Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektronik
  • Kwalifikacja: ELM.05 - Eksploatacja urządzeń elektronicznych
  • Data rozpoczęcia: 12 listopada 2025 20:29
  • Data zakończenia: 12 listopada 2025 20:34

Egzamin zdany!

Wynik: 39/40 punktów (97,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Która z poniższych liczb stanowi przedstawienie w kodzie BCD 8421?

A. 11001100
B. 01100110
C. 10101010
D. 11101110
Kod BCD 8421, czyli Binary-Coded Decimal, to taki sposób zapisywania liczb dziesiętnych, gdzie każda cyfra oznaczona jest jako cztery bity. Na przykład, jak weźmiemy naszą odpowiedź '01100110', to widzimy, że składa się z dwóch części: '0110', co to jest 6, i znowu '0110', co też daje 6 w dziesiętnym. W sumie mamy 66! Ten kod jest naprawdę szeroko używany w elektronice i komputerach, bo często trzeba przekształcać liczby dziesiętne na binarne. Widzimy to w cyfrowych wyświetlaczach, różnych urządzeniach pomiarowych i w systemach komputerowych, które pokazują dane w łatwy do zrozumienia sposób. Zrozumienie kodu BCD jest na prawdę ważne, bo pomaga lepiej radzić sobie z obliczeniami w systemach cyfrowych, co jest istotne w inżynierii oprogramowania oraz elektroniki.

Pytanie 2

Podczas pomiaru poziomu sygnału telewizji DVB-T w gnieździe abonenckim zbiorczej instalacji antenowej uzyskano wartość 26 dB µV. Zmierzony sygnał

A. wymaga zastosowania wzmacniacza w instalacji
B. przekracza dopuszczalną wartość maksymalną
C. wymaga zastosowania filtra zakłóceń w instalacji
D. umożliwia prawidłowy odbiór
Odpowiedź wskazująca na konieczność zastosowania wzmacniacza w instalacji antenowej jest prawidłowa, ponieważ wartość 26 dB µV sygnału DVB-T jest zbyt niska dla zapewnienia stabilnego i jakościowego odbioru sygnału telewizyjnego. Zgodnie z przyjętymi standardami, minimalny poziom sygnału dla dobrego odbioru telewizji cyfrowej powinien wynosić co najmniej 40 dB µV, a optymalne wartości to nawet 60 dB µV lub więcej, aby uniknąć zakłóceń i zapewnić wysoką jakość obrazu oraz dźwięku. Dlatego w przypadku, gdy poziom sygnału jest niewystarczający, zastosowanie wzmacniacza jest kluczowe, aby podnieść go do odpowiedniego poziomu. W praktyce wzmacniacze instalowane są w różnych punktach sieci, w zależności od jej struktury i rozkładu sygnału, co pozwala na zredukowanie strat sygnału na długich odcinkach kablowych. Stosowanie wzmacniaczy zgodnie z normami i zaleceniami producentów oraz zapewnienie odpowiedniej jakości urządzeń są podstawą skutecznej instalacji antenowej, co przekłada się na satysfakcję użytkowników.

Pytanie 3

HDMI to standard wykorzystywany do przesyłania sygnału

A. cyfrowego dźwięku
B. analogowego obrazu
C. cyfrowego wideo i dźwięku
D. analogowego obrazu i dźwięku
HDMI, czyli High-Definition Multimedia Interface, to standardowy interfejs stworzony do przesyłania sygnałów wysokiej jakości audio i wideo w postaci cyfrowej. Umożliwia on jednoczesne przesyłanie wielu kanałów audio oraz obrazu w rozdzielczości HD i wyższej. W praktyce oznacza to, że podłączając urządzenie, takie jak telewizor czy monitor, do źródła sygnału, na przykład odtwarzacza Blu-ray czy komputera, użytkownik może cieszyć się krystalicznie czystym dźwiękiem i obrazem bez strat jakości. HDMI stało się de facto standardem w elektronice użytkowej, a jego wszechstronność znajduje zastosowanie w telewizorach, projektorach, konsolach do gier oraz systemach kina domowego. Dodatkowo, HDMI obsługuje różne technologie, takie jak CEC (Consumer Electronics Control), które pozwala na sterowanie wieloma urządzeniami za pomocą jednego pilota. Warto również wspomnieć o różnych wersjach HDMI, które oferują różne możliwości, między innymi obsługę 4K czy HDR, co dodatkowo zwiększa jego użyteczność w nowoczesnych zastosowaniach multimedialnych.

Pytanie 4

Podczas podłączania czujnika ruchu typu NC do panelu alarmowego w konfiguracji 3EOL/NC, konieczne jest umieszczenie w tym czujniku, odpowiednio podłączonych, trzech

A. kondensatorów
B. fototranzystorów
C. rezystorów
D. diody
Podłączenie czujki ruchu typu NC (normalnie zamknięty) w konfiguracji 3EOL/NC wymaga zastosowania odpowiednich rezystorów, które są kluczowe dla zapewnienia poprawnej pracy systemu alarmowego. W przypadku czujek ruchu, rezystory służą do monitorowania stanu obwodu, co pozwala na wykrycie sabotażu oraz sygnalizację alarmu w momencie, gdy czujka jest aktywowana. Standardowo w tej konfiguracji stosuje się rezystory o wartości 1kΩ dla każdego z trzech kanałów, co umożliwia efektywne zbalansowanie systemu oraz dostarczenie informacji o ewentualnych uszkodzeniach. Dobrą praktyką jest również stosowanie rezystorów w odpowiednich wartościach, aby uniknąć fałszywych alarmów oraz zapewnić stabilność działania czujki w różnych warunkach środowiskowych. W praktyce, zastosowanie rezystorów zwiększa niezawodność systemów alarmowych, co jest kluczowe w kontekście ochrony obiektów.

Pytanie 5

W jakim celu w obwodzie sterowania przekaźnika dołącza się dodatkową diodę D?

Ilustracja do pytania
A. Zwiększenia szybkości zadziałania przekaźnika.
B. Zabezpieczenia cewki przekaźnika przed odwrotnym podłączeniem zasilania.
C. Obniżenia napięcia zasilającego cewkę przekaźnika.
D. Zabezpieczenia tranzystora T przed uszkodzeniem wysokimi napięciami indukowanymi w cewce przekaźnika w chwili wyłączenia cewki.
Dioda D, dołączona równolegle do cewki przekaźnika, jest kluczowym elementem w obwodach sterowania, pełniąc funkcję diody zabezpieczającej. Jej głównym zadaniem jest ochrona tranzystora T przed uszkodzeniem, które może wystąpić w wyniku wysokiego napięcia indukowanego w cewce przekaźnika w chwili jego wyłączenia. Zjawisko to, znane jako samoindukcja, prowadzi do natychmiastowego wzrostu napięcia, które w przeciwnym razie mogłoby trwale uszkodzić tranzystor. W praktyce, takie zabezpieczenie jest powszechnie stosowane w układach sterowania, szczególnie tam, gdzie używane są przekaźniki elektromagnetyczne. Właściwe zastosowanie diody zabezpieczającej, zgodnie ze standardami branżowymi, nie tylko zwiększa niezawodność układu, ale także wydłuża żywotność komponentów elektronicznych. Warto zaznaczyć, że takie rozwiązanie jest standardem w nowoczesnych układach automatyki, co podkreśla jego znaczenie w projektowaniu systemów elektronicznych.

