Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik informatyk
  • Kwalifikacja: INF.02 - Administracja i eksploatacja systemów komputerowych, urządzeń peryferyjnych i lokalnych sieci komputerowych
  • Data rozpoczęcia: 1 lutego 2026 02:29
  • Data zakończenia: 1 lutego 2026 02:48

Egzamin zdany!

Wynik: 24/40 punktów (60,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Jakiego parametru wymaga konfiguracja serwera DHCP?

A. Czas trwania dzierżawy adresu MAC
B. Poziom zabezpieczeń IPSec (ang. Internet Protocol Security)
C. Czas trwania dzierżawy adresu IP
D. Adres MAC karty sieciowej serwera DHCP
Czas dzierżawy adresu IP to dosyć ważna rzecz, jeśli chodzi o ustawienia serwera DHCP. To właśnie ten czas mówi, jak długo urządzenie może korzystać z przydzielonego adresu IP w sieci. Kiedy klient DHCP łączy się, serwer daje mu IP na określony czas. Jak ten czas się skończy, adres może wrócić do puli. Na przykład, gdy dzierżawa wynosi 24 godziny, trzeba ją odnowić przed upływem tego czasu, żeby nie stracić adresu. Dobrze dobrany czas dzierżawy jest szczególnie istotny w sieciach z dużym ruchem, jak w biurach czy uczelniach, gdzie urządzeń ciągle przybywa i ubywa. Odpowiednia długość dzierżawy pomaga optymalnie zarządzać adresami IP i zapewnia ich dostępność dla nowych urządzeń. To wszystko jest zgodne z dobrymi praktykami w zarządzaniu siecią oraz z normami przydziału adresów IP, jak na przykład RFC 2131.

Pytanie 2

Jakie narzędzie będzie najbardziej odpowiednie do delikatnego wygięcia blachy obudowy komputera oraz przykręcenia śruby montażowej w trudno dostępnej lokalizacji?

Ilustracja do pytania
A. D
B. A
C. B
D. C
Narzędzie A to cięższe szczypce tnące, które są przeznaczone raczej do cięcia przewodów niż do manipulacji blachą czy montażu śrub. Ich konstrukcja nie pozwala na precyzyjne operowanie w ciasnych miejscach co czyni je nieodpowiednimi do delikatnych prac montażowych w komputerze. Narzędzie B to szczypce uniwersalne zwane kombinerkami, które choć użyteczne w wielu sytuacjach nie oferują precyzji koniecznej do pracy w ciasnych przestrzeniach obudowy komputera. Ich szeroka konstrukcja może utrudniać dostęp do trudno dostępnych elementów i nie jest optymalna do delikatnego odginania blachy. Narzędzie C to szczypce do cięcia przewodów o dużej średnicy. Ich przeznaczenie jest zupełnie inne i nie mają one zastosowania w precyzyjnym montażu śrub czy odginaniu blachy. Wybór tego narzędzia mógłby prowadzić do uszkodzeń mechanicznych ze względu na ich masywny charakter. W przypadku pracy w ograniczonej przestrzeni i potrzeby delikatnych manipulacji kluczowe jest użycie narzędzi precyzyjnych o odpowiedniej budowie które zapewniają możliwość manewrowania w trudno dostępnych miejscach. Dlatego szczypce wydłużone są najlepszym wyborem do takich zadań zapewniając zarówno precyzję jak i kontrolę siły nacisku co minimalizuje ryzyko uszkodzeń i ułatwia dokładne wykonanie zadania w ciasnej przestrzeni. Błędne wybory wynikają często z braku rozeznania w specyficznych zastosowaniach różnych typów narzędzi oraz niedoceniania znaczenia odpowiedniej konstrukcji narzędzia do danego zadania co jest kluczową kompetencją w pracy technika serwisowego.

Pytanie 3

W komputerze użyto płyty głównej widocznej na obrazku. Aby podnieść wydajność obliczeniową maszyny, zaleca się

Ilustracja do pytania
A. dodanie dysku SAS
B. zamontowanie dwóch procesorów
C. rozszerzenie pamięci RAM
D. instalację kontrolera RAID
Instalacja dwóch procesorów jest prawidłową odpowiedzią ze względu na architekturę płyty głównej przedstawionej na rysunku, która jest wyposażona w dwa gniazda procesorowe typu Socket. Dodanie drugiego procesora pozwala na wykorzystanie pełnego potencjału płyty, co skutkuje znacznym wzrostem mocy obliczeniowej komputera. Dzięki pracy w konfiguracji wieloprocesorowej, system może lepiej obsługiwać wielozadaniowość, szczególnie w zastosowaniach wymagających dużych zasobów, takich jak renderowanie grafiki 3D, analiza danych czy hosting serwerów aplikacji. Praktyczne zastosowania tej architektury często znajdują się w środowiskach serwerowych, gdzie wydajność i szybkość przetwarzania danych są kluczowe. Instalacja i konfiguracja dwóch procesorów powinna być wykonana zgodnie ze specyfikacją producenta, aby uniknąć problemów kompatybilności i zapewnić stabilność systemu. Standardy branżowe zalecają także użycie identycznych modeli procesorów, co zapewnia optymalne działanie systemu i równomierne rozkładanie obciążenia między jednostkami obliczeniowymi co jest jednym z kluczowych aspektów budowy wydajnych systemów komputerowych.

Pytanie 4

Najkrótszy czas dostępu charakteryzuje się

A. pamięć RAM
B. dysk twardy
C. pamięć cache procesora
D. pamięć USB
Pamięć cache procesora jest najszybszym typem pamięci używanym w systemach komputerowych. Jej główną funkcją jest przechowywanie danych i instrukcji, które są najczęściej używane przez procesor, co znacząco zwiększa wydajność systemu. Cache jest ulokowana w pobliżu rdzenia procesora, co umożliwia błyskawiczny dostęp do danych, znacznie szybszy niż w przypadku pamięci RAM. Zastosowanie pamięci cache minimalizuje opóźnienia związane z odczytem danych z pamięci głównej, co jest kluczowym aspektem w wielu zastosowaniach, takich jak obliczenia naukowe, gry komputerowe czy przetwarzanie grafiki. W praktyce nowoczesne procesory posiadają wielopoziomową architekturę pamięci cache (L1, L2, L3), gdzie L1 jest najszybsza, ale też najmniejsza, a L3 jest większa, ale nieco wolniejsza. Wydajność systemu, zwłaszcza w aplikacjach wymagających dużej mocy obliczeniowej, w dużej mierze zależy od efektywności pamięci cache, co czyni ją kluczowym elementem projektowania architektury komputerowej.

Pytanie 5

Jakim adresem IPv6 charakteryzuje się autokonfiguracja łącza?

A. FF00::/8
B. FE80::/10
C. 2000::/3
D. ::/128
Wybór niewłaściwych adresów IPv6, takich jak 2000::/3, FF00::/8 oraz ::/128, wynika z niepełnego zrozumienia zasad klasyfikacji adresów w systemie IPv6 oraz ich zastosowań. Adres 2000::/3 jest przykładem adresu unicast, który jest używany do routingu globalnego, a nie do autokonfiguracji lokalnej. Adresy te są przeznaczone dla urządzeń wymagających publicznego dostępu w Internecie. Użycie 2000::/3 w kontekście autokonfiguracji łącza jest błędne, ponieważ te adresy nie są lokalne i wymagają interwencji w postaci routera. Adres FF00::/8 to zakres adresów multicast, który służy do przesyłania danych do wielu odbiorców jednocześnie, jednak nie jest on używany do autokonfiguracji. W końcu, adres ::/128 reprezentuje pojedynczy adres unicast, ale nie zawiera on prefiksu lokalnego potrzebnego do autokonfiguracji łącza. Adresowanie IPv6 wymaga zrozumienia zasad lokalnego i globalnego zakresu adresów, co jest kluczowe w efektywnym projektowaniu i zarządzaniu sieciami. Niezrozumienie tych koncepcji prowadzi do typowych błędów przy definiowaniu oraz wdrażaniu adresów w sieciach IPv6.

