykrywania przerzutów nowotworowych, oceny żywotności mięśnia sercowego albo metabolizmu glukozy w mózgu. Moim zdaniem kluczowe jest zapamiętanie, że energia 511 keV i rejestracja koincydencyjna dwóch fotonów to absolutny „podpis” PET, a nie zwykłej scyntygrafii czy SPECT. W dobrej praktyce technik zawsze zwraca uwagę na poprawne ułożenie pacjenta w pierścieniu, stabilność układu koincydencyjnego i kalibrację energii detektorów, bo każdy błąd w tych elementach psuje jakość rekonstrukcji obrazu i może prowadzić do fałszywie dodatnich lub ujemnych ognisk wychwytu.

Pytanie 19

Zamieszczony rentgenogram został zarejestrowany podczas wykonania

Ilustracja do pytania
A. angiografii nerkowej TK.
B. urografii.
C. angiografii nerkowej.
D. urografii TK.
Na obrazie widać klasyczny wynik urografii – czyli badania RTG z dożylnym podaniem jodowego środka cieniującego, który jest wydalany przez nerki i wypełnia układ kielichowo‑miedniczkowy, moczowody oraz pęcherz. Charakterystyczne jest to, że widoczne są obustronnie miedniczki nerkowe i kielichy, zarys moczowodów oraz dobrze wypełniony pęcherz moczowy w projekcji AP. Nie ma tu żadnych przekrojów warstwowych ani typowych artefaktów rekonstrukcji znanych z tomografii komputerowej, tylko pojedynczy obraz płaski, jak klasyczne zdjęcie rentgenowskie. To dokładnie odpowiada urografii dożylnej (IVU, IVP). Moim zdaniem warto zapamiętać, że w urografii obraz jest „konturowy”: widzimy kontrast w drogach moczowych na tle kośćca, bez możliwości oceny przekrojowej miąższu nerki. W praktyce technik radiologii musi pamiętać o sekwencji zdjęć: przeglądowe jamy brzusznej, a następnie zdjęcia po określonym czasie od podania kontrastu (np. 5, 10, 15 minut), czasem dodatkowe projekcje skośne albo zdjęcia późne. Standardy pracowni radiologicznych zalecają też odpowiednie przygotowanie pacjenta – opróżnienie przewodu pokarmowego, nawodnienie, wykluczenie przeciwwskazań do jodowego kontrastu. W odróżnieniu od badań TK tutaj pracujemy z niższą dawką i prostszą aparaturą, ale za to z większym znaczeniem prawidłowego pozycjonowania i kontroli czasu ekspozycji, żeby uchwycić właściwą fazę wydzielniczą nerek. W codziennej praktyce urografia klasyczna jest dziś rzadsza, wypierana przez TK, ale nadal bywa wykonywana, zwłaszcza tam, gdzie dostęp do tomografii jest ograniczony lub gdy chcemy prostą ocenę drożności moczowodów.

Pytanie 20

„Ognisko zimne” w obrazie scyntygraficznym określa się jako

A. zmianę o większej aktywności hormonalnej.
B. obszar niegromadzący radioznacznika.
C. obszar gromadzący znacznik jak reszta miąższu.
D. zmianę najczęściej o charakterze łagodnym.
Prawidłowo – „ognisko zimne” w scyntygrafii to obszar niegromadzący radioznacznika, czyli miejsce o obniżonej lub całkowicie braku wychwytu w porównaniu z otaczającym, prawidłowo funkcjonującym miąższem. W scyntygrafii patrzymy przede wszystkim na rozkład funkcji, a nie tylko na samą anatomię. Jeśli tkanka pracuje prawidłowo, wychwytuje radiofarmaceutyk i na obrazie widzimy równomierne „świecenie”. Gdy pojawia się obszar, który nie gromadzi znacznika, tworzy się właśnie ognisko zimne – ciemniejsza plama na tle bardziej aktywnego narządu. Moim zdaniem warto to kojarzyć z „dziurą” w funkcji. W praktyce klinicznej typowe przykłady to torbiele, zwapnienia, blizny, guzy o słabym unaczynieniu, martwica, a w scyntygrafii kości – np. przerzut osteolityczny, który niszczy struktury kostne i przez to mniej wiąże znacznika. W badaniach tarczycy zimne ognisko może odpowiadać zmianie, która nie produkuje hormonów tarczycowych (tzw. guzek nieczynny), co w standardach endokrynologicznych traktuje się bardziej podejrzanie onkologicznie niż ogniska „gorące”. Dlatego przy zimnym guzku tarczycy zwykle zaleca się dalszą diagnostykę – USG, biopsję cienkoigłową. W dobrych praktykach medycyny nuklearnej zawsze opisujemy ogniska jako zimne, izotopowe (obojętne) lub gorące w odniesieniu do tła. Ważne jest też odpowiednie okienkowanie obrazu i porównanie z obrazami anatomicznymi (np. USG, TK), żeby nie pomylić artefaktu technicznego z prawdziwym zimnym ogniskiem. Z mojego doświadczenia w nauce tego przedmiotu – jak tylko zapamiętasz, że „zimne = brak wychwytu”, reszta układa się już w głowie dość logicznie.

Pytanie 21

Wskaż przyczynę powstania artefaktu widocznego na obrazie MR.

Ilustracja do pytania
A. Nieprawidłowa kalibracja aparatu.
B. Wymiary obiektu przekroczyły pole widzenia.
C. Niejednorodność pola magnetycznego.
D. Błędny dobór cewki gradientowej.
Prawidłowo powiązałeś artefakt z przekroczeniem pola widzenia (FOV) przez obrazowany obiekt. Na pokazanym obrazie MR mózgowia widać typowy przykład tzw. wrap-around albo aliasingu: struktury anatomiczne, które „nie mieszczą się” w zadanym polu widzenia, są składane z powrotem na przeciwległą krawędź obrazu. Dzieje się tak, bo system MR próbuje przypisać sygnał z obszaru poza FOV do najbliższej pozycji wynikającej z zakresu próbkowania w przestrzeni k‑przestrzeni. W praktyce wygląda to tak, że np. część tkanek z przodu lub z tyłu głowy pojawia się jakby „nad” mózgiem albo w innym nielogicznym miejscu przekroju. Z mojego doświadczenia, przy głowie ten artefakt widzi się dość często, gdy technik ustawi zbyt małe FOV w kierunku fazowym, bo chce poprawić rozdzielczość albo skrócić czas badania. Standardową dobrą praktyką jest tak dobrać FOV i kierunek kodowania fazy, żeby całe ciało pacjenta w danym przekroju znajdowało się wewnątrz pola widzenia, albo zastosować techniki antyaliasingowe (np. oversampling w kierunku fazowym, no phase wrap, sat bandy). W opisach MR radiolodzy zwracają uwagę, czy artefakt aliasingu nie maskuje istotnych struktur, zwłaszcza w okolicy czaszki, kręgosłupa szyjnego i kończyn. W codziennej pracy technika jest to też kwestia komfortu – jak FOV jest za małe, badanie często trzeba powtarzać, co wydłuża czas i irytuje pacjenta. Dlatego warto odruchowo sprawdzać, czy głowa, brzuch czy inny badany obszar naprawdę mieści się w polu widzenia w obu kierunkach kodowania.

