Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektryk
  • Kwalifikacja: ELE.05 - Eksploatacja maszyn, urządzeń i instalacji elektrycznych
  • Data rozpoczęcia: 7 grudnia 2025 23:01
  • Data zakończenia: 7 grudnia 2025 23:17

Egzamin zdany!

Wynik: 22/40 punktów (55,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Jak często powinny być przeprowadzane okresowe kontrole użytkowe instalacji elektrycznej w budynku jednorodzinnym, minimalnie raz w czasie?

A. 6 lat
B. 5 lat
C. 8 lat
D. 4 lata
Okresowe badania eksploatacyjne sieci elektrycznej w domach jednorodzinnych są kluczowym elementem zapewnienia ich bezpieczeństwa i sprawności. Zgodnie z obowiązującymi normami, szczególnie z rozporządzeniem Ministra Infrastruktury oraz normami PN-IEC 60364 i PN-EN 61010, przeglądy te powinny być przeprowadzane co 5 lat. W praktyce, regularne kontrole umożliwiają wczesne wykrywanie potencjalnych usterek, takich jak uszkodzenia izolacji, niewłaściwe połączenia czy degradacja elementów systemu elektrycznego. Na przykład, w przypadku starych instalacji, działanie na granicy normy może prowadzić do przegrzewania się przewodów, co stwarza ryzyko pożaru. Dlatego ważne jest, aby użytkownicy domów jednorodzinnych byli świadomi tego obowiązku i zapewniali odpowiednie przeglądy w ustalonych interwałach. Dodatkowo, w miarę starzejących się instalacji, może być konieczne zwiększenie częstotliwości badań, co podkreśla znaczenie odpowiedzialnego zarządzania systemem elektrycznym w domu.

Pytanie 2

Jaki przekrój przewodu należy dobrać do zasilania odbiornika jednofazowego o danych Sn = 4,6 kVA i Un = 230 V, stosując kryterium obciążalności prądowej na podstawie danych przedstawionych w tabeli?

Obciążalność
mm21,01,52,54,06,0
A1519243242
A. 2,5 mm2
B. 1,5 mm2
C. 4,0 mm2
D. 6,0 mm2
Wybór przekroju przewodu 2,5 mm2 jest uzasadniony, ponieważ przekrój ten zapewnia odpowiednią obciążalność prądową dla odbiornika jednofazowego o mocy 4,6 kVA i napięciu 230 V. Obliczony prąd obciążenia wynosi około 20 A, co mieści się w granicach obciążalności prądowej przewodu 2,5 mm2, wynoszącej 24 A. Zastosowanie przewodu o właściwej średnicy jest kluczowe dla zapewnienia bezpieczeństwa instalacji elektrycznej i minimalizowania strat energetycznych. W praktyce, dobór odpowiedniego przekroju przewodu powinien być zawsze oparty na rzeczywistych warunkach eksploatacji, takich jak długość przewodu, temperatura otoczenia oraz sposób układania (np. w rurach, na otwartej przestrzeni). Przy projektowaniu instalacji elektrycznych warto również uwzględnić normy PN-IEC, które określają wymagania dotyczące obciążalności przewodów oraz ich zastosowania w różnych warunkach. Prawidłowy dobór przekroju przewodu jest kluczowym elementem zapobiegania przegrzewaniu się instalacji, co może prowadzić do uszkodzeń oraz zwiększonego ryzyka pożaru.

Pytanie 3

Które z wymienionych wskazówek nie dotyczy projektanta oraz realizatora nowej instalacji elektrycznej w lokalu mieszkalnym?