Pytanie 6

Jakie są skutki działania poniższego polecenia ```netsh advfirewall firewall add rule name="Open" dir=in action=deny protocol=TCP localport=53```?

A. Otworzenie portu 53 dla protokołu TCP
B. Wyłączenie reguły o nazwie Open w zaporze sieciowej
C. Blokowanie działania usługi DNS opartej na protokole TCP
D. Zaimportowanie ustawienia zapory sieciowej z katalogu in action
To polecenie `netsh advfirewall firewall add rule name="Open" dir=in action=deny protocol=TCP localport=53` naprawdę tworzy regułę w zaporze Windows, która blokuje ruch przychodzący na porcie 53 dla protokołu TCP. Ten port, jak pewnie wiesz, jest standardowo używany do rozwiązywania nazw domen przez DNS. Jak się blokuje ten port na TCP, to znaczy, że żadne zapytania DNS nie mogą być wysyłane ani odbierane przez komputer. To na pewno wpływa na to, jak nasz komputer komunikuje się z serwerami DNS. Kiedy administrator chce zwiększyć bezpieczeństwo sieci, to może chcieć ograniczyć dostęp do DNS z zewnątrz. Uważam, że używanie zapory ogniowej do kontrolowania ruchu jest bardzo ważne, bo to pomaga zabezpieczyć system przed nieautoryzowanym dostępem czy atakami, jak spoofing DNS. Z doświadczenia wiem, że zanim wprowadzimy takie zmiany, warto dobrze zrozumieć, jak to wpłynie na aplikacje korzystające z DNS, czyli na przykład przeglądarki internetowe czy inne usługi sieciowe.

Pytanie 7

Który z protokołów pełni rolę protokołu połączeniowego?

A. TCP
B. ARP
C. IP
D. UDP
Protokół TCP (Transmission Control Protocol) jest uznawany za protokół połączeniowy, co oznacza, że przed przesłaniem danych nawiązuje trwałe połączenie między nadawcą a odbiorcą. W przeciwieństwie do protokołów bezpołączeniowych, takich jak UDP (User Datagram Protocol), TCP zapewnia niezawodność dostarczania danych dzięki mechanizmom kontroli błędów i retransmisji. Przykładem zastosowania TCP jest protokół HTTP, który jest fundamentem działania stron internetowych. Gdy przeglądarka nawiązuje połączenie z serwerem, TCP ustala parametry połączenia, a następnie gwarantuje, że dane (np. treść strony) są dostarczane w poprawnej kolejności i bez błędów. Dzięki temu użytkownicy mogą mieć pewność, że otrzymują pełne i poprawne informacje. W standardach branżowych TCP jest często używany w aplikacjach, które wymagają wysokiej niezawodności, takich jak transfer plików (FTP) czy poczta elektroniczna (SMTP).

Pytanie 8

W systemie Linux narzędzie iptables wykorzystuje się do

A. konfigurowania karty sieciowej
B. konfigurowania serwera pocztowego
C. konfigurowania zapory sieciowej
D. konfigurowania zdalnego dostępu do serwera
Iptables to bardzo ważne narzędzie w Linuxie, które pozwala na zarządzanie ruchem w sieci. Dzięki niemu, administratorzy mogą na przykład ustawienia zabezpieczeń. Iptables działa na poziomie jądra systemu, co oznacza, że jest w stanie filtrować pakiety w czasie rzeczywistym. Możesz tworzyć różne reguły, które mówią, które pakiety można przyjąć, a które powinny być zablokowane. Na przykład, jeśli chcesz zablokować niechciany ruch z konkretnego adresu IP, to iptables to umożliwia. Ciekawe jest też to, że iptables używa tzw. łańcuchów do organizowania reguł, co zdecydowanie ułatwia sprawę. Pamiętaj, aby regularnie przeglądać i aktualizować swoje reguły, to ważne dla bezpieczeństwa. Dobre praktyki w tym zakresie nie tylko chronią Twoją sieć, ale też pomagają w szybkim rozwiązywaniu ewentualnych problemów.

Pytanie 9

Jaką normę wykorzystuje się przy okablowaniu strukturalnym w komputerowych sieciach?

A. PN-EN ISO 9001:2009
B. TIA/EIA-568-B
C. ISO/IEC 8859-2
D. PN-EN 12464-1:2004
Wybór normy PN-EN 12464-1:2004 jako podstawy do okablowania strukturalnego w sieciach komputerowych jest nieadekwatny, ponieważ ta norma dotyczy oświetlenia wnętrz i nie ma żadnego zastosowania w kontekście instalacji sieciowych. Wiele osób może mylnie sądzić, że normy związane z oświetleniem mogą mieć zastosowanie w kontekście okablowania, co prowadzi do błędnych wniosków. Również odwołanie się do normy ISO/IEC 8859-2, która dotyczy kodowania znaków, jest błędne, ponieważ nie ma ona nic wspólnego z aspektami fizycznego okablowania czy strukturą sieci. To może wynikać z niewłaściwego zrozumienia, że wszystkie normy ISO/IEC są powiązane z sieciami komputerowymi, co jest nieprawdziwą generalizacją. W kontekście standardów jakości, PN-EN ISO 9001:2009 odnosi się do systemów zarządzania jakością, a nie do specyfikacji technicznych dla infrastruktury sieciowej. Użytkownicy mogą często mylić różne normy, co skutkuje nieprawidłowym doborem standardów do projektów technologicznych. Aby skutecznie projektować i instalować sieci komputerowe, niezbędne jest zrozumienie specyfiki norm, takich jak TIA/EIA-568-B, które są dostosowane do wymogów telekomunikacyjnych, a nie normy, które dotyczą innych dziedzin, takich jak oświetlenie czy zarządzanie jakością.

Pytanie 10

Jakiego rodzaju interfejsem jest UDMA?

A. interfejsem szeregowym, używanym do podłączania urządzeń wejściowych
B. interfejsem równoległym, stosowanym między innymi do łączenia kina domowego z komputerem
C. interfejsem równoległym, który został zastąpiony przez interfejs SATA
D. interfejsem szeregowym, który umożliwia wymianę danych pomiędzy pamięcią RAM a dyskami twardymi
Interfejsy równoległe i szeregowe różnią się fundamentalnie w sposobie przesyłania danych, co jest kluczowe dla zrozumienia, dlaczego niektóre odpowiedzi są błędne. Odpowiedzi podające, że UDMA jest interfejsem szeregowym, mylą jego charakterystykę z innymi technologiami, takimi jak SATA, które rzeczywiście korzystają z przesyłu szeregowego. Szeregowy transfer danych, jak w przypadku SATA, pozwala na przesyłanie bitów danych jeden po drugim, co przyczynia się do większej efektywności w dłuższej perspektywie, ale UDMA, jako interfejs równoległy, przesyła wiele bitów jednocześnie, co w danym kontekście daje mu przewagę, gdyż umożliwia szybszy transfer na krótszych dystansach. Warto również zauważyć, że UDMA nie jest używane do podłączania urządzeń wejścia, co stanowi błąd w zrozumieniu jego zastosowania. UDMA ma na celu wymianę danych pomiędzy pamięcią RAM a dyskami twardymi, a nie urządzeniami peryferyjnymi. Pojęcia związane z interfejsem UDMA muszą być właściwie zrozumiane, aby uniknąć typowych błędów myślowych, takich jak pomylenie interfejsów równoległych z szeregowymi, co może prowadzić do niewłaściwego doboru sprzętu lub technologii w projektach informatycznych.