Pytanie 22

W pracowni ultrasonograficznej technik elektroradiolog nie korzysta z przepisów dotyczących

A. ochrony radiologicznej.
B. antyseptyki.
C. ochrony przeciwpożarowej.
D. bezpieczeństwa i higieny pracy.
Prawidłowo wskazałeś, że w pracowni ultrasonograficznej technik elektroradiolog nie korzysta z przepisów dotyczących ochrony radiologicznej w rozumieniu promieniowania jonizującego. USG opiera się na fali ultradźwiękowej, czyli drganiach mechanicznych o wysokiej częstotliwości, a nie na promieniowaniu jonizującym takim jak w RTG, TK czy medycynie nuklearnej. To oznacza, że nie obowiązują tu typowe zasady ochrony radiologicznej: nie liczymy dawek efektywnych w mSv, nie ma konieczności prowadzenia rejestru dawek, nie wyznacza się stref kontrolowanych i nadzorowanych z powodu promieniowania jonizującego, nie ma też obowiązku stosowania fartuchów ołowianych, osłon gonad czy tarczycy z tego powodu. Moim zdaniem to jedno z częstszych miejsc, gdzie uczniowie się mylą – widzą słowo „pracownia obrazowa” i od razu kojarzą z ochroną radiologiczną. Tymczasem standardy, np. wytyczne ICRP czy polskie przepisy prawa atomowego, dotyczą właśnie promieniowania jonizującego, a ultrasonografia się w ten zakres po prostu nie łapie. Oczywiście, w USG nadal dbamy o bezpieczeństwo pacjenta i personelu: kontrolujemy czas ekspozycji na ultradźwięki, parametry aparatu (MI, TI), unikamy zbyt długiego badania u ciężarnych na płodzie, ale to jest raczej bioefekt ultradźwięków, a nie klasyczna ochrona radiologiczna. W praktyce technik w pracowni USG musi bardzo pilnować przepisów BHP, zasad ergonomii (bo badania są długie i obciążają układ mięśniowo‑szkieletowy), przepisów przeciwpożarowych oraz zasad antyseptyki: dezynfekcja głowic, stosowanie jednorazowych osłonek przy badaniach przezpochwowych czy przezodbytniczych, właściwe przygotowanie żelu. To są realne, codzienne obowiązki. Natomiast typowe procedury jak dozymetr osobisty, kontrola dawek, testy osłonności ścian dotyczą już pracowni RTG, TK, radioterapii czy medycyny nuklearnej, a nie USG.

Pytanie 23

Na radiogramie czaszki strzałką zaznaczono

Ilustracja do pytania
A. część skalistą kości skroniowej.
B. zachyłek jarzmowy.
C. zatokę szczękową.
D. gałąź żuchwy.
Na tym radiogramie bardzo łatwo pomylić się, bo w dolno-bocznych partiach czaszki nachodzi na siebie kilka struktur kostnych i powietrznych. Intuicyjnie część osób widzi tam gałąź żuchwy, bo na zdjęciu czołowym żuchwa rzeczywiście tworzy dość masywne, zakrzywione zarysy po obu stronach. Jednak gałąź żuchwy leży bardziej ku dołowi i bocznie, a jej obraz jest wyraźnie oddzielony od podstawy czaszki, z widoczną szyjką i głową żuchwy w okolicy stawu skroniowo‑żuchwowego. Tutaj strzałka nie wskazuje na tę ruchomą kość, tylko na gęstą część podstawy czaszki, która pozostaje nieruchoma względem reszty czaszki. Kolejna częsta pułapka to utożsamianie tej okolicy z zatoką szczękową. Zatoki szczękowe na projekcji czołowej widoczne są jako duże, symetryczne, ciemne (przejaśnienia powietrzne) pola po obu stronach jamy nosowej, ograniczone cienką kością. W miejscu zaznaczonym strzałką obraz jest natomiast jasny, co oznacza strukturę bardzo gęstą, a nie wypełnioną powietrzem. Zachyłek jarzmowy jest z kolei jedynie boczną częścią zatoki szczękowej, wychodzącą w stronę łuku jarzmowego. On także powinien wyglądać jak przejaśnienie, a nie jak masywna gęsta kość. Typowy błąd myślowy przy takich pytaniach polega na tym, że patrzymy głównie na kontury twarzy i żuchwy, ignorując tło anatomiczne podstawy czaszki. Dobra praktyka w interpretacji RTG czaszki to najpierw rozpoznanie dużych, stałych punktów orientacyjnych: zatok, oczodołów, piramid kości skroniowych i dopiero potem dopasowywanie bardziej ruchomych elementów, jak żuchwa. Jeśli coś jest bardzo białe i "grube" przy podstawie czaszki, to zwykle myślimy o części skalistej, a nie o zatoce czy żuchwie. Takie systematyczne podejście zmniejsza ryzyko takich właśnie pomyłek.

Pytanie 24

Na skanie rezonansu magnetycznego serca oznaczono

Ilustracja do pytania
A. komorę lewą.
B. przedsionek prawy.
C. komorę prawą.
D. przedsionek lewy.
W tym zadaniu kluczowe jest poprawne zorientowanie się w przekroju poprzecznym klatki piersiowej w badaniu MR. Na ekranie urządzenia prawa strona pacjenta jest po lewej stronie obrazu, a lewa po prawej, co często wprowadza w błąd osoby zaczynające przygodę z diagnostyką obrazową serca. Jeśli tego się nie uwzględni, łatwo pomylić komory z przedsionkami lub zamienić stronami cały obraz. Przedsionki leżą bardziej ku górze i tyłowi w stosunku do komór oraz mają cieńsze ściany i mniejszą objętość w tej płaszczyźnie. Na typowym przekroju poprzecznym serca, takim jak na tym MR, przedsionki nie dominują obrazowo; zwykle widzimy je raczej w wyższych poziomach przekroju, często częściowo zasłonięte przez duże naczynia żylne. Dlatego wskazanie przedsionka prawego lub lewego wynika zazwyczaj z prostego założenia: „jamy po stronie prawej to przedsionki, a po lewej komory”, co jest myśleniem zbyt uproszczonym i po prostu mylnym. Pomyłki pojawiają się też, gdy ktoś kieruje się wyłącznie wielkością jamy – zakładając, że większa i bardziej okrągła przestrzeń to prawa komora, a mniejsza to lewa. W rzeczywistości lewa komora ma grubszy mięsień i częściej wygląda na bardziej zwartą, masywną strukturę położoną bliżej kręgosłupa, natomiast prawa komora jest wysunięta do przodu, ma cieńszą ścianę i kształt półksiężyca otaczającego część lewej komory. W dobrych praktykach interpretacji MR serca podkreśla się konieczność równoczesnej oceny położenia względem mostka i kręgosłupa, grubości ściany, kształtu jamy oraz relacji do dużych naczyń, a nie opierania się na jednym, przypadkowym wrażeniu. Z mojego doświadczenia wynika, że dopiero świadome stosowanie tych zasad pozwala unikać typowych błędów, takich jak zamiana przedsionka z komorą czy pomylenie strony prawej z lewą, co ma realne konsekwencje przy opisie kardiomiopatii, wad zastawkowych czy nadciśnienia płucnego.