Pytanie 6

W przypadku której z czujek do jej prawidłowego funkcjonowania nie jest konieczne posiadanie zewnętrznego (dodatkowego) źródła zasilania?

A. Zalania.
B. Ruchu PIR.
C. Magnetycznej.
D. Dualnej.
Czujka magnetyczna jest urządzeniem, które działa na zasadzie detekcji zmian w polu magnetycznym. Jej podstawowe zastosowanie polega na monitorowaniu otwarcia drzwi lub okien, co czyni ją popularnym rozwiązaniem w systemach alarmowych. Co istotne, czujki te z reguły wykorzystują magnes i styk, które mogą być zasilane z wewnętrznego źródła, co oznacza, że nie wymagają dodatkowego zewnętrznego zasilania. Tego typu rozwiązanie jest zgodne z najlepszymi praktykami w branży zabezpieczeń, ponieważ minimalizuje ryzyko przerwy w zasilaniu, co mogłoby prowadzić do fałszywych alarmów lub całkowitego braku reakcji systemu na zagrożenie. Przykładowo, w budynkach mieszkalnych czujki magnetyczne są często instalowane na oknach i drzwiach, co pozwala na efektywne zabezpieczenie przed włamaniami. Warto również zauważyć, że czujki magnetyczne mogą być stosowane w połączeniu z innymi systemami zabezpieczeń, co zwiększa ich funkcjonalność i efektywność działania, a także komfort użytkowania.

Pytanie 7

W specyfikacji technicznej zasilacza podano, że współczynnik tętnień kt < 2%. Współczynnik tętnień zdefiniowano jako stosunek wartości skutecznej składowej zmiennej do wartości średniej przebiegu. Jaką wartość ma ten współczynnik i czy spełnia on normy techniczne zasilacza, jeżeli przebieg wyjściowy zasilacza można przedstawić równaniem uwyj(t) = 1 0 + 0,1√2sin(628t) ?

A. 1%, tak
B. 3%, tak
C. 3%, nie
D. 1%, nie
Prawidłowa odpowiedź wynika z analizy wzoru przebiegu wyjściowego zasilacza: u<sub>wyj</sub>(t) = 1 0 + 0,1√2sin(628t). Aby obliczyć współczynnik tętnień (kt), musimy najpierw określić wartość skuteczną składowej zmiennej oraz wartość średnią. Wartość skuteczna składowej zmiennej sinusoidalnej, w tym przypadku, wynosi 0,1√2, co odpowiada 0,1414. Wartość średnia tej samej składowej sinusoidalnej wynosi 0, ponieważ dla sinusoidy, średnia z jednego pełnego okresu równoważy się do zera. Z tego powodu współczynnik tętnień obliczamy jako: kt = (0,1414 / 1) * 100% = 14,14%. W praktyce dla zasilaczy wymagany współczynnik tętnień powinien być mniejszy niż 2%, co oznacza, że nasz wynik 1% jest znacznie poniżej tego progu, a zatem spełnia wymagania techniczne. Takie zasilacze są odpowiednie do zasilania wrażliwych urządzeń elektronicznych, gdzie stabilność napięcia jest kluczowa dla ich prawidłowego działania. Przykładem mogą być systemy audio czy urządzenia pomiarowe, które wymagają wysokiej jakości zasilania.

Pytanie 8

Który element elektroniczny należy umieścić w przedstawionym układzie, aby otrzymać działający układ detektora obwiedniowego?

Ilustracja do pytania
A. Kondensator.
B. Rezystor.
C. Diodę.
D. Diak.
Kondensator w układzie detektora obwiedniowego odgrywa kluczową rolę, ponieważ jego zadaniem jest wygładzanie napięcia wyprostowanego, które powstaje po prostowaniu sygnału przez diodę. W momencie, gdy sygnał wejściowy osiąga swoje szczyty, kondensator ładuje się, a następnie, gdy sygnał zaczyna maleć, kondensator oddaje zgromadzoną energię, co pozwala na utrzymanie stabilnego napięcia. Dzięki temu sygnał wyjściowy nie ma dużych skoków, a jego wartość jest bardziej jednolita, co jest istotne w wielu zastosowaniach, takich jak odbiorniki radiowe czy wzmacniacze audio. W praktyce, stosowanie kondensatorów o odpowiednich parametrach (np. pojemności) pozwala na dopasowanie charakterystyki układu do konkretnych wymagań aplikacji, co jest zgodne z dobrą praktyką projektowania układów elektronicznych. Przykładowo, w odbiornikach AM, kondensatory są kluczowe dla uzyskania czystego dźwięku, a ich błędny dobór może prowadzić do zakłóceń i utraty jakości sygnału.

Pytanie 9

Stopniowo zmniejszający się zasięg działania bezprzewodowych urządzeń do zdalnego sterowania pracujących w paśmie 433 MHz może świadczyć o

A. pogarszających się warunkach atmosferycznych
B. usterce w obwodzie anteny nadajników
C. niewystarczającym napięciu zasilającym odbiornik
D. utonie pojemności baterii zasilającej nadajniki
Utrata pojemności baterii zasilającej nadajniki jest najczęstszym powodem zmniejszenia zasięgu bezprzewodowych urządzeń zdalnego sterowania, szczególnie w przypadku pracy w paśmie 433 MHz. Baterie z czasem tracą swoją wydajność, co prowadzi do obniżenia napięcia zasilającego nadajniki. W rezultacie, moc sygnału emitowanego przez nadajnik maleje, co skutkuje zmniejszeniem zasięgu, a w skrajnych przypadkach, utratą łączności z odbiornikiem. Przykładem zastosowania tej wiedzy może być regularne monitorowanie poziomu naładowania baterii urządzeń zdalnego sterowania, co pozwala na wcześniejsze wykrycie problemów z zasięgiem i wymianę baterii zanim dojdzie do całkowitej utraty funkcjonalności. Zgodnie z dobrymi praktykami branżowymi, zaleca się używanie wysokiej jakości baterii oraz regularne przeprowadzanie przeglądów urządzeń zdalnego sterowania, co może znacznie zwiększyć ich niezawodność oraz wydajność w dłuższej perspektywie.

Pytanie 10

Jakie rodzaje pamięci tracą zawartość po ustaniu zasilania?

A. PROM
B. RAM
C. EEPROM
D. EPROM
Pamięci RAM (Random Access Memory) to typ pamięci, który jest ulotny, co oznacza, że wszelkie dane przechowywane w tej pamięci znikają po zaniku napięcia zasilającego. RAM jest używany w komputerach i urządzeniach mobilnych jako pamięć robocza, gdzie przechowywane są aktywne procesy i dane, które są potrzebne w danym momencie. Przykładem zastosowania RAM jest jego rola w uruchamianiu aplikacji – szybki dostęp do danych pozwala na płynne działanie systemu operacyjnego oraz aplikacji. W standardach komputerowych, takich jak DDR (Double Data Rate), pamięci RAM są klasyfikowane według prędkości i wydajności, co wpływa na ogólną wydajność systemu. W praktyce, większa ilość pamięci RAM pozwala na uruchamianie większej liczby aplikacji jednocześnie i wydajniejsze przetwarzanie danych.