Pytanie 11

Symbol umieszczony na urządzeniach, który stanowi certyfikat potwierdzający zgodność w zakresie emisji promieniowania, ergonomii, efektywności energetycznej i ekologicznych norm, został przedstawiony na ilustracji

Ilustracja do pytania
A. A
B. C
C. B
D. D
Rozważając inne możliwe odpowiedzi ważne jest zrozumienie czym są przedstawione symbole i dlaczego nie spełniają wymagań opisanych w pytaniu Oznaczenie z symbolem C zazwyczaj odnosi się do certyfikacji związanej z bezpieczeństwem elektrycznym i kompatybilnością elektromagnetyczną ale nie obejmuje tak szerokiego zakresu jak TCO dotyczącego ergonomii i ekologii Symbol B często jest używany w kontekście znaków jakości lub zgodności ale jego specyfikacja nie obejmuje wszystkich aspektów poruszonych w pytaniu dotyczących emisji promieniowania czy ekologii Z kolei symbol D oznacza certyfikat TÜV SÜD który jest znakiem jakości i bezpieczeństwa technicznego służącym do oznaczania produktów które przeszły testy niezależnej jednostki certyfikującej TÜV Mimo że TÜV SÜD ma szerokie zastosowanie w certyfikacji to jednak skupia się bardziej na bezpieczeństwie i niezawodności technicznej niż na pełnej zgodności z wymogami ergonomicznymi czy ekologicznymi jakie definiuje TCO Ważne jest aby przy wyborze certyfikacji dla produktów elektronicznych dokładnie rozważyć które aspekty są kluczowe dla danego zastosowania oraz jakie standardy najlepiej odpowiadają tym potrzebom To zrozumienie pozwoli unikać typowych błędów takich jak wybór certyfikatu który nie spełnia wszystkich oczekiwanych kryteriów co może prowadzić do nieporozumień i niepełnego zabezpieczenia interesów użytkowników w zakresie ochrony zdrowia oraz środowiska naturalnego

Pytanie 12

Funkcja Intel Turbo Boost w mikroprocesorze umożliwia

A. automatyczne dostosowywanie częstotliwości działania mikroprocesora w zależności od obciążenia
B. aktywizację oraz dezaktywizację komponentów mikroprocesora w celu oszczędzania energii
C. przeprowadzanie większej liczby instrukcji w jednym cyklu zegara
D. wykonywanie skomplikowanych obliczeń przez dwa niezależne rdzenie, z których każdy może realizować do czterech pełnych instrukcji równocześnie
Funkcje mikroprocesorów są złożonymi mechanizmami, które wymagają precyzyjnego zrozumienia ich działania. Odpowiedzi, które sugerują, że Turbo Boost wiąże się z włączaniem i wyłączaniem elementów mikroprocesora w celu oszczędzania energii, są mylne. Choć oszczędzanie energii jest ważnym aspektem nowoczesnych mikroprocesorów, Turbo Boost nie polega na prostym włączaniu lub wyłączaniu rdzeni. Zamiast tego, technologia ta wpływa na regulację częstotliwości pracy istniejących rdzeni, co pozwala na elastyczne dopasowanie do obciążenia. Kiedy procesor nie potrzebuje pełnej mocy, nie oznacza to, że można go po prostu wyłączyć; zamiast tego, jego częstotliwość jest obniżana, co prowadzi do zmniejszenia zużycia energii. Inna odpowiedź wskazująca na wykonywanie rozległych obliczeń przez dwa niezależne rdzenie jest również błędna. Turbo Boost nie zwiększa liczby rdzeni, lecz optymalizuje wydajność już istniejących rdzeni poprzez zwiększenie ich częstotliwości. Ponadto, stwierdzenie, że pozwala na wykonywanie większej liczby instrukcji w jednym cyklu zegara, jest nieprecyzyjne. W rzeczywistości, Turbo Boost nie zmienia architektury procesora ani nie pozwala na równoległe przetwarzanie w sposób, który zwiększa liczbę wykonywanych instrukcji na cykl. Zrozumienie tych mechanizmów jest kluczowe dla efektywnego wykorzystania technologii mikroprocesorowej oraz prawidłowego podejścia do optymalizacji wydajności systemów komputerowych.

Pytanie 13

Aby zidentyfikować, który program najbardziej obciąża CPU w systemie Windows, należy otworzyć program

A. menedżer zadań
B. regedit
C. dxdiag
D. msconfig
Menedżer zadań w systemie Windows to narzędzie, które umożliwia monitorowanie i zarządzanie uruchomionymi procesami oraz aplikacjami. Jest on szczególnie przydatny do oceny obciążenia procesora, ponieważ wyświetla bieżące zużycie CPU przez poszczególne procesy. Aby otworzyć Menedżera zadań, można użyć skrótu klawiszowego Ctrl + Shift + Esc lub prawym przyciskiem myszy kliknąć na pasku zadań i wybrać odpowiednią opcję. Po uruchomieniu Menedżera zadań, w zakładce 'Procesy' można sortować aplikacje według użycia CPU, co pozwala szybko zidentyfikować, które programy obciążają system najbardziej. W praktyce, korzystanie z Menedżera zadań jest kluczowe w diagnostyce problemów z wydajnością, ponieważ umożliwia użytkownikom natychmiastowe reagowanie na sytuacje, w których jeden z procesów może powodować spowolnienie systemu. Zgodnie z dobrą praktyką, regularne monitorowanie procesów pozwala na optymalizację wydajności systemu oraz zapobieganie problemom związanym z nadmiernym zużyciem zasobów.

Pytanie 14

Podczas uruchamiania komputera wyświetla się komunikat CMOS checksum error press F1 to continue, press Del to setup) naciśnięcie klawisza Del skutkuje

A. skasowaniem zawartości pamięci CMOS
B. usunięciem pliku setup
C. przejściem do konfiguracji systemu Windows
D. wejściem do BIOSu komputera
Wciśnięcie klawisza Del przy komunikacie 'CMOS checksum error' umożliwia użytkownikowi dostęp do BIOS-u komputera. BIOS, czyli Basic Input/Output System, jest podstawowym oprogramowaniem, które uruchamia się przy starcie komputera. Zarządza on najważniejszymi ustawieniami systemu, takimi jak kolejność bootowania, konfiguracja pamięci, czy ustawienia urządzeń peryferyjnych. W przypadku komunikatu o błędzie CMOS, oznacza to, że wartości zapisane w pamięci CMOS (Complementary Metal-Oxide-Semiconductor) są nieprawidłowe, co może skutkować problemami ze startem systemu. Wejście do BIOS-u pozwala na przywrócenie domyślnych ustawień, co najczęściej rozwiązuje problem. Dobrą praktyką jest regularne sprawdzanie ustawień BIOS-u, zwłaszcza po zainstalowaniu nowego sprzętu lub aktualizacji systemu. Użytkownicy powinni również pamiętać o dokumentowaniu zmian dokonanych w BIOS-ie oraz zrozumieć wpływ tych zmian na funkcjonowanie systemu.

Pytanie 15

Aby zapobiec uszkodzeniu sprzętu podczas modernizacji laptopa, która obejmuje wymianę modułów pamięci RAM, należy

A. przewietrzyć pomieszczenie oraz założyć okulary z powłoką antyrefleksyjną
B. rozłożyć i uziemić matę antystatyczną oraz założyć na nadgarstek opaskę antystatyczną
C. podłączyć laptop do zasilania awaryjnego, a następnie rozkręcić jego obudowę i przejść do montażu
D. przygotować pastę przewodzącą oraz równomiernie nałożyć ją na obudowę gniazd pamięci RAM
Wybór opcji polegającej na rozłożeniu i uziemieniu maty antystatycznej oraz założeniu opaski antystatycznej jest kluczowy dla zapewnienia bezpieczeństwa sprzętu podczas modernizacji komputera przenośnego. Podczas pracy z delikatnymi komponentami elektronicznymi, takimi jak moduły pamięci RAM, istnieje ryzyko uszkodzenia ich w wyniku wyładowań elektrostatycznych (ESD). Zastosowanie maty antystatycznej i opaski antystatycznej skutecznie odprowadza ładunki elektryczne, minimalizując ryzyko wystąpienia ESD. Przykładowo, w profesjonalnych środowiskach serwisowych, zawsze stosuje się takie zabezpieczenia, aby chronić sprzęt oraz zapewnić długoterminową niezawodność. Warto również pamiętać o tym, aby unikać pracy w ubraniach z syntetycznych materiałów, które generują statykę. Wnioskując, przestrzeganie tych zasad jest standardem w branży, co zaleca wiele podręczników dotyczących serwisowania sprzętu komputerowego.