Pytanie 25

Testy podstawowe z zakresu geometrii pola rentgenowskiego, przeznaczone do sprawdzenia zgodności pola wiązki promieniowania rentgenowskiego z symulacją świetlną, są wykonywane raz

A. w tygodniu.
B. w roku.
C. w miesiącu.
D. w kwartale.
Prawidłowa odpowiedź „w miesiącu” wynika z przyjętych w radiologii standardów kontroli jakości dla aparatów rentgenowskich. Testy podstawowe z zakresu geometrii pola rentgenowskiego mają za zadanie sprawdzić, czy pole wiązki promieniowania rzeczywiście pokrywa się z tym, co pokazuje lampa z kolimatorem i symulacja świetlna. Innymi słowy, czy to, co widzisz w polu świetlnym na stole, faktycznie jest naświetlane promieniowaniem X. Moim zdaniem to jest absolutny fundament bezpiecznej pracy w pracowni RTG, bo każdy błąd w geometrii pola od razu odbija się na jakości obrazu i na narażeniu pacjenta. Zgodnie z dobrymi praktykami (różne wytyczne krajowe i europejskie dotyczące kontroli jakości w diagnostyce obrazowej) testy geometrii pola zalicza się do tzw. testów podstawowych, wykonywanych cyklicznie, zwykle właśnie raz w miesiącu. Chodzi o sprawdzenie zgodności wielkości pola, jego centrowania względem kasety/detektora, zbieżności osi wiązki z osią stołu i lampy, oraz zgodności wskaźników odległości ognisko–detektor. W praktyce taki test może polegać na ułożeniu specjalnego fantomu do testów geometrii pola, z naniesionymi znacznikami, i wykonaniu ekspozycji przy różnych ustawieniach pola świetlnego. Potem ocenia się, czy krawędzie obszaru naświetlonego zgadzają się z zaznaczonym obszarem w polu świetlnym, zwykle dopuszczalne odchylenia są rzędu kilku procent wymiaru pola (np. 2% SID). Regularność comiesięcznego testu ma sens, bo geometria pola może się stopniowo rozjeżdżać: poluzowane mechanizmy kolimatora, uszkodzenie lustra, zmiana położenia żarówki, drobne uderzenia lampą o stół – to wszystko w praktyce się zdarza. Miesięczny interwał jest takim rozsądnym kompromisem: na tyle często, żeby szybko wychwycić nieprawidłowości, a jednocześnie nie paraliżować pracy pracowni nadmiarem testów. W wielu pracowniach, z mojego doświadczenia, łączy się ten test z innymi prostymi kontrolami okresowymi, np. sprawdzeniem działania wskaźników odległości, poprawności blokad mechanicznych czy stabilności nastaw ekspozycji. To wszystko wpisuje się w system zapewnienia jakości i ochrony radiologicznej, gdzie jednym z kluczowych celów jest unikanie zbędnych powtórzeń badań i ograniczanie dawek dla pacjenta i personelu.

Pytanie 26

Bezwzględnym przeciwwskazaniem do badania spirometrycznego jest

A. świeży udar mózgu.
B. astma oskrzelowa.
C. zaburzenie rytmu serca.
D. zapalenie oskrzeli.
Prawidłowa odpowiedź to świeży udar mózgu, bo jest to klasyczne, bezwzględne przeciwwskazanie do wykonywania spirometrii w aktualnych zaleceniach pulmonologicznych. Badanie spirometryczne wymaga od pacjenta bardzo forsownych, powtarzalnych manewrów oddechowych: głębokiego wdechu do całkowitej pojemności płuc i gwałtownego, maksymalnie silnego wydechu. To powoduje istotne wahania ciśnienia wewnątrz klatki piersiowej, ciśnienia tętniczego i ciśnienia śródczaszkowego. U osoby po świeżym udarze mózgu takie zmiany mogą pogorszyć stan neurologiczny, zwiększyć ryzyko krwawienia, obrzęku mózgu albo ponownego incydentu naczyniowego. Dlatego zgodnie z dobrymi praktykami, po ostrym udarze odracza się spirometrię, zwykle o kilka tygodni, aż stan krążeniowo‑oddechowy i neurologiczny się ustabilizuje. W pracowniach spirometrycznych przyjmuje się podobnie ostrożne podejście jak przy świeżym zawale serca, świeżej operacji kardiochirurgicznej, tętniaku aorty w fazie niestabilnej czy krwiopluciu – tam też wzrost ciśnień i wysiłek wydechowy są potencjalnie niebezpieczne. W praktyce technik lub pielęgniarka wykonująca badanie zawsze powinna zebrać krótki wywiad: czy pacjent nie miał ostatnio udaru, zawału, zabiegu w obrębie klatki piersiowej, czy nie ma nasilonych dolegliwości z OUN. Jeśli tak – badanie się odkłada i kontaktuje z lekarzem prowadzącym. Moim zdaniem to jeden z ważniejszych elementów bezpieczeństwa w diagnostyce czynnościowej układu oddechowego, bo sama spirometria wydaje się „niewinna”, a może jednak narobić szkody, jeśli zignorujemy przeciwwskazania.

Pytanie 27

Jak oznacza się w systemie międzynarodowym czwarty górny ząb mleczny po stronie prawej?