Pytanie 11

Urządzenie, które pozwala na przesył sygnału telewizyjnego z kilku anten poprzez jeden kabel, to

A. konwerter
B. zwrotnica
C. rozgałęźnik
D. symetryzator
Zwolnica to urządzenie, które odgrywa kluczową rolę w systemach telewizyjnych, umożliwiając przesyłanie sygnału z wielu anten przez jedno łącze. Dzięki swojej konstrukcji, zwrotnica separuje sygnały z różnych źródeł, takich jak różne anteny, i kieruje je do jednego przewodu, co jest szczególnie przydatne w instalacjach, gdzie dostęp do wielu źródeł sygnału jest ograniczony. To rozwiązanie jest powszechne w budynkach wielorodzinnych oraz w rejonach z różnorodnym pokryciem sygnałem telewizyjnym. Przykładami zastosowania zwrotnic są instalacje w domach, gdzie użytkownicy chcą odbierać sygnał z kilku anten, np. naziemnych oraz satelitarnych, bez konieczności układania wielu przewodów. Standardy branżowe, takie jak DVB-T, nakładają wymagania dotyczące efektywności sygnału, a wykorzystanie zwrotnic pozwala na ich spełnienie, eliminując straty sygnału i zakłócenia. Ponadto, zwrotnice są projektowane z myślą o minimalizacji strat sygnałowych i zapewnieniu wysokiej jakości obrazu oraz dźwięku.

Pytanie 12

W tabeli podano parametry katalogowe wybranych diod LED. Uszereguj rosnąco względem napięcia przewodzenia diody LED czterech różnych barw.

Parametry katalogowe wybranych diod LED
  • Soczewka w kolorze żółtym
  • Długość emitowanej fali: 589 nm
  • Jasność: 40 mcd
  • Kąt świecenia: 60°
  • Parametry pracy:
    IF: 25 mA, VF: 2,0 V
  • Soczewka w kolorze zielonym
  • Długość emitowanej fali: 571 nm
  • Jasność: 100÷150 mcd
  • Kąt świecenia: 50°
  • Parametry pracy:
    IF: 20 mA, VF: 2,3÷2,5 V
  • Soczewka w kolorze czerwonym
  • Długość emitowanej fali: 625-645 nm
  • Jasność: 450÷800 mcd
  • Kąt świecenia: 70°
  • Parametry pracy:
    IF: 20 mA, VF: 1,8÷1,9 V
  • Soczewka w kolorze niebieskim
  • Długość emitowanej fali: 470 nm
  • Jasność: 1000 mcd
  • Kąt świecenia: 30°
  • Parametry pracy:
    IF: 25 mA, VF: 3,2 V
A. Czerwona, zielona, żółta, niebieska.
B. Niebieska, czerwona, zielona, żółta.
C. Niebieska, czerwona, żółta, zielona.
D. Czerwona, żółta, zielona, niebieska.
Twoja odpowiedź jest poprawna, ponieważ poprawnie uszeregowałeś diody LED według ich napięcia przewodzenia. Dioda czerwona, z napięciem 1,8-1,9 V, charakteryzuje się najniższym napięciem, co czyni ją pierwszą w kolejności. Następnie znajduje się dioda żółta o napięciu 2,0 V, która jest wyższa od czerwonej, ale niższa od kolejnych kolorów. Dioda zielona, z napięciem 2,3-2,5 V, zajmuje trzecie miejsce, a na końcu jest dioda niebieska z napięciem 3,2 V. Zrozumienie tego porządku jest niezbędne przy projektowaniu obwodów z diodami LED, ponieważ właściwe dobranie diod do zastosowania wymaga znajomości ich parametrów elektrycznych. Przykładowo, w aplikacjach oświetleniowych, gdzie kluczowe są oszczędności energetyczne oraz długowieczność komponentów, dobór diod LED o odpowiednich napięciach przewodzenia jest istotny dla zapewnienia stabilności obwodu. Dlatego warto zwracać uwagę na te parametry podczas projektowania układów elektronicznych.

Pytanie 13

Jaką wartość napięcia odczytuje cyfrowy multimetr z aktywowaną funkcją True RMS na wyjściu obciążonego transformatora głośnikowego, który zasila szkolną instalację radiowęzłową, pokazując wartość 22,8 V?

A. Maksymalną
B. Średnią
C. Międzyszczytową
D. Skuteczną
Odpowiedź 'Skuteczna' jest prawidłowa, ponieważ multimetr cyfrowy z funkcją True RMS mierzy wartość skuteczną napięcia, co jest szczególnie istotne w przypadku sygnałów zmiennych, takich jak napięcie na wyjściu transformatora głośnikowego. Wartość skuteczna (RMS, Root Mean Square) określa równoważną wartość DC, która dostarcza tę samą moc do obciążenia. W praktyce oznacza to, że jeśli transformator głośnikowy zasilany jest napięciem zmiennym, wskazanie multimetru 22,8 V oznacza, że ta wartość skuteczna dostarcza równoważną moc do podłączonego obciążenia, co jest kluczowe w zastosowaniach audio. W branży audio i elektroakustycznej, pomiar wartości skutecznej jest standardem, ponieważ pozwala na dokładną ocenę wydajności systemu, zapewniając stabilność i jakość dźwięku. Dobrą praktyką jest stosowanie multimetrów z funkcją True RMS, które poprawnie mierzą napięcia w systemach, gdzie występują zniekształcenia sygnału, co jest często spotykane w instalacjach radiowęzłowych.

Pytanie 14

W celu obserwacji na ekranie oscyloskopu składowej zmiennej napięcia z pominięciem składowej stałej zaznaczony na rysunku przełącznik powinien być ustawiony w pozycji

Ilustracja do pytania
A. DC
B. DC i GND
C. GND
D. AC
Ustawienie przełącznika na "AC" to naprawdę istotna sprawa, jeśli chcesz dobrze zobaczyć, jak działa zmienne napięcie. Działa to tak, że filtruje składową stałą i zostawia tylko sygnał zmienny. Z mojego doświadczenia, oscyloskopy korzystające z tej opcji są super przydatne w diagnostyce w elektronice. Często musimy mieć jasny obraz sygnałów zmiennych, na przykład fal sinusoidalnych w obwodach prądu zmiennego. Moim zdaniem, to klucz do analizy sygnałów z generatorów funkcji czy sygnałów audio, bo oddzielając składową stałą od zmiennej, zyskujemy czysty widok na oscyloskopie. A dodatkowo, dzięki temu unikamy różnych zakłóceń związanych z przesunięciem poziomu napięcia, a to jest ważne dla dokładnych pomiarów w laboratoriach i przy różnych projektach inżynieryjnych.

Pytanie 15

Jakie urządzenie łączy komputer z lokalną siecią komputerową?

A. wyposażenie bramowe
B. karta sieciowa
C. firewall
D. most
Karta sieciowa to taki kluczowy element, który łączy komputer z lokalną siecią, jakby to był most między różnymi urządzeniami. Jej główne zadanie to umożliwienie komunikacji, co jak wiadomo, odbywa się poprzez zamianę danych na sygnały elektryczne i przesyłanie ich przez różne media, jak kable Ethernet czy fale radiowe w sieciach bezprzewodowych. Karty sieciowe występują w różnych wersjach, na przykład jako karty rozszerzeń do montażu w gniazdach PCI albo jako wbudowane urządzenia w laptopach. Każda z nich ma swój unikalny adres MAC, który jest, mówiąc kolokwialnie, takim identyfikatorem w sieci. Standardy, jak IEEE 802.3 dla Ethernet czy IEEE 802.11 dla Wi-Fi, mówią, jak te karty powinny działać, żeby wszystko ze sobą współpracowało. Dzięki nim użytkownicy mogą korzystać z różnych zasobów sieciowych, jak serwery, drukarki czy internet, co jest niezbędne, szczególnie w biurach i domach.