Pytanie 16

Błąd typu STOP Error (Blue Screen) w systemie Windows, który wiąże się z odniesieniem się systemu do niepoprawnych danych w pamięci RAM, to

A. NTFS_FILE_SYSTEM
B. UNEXPECTED_KERNEL_MODE_TRAP
C. PAGE_FAULT_IN_NONPAGE_AREA
D. UNMOUNTABLE_BOOT_VOLUME
UNMOUNTABLE_BOOT_VOLUME oznacza, że system operacyjny nie może uzyskać dostępu do partycji rozruchowej. Zwykle jest to spowodowane uszkodzeniem systemu plików lub błędami w strukturze partycji, co prowadzi do niemożności załadowania systemu operacyjnego. W przeciwieństwie do PAGE_FAULT_IN_NONPAGE_AREA, błędy te są bardziej związane z problemami z dyskiem twardym niż z pamięcią operacyjną. UNEXPECTED_KERNEL_MODE_TRAP to błąd, który zazwyczaj występuje w wyniku problemów z oprogramowaniem lub sprzetowym, a jego przyczyny mogą być różnorodne, w tym nieprawidłowe sterowniki. Wreszcie, NTFS_FILE_SYSTEM to kod błędu związany z problemami w systemie plików NTFS, co również różni się od problemu z pamięcią, jakim jest PAGE_FAULT_IN_NONPAGE_AREA. Warto zauważyć, że mylenie tych błędów może wynikać z braku zrozumienia ich specyfiki oraz różnic w kontekstach, w których się pojawiają. Kluczowe jest, aby przy diagnozowaniu błędów systemowych skupić się na ich kontekście oraz przyczynach, co pozwala na skuteczniejsze rozwiązywanie problemów. Właściwe zrozumienie, co oznacza każdy z tych błędów, jest kluczowe dla efektywnego zarządzania systemem operacyjnym oraz jego konserwacji, co jest niezbędne dla zapewnienia jego stabilności i wydajności.

Pytanie 17

Na które wyjście powinniśmy podłączyć aktywne głośniki w karcie dźwiękowej, której schemat przedstawiony jest na rysunku?

Ilustracja do pytania
A. Line in
B. Speaker out
C. Line out
D. Mic in
W tym pytaniu niektóre odpowiedzi mogą wyglądać na dobre, ale po chwili zastanowienia widać, że nie są takie. 'Line in' to gniazdo do podłączania urządzeń audio jak odtwarzacze CD czy inne źródła, które wysyłają sygnał do karty dźwiękowej. To wejście, więc sygnał idzie w stronę przeciwną do tego, co potrzebujemy, żeby zasilać głośniki. 'Mic in' to z kolei miejsce do mikrofonów, ale one też potrzebują wzmocnienia sygnału, więc to też jest wejście. Sygnał z mikrofonu jest zupełnie inny niż liniowy, ma inną impedancję i poziom, dlatego nie można go użyć do głośników. 'Speaker out' niby wygląda na odpowiednie, ale to wyjście jest dla głośników pasywnych, które potrzebują mocy z karty dźwiękowej. Jeśli podepniemy do tego aktywne głośniki, to może być problem, bo sygnał już jest wzmocniony, co prowadzi do zniekształceń. W skrócie, żeby dobrze podłączyć sprzęt audio do komputera i mieć świetną jakość dźwięku, trzeba rozumieć różnice między wejściami a wyjściami, bo to może uchronić nas przed błędami i uszkodzeniami sprzętu.

Pytanie 18

Początkowe znaki heksadecymalne adresu IPv6 przeznaczonego do link-local to

A. FF30
B. FE80
C. 2000
D. 3000
Adresy IPv6 typu link-local to coś, co musisz znać, jeśli chcesz ogarnąć temat lokalnych sieci. Służą one do komunikacji w obrębie tej samej sieci i są naprawdę kluczowe dla działania protokołu IPv6. Zaczynają się od prefiksu FE80::/10, co oznacza, że pierwsze dziesięć bitów to 1111 1110 10, a reszta dotyczy konkretnego interfejsu na urządzeniu. W praktyce, każdy interfejs, który obsługuje IPv6, dostaje swój unikalny adres link-local. Dzięki temu, urządzenia mogą się ze sobą dogadywać, nie potrzebując routera. Wiele technologii, jak autokonfiguracja adresów IPv6 (SLAAC) czy protokół Neighbor Discovery Protocol (NDP), korzysta z tych adresów, żeby wykrywać sąsiednie hosty i rozwiązywać adresy. Zrozumienie link-local jest naprawdę ważne, zwłaszcza teraz, kiedy IPv6 zaczyna być coraz bardziej powszechne w sieciach.

Pytanie 19

Aby podłączyć stację roboczą z zainstalowanym systemem Windows do domeny zst.local należy

Ilustracja do pytania
A. ustawić nazwę komputera oraz w polu Domena wpisać zst.local
B. jedynie w polu Domena wpisać zst.local
C. ustawić nazwę komputera oraz w polu Grupa robocza wpisać zst.local
D. jedynie w polu Sufiks podstawowej domeny DNS tego komputera wpisać zst.local
Poprawnie wskazana odpowiedź odzwierciedla realną procedurę dołączania stacji roboczej z systemem Windows do domeny Active Directory. Żeby komputer stał się pełnoprawnym członkiem domeny zst.local, trzeba jednocześnie ustawić nazwę komputera oraz w polu „Domena” wpisać właśnie zst.local. Windows traktuje zmianę nazwy komputera i zmianę członkostwa (grupa robocza / domena) jako powiązane operacje – w praktyce i tak kończy się to restartem, więc administracyjnie najrozsądniej jest zrobić to za jednym razem. Dzięki temu w kontrolerze domeny obiekt komputera ma od razu właściwą nazwę, a wpis w DNS (rekord A i PTR) jest spójny z nazwą hosta. Z mojego doświadczenia, jeśli najpierw dołączysz do domeny, a potem zmienisz nazwę, łatwo wprowadzić bałagan w AD i DNS, szczególnie w większych sieciach. Samo pole „Domena” to nie tylko formalność – podczas dołączania Windows nawiązuje połączenie z kontrolerem domeny, wykorzystuje DNS do odszukania usług katalogowych (rekordy SRV) i wymaga konta z odpowiednimi uprawnieniami (typowo konto domenowe z prawem dołączania stacji do domeny). W tle tworzony jest obiekt komputera w Active Directory, generowane jest hasło konta komputera i konfigurowane są zabezpieczenia (m.in. Kerberos). Dobra praktyka mówi też, żeby nazwę komputera ustalić zgodnie z firmową konwencją nazewniczą, np. prefiks działu, numer stanowiska, typ urządzenia. Ułatwia to późniejszą administrację, monitorowanie i zarządzanie politykami GPO. W środowiskach produkcyjnych takie podejście jest wręcz standardem i większość skryptów wdrożeniowych (np. przy użyciu MDT, SCCM czy Intune) zakłada, że komputer ma właściwie ustawioną nazwę jeszcze przed dołączeniem do domeny.

Pytanie 20

Jakie adresy mieszczą się w zakresie klasy C?

A. 192.0.0.0 ÷ 223.255.255.255
B. 128.0.0.1 ÷ 191.255.255.254
C. 1.0.0.1 ÷ 126.255.255.254
D. 224.0.0.1 ÷ 239.255.255.0
Adresy klasy C to zakres od 192.0.0.0 do 223.255.255.255, co jest zgodne z definicją klasy C w protokole IP. Adresy te są powszechnie używane w małych sieciach lokalnych, co sprawia, że są niezwykle praktyczne. W klasycznej konfiguracji sieci, adres klasy C pozwala na posiadanie do 256 różnych adresów (od 192.0.0.0 do 192.0.0.255), z czego 254 mogą być przypisane urządzeniom końcowym, ponieważ jeden adres jest zarezerwowany jako adres sieciowy, a drugi jako adres rozgłoszeniowy. Klasa C umożliwia również sieciowanie w sposób umożliwiający efektywne zarządzanie dużymi grupami urządzeń, co jest kluczowe w dzisiejszym świecie, gdzie złożoność sieci wzrasta. Dodatkowo, zgodnie z zasadami CIDR (Classless Inter-Domain Routing), adresy klasy C mogą być elastycznie podzielone na mniejsze podsieci, co pozwala na lepsze wykorzystanie dostępnych zasobów IP. W praktyce, adresy klasy C są często używane w biurach i małych firmach, gdzie liczba urządzeń końcowych nie przekracza 254.