A. Zasilanie gniazd wtykowych w każdym pomieszczeniu z oddzielnego obwodu
B. Rozdzielenie obwodów oświetleniowych od obwodów gniazd wtykowych
C. Zasilanie odbiorników o dużej mocy, zainstalowanych na stałe, z wydzielonych obwodów
D. Zasilanie gniazd wtykowych w kuchni z oddzielnego obwodu
Podejście polegające na zasilaniu gniazd wtykowych w każdym pomieszczeniu z osobnego obwodu może budzić wątpliwości, ale ważne jest zrozumienie, dlaczego inne odpowiedzi są uznawane za zasady dobrej praktyki w instalacjach elektrycznych. Separacja obwodów oświetleniowych od gniazd wtykowych jest kluczowa dla zachowania bezpieczeństwa. W przypadku awarii w instalacji oświetleniowej, gniazda pozostaną funkcjonalne, co jest istotne w sytuacjach awaryjnych, kiedy światło może być potrzebne do bezpiecznego poruszania się w pomieszczeniu. Odbiorniki dużej mocy, takie jak klimatyzatory czy piekarniki, powinny być zasilane z wydzielonych obwodów, aby uniknąć przeciążeń, które mogą prowadzić do wyzwolenia zabezpieczeń. W kuchni, z uwagi na dużą liczbę urządzeń elektrycznych, zasilanie gniazd wtykowych z osobnego obwodu jest niezbędne dla zachowania bezpieczeństwa użytkowników oraz stabilności zasilania. Ignorowanie tych zasad może prowadzić do sytuacji, w których przeciążone obwody będą powodować nie tylko problemy techniczne, ale także poważne zagrożenie pożarowe. Dlatego kluczowe jest zrozumienie, że nie wszystkie pomieszczenia wymagają zasilania z odrębnych obwodów, a przemyślane projektowanie instalacji elektrycznych zgodne z obowiązującymi normami zapewnia bezpieczeństwo i efektywność użytkowania.

Pytanie 4

Korzystając z tabeli oceń, który wynik badania pozwala wyciągnąć pozytywny wniosek o stanie izolacji jednofazowej instalacji elektrycznej 230 V, 50 Hz.

Napięcie nominalne obwoduNapięcie pomiarowe prądu stałego d.c.Wymagana rezystancja izolacji
V
SELV i PELV250≥ 0,5
do 500 V włącznie, w tym FELV500≥ 1,0
powyżej 500 V1000≥ 1,0

Wynik badaniaNapięcie pomiarowe prądu stałego, kVRezystancja izolacji, kΩ
A.2301050
B.250500
C.4001100
D.5001000
A. A.
B. D.
C. B.
D. C.
Wybór innej odpowiedzi niż D wskazuje na pewne nieporozumienia dotyczące wymagań normatywnych związanych z izolacją instalacji elektrycznych. W przypadku instalacji jednofazowej o napięciu 230 V, standardy ustanawiają minimalne wymagania dotyczące rezystancji izolacji na poziomie 1,0 MΩ. Odpowiedzi inne niż D mogą sugerować, że użytkownik nie dostrzega znaczenia tych norm. Przykładowo, wybór odpowiedzi A lub B może być wynikiem błędnego założenia, że niższe wartości rezystancji są akceptowalne. Często w praktyce można spotkać się z sytuacjami, gdzie niewłaściwy pomiar lub interpretacja wyników prowadzi do błędnych wniosków, co z kolei może doprowadzić do decyzji o kontynuacji eksploatacji instalacji, która w rzeczywistości jest zagrożona. Warto zwrócić uwagę, że tylko odpowiednia rezystancja izolacji może zapewnić bezpieczeństwo użytkowników oraz sprawność urządzeń elektrycznych. W związku z tym, nieprzestrzeganie tych norm może prowadzić do poważnych konsekwencji, takich jak ryzyko porażenia prądem lub pożaru. Kluczową kwestią jest zrozumienie, że odpowiednie wartości rezystancji izolacji są podstawą do oceny stanu każdego systemu elektrycznego. Dlatego tak ważne jest, aby przy podejmowaniu decyzji korzystać z dokładnych danych i sprawdzać je zgodnie z obowiązującymi standardami.