A. 54
B. 84
C. 14
D. 24
Prawidłowe oznaczenie czwartgo górnego zęba mlecznego po stronie prawej w systemie międzynarodowym (FDI) to 54. Ten system, nazywany też systemem dwucyfrowym, jest standardem przyjętym przez FDI World Dental Federation i stosowany praktycznie wszędzie w nowoczesnej stomatologii, także w opisach radiogramów. Pierwsza cyfra oznacza ćwiartkę łuku zębowego, a druga – pozycję zęba liczoną od linii pośrodkowej. Dla uzębienia mlecznego używa się cyfr 5–8 dla ćwiartek: 5 – górna prawa, 6 – górna lewa, 7 – dolna lewa, 8 – dolna prawa. W tej logice ząb 54 to: „5” – kwadrant górny prawy w uzębieniu mlecznym oraz „4” – czwarty ząb od środka, czyli czwarty ząb mleczny w tym kwadrancie. W praktyce, gdy opisujesz zdjęcie pantomograficzne albo skrzydłowo-zgryzowe u dziecka, wpisujesz właśnie takie oznaczenia: np. próchnica na powierzchni żującej 54, brak zawiązka 15, resorpcja korzenia 54 widoczna w RTG – i każdy stomatolog na świecie wie o jaki ząb chodzi. Moim zdaniem warto od razu wyrobić sobie nawyk rozróżniania: cyfry 1–4 w pierwszej pozycji to zawsze zęby stałe, a 5–8 – mleczne. To bardzo ułatwia czytanie dokumentacji, kart pacjenta i opisów badań obrazowych. W diagnostyce radiologicznej bez poprawnego oznaczenia zębów łatwo pomylić stronę lub ząb, co później może skutkować np. leczeniem niewłaściwego zęba, dlatego standard FDI jest traktowany jako dobra praktyka i wręcz obowiązkowy element profesjonalnego opisu.

Pytanie 28

Podstawowym elementem diagnostycznym aparatury izotopowej wykorzystującej emisyjne metody pomiaru jest

A. amperomierz.
B. kamera scyntylacyjna.
C. woltomierz.
D. komora jonizacyjna.
W aparaturze izotopowej wykorzystującej emisyjne metody pomiaru kluczowe jest zrozumienie, skąd bierze się sygnał diagnostyczny. W emisyjnych technikach medycyny nuklearnej źródłem promieniowania jest radioizotop wprowadzony do organizmu, a nie zewnętrzna lampa rentgenowska czy inne źródło. Dlatego podstawą nie jest proste mierzenie napięcia czy prądu, tylko rejestracja fotonów gamma i odwzorowanie ich przestrzennego rozkładu. Woltomierz i amperomierz oczywiście pojawiają się w układach detekcyjnych, ale pełnią jedynie pomocniczą rolę serwisową lub kontrolną. Można nimi sprawdzić poprawność zasilania, stabilność wysokiego napięcia fotopowielaczy, ewentualnie parametry pracy niektórych modułów elektronicznych. Nie są jednak elementem diagnostycznym w sensie medycznym – nie tworzą obrazu, nie rejestrują bezpośrednio promieniowania jonizującego, nie pozwalają na ocenę narządów czy patologii. Komora jonizacyjna jest już bliżej właściwego skojarzenia, bo rzeczywiście służy do pomiaru promieniowania jonizującego. W medycynie nuklearnej wykorzystuje się ją rutynowo, ale głównie jako „dawkomierz” do kontroli aktywności radiofarmaceutyku przed podaniem pacjentowi (np. w tzw. dose calibrator). Komora jonizacyjna mierzy uśrednioną aktywność w objętości, nie daje informacji przestrzennej, nie tworzy obrazu narządów. Typowym błędem myślowym jest utożsamianie każdego detektora promieniowania z elementem diagnostycznym, podczas gdy do celów obrazowania emisyjnego potrzebny jest układ zdolny do lokalizacji kierunku, z którego przyleciał foton, oraz do rekonstrukcji mapy rozkładu aktywności. Tę rolę spełnia kamera scyntylacyjna, która łączy kryształ scyntylacyjny, zespół fotopowielaczy i specjalizowaną elektronikę pozycjonującą. Ona jest podstawowym narzędziem diagnostycznym, zgodnie ze standardami medycyny nuklearnej, a pozostałe wymienione przyrządy stanowią jedynie zaplecze pomiarowe lub kontrolne, ale nie służą bezpośrednio do emisyjnego obrazowania pacjenta.

Pytanie 29

Chorobą układu oddechowego typu obturacyjnego jest

A. sarkoidoza.
B. mukowiscydoza.
C. pylica płuc.
D. gruźlica płuc.
Prawidłowo wskazana została mukowiscydoza, bo jest to klasyczny przykład przewlekłej choroby obturacyjnej układu oddechowego. W mukowiscydozie dochodzi do zaburzenia transportu jonów chlorkowych w nabłonku, co powoduje bardzo gęsty, lepki śluz w drogach oddechowych. Taki śluz zatyka małe i większe oskrzela, co w praktyce daje obturację, czyli utrudnienie przepływu powietrza, zwłaszcza przy wydechu. W badaniu spirometrycznym widzimy typowy obraz choroby obturacyjnej: obniżone FEV1, obniżony wskaźnik FEV1/FVC, często też wydłużony czas wydechu. W praktyce klinicznej i fizjoterapeutycznej takie rozpoznanie ma konkretne konsekwencje: stosuje się techniki drenażu ułożeniowego, oklepywanie klatki piersiowej, ćwiczenia oddechowe ukierunkowane na poprawę ewakuacji wydzieliny i wentylacji płuc. Standardy postępowania (również polskie i europejskie zalecenia dla mukowiscydozy) mocno podkreślają regularną ocenę czynności płuc właśnie spirometrią, co pozwala wcześnie wychwycić pogorszenie obturacji. Z mojego doświadczenia, jeśli ktoś raz dobrze zrozumie różnicę między obturacją a restrykcją, dużo łatwiej mu później klasyfikować choroby płuc. Obturacja to problem głównie z przepływem powietrza przez zwężone drogi oddechowe, jak w astmie, POChP czy właśnie mukowiscydozie. Warto też pamiętać, że na zdjęciu RTG czy w TK w zaawansowanej mukowiscydozie widoczne są zmiany odpowiadające przewlekłej obturacji, np. rozstrzenie oskrzeli, pułapka powietrzna, co ładnie koreluje z wynikiem spirometrii i objawami pacjenta w badaniu przedmiotowym.