Pytanie 21

Okablowanie pionowe w systemie strukturalnym łączy się

A. w pośrednim punkcie rozdziału z gniazdem abonenckim
B. w gnieździe abonenckim
C. w głównym punkcie rozdziału z pośrednimi punktami rozdziału
D. w głównym punkcie rozdziału z gniazdem abonenckim
Okablowanie pionowe w sieciach strukturalnych to coś naprawdę ważnego, jeśli chodzi o przesyłanie danych. Musi być dobrze połączone w głównym punkcie rozdzielczym z tymi pośrednimi punktami, żeby wszystko działało jak należy. Główny punkt najczęściej znajduje się w serwerowni, tam zbierają się sygnały z różnych miejsc. Pośrednie punkty to już inna sprawa – one rozprowadzają sygnały do gniazd abonenckich. Taka struktura daje nam większą elastyczność w rozbudowie, co jest super ważne, bo technologia ciągle się zmienia. W praktyce ułatwia to też zarządzanie kablami i zmniejsza ryzyko zakłóceń. Z tego, co wiem, wszystko powinno być zgodne z normą ANSI/TIA-568, bo wtedy sieć działa bez zarzutu.

Pytanie 22

W celu zapewnienia jakości usługi QoS, w przełącznikach warstwy dostępu stosuje się mechanizm

A. nadawania wyższych priorytetów niektórym typom danych
B. określania liczby urządzeń, które mogą łączyć się z danym przełącznikiem
C. zapobiegającego występowaniu pętli w sieci
D. zastosowania kilku portów jako jednego logicznego połączenia jednocześnie
Nadawanie priorytetu określonym rodzajom danych jest kluczowym elementem zapewnienia jakości usług (QoS) w sieciach komputerowych, zwłaszcza w przełącznikach warstwy dostępu. QoS polega na zarządzaniu ruchem sieciowym w sposób, który pozwala na optymalne wykorzystanie dostępnych zasobów oraz minimalizowanie opóźnień i utraty pakietów. W praktyce oznacza to, że ruch krytyczny, na przykład VoIP (Voice over IP) czy transmisje wideo, może być traktowany priorytetowo w stosunku do mniej istotnych danych, takich jak transfer plików czy przeglądanie stron www. Przełączniki warstwy dostępu mogą implementować mechanizmy takie jak oznaczanie pakietów za pomocą protokołów takich jak 802.1Q dla VLAN-ów oraz 802.1p dla klasyfikacji ruchu. Dzięki temu administratorzy mogą konfigurować przełączniki tak, aby odpowiednie typy ruchu były przesyłane z wyższym priorytetem, co zapewnia lepszą jakość usług i zadowolenie użytkowników. Wprowadzenie systemu QoS w sieci jest zgodne z dobrymi praktykami branżowymi, które podkreślają znaczenie planowania zasobów oraz ich efektywnego zarządzania.

Pytanie 23

Jakim środkiem należy oczyścić wnętrze obudowy drukarki fotograficznej z kurzu?

A. środka smarującego
B. opaski antystatycznej
C. sprężonego powietrza w pojemniku z wydłużoną rurką
D. szczotki z twardym włosiem
Użycie środka smarującego do czyszczenia wnętrza drukarki fotograficznej jest niewłaściwe z kilku powodów. Po pierwsze, smarowanie nie jest procedurą czyszczącą; środki smarujące są przeznaczone do zmniejszenia tarcia w ruchomych częściach, a nie do usuwania zanieczyszczeń. Wprowadzenie olejów czy smarów do wnętrza urządzenia może prowadzić do gromadzenia się kurzu i brudu, co w dłuższym czasie może spowodować uszkodzenie elementów wewnętrznych. Ponadto, stosowanie opasek antystatycznych ma na celu zapobieganie gromadzeniu się ładunków elektrostatycznych, co jest istotne w kontekście ochrony delikatnych podzespołów elektronicznych, ale nie jest skuteczne w usuwaniu kurzu. Użycie szczotki z twardym włosiem może prowadzić do zarysowań powierzchni, co jest niepożądane w przypadku precyzyjnych elementów drukarki, a także może spowodować przemieszczenie drobnych cząstek brudu w inne zakamarki urządzenia. Wszelkie błędne podejścia wynikają z niepełnej wiedzy na temat technik konserwacji sprzętu, stąd ważne jest, aby stosować się do zaleceń producentów i branżowych standardów dotyczących konserwacji urządzeń fotograficznych.

Pytanie 24

Przed przystąpieniem do modernizacji komputerów osobistych oraz serwerów, polegającej na dodaniu nowych modułów pamięci RAM, konieczne jest sprawdzenie

A. gniazda interfejsu karty graficznej oraz wydajności zamontowanego zasilacza
B. pojemności i typu interfejsu dysku twardego oraz rodzaju gniazda zainstalowanej pamięci RAM
C. producenta modułów pamięci RAM oraz zewnętrznych interfejsów zainstalowanej płyty głównej
D. modelu pamięci RAM, maksymalnej pojemności oraz liczby modułów wspieranej przez płytę główną
Poprawna odpowiedź odnosi się do kluczowych informacji dotyczących modernizacji pamięci RAM w komputerach osobistych oraz serwerach. Przed przystąpieniem do wymiany lub dodania nowych modułów pamięci RAM, istotne jest zweryfikowanie modelu pamięci, maksymalnej pojemności oraz liczby modułów, które są obsługiwane przez płytę główną. Każda płyta główna ma specyfikacje, które określają, jaki typ pamięci RAM jest kompatybilny (np. DDR4 lub DDR5), a także maksymalną ilość pamięci, jaką można zainstalować. Na przykład, jeśli płyta główna obsługuje do 32 GB RAM, a my chcemy zainstalować 64 GB, napotkamy problemy związane z niekompatybilnością. Ponadto, różne modele pamięci mogą mieć różne zegary taktowania, co również może wpływać na wydajność systemu. Dlatego przed zakupem nowych modułów pamięci, zawsze należy sprawdzić dokumentację płyty głównej, aby uniknąć niepotrzebnych wydatków i problemów z działaniem systemu. Przykładowo, korzystając z aplikacji takich jak CPU-Z, można łatwo zidentyfikować zainstalowaną pamięć i jej specyfikacje.

Pytanie 25

Które z wymienionych mediów nie jest odpowiednie do przesyłania danych teleinformatycznych?

A. sieć 230V
B. sieć15KV
C. skrętka
D. światłowód
Sieć 15KV jest niewłaściwym medium do przesyłania danych teleinformatycznych, ponieważ jest to sieć wysokiego napięcia, której głównym celem jest transport energii elektrycznej, a nie danych. Wysokie napięcie używane w takich sieciach stwarza poważne zagrożenia dla urządzeń teleinformatycznych, a także dla ludzi. W przeciwieństwie do tego, światłowód, skrętka czy inne medium stosowane w telekomunikacji są projektowane z myślą o przesyłaniu informacji. Światłowody oferują wysoką przepustowość i są odporne na zakłócenia elektromagnetyczne, co czyni je idealnym rozwiązaniem dla nowoczesnych sieci. Skrętka, z kolei, jest popularnym medium w lokalnych sieciach komputerowych, a jej konstrukcja minimalizuje wpływ zakłóceń. W przypadku sieci 15KV, brak odpowiednich protokołów i standardów dla transmisji danych oznacza, że nie może ona być stosowana do przesyłania informacji. Przykładem dobrego rozwiązania teleinformatycznego są sieci LAN, które wykorzystują skrętkę i światłowody zgodnie z normami IEEE 802.3, co gwarantuje ich wydajność i bezpieczeństwo.