Pytanie 16

Tranzystor NPN, którego współczynnik wzmocnienia prądowego P = 50, pracuje w układzie pokazanym na rysunku. Jaka jest wartość napięcia kolektor-emiter tego tranzystora?

Ilustracja do pytania
A. UCE=9,5 V
B. UCE=2,5 V
C. UCE=0 V
D. UCE=5 V
Odpowiedź UCE=9,5 V jest prawidłowa, ponieważ w obliczeniach napięcia kolektor-emiter tranzystora NPN kluczowe jest zrozumienie roli prądu kolektora i jego relacji z prądem bazy. Współczynnik wzmocnienia prądowego β, który wynosi 50, oznacza, że prąd kolektora IC jest 50 razy większy niż prąd bazy IB. W praktyce, jeśli na przykład prąd bazy wynosi 0,1 mA, to prąd kolektora wyniesie 5 mA. Następnie, aby obliczyć napięcie UCE, musimy uwzględnić spadek napięcia na rezystorze obciążeniowym R, który można obliczyć jako iloczyn prądu kolektora i jego rezystancji. Przy założeniu, że napięcie zasilania E wynosi 9,5 V, a spadek napięcia na R wynosi 0 V, obliczone napięcie kolektor-emiter wynosi 9,5 V. W praktycznej aplikacji, dokładne obliczenia i uwzględnienie wszystkich parametrów tranzystora są kluczowe dla zapewnienia stabilności i efektywności układu analogowego, co jest zgodne z najlepszymi praktykami w projektowaniu obwodów elektronicznych.

Pytanie 17

Przy wymianie uszkodzonego kondensatora, co należy zrobić?

A. wprowadzić kondensator o pojemności identycznej z tą odczytaną z urządzenia pomiarowego po zbadaniu uszkodzonego kondensatora
B. wprowadzić kondensator o pojemności o 30% większej niż znamionowa
C. wprowadzić kondensator o tych samych wymiarach
D. wprowadzić kondensator o pojemności zgodnej z wartością znamionową uzyskaną z schematu urządzenia
Wstawienie kondensatora o pojemności odpowiadającej pojemności znamionowej odczytanej ze schematu urządzenia jest kluczowe dla zapewnienia prawidłowego działania układów elektronicznych. Kondensatory są komponentami, które pełnią istotne funkcje w obwodach, takie jak filtracja, przechowywanie energii czy stabilizacja napięcia. Użycie kondensatora o właściwej pojemności zapewnia, że układ pracuje zgodnie z założeniami projektowymi. Na przykład, w aplikacjach audio, niewłaściwa pojemność może prowadzić do zniekształceń dźwięku, a w obwodach zasilania, do niestabilności napięcia. Praktyczne podejście do wymiany kondensatorów obejmuje także przestrzeganie norm, takich jak IEC 60384, które regulują klasyfikację, parametry i metody testowania kondensatorów. Zachowanie tych standardów zapewnia bezpieczeństwo i niezawodność urządzenia. Ponadto, w przypadku wymiany kondensatora, warto również zwrócić uwagę na jego napięcie pracy oraz typ (elektrolityczny, ceramiczny, mylarowy itp.), co jest zgodne z dobrą praktyką serwisową.

Pytanie 18

Jakie są komponenty sprzętowe sieci komputerowych?

A. urządzenia dostępu
B. oprogramowanie komunikacyjne
C. sterowniki urządzeń
D. protokoły
Urządzenia dostępu stanowią kluczowy element infrastruktury sieci komputerowych, ponieważ umożliwiają użytkownikom oraz urządzeniom podłączenie się do sieci. Do najpopularniejszych urządzeń dostępu należą modemy, routery oraz punkty dostępu (access points). Modem łączy sieć domową z Internetem, router rozdziela połączenie internetowe na wiele urządzeń, a punkty dostępu rozszerzają zasięg sieci bezprzewodowej. W kontekście standardów, przykładami mogą być urządzenia zgodne z protokołami IEEE 802.11, które definiują normy dla sieci WLAN, oraz urządzenia obsługujące IPv4 i IPv6, które są niezbędne do komunikacji w Internecie. W praktyce, wybór odpowiednich urządzeń dostępu wpływa na efektywność i bezpieczeństwo sieci, co czyni je fundamentem każdej infrastruktury komputerowej.

Pytanie 19

Układ cyfrowy sekwencyjny wyróżnia się tym, że sygnał na wyjściu

A. jest uzależniony od aktualnej informacji wejściowej, ale nie jest uzależniony od uprzednich informacji wyjściowych
B. jest uzależniony od aktualnej informacji wejściowej oraz od uprzednich informacji wyjściowych
C. nie jest uzależniony od aktualnej informacji wejściowej, natomiast zależy od uprzednich informacji wyjściowych
D. nie jest uzależniony od aktualnej informacji wejściowej ani od uprzednich informacji wyjściowych
Układ cyfrowy sekwencyjny to kluczowy element w projektowaniu systemów cyfrowych, który różni się od układów kombinacyjnych tym, że jego sygnał wyjściowy jest uzależniony zarówno od aktualnych sygnałów wejściowych, jak i od wcześniejszych stanów wyjściowych. W praktyce oznacza to, że układy sekwencyjne, takie jak przerzutniki, rejestry czy liczniki, mają zdolność do 'zapamiętywania' informacji. Przykładem zastosowania układów sekwencyjnych mogą być systemy sterowania, w których wymagane jest śledzenie stanu urządzeń. Na przykład, w automatyce przemysłowej, układy sekwencyjne są wykorzystywane do zarządzania procesami produkcyjnymi, gdzie zachowanie urządzeń zależy od wcześniejszych działań. Dobrą praktyką w projektowaniu układów sekwencyjnych jest stosowanie diagramów stanów, co pozwala na wizualizację i lepsze zrozumienie relacji pomiędzy stanami oraz ich przejściami. W kontekście standardów, projektowanie takich układów powinno opierać się na zasadach logiki sekwencyjnej, co zapewnia ich niezawodność i efektywność działania. Dlatego poprawna odpowiedź to stwierdzenie, że sygnał wyjściowy układu sekwencyjnego zależy od bieżącej informacji wejściowej i od poprzednich informacji wyjściowych.

Pytanie 20

Jaka jest rezystancja wewnętrzna baterii AAA, jeśli jej napięcie w stanie jałowym wynosi U1=1,5 V, a pod obciążeniem prądem 100 mA U2=1,45 V?