Pytanie 30

W sekwencji echa spinowego obraz T2-zależny uzyskuje się przy czasie repetycji TR

A. od 800 ms do 900 ms
B. od 300 ms do 400 ms
C. powyżej 2000 ms
D. od 500 ms do 700 ms
Prawidłowa odpowiedź „powyżej 2000 ms” dobrze oddaje charakter obrazowania T2-zależnego w klasycznej sekwencji echa spinowego (spin echo). Żeby uzyskać kontrast T2, trzeba możliwie mocno zredukować wpływ różnic w T1, a podkreślić różnice w czasie relaksacji poprzecznej T2 między tkankami. Z praktycznego punktu widzenia oznacza to zastosowanie długiego czasu repetycji TR (typowo > 2000 ms) oraz stosunkowo długiego czasu echa TE (zwykle rzędu 80–120 ms). Długi TR sprawia, że magnetyzacja podłużna większości tkanek zdąży się w dużej mierze zregenerować przed kolejnym impulsem RF, przez co kontrast T1 ulega „spłaszczeniu”. Wtedy głównym czynnikiem różnicującym jasność tkanek na obrazie staje się ich T2. W praktyce klinicznej, np. w badaniach mózgowia, sekwencje T2-zależne (SE lub FSE/TSE) z TR powyżej 2000 ms są standardem do uwidaczniania obrzęku, zmian zapalnych, demielinizacyjnych czy ognisk niedokrwiennych. Płyn mózgowo-rdzeniowy przy długim TR i długim TE jest bardzo jasny, a tkanka tłuszczowa mniej dominuje niż w obrazach T1-zależnych. Moim zdaniem warto zapamiętać prostą zasadę: długie TR = wyciszamy T1, długie TE = podkreślamy T2. W większości protokołów MR stosowanych w szpitalach i przychodniach właśnie takie parametry (TR > 2000 ms) są wpisane jako domyślne dla sekwencji T2-zależnych spin echo, zgodnie z powszechnie przyjętymi rekomendacjami producentów skanerów i standardami opisów radiologicznych.

Pytanie 31

W zapisie EKG załamki P dodatnie w odprowadzeniu I i II, a ujemne w aVR oraz częstotliwość rytmu mniejsza niż 60/min wskazują na

A. zwolniony rytm zatokowy.
B. niemiarowość zatokową.
C. przyspieszony rytm zatokowy.
D. zahamowanie zatokowe.
Opis w pytaniu jednoznacznie wskazuje na rytm pochodzący z węzła zatokowo–przedsionkowego, bo załamki P są dodatnie w odprowadzeniach I i II oraz ujemne w aVR. To jest podstawowe kryterium rozpoznania rytmu zatokowego, obowiązujące w większości podręczników EKG i wytycznych kardiologicznych. Błędne odpowiedzi wynikają zwykle z pomieszania dwóch rzeczy: pochodzenia rytmu (skąd impuls startuje) z jego częstością oraz z mylenia pojęć „zwolniony”, „przyspieszony” i „zahamowany”. Przyspieszony rytm zatokowy oznacza tachykardię zatokową, czyli sytuację, gdy rytm ma cechy zatokowe (prawidłowa morfologia P), ale częstość przekracza 100/min. W pytaniu wyraźnie podano, że częstość jest mniejsza niż 60/min, więc nie da się tego zakwalifikować jako rytm przyspieszony. To jest bardzo typowy błąd: ktoś widzi opisany rytm zatokowy i automatycznie łączy go z przyspieszeniem, bo „rytmy zatokowe kojarzą się z wysiłkiem”, a tymczasem skala jest taka sama: <60 bradykardia, 60–100 normokardia, >100 tachykardia. Pojęcie zahamowania zatokowego dotyczy sytuacji, gdy węzeł zatokowy okresowo przestaje generować impulsy – na EKG widzimy wtedy nagłe, dłuższe pauzy bez załamków P i bez zespołów QRS, często wielokrotnie dłuższe niż podstawowy odstęp RR. W pytaniu w ogóle nie ma mowy o pauzach, tylko o regularnym rytmie z niską częstością, więc nie jest to zahamowanie, tylko po prostu zwolnienie pracy węzła. Z mojego doświadczenia uczniowie często mylą też zwolniony rytm zatokowy z niemiarowością zatokową. Niemiarowość zatokowa to zmienność odstępów RR przy zachowanym zatokowym pochodzeniu rytmu – klasycznie związana z fazami oddychania (przy wdechu serce przyspiesza, przy wydechu zwalnia). Na EKG wszystkie załamki P wyglądają tak samo, ale odległości między kolejnymi zespołami QRS nie są jednakowe. W treści zadania w ogóle nie podano informacji o zmienności odstępów RR, a jedynie o samej częstości <60/min, więc nie mamy podstaw, by rozpoznawać niemiarowość zatokową. Dobrym nawykiem jest takie podejście: najpierw określ, czy rytm jest zatokowy (morfologia P), potem oceń, czy jest miarowy czy niemiarowy (odstępy RR), a na końcu sprawdź częstość i dopiero wtedy używaj określeń „przyspieszony”, „zwolniony”, „niemiarowy” czy „zahamowany”. W pracy technika EKG takie uporządkowanie myślenia bardzo pomaga uniknąć właśnie takich pomyłek, jak w tym pytaniu.

Pytanie 32

Wskaż osłonę radiologiczną, która jest stosowana w pracowniach radiodiagnostyki stomatologicznej.

A. Osłona 2
Ilustracja do odpowiedzi A
B. Osłona 4
Ilustracja do odpowiedzi B
C. Osłona 1
Ilustracja do odpowiedzi C
D. Osłona 3
Ilustracja do odpowiedzi D
W radiodiagnostyce stomatologicznej wybór właściwej osłony nie jest kwestią dowolną czy wygody, tylko bardzo konkretnych wymogów ochrony radiologicznej. Typowym błędem jest myślenie, że „byle jaka” osłona ołowiowa będzie dobra, skoro przecież wszystkie wyglądają podobnie i zawierają materiał osłonowy. Tymczasem poszczególne konstrukcje fartuchów są projektowane pod konkretne zastosowania: inne do fluoroskopii, inne na salę operacyjną, jeszcze inne do badań przyłóżkowych czy dla personelu pomocniczego. W stomatologii chodzi głównie o ochronę pacjenta, który stoi lub siedzi blisko głowicy aparatu, a wiązka pierwotna jest stosunkowo wąska, ale rozproszenie z czaszki i kręgosłupa szyjnego może docierać do całego tułowia. Dlatego stosuje się fartuchy o odpowiednio dobranej długości i szerokości, często z ochroną przodu i tyłu, a nie np. wąskie osłony segmentowe czy fartuchy jednostronne, które bardziej pasują do specyficznych procedur zabiegowych. Kolejny częsty błąd myślowy polega na sugerowaniu się wyłącznie wygodą lub estetyką – osłona, która wygląda na „lżejszą” czy „poręczną”, nie zawsze zapewni właściwy równoważnik ołowiu tam, gdzie jest on potrzebny. Z punktu widzenia fizyki promieniowania ważne jest, żeby osłona pokrywała możliwie największy obszar wrażliwych tkanek, bez zbędnych przerw i szczelin, bo to właśnie przez takie luki przechodzi promieniowanie rozproszone. W praktyce egzaminacyjnej rodzi to pułapkę: zdający często wybiera osłony, które kojarzą się im z innymi dziedzinami radiologii (np. długie fartuchy zabiegowe lub nietypowe narzutki na ramię), zamiast skojarzyć klasyczny fartuch stomatologiczny używany niemal w każdym gabinecie dentystycznym. Z mojego doświadczenia dobrze jest zapamiętać, że w stomatologii standardem jest stosunkowo prosty, pełny fartuch z równoważnikiem ołowiu dostosowanym do energii wiązki z aparatów stomatologicznych, a konstrukcje bardziej „udziwnione” zazwyczaj służą innym procedurom i nie będą traktowane jako prawidłowa odpowiedź w tego typu pytaniach.