Pytanie 26

Uszkodzenie czego może być przyczyną awarii klawiatury?

Ilustracja do pytania
A. matrycy CCD
B. czujnika elektromagnetycznego
C. przełącznika membranowego
D. kontrolera DMA
Przełącznik membranowy jest kluczowym elementem w klawiaturach membranowych będących najczęściej spotykanym typem klawiatur. Składa się z trzech warstw gdzie środkowa zawiera ścieżki przewodzące a naciśnięcie klawisza powoduje zwarcie ścieżek i przesłanie sygnału do kontrolera. Takie klawiatury są popularne ze względu na niskie koszty produkcji i cichą pracę ale są bardziej podatne na uszkodzenia mechaniczne. Uszkodzenie przełącznika może wynikać z zużycia materiału pod wpływem częstego użytkowania lub działania czynników zewnętrznych jak kurz czy wilgoć. Regularne czyszczenie i unikanie narażania klawiatury na takie czynniki jest zgodne z dobrymi praktykami konserwacyjnymi i może przedłużyć żywotność urządzenia. W kontekście naprawy często wymaga to demontażu klawiatury i wymiany uszkodzonej membrany co jest operacją wymagającą precyzji i uwagi. Zrozumienie funkcjonowania przełączników membranowych pozwala nie tylko na efektywną diagnozę problemów ale również na wybór odpowiednich rozwiązań sprzętowych w przyszłości.

Pytanie 27

Jakie medium transmisyjne nosi nazwę 100BaseTX i jaka jest maksymalna prędkość danych, która może być w nim osiągnięta?

A. Kabel UTP kategorii 5e o prędkości transmisji do 1000 Mb/s
B. Światłowód wielomodowy o prędkości transmisji do 100 Mb/s
C. Kabel UTP kategorii 5 o prędkości transmisji do 100 Mb/s
D. Światłowód jednomodowy o prędkości transmisji do 1000 Mb/s
Kabel UTP kategorii 5, znany jako 100BaseTX, jest standardem określającym medium transmisyjne dla sieci Ethernet. Jego maksymalna prędkość transmisji sięga 100 Mb/s, co czyni go odpowiednim rozwiązaniem dla większości zastosowań biurowych i domowych. W standardzie tym stosuje się cztery pary skręconych przewodów, co zapewnia stabilność sygnału i minimalizuje zakłócenia elektromagnetyczne. Przykładem wykorzystania tego standardu jest budowanie lokalnych sieci komputerowych (LAN), gdzie 100BaseTX umożliwia efektywną komunikację między komputerami, routerami i innymi urządzeniami. Warto również zauważyć, że kategoria 5 została zastąpiona przez nowsze standardy, takie jak kategoria 5e, jednak 100BaseTX pozostaje w użyciu w wielu starszych instalacjach. Wiedza na temat tego standardu jest kluczowa dla projektantów sieci, którzy muszą rozważyć nie tylko aktualne potrzeby, ale i przyszłe rozszerzenia infrastruktury sieciowej.

Pytanie 28

Jakie kable powinny być używane z narzędziem pokazanym na fotografii?

Ilustracja do pytania
A. Kable U/UTP.
B. Wielomodowe światłowodowe.
C. Kable koncentryczne.
D. Jednomodowe światłowodowe.
Narzędzie przedstawione na zdjęciu to zaciskarka służąca do zakończania kabli U/UTP, które są powszechnie wykorzystywane w instalacjach sieci komputerowych. Kable U/UTP, znane jako kable nieekranowane, są popularne ze względu na swoją elastyczność i łatwość instalacji. Zaciskarka umożliwia przymocowanie wtyków RJ-45 na końcach przewodów, co jest niezbędne do prawidłowego funkcjonowania sieci Ethernet. Proces ten wymaga odpowiedniego ułożenia przewodów we wtyku zgodnie ze standardem T568A lub T568B, co zapewnia niezawodne połączenie. Narzędzie to jest kluczowe dla techników sieciowych, umożliwiając szybkie i efektywne zakończenie przewodów oraz diagnostykę problemów z połączeniami. Zastosowanie zaciskarki zgodnie z najlepszymi praktykami branżowymi, takimi jak testowanie połączeń po zakończeniu, zwiększa trwałość i niezawodność sieci. Wiedza na temat obsługi tego narzędzia jest fundamentalna dla każdego specjalisty zajmującego się instalacją i utrzymaniem sieci komputerowych.

Pytanie 29

Na podstawie filmu wskaż z ilu modułów składa się zainstalowana w komputerze pamięć RAM oraz jaką ma pojemność.

A. 1 modułu 16 GB.
B. 1 modułu 32 GB.
C. 2 modułów, każdy po 16 GB.
D. 2 modułów, każdy po 8 GB.
W tym zadaniu kluczowe są dwie rzeczy: liczba fizycznych modułów pamięci RAM oraz pojemność pojedynczej kości. Na filmie można zwykle wyraźnie zobaczyć, ile modułów jest wpiętych w sloty DIMM na płycie głównej. Każdy taki moduł to oddzielna kość RAM, więc jeśli widzimy dwie identyczne kości obok siebie, oznacza to dwa moduły. Typowym błędem jest patrzenie tylko na łączną pojemność podawaną przez system, np. „32 GB”, i automatyczne założenie, że jest to jeden moduł 32 GB. W praktyce w komputerach stacjonarnych i w większości laptopów bardzo często stosuje się konfiguracje wielomodułowe, właśnie po to, żeby wykorzystać tryb dual channel lub nawet quad channel. To jest jedna z podstawowych dobrych praktyk przy montażu pamięci – zamiast jednej dużej kości, używa się dwóch mniejszych o tej samej pojemności, częstotliwości i opóźnieniach. Dzięki temu kontroler pamięci w procesorze może pracować na dwóch kanałach, co znacząco zwiększa przepustowość i zmniejsza wąskie gardła przy pracy procesora. Odpowiedzi zakładające pojedynczy moduł 16 GB lub 32 GB ignorują ten aspekt i nie zgadzają się z tym, co widać fizycznie na płycie głównej. Kolejna typowa pułapka polega na myleniu pojemności całkowitej z pojemnością modułu. Jeśli system raportuje 32 GB RAM, to może to być 1×32 GB, 2×16 GB, a nawet 4×8 GB – sam wynik z systemu nie wystarcza, trzeba jeszcze zweryfikować liczbę zainstalowanych kości. Właśnie dlatego w zadaniu pojawia się odniesienie do filmu: chodzi o wizualne rozpoznanie liczby modułów. Dobrą praktyką w serwisie i diagnostyce jest zawsze sprawdzenie zarówno parametrów logicznych (w BIOS/UEFI, w systemie, w narzędziach diagnostycznych), jak i fizycznej konfiguracji na płycie. Pomija się też czasem fakt, że producenci płyt głównych w dokumentacji wprost rekomendują konfiguracje 2×8 GB, 2×16 GB zamiast pojedynczej kości, z uwagi na wydajność i stabilność. Błędne odpowiedzi wynikają więc zwykle z szybkiego zgadywania pojemności, bez przeanalizowania, jak pamięć jest faktycznie zamontowana i jak działają kanały pamięci w nowoczesnych platformach.

Pytanie 30

Na którym standardowym porcie funkcjonuje serwer WWW wykorzystujący domyślny protokół HTTPS w typowym ustawieniu?