Pytanie 5

Dla układu o parametrach U0 = 230 V, Ia = 100 A oraz Zs = 3,1 Ω działającego w systemie TN-C nie działa efektywnie dodatkowa ochrona przed porażeniem prądem, ponieważ

A. opór izolacji miejsca pracy jest zbyt duży
B. impedancja sieci zasilającej jest zbyt niska
C. opór uziemienia jest zbyt niski
D. impedancja pętli zwarcia jest zbyt duża
Odpowiedzi wskazujące na problemy z rezystancją izolacji stanowiska oraz rezystancją uziomu bazują na niepełnym zrozumieniu mechanizmów ochrony przed porażeniem prądem elektrycznym w kontekście układów TN-C. Rezystancja izolacji odnosi się do zdolności izolacji przewodów do zapobiegania przepływowi prądu do ziemi, co jest istotne, ale nie wpływa bezpośrednio na skuteczność działania zabezpieczeń w przypadku zwarcia. Niska rezystancja izolacji może być korzystna, ale nie rozwiązuje problemu, jeśli impedancja pętli zwarcia jest zbyt wysoka, co jest kluczowe dla prawidłowego działania zabezpieczeń. Z kolei rezystancja uziomu, która jest zbyt mała, również nie jest czynnikiem wpływającym na bezpieczeństwo w tym kontekście, gdyż może prowadzić do sytuacji, w której prąd zwarciowy nie osiągnie wymaganych wartości do zadziałania zabezpieczeń. Typowym błędem myślowym jest utożsamianie niskiej rezystancji uziomu z poprawnością działania ochrony, podczas gdy to właśnie impedancja pętli zwarcia ma zasadnicze znaczenie. Zrozumienie, że to impedancja pętli zwarcia wpływa na czas reakcji zabezpieczeń, a nie pojedyncze elementy systemu, jest kluczowe dla prawidłowego projektowania i eksploatacji instalacji elektrycznych.

Pytanie 6

Który z podanych materiałów przewodzących jest najczęściej stosowany w instalacjach elektrycznych ze względu na swoje właściwości?

A. Stal
B. Aluminium
C. Miedź
D. Nikiel
Miedź to materiał przewodzący, który jest najczęściej stosowany w instalacjach elektrycznych ze względu na swoje wyjątkowe właściwości. Przede wszystkim charakteryzuje się bardzo dobrą przewodnością elektryczną, co oznacza, że opór stawiany przepływającemu prądowi jest minimalny. Dzięki temu straty energii są zredukowane, co jest kluczowe w efektywnym przesyle energii. Ponadto, miedź jest materiałem relatywnie łatwym do formowania, co ułatwia produkcję przewodów o różnych kształtach i rozmiarach. Jest również odporny na korozję, co przedłuża żywotność instalacji. Zastosowanie miedzi w kablach i przewodach elektrycznych jest standardem w branży, a jej właściwości mechaniczne pozwalają na utrzymanie wysokiej wytrzymałości oraz elastyczności przewodów. Warto również zauważyć, że miedź jest stosowana w różnych gałęziach przemysłu elektrotechnicznego, w tym w transformatorach, silnikach elektrycznych i generatorach, co świadczy o jej wszechstronności i niezawodności. Standardy branżowe i normy międzynarodowe, takie jak IEC i ANSI, często rekomendują użycie miedzi w instalacjach ze względu na jej doskonałe właściwości przewodzące i mechaniczne.

Pytanie 7

Na podstawie zamieszczonych w tabeli danych łożysk dobierz łożysko do silnika o średnicy wału d = 12 mm i szerokości tarczy łożyskowej B = 12 mm.