Pytanie 33

Zestaw rentgenogramów przedstawia

Ilustracja do pytania
A. proces gojenia się złamania.
B. patologiczny obraz nadgarstków.
C. proces rozwoju kośćca dziecka.
D. obraz osteopenii.
Prawidłowa odpowiedź odnosi się do fizjologicznego procesu rozwoju kośćca dziecka, widocznego na typowych zdjęciach RTG dłoni i nadgarstka. Na takim obrazie, jak w tym zadaniu, widać wyraźnie trzonki kości długich oraz liczne jąderka kostnienia w obrębie nadgarstka i nasad paliczków, oddzielone od trzonów szerokimi, przejaśnionymi strefami chrząstki wzrostowej. Te ciemniejsze pasy to chrząstka nasadowa, w której zachodzi intensywna kostnienie śródchrzęstne. U małych dzieci jądra kostnienia w kościach nadgarstka pojawiają się stopniowo, w określonej kolejności i w ściśle określonym wieku kostnym – i właśnie to wykorzystuje się w praktyce, np. przy ocenie wieku szkieletowego metodą Greulicha i Pyle’a lub Tanner-Whitehouse. W standardach radiologicznych przyjmuje się, że prawidłowy rozwój kośćca oceniamy na zdjęciach dłoni i nadgarstka w projekcji AP, porównując liczbę, wielkość i kształt jąder kostnienia z atlasami referencyjnymi. Moim zdaniem jest to jedno z bardziej praktycznych badań u dzieci, bo pozwala szybko wychwycić opóźnienie wzrastania, zaburzenia endokrynologiczne (np. niedoczynność tarczycy, niedobór hormonu wzrostu) czy przedwczesne dojrzewanie. W przeciwieństwie do zmian patologicznych, tutaj zarysy trzonów są gładkie, warstwa korowa prawidłowej grubości, brak cech złamań, zniekształceń czy ubytków osteolitycznych. To, że kości „wydają się krótsze” i jest dużo przejaśnień, nie oznacza osteopenii – jest to po prostu obraz niedojrzałego, rosnącego szkieletu. W praktyce technik i lekarz radiolog powinni zawsze brać pod uwagę wiek metrykalny dziecka i spodziewany obraz dla danego etapu rozwoju, aby nie nadrozpoznawać patologii tam, gdzie mamy fizjologię.

Pytanie 34

Do czego służy do symulator rentgenowski wykorzystywany w procesie radioterapii?

A. Do określania odległości od wirtualnego źródła promieniowania do skóry pacjenta.
B. Do weryfikacji dawki podanej pacjentowi w obszarze PTV.
C. Do generowania trójwymiarowych informacji o lokalizacji obszaru guza.
D. Do weryfikacji i odwzorowania geometrii pól poszczególnych wiązek terapeutycznych.
Symulator rentgenowski w radioterapii bywa czasem mylony z innymi urządzeniami używanymi w planowaniu leczenia, co prowadzi do różnych nieporozumień. Jego główna rola nie polega na pomiarze ani weryfikacji dawki w obszarze PTV. Kontrola dawki odbywa się poprzez obliczenia w systemie planowania leczenia (TPS), pomiary fantomowe, testy QA akceleratora oraz za pomocą dozymetrii in vivo, a nie na klasycznym symulatorze RTG. Symulator daje obraz geometryczny pól, ale nie jest narzędziem do precyzyjnego sprawdzania rozkładu dawki terapeutycznej, bo używa innej energii promieniowania i innych warunków niż właściwa wiązka megawoltowa. Często też przypisuje się symulatorowi funkcję generowania trójwymiarowych informacji o lokalizacji guza. W nowoczesnej radioterapii do tego służy przede wszystkim tomograf komputerowy do planowania (CT-sim) oraz oprogramowanie TPS, które pozwala na rekonstrukcję 3D, segmentację PTV i OAR, fuzję obrazów z MR czy PET. Klasyczny symulator rentgenowski wykonuje głównie projekcje 2D (AP, PA, boczne, skośne) i umożliwia ustawienie pól, a nie pełne modelowanie objętości guza w trzech wymiarach. Kolejne nieporozumienie dotyczy odległości od wirtualnego źródła promieniowania do skóry pacjenta. Owszem, na symulatorze można sprawdzić i ustawić SSD lub SAD, ale nie jest to jego unikalne zadanie – te odległości są standardowo kontrolowane na samym akceleratorze przy każdym zabiegu, z użyciem wskaźników odległości, laserów i systemów pozycjonowania. Redukowanie roli symulatora tylko do mierzenia odległości trochę mija się z celem, bo sednem jego użycia jest właśnie odtworzenie geometrii pól terapeutycznych, sprawdzenie projekcji osłon, listków MLC (w miarę możliwości), bloków, klinów oraz porównanie ich z anatomią pacjenta na obrazie RTG. Typowy błąd myślowy polega na mieszaniu funkcji: CT-symulatora, systemu planowania, akceleratora i symulatora RTG. Ten ostatni służy głównie do geometrycznej weryfikacji ustawień – czy pola są tam, gdzie trzeba, czy marginesy są prawidłowe, czy znaczniki na skórze i lasery zgadzają się z planem. Dlatego poprawne rozumienie jego roli jest ważne, bo wpływa bezpośrednio na bezpieczeństwo i dokładność całego procesu napromieniania.

Pytanie 35

Na którym obrazie TK uwidoczniony jest artefakt spowodowany ruchami oddechowymi pacjenta?