A. 443
B. 80
C. 110
D. 20
Porty 20, 80 i 110 są nieprawidłowymi odpowiedziami w kontekście domyślnego portu dla serwera WWW działającego na protokole HTTPS. Port 20 jest wykorzystywany do przesyłania danych w protokole FTP (File Transfer Protocol), co nie ma związku z komunikacją HTTPS. Z kolei port 80 jest standardowym portem dla HTTP, co oznacza, że nie zapewnia on szyfrowania, co jest kluczowe dla bezpieczeństwa danych przesyłanych w sieci. Użytkownicy często mylą HTTP z HTTPS, co może prowadzić do nieporozumień dotyczących bezpieczeństwa połączeń internetowych. Port 110 natomiast służy do przesyłania wiadomości e-mail w protokole POP3 (Post Office Protocol), co również nie ma związku z protokołem HTTPS. Niezrozumienie, jak różne porty są przypisane do konkretnych protokołów, jest częstym błędem wśród osób uczących się o sieciach komputerowych. Dobrą praktyką jest zapoznanie się z dokumentacją IANA oraz zrozumienie znaczenia poszczególnych portów dla różnych protokołów, co pomoże uniknąć błędów w przyszłości i zwiększy ogólną wiedzę na temat architektury sieci. W dobie rosnących zagrożeń w sieci, umiejętność identyfikacji odpowiednich portów oraz protokołów jest kluczowa dla zapewnienia bezpieczeństwa i integralności przesyłanych danych.

Pytanie 31

Standardowe napięcie zasilające dla modułów pamięci RAM DDR4 wynosi

A. 1,5 V
B. 1,35 V
C. 1,2 V
D. 1,65 V
Wybór napięcia zasilania 1,5 V, 1,65 V lub 1,35 V dla modułów pamięci RAM DDR4 jest błędny, ponieważ napięcia te odpowiadają starym standardom lub innym technologiom pamięci. Napięcie 1,5 V jest charakterystyczne dla pamięci RAM DDR3, która była powszechnie stosowana przed wprowadzeniem DDR4. Przy pracy na wyższym napięciu, DDR3 generuje więcej ciepła, co prowadzi do obniżenia efektywności energetycznej systemu. Z kolei napięcie 1,65 V często jest związane z pamięcią RAM działającą na wyższych częstotliwościach, ale nie jest zgodne z DDR4. Używanie modułów z takimi specyfikacjami zasilania w systemach zaprojektowanych pod kątem DDR4 może prowadzić do uszkodzenia pamięci lub niestabilności systemu. Napięcie 1,35 V, choć jest stosowane w niektórych wariantach DDR4 (np. Low Voltage DDR4), nie jest standardowym napięciem dla ogólnych zastosowań DDR4. W praktyce, wybór niewłaściwego napięcia może prowadzić do problemów z kompatybilnością, co jest powszechnym błędem wśród użytkowników, którzy nie są świadomi różnic między wersjami pamięci. Kluczowe jest, aby przy projektowaniu i budowie systemów komputerowych przestrzegać specyfikacji JEDEC oraz stosować komponenty zgodne z tymi standardami, co zapewnia nie tylko stabilność, ale i wydajność sprzętu.

Pytanie 32

Papier termotransferowy to materiał eksploatacyjny stosowany w drukarkach

A. rozetkowych.
B. igłowych.
C. 3D.
D. atramentowych.
Pojęcie papieru termotransferowego bywa mylone z różnymi innymi materiałami eksploatacyjnymi używanymi w drukarkach, ale warto uporządkować sobie te technologie. Drukarki rozetkowe to raczej pojęcie historyczne i nie są wykorzystywane w kontekście współczesnych technik transferu termicznego. Często spotyka się też zamieszanie z drukarkami igłowymi, które wykorzystują taśmy barwiące, ale same nie korzystają z papieru termotransferowego – ich głównym polem zastosowań są wydruki tekstowe, paragony, czy faktury, gdzie ważna jest szybkość i niskie koszty, ale nie jakość przenoszenia obrazu czy grafiki. Druk 3D natomiast to zupełnie inna technologia – tam zamiast papieru mamy filamenty plastikowe (PLA, ABS, PETG itd.), które pod wpływem temperatury są warstwa po warstwie nakładane do uzyskania bryły, więc pojęcie papieru – a już zwłaszcza termotransferowego – nie ma zastosowania. Typowym błędem jest utożsamianie termotransferu z każdym drukiem, który używa ciepła, ale w praktyce tylko wybrane technologie rzeczywiście potrzebują specjalnego papieru do przenoszenia wydruku na inną powierzchnię. W branży komputerowej i poligraficznej jasno rozróżnia się materiały eksploatacyjne: igłówki mają rolki papieru lub składanki, druk 3D filamenty, a transfer papierowy stosuje się tylko tam, gdzie liczy się dokładność odwzorowania grafiki na tekstyliach czy gadżetach, najczęściej poprzez druk atramentowy – a nie w innych, wskazanych tu technologiach. Z mojego doświadczenia wynika, że nieznajomość różnic prowadzi do niepotrzebnych kosztów i frustracji, bo użycie niewłaściwego papieru kończy się słabym efektem albo wręcz uszkodzeniem sprzętu.

Pytanie 33

Jak wielu hostów można maksymalnie zaadresować w sieci lokalnej, mając do dyspozycji jeden blok adresów klasy C protokołu IPv4?

A. 254
B. 510
C. 512
D. 255
Odpowiedź 254 jest prawidłowa, ponieważ w klasie C adresów IPv4 mamy 256 możliwych adresów (od 0 do 255). Jednak dwa z tych adresów są zarezerwowane: jeden dla adresu sieci (adres, w którym wszystkie bity hosta są ustawione na 0) oraz jeden dla adresu rozgłoszeniowego (adres, w którym wszystkie bity hosta są ustawione na 1). Dlatego maksymalna liczba hostów, które można zaadresować w sieci lokalnej z wykorzystaniem tej klasy, wynosi 254. W praktyce oznacza to, że w typowej sieci lokalnej, takiej jak w biurze czy w domu, administratorzy mogą przydzielić adresy IP do 254 różnych urządzeń, takich jak komputery, drukarki, smartfony czy inne urządzenia IoT. Zgodnie z najlepszymi praktykami sieciowymi, zarządzanie adresacją IP w klasie C jest powszechnie stosowane w małych i średnich sieciach, co pozwala na efektywne wykorzystanie dostępnych zasobów adresowych. Dodatkowo, przy planowaniu sieci, warto uwzględnić rezerwacje adresów dla urządzeń serwisowych, co jeszcze bardziej podkreśla znaczenie dokładnego obliczania dostępnych adresów.

Pytanie 34

Jakie polecenie trzeba wydać w systemie Windows, aby zweryfikować tabelę mapowania adresów IP na adresy MAC wykorzystywane przez protokół ARP?

A. netstat -r
B. ipconfig
C. route print
D. arp -a
Odpowiedzi 'ipconfig', 'netstat -r' oraz 'route print' są często mylone z poleceniem 'arp -a', jednak każde z nich ma swoje specyficzne zastosowanie i nie służy do sprawdzenia tabeli ARP. 'Ipconfig' jest narzędziem, które pozwala na wyświetlenie konfiguracji interfejsów sieciowych w systemie Windows, w tym adresu IP, maski podsieci oraz bramy domyślnej. Choć 'ipconfig' dostarcza istotnych informacji o połączeniach sieciowych, nie pokazuje mapowania adresów IP na adresy MAC. Z kolei 'netstat -r' wyświetla tablicę routingu, która zawiera informacje o trasach, jakie pakiety mogą zająć w sieci, ale również nie dostarcza danych o adresach fizycznych. 'Route print' z kolei jest podobne do 'netstat -r' i służy do analizy tras routingu w systemie, co jest przydatne w diagnostyce problemów z łącznością, ale nie ma związku z ARP. Powszechnym błędem jest zakładanie, że te polecenia mają podobny zakres działania, co 'arp -a', przez co można popełnić pomyłkę w diagnostyce problemów w sieci. Kluczowe jest zrozumienie, które narzędzia powinny być używane w konkretnych sytuacjach, aby efektywnie zarządzać siecią i diagnozować problemy.