A. 0,50 Ω
B. 0,05 Ω
C. 5,00 Ω
D. 50,0 Ω
Wartość rezystancji wewnętrznej baterii można obliczyć na podstawie różnicy napięcia w stanie jałowym i napięcia pod obciążeniem. W tym przypadku mamy napięcie w stanie jałowym U1 = 1,5 V oraz napięcie pod obciążeniem U2 = 1,45 V. Różnica ta wynosi ΔU = U1 - U2 = 0,05 V. Zastosowanie prawa Ohma pozwala na obliczenie rezystancji wewnętrznej (R) jako R = ΔU / I, gdzie I to prąd płynący przez obciążenie. W naszym przypadku prąd wynosi 100 mA, czyli 0,1 A. Zatem, R = 0,05 V / 0,1 A = 0,5 Ω. Taka rezystancja wewnętrzna wskazuje, że bateria jest w dobrym stanie, ponieważ niskie wartości rezystancji wewnętrznej są pożądane w akumulatorach, co przekłada się na ich efektywność i dłuższą żywotność. Niska rezystancja wewnętrzna minimalizuje straty energii i pozwala na efektywniejsze wykorzystanie energii zgromadzonej w baterii, co jest kluczowe w zastosowaniach wymagających wysokiej wydajności, takich jak urządzenia przenośne i systemy zasilania awaryjnego.

Pytanie 21

W urządzeniu elektronicznym uszkodzeniu uległ warystor MYG 10K-431 o napięciu znamionowym 275 V AC, 350 V DC, energii tłumienia 55 J/2 ms i rastrze 7,5 mm. Wykorzystując tabelę zamienników wskaż oznaczenie warystora, który można zastosować w zamian za uszkodzony?

Tabela zamienników
Oznaczenie warystoraNapięcie znamionoweEnergia tłumieniaRaster
TSV07D471300 V AC
375 V DC
40 J/2 ms5 mm
JVR07N431K275 V AC
350 V DC
33 J/2 ms5 mm
JVR14N431K275 V AC
350 V DC
132 J/2 ms7,5 mm
B72210S0301K101300 V AC
385 V DC
47 J/2 ms7,5 mm
A. B72210S0301K101
B. JVR14N431K
C. TSV07D471
D. JVRO7N431K
Warystor JVR14N431K jest odpowiednim zamiennikiem dla uszkodzonego MYG 10K-431 z kilku powodów. Po pierwsze, oba warystory mają identyczne napięcie znamionowe: 275 V AC oraz 350 V DC, co jest kluczowe dla zapewnienia, że nowy komponent będzie działał w tych samych warunkach. Po drugie, JVR14N431K charakteryzuje się wyższą energią tłumienia wynoszącą 132 J/2 ms, co oznacza, że może skuteczniej absorbować i tłumić przepięcia, co jest istotne w obwodach narażonych na nagłe skoki napięcia. W praktyce, gdy w układzie występują przepięcia, warystory pełnią rolę ochronną, zapobiegając uszkodzeniu innych komponentów. Zastosowanie warystora o wyższej energii tłumienia w tym przypadku zwiększa niezawodność całego systemu elektronicznego. Również wspomniany raster wynoszący 7,5 mm zapewnia, że nowy warystor będzie odpowiednio pasował do istniejącego miejsca w obwodzie, co ułatwia jego wymianę i zabezpiecza przed błędami montażowymi. W branży elektronicznej kluczowe jest przestrzeganie standardów jakości oraz dobrych praktyk w doborze komponentów, dlatego stosowanie zamienników z porównywalnymi parametrami jest niezbędne. Zastosowanie JVR14N431K nie tylko spełnia wymogi techniczne, ale także przyczynia się do długotrwałej eksploatacji urządzenia.

Pytanie 22

Zakład elektroniczny otrzymał zamówienie na rozbudowę istniejącego domowego systemu alarmowego. Usługa obejmuje zamontowanie 3 czujników ruchu i włączenie ich do systemu. Na podstawie danych zamieszczonych w tabeli określ, jaki będzie koszt planowanych prac, jeżeli materiały objęte są 23%, a usługa 8% podatkiem VAT. W obliczeniach należy uwzględnić zryczałtowany koszt dojazdu do domu klienta w wysokości 45,00 zł.

Element/usługaCena jednostkowa netto
Czujnik50,00 zł
Montaż 1 czujnika30,00 zł
Przeprogramowanie i sprawdzenie systemu60,00 zł
A. 395,10 zł
B. 312,00 zł
C. 391,50 zł
D. 345,00 zł
Poprawna odpowiedź to 391,50 zł, co wynika z dokładnych obliczeń uwzględniających wszystkie koszty oraz podatki VAT. W procesie obliczeń należy najpierw wyodrębnić koszty netto materiałów oraz usług. Materiały objęte są 23% podatkiem VAT, co oznacza, że do podstawy netto dodajemy ten podatek, a następnie sumujemy te koszty z kosztem usług, które są objęte 8% VAT. Kolejnym krokiem jest doliczenie zryczałtowanego kosztu dojazdu, który wynosi 45,00 zł. Poprawne obliczenie kosztów to istotna umiejętność w branży elektroinstalacyjnej, szczególnie w kontekście zarządzania projektami i budżetami. Warto także pamiętać, że stosowanie poprawnych stawek VAT jest obowiązkowe według aktualnych przepisów prawnych. W praktyce, obliczanie kosztów z uwzględnieniem podatków oraz dodatkowych opłat to standardowa procedura, która powinna być dobrze znana każdemu profesjonalistowi w dziedzinie usług elektronicznych. Takie podejście pozwala nie tylko na dokładność w wycenie, ale także na profesjonalne przedstawienie oferty klientowi.

Pytanie 23

Jaką wartość ma impedancja wejściowa gniazda antenowego w odbiorniku telewizyjnym?

A. 50 Ω
B. 300 Ω
C. 150 Ω
D. 75 Ω
Odpowiedź 75 Ω jest poprawna, ponieważ gniazdo antenowe odbiornika telewizyjnego standardowo projektowane jest z impedancją 75 Ω. Taki wybór impedancji wynika z optymalizacji transmisji sygnałów telewizyjnych, które są przesyłane w większości systemów kablowych oraz satelitarnych. W przypadku zastosowania impedancji 75 Ω, mamy do czynienia z minimalizacją strat sygnałowych oraz refleksji, co jest kluczowe dla zachowania jakości odbioru. W praktyce, urządzenia, takie jak dekodery czy telewizory, powinny być podłączane do anten o tej samej impedancji, aby zapewnić maksymalną efektywność. Ponadto, w branży telekomunikacyjnej powszechnie stosowane są standardy, takie jak IEC 60169-2, które definiują parametry techniczne gniazd oraz przewodów antenowych. Zastosowanie impedancji 75 Ω przyczynia się także do lepszego dopasowania z systemami przesyłowymi, co jest istotne w kontekście nowoczesnej telewizji wysokiej rozdzielczości i transmisji cyfrowej.

Pytanie 24

Ilość stabilnych stanów przerzutnika astabilnego wynosi

A. 2
B. 1
C. ∞
D. 0
Przerzutnik astabilny, znany również jako multivibrator astabilny, to układ elektroniczny, który nie posiada stanów stabilnych. Jego działanie opiera się na ciągłej zmianie stanów, co oznacza, że jest w stanie nieustannie oscylować pomiędzy dwoma stanami, tworząc w ten sposób sygnał prostokątny. Teoretycznie nie ma 'spoczynkowego' stanu, do którego mógłby przejść, w przeciwieństwie do przerzutnika bistabilnego, który ma dwa stabilne stany. W praktyce przerzutniki astabilne są szeroko wykorzystywane w aplikacjach takich jak generatory sygnałów, migacze LED, oraz w zegarach cyfrowych, gdzie potrzebne jest regularne zmienianie stanu. Zastosowanie przerzutników astabilnych w dziedzinach takich jak automatyka oraz elektronika analogowa jest zgodne z zaleceniami norm IEC 61131-3, co potwierdza ich znaczenie w nowoczesnych systemach elektronicznych.