A. Obraz 3
Ilustracja do odpowiedzi A
B. Obraz 4
Ilustracja do odpowiedzi B
C. Obraz 2
Ilustracja do odpowiedzi C
D. Obraz 1
Ilustracja do odpowiedzi D
W tym zadaniu łatwo pomylić różne typy artefaktów, bo wszystkie cztery obrazy pokazują zaburzenia jakości, ale tylko jeden z nich jest klasycznym przykładem artefaktu ruchowego związanego z oddychaniem. Artefakt oddechowy w tomografii komputerowej ma zwykle postać falistego, „pływającego” zniekształcenia konturów narządów, czasem jakby ktoś przesunął kawałek obrazu w bok lub wzdłuż osi ciała. Dotyczy to głównie badań klatki piersiowej i jamy brzusznej, bo tam ruch przepony i ściany klatki jest największy. Na obrazie 1 dokładnie to widać: narządy jamy brzusznej są pofalowane, ich granice nie są ostre, a ściana ciała wygląda jak zygzak. To efekt tego, że pacjent oddychał podczas zbierania danych i rekonstrukcja "złożyła" razem projekcje z różnych faz oddechu. Na pozostałych obrazach występują inne zjawiska. Jeden z nich pokazuje typowy szum kwantowy i ziarnistość, prawdopodobnie związane z niską dawką promieniowania albo niewłaściwymi parametrami rekonstrukcji – piksele są jak rozsypane ziarenka, ale kontury struktur są zasadniczo stabilne, nie pofalowane. To nie ma nic wspólnego z ruchem oddechowym, tylko z liczbą zarejestrowanych fotonów i filtracją rekonstrukcyjną. Inny przykład wygląda na artefakt metaliczny lub zjawisko utwardzenia wiązki: wokół struktur o bardzo wysokiej gęstości (np. metal, kość, kontrast) pojawiają się pasma, smugi, lokalne prześwietlenia albo zacienienia. To wynika z nieliniowej absorpcji promieniowania i ograniczeń algorytmów rekonstrukcji, a nie z przesuwania się narządu w czasie. Kolejny obraz może sugerować częściowy wolumen lub niewłaściwą rekonstrukcję 3D, gdzie granice są wygładzone, ale jednak zachowują prawidłowy przebieg anatomiczny – tam też nie widać charakterystycznego „rozjechania” struktur między kolejnymi rzędami pikseli. Typowym błędem jest utożsamianie każdego zniekształcenia z ruchem pacjenta. W praktyce trzeba zawsze zadać sobie pytanie: czy kontury są faliste i jakby przesunięte, czy raczej pojawia się ziarnistość, smugi, pasma albo efekt stopniowania? Artefakt oddechowy dotyczy zmian położenia narządów w czasie, więc jego ślad to właśnie deformacja geometrii, a nie tylko zmiana gęstości czy szumu. Dlatego poprawną odpowiedzią jest wyłącznie obraz 1, a wybór innych opcji oznacza pomylenie różnych mechanizmów powstawania artefaktów w TK.

Pytanie 36

Rytm alfa i beta rejestruje się podczas badania

A. HSG
B. EEG
C. EKG
D. USG
Prawidłowo – rytm alfa i beta to pojęcia typowe dla elektroencefalografii, czyli badania EEG. W EEG rejestrujemy bioelektryczną aktywność mózgu za pomocą elektrod umieszczonych na skórze głowy, zwykle według międzynarodowego systemu 10–20. Rytm alfa to fale o częstotliwości ok. 8–13 Hz, najlepiej widoczne u osoby zrelaksowanej, z zamkniętymi oczami, najczęściej w okolicach potylicznych. Rytm beta ma wyższą częstotliwość, około 13–30 Hz, częściej pojawia się przy stanie czuwania, koncentracji, czasem pod wpływem leków, np. benzodiazepin. W praktyce technik EEG powinien umieć odróżnić fizjologiczne rytmy (alfa, beta, theta, delta) od zmian patologicznych, takich jak wyładowania napadowe czy fale ostre. To jest podstawa prawidłowego opisu zapisu EEG i współpracy z lekarzem. Badanie EEG wykonuje się m.in. w diagnostyce padaczki, zaburzeń świadomości, encefalopatii metabolicznych, a także w ocenie mózgowej aktywności po urazach. Z mojego doświadczenia, im lepiej rozumiesz, co oznaczają poszczególne rytmy, tym łatwiej wychwytujesz subtelne nieprawidłowości w zapisie, np. asymetrię rytmu alfa między półkulami czy nadmierną obecność rytmu beta. W standardach pracowni neurofizjologicznej podkreśla się też znaczenie aktywacji (hiperwentylacja, fotostymulacja) – wtedy zmiany w rytmach mogą się nasilać lub zmieniać, co bywa bardzo przydatne w diagnostyce napadów.

Pytanie 37

Który typ głowicy ultrasonograficznej przedstawiono na ilustracji?

Ilustracja do pytania
A. Konweksową.
B. Sektorową.
C. Liniową.
D. Endokawitarną.
Na ilustracji pokazano klasyczną głowicę liniową, co widać po jej prostym, wydłużonym, prostokątnym froncie roboczym. Powierzchnia kontaktu z ciałem jest płaska, a krawędź aktywna ma kształt linii – stąd właśnie nazwa „liniowa”. W takiej głowicy elementy piezoelektryczne są ułożone w jednej linii, a wiązka ultradźwiękowa jest wysyłana równolegle, co daje obraz o przekroju prostokątnym, z równą szerokością od powierzchni skóry aż w głąb. Moim zdaniem to jedna z najbardziej charakterystycznych sond i warto ją rozpoznawać „na pierwszy rzut oka”. W praktyce klinicznej głowice liniowe wykorzystuje się głównie do badań struktur położonych płytko: tarczycy, naczyń (USG dopplerowskie tętnic szyjnych, żył kończyn dolnych), narządu ruchu (ścięgna, mięśnie, stawy), piersi, moszny czy badania tkanek podskórnych. Zwykle pracują na wyższych częstotliwościach, np. 7–15 MHz, co zapewnia bardzo dobrą rozdzielczość przestrzenną kosztem mniejszej głębokości penetracji. To zgodne z dobrymi praktykami – do tkanek powierzchownych wybieramy wysoką częstotliwość i właśnie sondę liniową. W wielu zaleceniach, np. w standardach badań naczyniowych, wyraźnie podkreśla się, że do oceny tętnic szyjnych i żył kończyn należy stosować głowice liniowe wysokoczęstotliwościowe, bo tylko one dają wystarczająco szczegółowy obraz ściany naczynia i zmian miażdżycowych. Z mojego doświadczenia w pracowniach USG to jest taka „sonda pierwszego wyboru” przy każdym badaniu, gdzie interesuje nas drobny detal anatomiczny tuż pod skórą, np. nerwy obwodowe, drobne guzy podskórne czy kontrole po zabiegach chirurgicznych. Rozpoznanie jej kształtu jest więc podstawową, ale bardzo praktyczną umiejętnością w diagnostyce ultrasonograficznej.