SymbolWymiary podstawowe
d [mm]D [mm]B [mm]r [mm]
6700101530,1
62003090,6
6001122880,3
630137121
A. 6700
B. 6001
C. 6301
D. 6200
Odpowiedź 6301 jest poprawna, ponieważ spełnia wszystkie wymagania dotyczące wymiarów łożyska do silnika o średnicy wału 12 mm oraz szerokości tarczy łożyskowej 12 mm. Łożyska 6301 mają średnicę wewnętrzną 12 mm, co jest idealne do mocowania na wale silnika, oraz standardową szerokość 12 mm, która odpowiada wymaganym parametrom. Wybór odpowiedniego łożyska jest kluczowy dla zapewnienia efektywności i trwałości pracy silnika. Stosowanie łożysk o nieodpowiednich wymiarach może prowadzić do ich przedwczesnego zużycia, zwiększonego tarcia oraz potencjalnych awarii. W praktyce, łożyska serii 6300 są powszechnie stosowane w różnych aplikacjach, w tym w silnikach elektrycznych, przekładniach oraz w układach napędowych. Ich wybór powinien opierać się na dokładnej analizie wymagań technicznych, a także na znajomości standardów branżowych, takich jak normy ISO dotyczące łożysk. Wiedza na temat doboru łożysk jest niezbędna dla inżynierów i techników, aby zapewnić optymalną wydajność i niezawodność maszyn.

Pytanie 8

Jeżeli silnik prądu stałego z komutatorem po włączeniu zasilania nie zaczyna pracować, to możliwą przyczyną tej sytuacji może być

A. zbyt mocny nacisk szczotek na komutator
B. zaśmiecenie komutatora pyłem węglowym
C. umiejscowienie szczotek poza obszarem neutralnym
D. brak kontaktu szczotek z komutatorem
Brak przylegania szczotek do komutatora jest kluczowym problemem w silnikach komutatorowych prądu stałego. Gdy szczotki nie mają odpowiedniego kontaktu z komutatorem, nie dochodzi do przekazywania prądu do wirnika, co skutkuje brakiem obrotów silnika. Regularne kontrole stanu szczotek oraz komutatora są częścią dobrej praktyki w konserwacji tych urządzeń. W przypadku, gdy szczotki są zbyt zużyte, mogą nie przylegać wystarczająco, co uniemożliwia silnikowi uruchomienie. Właściwe ciśnienie szczotek na komutatorze oraz ich właściwe ustawienie w odpowiedniej strefie neutralnej są istotne dla efektywności działania silnika. Przykładem zastosowania tej wiedzy jest rutynowe serwisowanie silników w aplikacjach przemysłowych, gdzie ich awaria może prowadzić do znacznych przestojów. Zgodnie z normami branżowymi, regularne czyszczenie komutatora i kontrola stanu szczotek powinny być częścią harmonogramu konserwacji, aby zapewnić niezawodność i długowieczność urządzeń."

Pytanie 9

Która z wymienionych przyczyn może powodować przegrzewanie się uzwojenia stojana w trakcie działania trójfazowego silnika indukcyjnego?

A. Nieprawidłowe połączenie grup zezwojów
B. Zbyt niska częstotliwość napięcia zasilającego
C. Zmiana kolejności faz zasilających
D. Nierównomierna szczelina powietrzna
Istnieje kilka koncepcji, które mogą wydawać się przekonywujące, ale w rzeczywistości nie są przyczyną przegrzewania się uzwojenia stojana w trójfazowych silnikach indukcyjnych. Zmieniona kolejność faz zasilających może prowadzić do problemów z momentem obrotowym i stabilnością pracy silnika, ale niekoniecznie do przegrzewania uzwojeń. W rzeczywistości, silnik może działać w sposób nieoptymalny, ale niekoniecznie ulegać przegrzaniu z tego powodu. Nierówna szczelina powietrzna, choć może wpływać na wydajność oraz generowanie hałasu, nie jest bezpośrednią przyczyną przegrzewania uzwojeń. Problemy ze szczeliną powietrzną mogą generować dodatkowe straty mocy, ale ich bezpośredni wpływ na temperaturę uzwojeń jest ograniczony. Zbyt niska częstotliwość napięcia zasilającego rzeczywiście może prowadzić do zmiany momentu obrotowego i wynikających z tego niewłaściwych warunków pracy, lecz nie jest to bezpośrednia przyczyna przegrzewania. W przypadku niewłaściwego działania silnika, jego diagnostyka wymaga uwzględnienia całego systemu zasilania oraz mechanizmu, aby zrozumieć rzeczywiste źródło problemu, a nie skupiać się jedynie na pojedynczych parametrach, co może prowadzić do fałszywych wniosków.