Pytanie 25

Stabilność systemu automatycznej regulacji sprawia, że gdy układ zostaje wyprowadzony ze stanu równowagi,

A. nie wraca do tego stanu, oscyluje.
B. wyłącza się automatycznie.
C. resetuje się.
D. sam wraca do tego stanu.
Stabilność układu automatycznej regulacji jest kluczowym parametrem, zapewniającym, że po zakłóceniu układ powróci do stanu równowagi. Odpowiedź, że układ "sam powraca do tego stanu", odnosi się do właściwości układów stabilnych, w których reakcja na zakłócenie prowadzi do minimalizacji odchyleń od ustalonej wartości. Przykładem zastosowania tego zjawiska są systemy termostatyczne, w których temperatura pomieszczenia regulowana jest automatycznie, a po przywróceniu właściwych warunków, temperatura wraca do zadanej wartości. W praktyce oznacza to, że układy takie, jak regulatory PID (Proporcjonalno- całkująco- różniczkujące), są projektowane zgodnie z zasadami stabilności, co pozwala na efektywne zarządzanie różnorodnymi procesami przemysłowymi. W standardach, takich jak IEC 61508, podkreśla się znaczenie stabilności w kontekście bezpieczeństwa funkcjonalnego, co dodatkowo zwiększa wagę tego zagadnienia w inżynierii automatyki.

Pytanie 26

Na rysunku przedstawiony jest

Ilustracja do pytania
A. wzmacniacz różnicowy.
B. wtórnik napięciowy.
C. układ całkujący.
D. wzmacniacz odwracający.
Wybór wtórnika napięciowego jako poprawnej odpowiedzi jest uzasadniony, ponieważ na przedstawionym rysunku widzimy typowe połączenie dla tego układu. Wtórnik napięciowy, znany również jako bufor, jest układem, który zapewnia izolację między źródłem sygnału a obciążeniem, jednocześnie utrzymując tę samą amplitudę sygnału na wyjściu. W praktyce jest on niezwykle użyteczny w aplikacjach, gdzie konieczne jest dopasowanie impedancji lub gdzie sygnał musi być wzmocniony bez zmiany jego poziomu napięcia. Wtórniki napięciowe są powszechnie stosowane w systemach audio, gdzie zapewniają stabilność sygnału, oraz w różnych aplikacjach pomiarowych, gdzie sygnał z czujników wymaga buforowania. Z uwagi na brak dodatkowych komponentów zewnętrznych, takich jak rezystory czy kondensatory, możemy stwierdzić, że jego funkcja ogranicza się do prostego przekazywania sygnału, co jest kluczowe dla wielu zastosowań w elektronice.

Pytanie 27

Jakim rodzajem energii pobieranej przez telewizor LCD w trybie czuwania (tzw. tryb STANDBY) jest wartość 3 VA, podana w jego specyfikacji technicznej?

A. Skutecznej
B. Biernej
C. Pozornej
D. Czynnej
Odpowiedź "Pozornej" jest prawidłowa, ponieważ moc pozorna, wyrażana w voltamperach (VA), odnosi się do całkowitej mocy w obwodzie prądu przemiennego, którą dostarcza źródło energii. W przypadku telewizora LCD w trybie czuwania, moc pozorna 3 VA oznacza, że urządzenie pobiera moc, która nie jest w pełni przekładana na pracę wykonaną przez urządzenie, co jest charakterystyczne dla stanu STANDBY. Takie urządzenia zazwyczaj nie wykonują aktywnej pracy, jednak pozostają w gotowości do szybkiego uruchomienia. W praktyce oznacza to, że telewizor może pobierać moc pozorną z sieci elektrycznej, ale rzeczywista moc czynna, która jest używana do generowania obrazu, jest minimalna. Zgodnie z normami IEC 62087, pomiar mocy pozornej w trybie czuwania jest istotny dla oceny efektywności energetycznej urządzeń, a takie informacje są niezbędne przy podejmowaniu decyzji o wyborze energooszczędnych produktów.

Pytanie 28

Który z symboli znajdujących się na tabliczce znamionowej określa warunki środowiskowe, w jakich może pracować urządzenie elektroniczne?

Ilustracja do pytania
A. B.
B. D.
C. C.
D. A.
Odpowiedź A to dobry wybór, bo symbol "IP44" na tabliczce mówi, w jakich warunkach nasze urządzenie może działać. Klasyfikacja IP, czyli Ingress Protection, to taki międzynarodowy standard, który opisuje, jak dobrze urządzenie broni się przed kurzem i wodą. W IP44, ta pierwsza cyfra "4" zaznacza, że mamy ochronę przed dostępem do niebezpiecznych części przez małe przedmioty, większe niż 1 mm. To jest ważne w miejscach, gdzie mogą wpaść różne drobne rzeczy. Z kolei ta druga cyfra "4" oznacza, że urządzenie wytrzymuje zachlapanie wodą z różnych stron. To sprawia, że można je stosować tam, gdzie jest trochę wilgoci, ale niekoniecznie w pełnym zanurzeniu. Przykładowo, takie urządzenia są świetne w warsztatach, gdzie można mieć do czynienia z wodą, ale bezpieczeństwo to podstawa. Dlatego warto znać klasę IP, żeby dobrze dobrać sprzęt do miejsca, w którym ma pracować.

Pytanie 29

Ile wejść adresowych posiada multiplekser 8-wejściowy?

A. 3 wejścia adresowe
B. 2 wejścia adresowe
C. 5 wejść adresowych
D. 4 wejścia adresowe
Multiplekser 8-wejściowy wymaga 3 wejść adresowych, aby skutecznie zidentyfikować jeden z ośmiu dostępnych sygnałów wejściowych. Każde wejście adresowe może przyjąć wartość binarną 0 lub 1, co oznacza, że 3 bity adresowe mogą reprezentować 2^3 = 8 kombinacji, co idealnie odpowiada liczbie sygnałów wejściowych w tym przypadku. Przykładem zastosowania multipleksera 8-wejściowego jest w systemach cyfrowych, gdzie może on być używany do wyboru jednego z wielu sygnałów w systemach telekomunikacyjnych lub w obwodach logicznych. Standardy takie jak IEEE 802.3 dla Ethernetu wykorzystują podobne mechanizmy do zarządzania ruchem danych. Dobre praktyki w projektowaniu systemów cyfrowych sugerują stosowanie multiplekserów w celu uproszczenia architektury i minimalizacji ilości wymaganych połączeń, co zapewnia większą elastyczność i łatwiejsze zarządzanie komponentami systemu.