Pytanie 38

Promieniowanie rentgenowskie powstaje w wyniku hamowania

A. elektronów na anodzie lampy rentgenowskiej.
B. kwantów energii na katodzie lampy rentgenowskiej.
C. elektronów na katodzie lampy rentgenowskiej.
D. kwantów energii na anodzie lampy rentgenowskiej.
Prawidłowo – promieniowanie rentgenowskie w klasycznej lampie diagnostycznej powstaje głównie w wyniku gwałtownego hamowania elektronów na anodzie. W lampie RTG elektrony są emitowane z rozżarzonej katody (emisja termoelektronowa), a następnie przyspieszane silnym napięciem wysokim, rzędu kilkudziesięciu do nawet 120 kV, w kierunku anody. Lecą więc z dużą energią kinetyczną. Kiedy uderzają w ognisko anody (zwykle z wolframu lub stopu wolframu), są bardzo gwałtownie hamowane w polu elektrycznym jąder atomów materiału tarczy. Właśnie to hamowanie, czyli zmiana pędu i kierunku ruchu elektronu w polu jądra, powoduje emisję promieniowania hamowania – tzw. bremsstrahlung, które stanowi podstawową składową widma promieniowania w diagnostyce obrazowej. Dodatkowo część fotonów powstaje jako promieniowanie charakterystyczne, gdy elektron wybija elektron z powłoki wewnętrznej atomu wolframu i następuje przeskok z wyższej powłoki – ale to wciąż efekt zderzenia elektronu z anodą, nie z katodą. W praktyce klinicznej dobra znajomość tego mechanizmu tłumaczy, dlaczego zmiana napięcia kV wpływa na energię (twardość) wiązki, a zmiana natężenia mA – na ilość wytwarzanych fotonów. Z mojego doświadczenia w pracowniach RTG osoby, które rozumieją, że źródłem promieniowania jest właśnie interakcja szybkich elektronów z materiałem anody, lepiej ogarniają takie tematy jak filtracja wiązki, warstwa półchłonna czy dobór ogniska. Ma to znaczenie nie tylko dla jakości obrazu (kontrast, kontrastowość, szumy), ale też dla ochrony radiologicznej – bo wiemy, skąd bierze się promieniowanie rozproszone i jak parametry pracy lampy przekładają się na dawkę dla pacjenta i personelu. W standardach pracy (np. wytyczne ICRP, EUREF i krajowe rekomendacje) cały czas podkreśla się zależność: energia elektronów przy anodzie → widmo i intensywność promieniowania X.

Pytanie 39

Którą kość zaznaczono strzałką na radiogramie stopy?

Ilustracja do pytania
A. Kość skokową.
B. Kość łódkowatą.
C. Kość sześcienną.
D. Kość klinowatą boczną.
Na radiogramie stopy w projekcji AP strzałka wskazuje kość sześcienną, czyli jedną z kości stępu położoną po stronie bocznej. Kość sześcienna leży dystalnie w stosunku do kości piętowej, a proksymalnie do IV i V kości śródstopia, częściowo także sąsiaduje z III kością śródstopia. Od strony przyśrodkowej łączy się z kością klinowatą boczną oraz z kością łódkowatą. Na prawidłowo wykonanym RTG łatwo ją zlokalizować właśnie jako boczną kość stępu, tworzącą jakby „kostkę” pomiędzy piętą a bocznymi kośćmi śródstopia. Moim zdaniem kluczowe jest tu świadome „czytanie” obrazu: zaczynamy od kości piętowej, idziemy dystalnie po stronie bocznej i pierwsza wyraźna kość stępu przed piętą to właśnie kość sześcienna. W praktyce technika radiologii często musi ocenić tę kość pod kątem złamań zmęczeniowych, urazów w obrębie stawu Choparta, a także przy deformacjach stopy, np. w stopie końsko‑szpotawej. W dobrych praktykach opisowych zwraca się uwagę na ciągłość zarysów korowych kości, szerokość szpar stawowych z sąsiednimi kośćmi śródstopia oraz ewentualne odłamy awulsyjne przy przyczepach więzadeł. W badaniach kontrolnych po unieruchomieniu gipsowym technik powinien zadbać o identyczne lub bardzo zbliżone pozycjonowanie, żeby lekarz mógł wiarygodnie porównać zrost w obrębie kości sześciennej. To z pozoru mała kość, ale w biomechanice stopy odgrywa dość istotną rolę, stabilizując boczny filar stopy i przenosząc obciążenia przy chodzeniu i bieganiu.

Pytanie 40

Na radiogramie uwidoczniono

Ilustracja do pytania
A. paluch szpotawy(hallux varus) stopy prawej.
B. złamanie guzowatości V kości śródstopia.
C. paluch koślawy (hallux valgus) stopy prawej.
D. złamanie podstawy I kości śródstopia.
Na tym zdjęciu łatwo pomylić kilka pojęć, zwłaszcza gdy patrzy się tylko na ogólny kształt stopy, bez analizy osi kości i zarysów korowych. Paluch szpotawy (hallux varus) to deformacja dokładnie odwrotna do widocznej – paluch odchyla się wtedy przyśrodkowo, w stronę drugiej stopy, a I kość śródstopia zwykle jest bardziej ustawiona bocznie. Na radiogramie hallux varus linia przechodząca przez oś I kości śródstopia i paliczka palucha tworzy kąt otwarty przyśrodkowo. Tutaj kąt jest otwarty bocznie, czyli typowa koślawość, więc rozpoznanie szpotawości nie ma podstaw anatomicznych. Drugim częstym błędem jest doszukiwanie się złamania guzowatości V kości śródstopia. W takim urazie oczekujemy przerwania ciągłości korowej na bocznej krawędzi stopy, w okolicy przyczepu ścięgna mięśnia strzałkowego krótkiego. Linia złamania bywa poprzeczna lub skośna, często z niewielkim przemieszczeniem. Na przedstawionym obrazie zarys V kości śródstopia jest gładki, bez szczeliny złamania, bez odczynu okostnowego czy odłamu oderwanego – więc radiologicznie nie ma cech świeżego urazu. Podobnie mylące bywa podejrzenie złamania podstawy I kości śródstopia. W tej lokalizacji szukamy wyraźnego przerwania kory w rejonie stawu stępowo‑śródstopnego I, ewentualnie z przemieszczeniem lub poszerzeniem szpary stawowej, co sugerowałoby uraz typu Lisfranca. Tutaj kontury podstawy I kości śródstopia są zachowane, nie ma schodka korowego ani patologicznej szczeliny. Typowym błędem myślowym jest skupienie się na najbardziej „wystającej” części kości i automatyczne uznanie jej za złamanie, zamiast spokojnie prześledzić przebieg linii kostnych i porównać je z sąsiednimi strukturami. Dobra praktyka w diagnostyce obrazowej to najpierw ocena osi i kątów ustawienia kości (co od razu naprowadza na deformacje typu hallux valgus), a dopiero potem systematyczne szukanie cech urazu: przerwania kory, odłamów, odczynu okostnowego czy zaburzenia zarysu stawów. Jeśli trzyma się tej kolejności, ryzyko pomylenia przewlekłej deformacji z ostrym złamaniem jest zdecydowanie mniejsze.