Pytanie 10

Aby zmierzyć rezystancję izolacji w instalacji elektrycznej, trzeba wyłączyć zasilanie, zablokować włączniki instalacyjne oraz

A. odłączyć odbiorniki
B. uziemić instalację
C. podłączyć odbiorniki
D. odłączyć uziemienie
Odpowiedź "odłączyć odbiorniki" jest prawidłowa, ponieważ podczas pomiaru rezystancji izolacji instalacji elektrycznej kluczowe jest zapewnienie, że nie ma żadnych elementów, które mogłyby wpływać na wyniki pomiaru. Odbiorniki, takie jak urządzenia elektryczne i inne obciążenia, mogą wprowadzać dodatkowe ścieżki przewodzenia prądu, co zafałszowałoby wyniki pomiaru rezystancji izolacji. Odłączenie odbiorników umożliwia dokładne zbadanie stanu izolacji przewodów bez zakłóceń. Przykładem zastosowania tej praktyki może być pomiar izolacji w budynku przed oddaniem go do użytku, gdzie należy upewnić się, że instalacja nie ma zwarć ani innych usterek, co jest zgodne z normami PN-IEC 60364. Przeprowadzanie takich pomiarów zapewnia bezpieczeństwo użytkowników oraz trwałość instalacji. Warto również pamiętać, że pomiar izolacji powinien być wykonywany za pomocą odpowiednich narzędzi, takich jak megger, które są zaprojektowane do tego celu.

Pytanie 11

Do nawinięcia stojana w trójfazowym silniku indukcyjnym o mocy 7,5 kW nie stosuje się

A. lakieru izolacyjnego
B. drutu nawojowego
C. pierścienia zwierającego
D. izolacji żłobkowej
Pierścień zwierający nie jest stosowany w przezwojeniu stojana trójfazowego silnika indukcyjnego o mocy 7,5 kW, ponieważ jego konstrukcja opiera się na rdzeniu stalowym, w którym uzwojenia są umieszczone w żłobkach. Pierścienie zwierające są używane głównie w silnikach z wirnikami klatkowym, gdzie zapewniają zamknięcie obwodu wirnika. W przypadku silników indukcyjnych z uzwojeniem stojana, kluczowe komponenty to drut nawojowy, izolacja żłobkowa oraz lakier izolacyjny. Drut nawojowy, wykonany z miedzi, jest niezbędny do utworzenia uzwojeń, które generują pole magnetyczne. Izolacja żłobkowa oraz lakier izolacyjny chronią drut przed zwarciem oraz uszkodzeniami mechanicznymi, a także zapewniają odpowiednią wydajność cieplną. Dobrze przeprowadzone przezwojenie zwiększa efektywność silnika, co jest istotne w kontekście obciążenia i żywotności maszyny.

Pytanie 12

Symbol S1 na etykiecie znamionowej silnika trójfazowego wskazuje na typ pracy tego silnika

A. dorywczej
B. nieokresowej
C. ciągłej
D. przerywanej
Oznaczenia S1, S2, S3 i inne w kontekście silników elektrycznych dotyczą różnych trybów pracy, które są zdefiniowane przez normy IEC. Odpowiedzi mówiące o dorywczej, przerywanej czy nieokresowej pracy silnika opierają się na błędnych założeniach co do przeznaczenia i charakterystyki tych silników. Praca dorywcza sugeruje, że silnik działa sporadycznie, co kłóci się z tym, co oferuje silnik S1, który jest zaprojektowany do pracy non-stop. Podobnie, tryby przerywanej i nieokresowej też sugerują, że silnik nie jest stworzony do stałych warunków pracy, co nie jest prawdą dla S1. Typowe błędy w myśleniu prowadzące do takich wniosków to brak zrozumienia parametrów obciążenia oraz czasu pracy silnika. Silniki muszą być dobrze dopasowane do swojego zastosowania, a znajomość oznaczeń na tabliczkach znamionowych jest istotna dla ich prawidłowego użycia. Jeśli użyjemy niewłaściwego typu silnika w aplikacjach, gdzie potrzebna jest ciągła praca, to może to prowadzić do przegrzewania, uszkodzeń, a nawet całkowitych awarii systemów, co wiąże się z kosztami napraw i przestojów. Dlatego ważna jest znajomość specyfikacji i norm, które regulują te sprawy w przemyśle.