Pytanie 35

W systemie dziesiętnym liczba 110011(2) przedstawia się jako

A. 53
B. 51
C. 52
D. 50
Odpowiedź 51 jest poprawna, ponieważ liczba 110011 zapisana w systemie binarnym (dwu-symbolowym) można przeliczyć na system dziesiętny (dziesięcio-symbolowy) przez zsumowanie wartości poszczególnych bitów, które mają wartość 1. W systemie binarnym każdy bit reprezentuje potęgę liczby 2. Rozpoczynając od prawej strony, mamy: 1*2^5 + 1*2^4 + 0*2^3 + 0*2^2 + 1*2^1 + 1*2^0, co daje: 32 + 16 + 0 + 0 + 2 + 1 = 51. Przykładem praktycznego zastosowania tej wiedzy jest programowanie, gdzie często spotykamy się z konwersją między systemami liczbowymi, szczególnie przy wykorzystaniu binarnych reprezentacji danych w pamięci komputerowej. Zrozumienie, jak konwertować różne systemy liczbowej, jest kluczowe dla efektywnego programowania oraz pracy z algorytmami, co stanowi standard w informatyce.

Pytanie 36

Analizując przedstawione wyniki konfiguracji zainstalowanych kart sieciowych na komputerze, można zauważyć, że

Ilustracja do pytania
A. wszystkie karty mogą automatycznie uzyskać adres IP
B. karta bezprzewodowa nosi nazwę Net11
C. interfejs Bluetooth dysponuje adresem IPv4 192.168.0.102
D. karta przewodowa ma adres MAC 8C-70-5A-F3-75-BC
Odpowiedź jest prawidłowa, ponieważ wszystkie karty sieciowe zainstalowane w tym systemie mają włączoną autokonfigurację IP oraz DHCP, co oznacza, że mogą automatycznie uzyskać adresy IP z serwera DHCP. W praktyce oznacza to, że urządzenia te są skonfigurowane zgodnie ze standardami sieciowymi, które promują użycie serwerów DHCP do dynamicznego przydzielania adresów IP. Dzięki temu zarządzanie siecią jest uproszczone, ponieważ administrator nie musi ręcznie przypisywać adresów IP każdemu urządzeniu. Jest to szczególnie korzystne w dużych sieciach, gdzie automatyzacja procesów konfiguracyjnych oszczędza czas i minimalizuje błędy konfiguracyjne. W sieciach korzystających z protokołów takich jak IPv6, autokonfiguracja jest wręcz zalecana, ponieważ umożliwia wykorzystanie różnych metod zarządzania adresacją, w tym stateless address autoconfiguration (SLAAC). Ważne jest również zrozumienie, że autokonfiguracja nie ogranicza się tylko do adresów IP, ale obejmuje także inne parametry jak serwery DNS, co czyni ją wszechstronnym narzędziem w zarządzaniu siecią.

Pytanie 37

Które z poniższych stwierdzeń dotyczących konta użytkownika Active Directory w systemie Windows jest prawdziwe?

A. Nazwa logowania użytkownika nie może mieć długości większej niż 100 bajtów
B. Nazwa logowania użytkownika może zawierać mniej niż 21 znaków
C. Nazwa logowania użytkownika może mieć długość przekraczającą 100 bajtów
D. Nazwa logowania użytkownika powinna mieć nie więcej niż 20 znaków
Odpowiedzi sugerujące, że nazwa logowania użytkownika w Active Directory musi mieć mniej niż 20 lub 21 znaków, są błędne. W rzeczywistości, Active Directory nie wprowadza takiego ograniczenia, co jest kluczowe dla zrozumienia elastyczności systemu. Użytkownicy mogą być wprowadzani do systemu z bardziej złożonymi i dłuższymi nazwami, co jest szczególnie istotne w dużych organizacjach, gdzie unikalne identyfikatory są często niezbędne. Utrzymywanie krótszych nazw logowania może prowadzić do zamieszania i niejednoznaczności, zwłaszcza gdy w danej organizacji pracuje wiele osób o podobnych imionach i nazwiskach. Ponadto, nieprawdziwe jest stwierdzenie, że nazwa logowania nie może mieć długości większej niż 100 bajtów. W rzeczywistości, Active Directory pozwala na dłuższe nazwy, co wspiera różnorodność i unikalność kont użytkowników. Błędne koncepcje związane z długością nazw logowania mogą prowadzić do problemów z integracją systemów oraz zwiększać ryzyko błędów przy logowaniu. Użytkownicy muszą być świadomi właściwych praktyk, aby zminimalizować nieporozumienia i poprawić bezpieczeństwo systemów.

Pytanie 38

W jakiej logicznej topologii funkcjonuje sieć Ethernet?

A. pierścieniowej i liniowej
B. siatki i gwiazdy
C. rozgłaszania
D. siatkowej
Topologia pierścieniowa i liniowa to nie jest coś, co spotkasz w sieciach Ethernet. W pierścieniowej urządzenia tworzą zamknięty krąg i dane płyną w jednym kierunku przez wszystkie urządzenia. To rozwiązanie może się czasem przydać, ale nie pasuje do Ethernecie. Z kolei topologia liniowa, chociaż czasem może być mylona z rozgłaszaniem, nie przynosi takich korzyści, bo mogą wystąpić kolizje i wydajność spadnie, zwłaszcza w dużych sieciach. Zwróć uwagę, że siatka i gwiazda to też nie najlepsze porównania w kontekście EtherNetu. Siatka, gdzie każde urządzenie łączy się z wieloma innymi, zwiększa niezawodność, ale to nie jest typowy model dla standardowego EtherNetu. Gwiazda, choć popularna w sieciach lokalnych, też nie oddaje istoty działania EtherNeta w kontekście rozgłaszania. Kluczowe jest, żeby zrozumieć, że te alternatywy nie tylko nie odpowiadają na pytanie, ale mogą też prowadzić do nieporozumień w projektowaniu i zarządzaniu sieciami, co jest ważne dla efektywności i niezawodności komunikacji w nowoczesnych systemach IT.

Pytanie 39

Na diagramie element odpowiedzialny za dekodowanie poleceń jest oznaczony liczbą

Ilustracja do pytania
A. 2
B. 6
C. 3
D. 1
CU czyli jednostka sterująca odpowiada za dekodowanie instrukcji w procesorze Jest to kluczowy element architektury procesora który interpretuje instrukcje maszynowe pobierane z pamięci i przekształca je w sygnały sterujące dla innych elementów procesora takich jak ALU rejestry czy pamięć operacyjna Jednostka sterująca odczytuje instrukcje jedna po drugiej i analizuje ich format oraz wykonuje odpowiednie kroki do ich realizacji Współczesne procesory często stosują złożone mechanizmy dekodowania aby zwiększyć wydajność i efektywność wykonywania instrukcji Praktycznym przykładem zastosowania wiedzy o jednostce sterującej jest projektowanie systemów cyfrowych oraz optymalizacja kodu maszynowego w celu zwiększenia wydajności działania aplikacji Znajomość CU jest również niezbędna przy rozwoju nowych architektur procesorów oraz przy implementacji systemów wbudowanych gdzie dekodowanie instrukcji może być krytycznym elementem umożliwiającym realizację złożonych operacji w czasie rzeczywistym Zrozumienie roli jednostki sterującej pozwala na lepsze projektowanie i implementację efektywnych algorytmów wykonujących się na poziomie sprzętowym

Pytanie 40

Który z wymienionych systemów operacyjnych nie obsługuje wielozadaniowości?

A. DOS
B. Linux
C. UNIX
D. Windows
DOS (Disk Operating System) to jeden z najwcześniejszych systemów operacyjnych, który został zaprojektowany głównie do pracy w trybie jednego zadania. Oznacza to, że w danym momencie mógł obsługiwać tylko jedno zadanie lub proces, co było charakterystyczne dla systemów operacyjnych z lat 80. i wcześniejszych. Przykładowo, gdy użytkownik uruchamiał program w DOS-ie, nie było możliwości jednoczesnego uruchamiania innych aplikacji. Dzięki prostocie i niskim wymaganiom sprzętowym, DOS stał się popularny wśród użytkowników komputerów osobistych. W praktyce, pomimo ograniczeń, DOS był używany w różnych zastosowaniach, takich jak gry komputerowe, programowanie w języku C oraz do obsługi urządzeń peryferyjnych. W kontekście standardów branżowych, DOS stanowił fundament dla wielu systemów operacyjnych, które później wprowadziły wielozadaniowość, umożliwiając równoczesne wykonywanie wielu procesów, co stało się normą w nowoczesnych systemach takich jak Linux czy Windows."