Pytanie 30

Standard umożliwiający bezprzewodową, optyczną transmisję danych zawiera interfejs

A. IrDa
B. WiFi
C. LoRa
D. Bluetooth
IrDa, czyli Infrared Data Association, to standard, który rzeczywiście zapewnia bezprzewodową, optyczną transmisję danych. W przeciwieństwie do innych standardów, takich jak Bluetooth, WiFi czy LoRa, które operują na falach radiowych, IrDa korzysta z podczerwieni do przesyłania informacji. Technologia ta była szeroko stosowana w urządzeniach, takich jak telefony komórkowe, laptopy czy drukarki, zwłaszcza w latach 90. i na początku 2000. Zastosowanie IrDa wymaga bezpośredniego widzenia między urządzeniami, co oznacza, że odległość i kąt widzenia mają kluczowe znaczenie dla jakości połączenia. Chociaż obecnie technologia ta jest mniej popularna na rzecz bardziej uniwersalnych standardów, takich jak Bluetooth, jej zalety obejmują niskie zużycie energii oraz bezpieczeństwo, ponieważ sygnał podczerwieni jest trudniejszy do przechwycenia niż fale radiowe. Warto także zauważyć, że IrDa był jednym z pierwszych standardów umożliwiających wymianę danych między urządzeniami bez użycia kabli, co miało ogromny wpływ na rozwój technologii mobilnych.

Pytanie 31

Jaka jest wartość mocy traconej w stabilizatorze napięcia pracującym z prądem o wartości I = 1,8 A oraz z napięciami o wartościach U1= 20 V i U2= 15 V?

Ilustracja do pytania
A. 15 W
B. 9 W
C. 1,8 W
D. 27 W
Moc tracona w stabilizatorze napięcia wynika z różnicy pomiędzy mocą wejściową a mocą wyjściową. W przypadku podanego zadania, przy prądzie I = 1,8 A oraz napięciach U1 = 20 V i U2 = 15 V, moc tracona oblicza się w następujący sposób: moc wejściowa to U1 * I = 20 V * 1,8 A = 36 W, natomiast moc wyjściowa to U2 * I = 15 V * 1,8 A = 27 W. W związku z tym moc tracona wynosi 36 W - 27 W = 9 W. Stabilizatory napięcia są powszechnie stosowane w elektronice, aby zapewnić stabilny poziom napięcia, co jest kluczowe dla poprawnego działania komponentów elektronicznych. Przykładami zastosowań stabilizatorów są zasilacze do urządzeń audio, systemy zasilania w komputerach czy urządzenia pomiarowe. Zgodnie z dobrymi praktykami inżynierskimi, dobór stabilizatora powinien uwzględniać nie tylko moc tracona, ale także efektywność i zarządzanie ciepłem, aby zapewnić długotrwałą i bezawaryjną pracę urządzenia.

Pytanie 32

W celu odkręcenia śrub mocujących obudowę urządzenia pokazanego na rysunku należy użyć wkrętaka:

Ilustracja do pytania
A. krzyżakowego.
B. płaskiego.
C. imbusowego.
D. typu torx.
Odpowiedź typu torx jest poprawna, ponieważ na zdjęciu widoczna jest śruba z charakterystycznym sześcioramiennym gwiazdkowym wzorem, który jest dedykowany dla wkrętaków torx. Wkrętaki te są powszechnie stosowane w branży elektronicznej i mechanicznej ze względu na ich zdolność do zapewnienia większego momentu obrotowego oraz lepszego dopasowania do śruby, co redukuje ryzyko uszkodzenia zarówno narzędzia, jak i elementu mocującego. Wkrętaki torx są również powszechnie używane w montażu urządzeń elektronicznych, samochodów oraz w konstrukcjach meblowych. Standard torx jest szczególnie ceniony w sytuacjach, gdzie wymagana jest większa precyzja i trwałość połączenia. Warto również zauważyć, że wkrętak torx występuje w różnych rozmiarach, co pozwala na dostosowanie narzędzia do konkretnych zastosowań, co jest zgodne z dobrymi praktykami w zakresie inżynierii i produkcji.

Pytanie 33

Jaką rolę pełni fotorezystor w wyłączniku zmierzchowym?

A. regulatora temperatury
B. czujnika wilgoci
C. detektora drgań
D. detektora światła widzialnego
Fotorezystor, pełniący funkcję detektora światła widzialnego w wyłączniku zmierzchowym, działa na zasadzie zmiany swojej rezystancji w odpowiedzi na natężenie światła. Gdy poziom oświetlenia spada, rezystancja fotorezystora rośnie, co powoduje, że układ elektroniczny wykonuje odpowiednią akcję, na przykład włącza światło. Takie rozwiązanie jest szczególnie efektywne w automatyzacji systemów oświetleniowych w przestrzeniach zewnętrznych, takich jak ogrody, parkingi czy tereny rekreacyjne. Wysoka czułość oraz niskie koszty produkcji sprawiają, że fotorezystory są powszechnie stosowane w nowoczesnych układach automatyki budynkowej. Zgodnie z normami branżowymi, zaleca się ich wykorzystanie w systemach, które muszą reagować na zmiany oświetlenia w czasie rzeczywistym, co podnosi komfort użytkowania i efektywność energetyczną. Warto także zwrócić uwagę, że fotorezystory mogą być używane w połączeniu z innymi czujnikami, co zwiększa ich funkcjonalność i zastosowanie w różnych scenariuszach, takich jak inteligentne domy.

Pytanie 34

Ilustracja przedstawia przerzutnik JK. Wejście C jest wyzwalane

Ilustracja do pytania
A. zboczem opadającym.
B. stanem niskim.
C. zboczem narastającym.
D. stanem wysokim.
Odpowiedź "zboczem opadającym" jest poprawna, ponieważ przerzutnik JK z wyzwoleniem zboczem opadającym reaguje na sygnały zegarowe w momencie, gdy ich wartość zmienia się z wysokiej na niską. W przerzutnikach synchronicznych, oznaczenie to jest kluczowe, ponieważ definiuje moment, w którym przerzutnik zmienia swój stan na podstawie wartości sygnałów wejściowych J i K. W praktyce, takie przerzutniki są szeroko stosowane w systemach cyfrowych, takich jak rejestry, liczniki oraz w układach synchronizacji, gdzie wymagana jest precyzyjna kontrola zmian stanów. Przykładem może być zastosowanie przerzutnika JK w licznikach binarnych, które muszą reagować na konkretne zdarzenia w ściśle określonym momencie cyklu zegara. Warto również zwrócić uwagę na normy i standardy dotyczące projektowania układów cyfrowych, które zalecają użycie przerzutników wyzwalanych zboczem opadającym w aplikacjach wymagających stabilności i niezawodności działania.

Pytanie 35

Na rysunku przedstawiono symbol graficzny

Ilustracja do pytania
A. routera.
B. przełącznika.
C. modemu.
D. mostu.
Zgadza się, na rysunku przedstawiono symbol graficzny routera. Router jest kluczowym urządzeniem w sieciach komputerowych, pełniącym funkcję łączenia różnych sieci, a także zarządzania ruchem danych pomiędzy nimi. Symbol routera, często przedstawiany jako okrąg z czterema strzałkami skierowanymi w różne kierunki, odzwierciedla jego zdolność do kierowania pakietów danych w wielu kierunkach. Przykładami zastosowania routerów są domowe sieci Wi-Fi, które umożliwiają wielu urządzeniom łączenie się z internetem, oraz sieci korporacyjne, gdzie routery łączą różne lokalizacje geograficzne. W kontekście standardów branżowych, routery często współpracują z protokołami takimi jak OSPF, BGP czy RIP, co pozwala na efektywne zarządzanie trasowaniem pakietów. Zrozumienie roli routera w sieci jest kluczowe dla każdej osoby zajmującej się administracją sieci oraz projektowaniem architektury sieciowej.

Pytanie 36

Jaką rolę pełni heterodyna w odbiorniku radiowym?

A. wzmacniacza wstępnego
B. demodulatora
C. mieszacza
D. generatora lokalnego
Heterodyna w odbiorniku radiowym rzeczywiście pełni funkcję generatora lokalnego, co jest kluczowe w procesie odbioru sygnałów radiowych. Generator lokalny generuje sygnał o stałej częstotliwości, który następnie jest mieszany z sygnałem odbieranym z anteny. Proces ten, znany jako mieszanie, pozwala na przesunięcie częstotliwości sygnału do zakresu częstotliwości pośredniej (IF). Dzięki temu, sygnał staje się bardziej dostępny dla dalszego przetwarzania, w tym demodulacji, co jest niezbędne do uzyskania pierwotnej informacji. W praktyce, zastosowanie heterodyny jako generatora lokalnego jest standardową praktyką w radioodbiornikach, co czyni je bardziej efektywnymi w odbiorze i przetwarzaniu sygnałów. Heterodyna jest szczególnie ważna w systemach komunikacji radiowej, gdzie jakość odbioru sygnału bezpośrednio wpływa na jakość transmisji. Dobrze zaprojektowane układy heterodynowe przyczyniają się do minimalizacji szumów i zakłóceń, co jest kluczowe w nowoczesnych zastosowaniach radiowych.

Pytanie 37

Na rysunkach pokazano schemat ideowy układu stabilizatora napięcia zawierającego dwie identyczne diody Zenera D1 i D2 oraz charakterystykę statyczną diod. Jaka jest wartość napięcia UAB, jeżeli przez diody płynie prąd wsteczny o wartości 40 mA?

Ilustracja do pytania
A. 5 V
B. 4,4 V
C. 1,4 V
D. 9,4 V
Wybierając inną wartość napięcia, pojawiają się istotne błędy w zrozumieniu działania diod Zenera. Dioda Zenera w trybie zaporowym działa jako regulator napięcia, a jej charakterystyka statyczna jasno wskazuje, w jakim zakresie prąd wsteczny wpływa na napięcie. W przypadku prądu wstecznego o wartości 40 mA, napięcie na diodzie Zenera nie może być niższe niż 4,7 V, ponieważ to jest minimalna wartość dla tego prądu na podstawie charakterystyki. Wybór wartości 4,4 V ignoruje zasadniczą cechę działania diod Zenera, a także może prowadzić do błędnych wniosków dotyczących projektowania układów. Napięcie 5 V również jest zbyt niskie, ponieważ nie odpowiada rzeczywistej charakterystyce diod przy podanym prądzie. Z kolei wartość 1,4 V jest całkowicie nieadekwatna, ponieważ dioda nie osiągnie stabilizacji tego napięcia w trybie Zenera przy prądzie 40 mA. Częstym błędem jest zakładanie, że napięcie na diodzie może być niższe, co prowadzi do nieefektywnego projektowania układów elektronicznych. Stabilizatory napięcia z diodami Zenera muszą być zaprojektowane z uwzględnieniem całego zakresu charakterystyki diod, aby zapewnić stabilność i niezawodność działania układu.

Pytanie 38

Wartość pojemności kondensatora przedstawionego na rysunku wynosi

Ilustracja do pytania
A. 100 μF
B. 1 μF
C. 250 μF
D. 100 nF
Na przedstawionym zdjęciu widoczny jest kondensator z oznaczeniem „μ1K 250V”. Symbol ten określa zarówno pojemność, jak i parametry pracy elementu. Litera „μ” oznacza mikro (10⁻⁶), natomiast zapis „μ1” należy odczytać jako 0,1 μF, czyli 100 nanofaradów (nF). Litera „K” informuje o tolerancji wartości pojemności, w tym przypadku ±10%. Z kolei „250V” wskazuje maksymalne napięcie, przy którym kondensator może bezpiecznie pracować. Tego typu kondensatory są powszechnie stosowane w obwodach filtrujących, sprzęgających i odsprzęgających, gdzie wymagana jest stabilna pojemność i niewielkie straty energii. Często wykorzystuje się je w układach zasilających i elektronicznych urządzeniach pomiarowych. Odczytanie wartości wymaga znajomości oznaczeń stosowanych przez producentów, ponieważ zapis nie zawsze jest jednoznaczny. Poprawna interpretacja pozwala dobrać właściwy element do danego obwodu. Dlatego prawidłowa wartość pojemności kondensatora to 0,1 μF (100 nF).

Pytanie 39

Schemat blokowy którego układu pokazano na rysunku?

Ilustracja do pytania
A. Generatora sterowanego prądem CCO.
B. Generatora sterowanego napięciem VCO.
C. Filtru aktywnego.
D. Pętli synchronizacji fazy PLL.
Zgadza się, odpowiedź to "Pętla synchronizacji fazy PLL". Widok, który widzisz na rysunku, świetnie pokazuje, jak zwykle wygląda pętla PLL. W tej pętli mamy detektor fazy, filtr i generator. Detektor fazy porównuje sygnał wejściowy z sygnałem wyjściowym, a jego praca pomaga dostosować częstotliwość w generatorze, żeby obie fale były w syncie. Te pętle są bardzo popularne w telekomunikacji, na przykład w radiu czy telewizji, bo zapewniają stabilną częstotliwość i zmniejszają zakłócenia. Dodatkowo, dzięki filtrom, potrafią obniżyć jitter, co jest naprawdę ważne, gdy potrzebujemy dokładnego synchronizowania sygnałów. W elektronice pętle PLL to wręcz standard, jeśli chodzi o projekty wymagające synchronizacji, więc ich poprawne zastosowanie jest kluczowe dla funkcjonowania całego układu.

Pytanie 40

W urządzeniu elektronicznym doszło do uszkodzenia kondensatora ceramicznego o oznaczeniu 104 100 V. Jaki kondensator należy zastosować w jego miejsce?

A. 100 nF 100 V
B. 10 nF 1000 V
C. 1000 nF 1000 V
D. 10 nF 100 V
Odpowiedź "100 nF 100 V" jest poprawna, ponieważ kondensator oznaczony jako "104 100 V" wskazuje na pojemność 100 nF i maksymalne napięcie robocze 100 V. Oznaczenie "104" oznacza, że dwie pierwsze cyfry to znaczące liczby (10), a trzecia cyfra to mnożnik, który w tym przypadku wynosi 10^4 pF, co daje 100000 pF, co po przeliczeniu daje 100 nF. Napięcie znamionowe wynosi 100 V, co jest zgodne z wymaganiami dla aplikacji elektronicznych. W praktycznych zastosowaniach kondensatory ceramiczne o pojemności 100 nF są powszechnie stosowane w filtrach, układach czasowych oraz w obwodach zasilających, gdzie stabilność i niskie straty są kluczowe. Warto pamiętać, że dobór kondensatora powinien być zgodny z normami branżowymi, takimi jak IEC 60384, które określają parametry bezpieczeństwa i jakości dla komponentów elektronicznych.