Pytanie 13

Po włączeniu oświetlenia na klatce schodowej przez automat schodowy, żarówka na pierwszym piętrze nie zaświeciła, podczas gdy pozostałe żarówki na innych piętrach działały bez zarzutów. Jakie może być źródło tej awarii?

A. Uszkodzony łącznik na pierwszym piętrze
B. Niedokręcony przewód do łącznika na pierwszym piętrze
C. Niedokręcony przewód do oprawy na pierwszym piętrze
D. Uszkodzony automat schodowy
Niedokręcony przewód do oprawy na pierwszym piętrze może być przyczyną braku działania żarówki w tym miejscu. Ta sytuacja często występuje w instalacjach elektrycznych, gdy podczas montażu lub konserwacji, przewody nie są odpowiednio dokręcone. W przypadku oświetlenia na klatkach schodowych, gdzie automaty schodowe kontrolują oświetlenie, każdy element musi być prawidłowo podłączony, aby zapewnić szczelność obwodu. Przykładem może być sytuacja, gdy podczas wymiany żarówki osoba nie zwraca uwagi na stan połączeń, co może prowadzić do ich luzowania. W praktyce, regularne kontrole i konserwacja instalacji elektrycznych, zgodne z normami PN-IEC 60364, są kluczowe dla zapewnienia bezpieczeństwa oraz efektywności działania systemów oświetleniowych. Zawsze warto sprawdzić połączenia przed uznaniem, że część jest uszkodzona, co może zaoszczędzić czas i koszty związane z naprawą.

Pytanie 14

Na podstawie przedstawionych w tabeli wyników pomiarów, dotyczących silnika prądu stałego, określ które z wymienionych uszkodzeń wystąpiło w tym silniku.

Rezystancja uzwojeń pomiędzy zaciskami:Rezystancja izolacji pomiędzy zaciskami:
A1-A2D1-D2E1-E2A1-PED1-PEE1-PE
0,8 Ω0,9 Ω4,7 Ω123,1 MΩ102,5 MΩ166,6 MΩ
A. Nadpalenie izolacji między uzwojeniem bocznikowym, a obudową.
B. Przerwa w uzwojeniu twornika.
C. Przebicie izolacji uzwojenia twornika do obudowy.
D. Zwarcie międzyzwojowe w uzwojeniu bocznikowym.
Analizując pozostałe odpowiedzi, możemy zauważyć, że przynajmniej każda z nich odnosi się do różnych typów uszkodzeń, które mogą wystąpić w silniku prądu stałego, jednak żadna z nich nie wyjaśnia problemu tak dokładnie jak zwarcie międzyzwojowe w uzwojeniu bocznikowym. Uszkodzenie polegające na nadpaleniu izolacji między uzwojeniem bocznikowym a obudową mogłoby sugerować wystąpienie nadmiernych temperatur, jednak przy wysokiej rezystancji między zaciskami E1-E2, które zostały podane w tabeli, można stwierdzić, że nie występuje bezpośrednie przebicie do obudowy. Przebicie izolacji uzwojenia twornika do obudowy jest problematycznym zagadnieniem, ale również nie pasuje do przedstawionych wartości rezystancji, które wskazują na stabilność izolacji. Z kolei przerwa w uzwojeniu twornika mogłaby prowadzić do braku prądu w silniku, co również nie znajduje odzwierciedlenia w zmierzonych wartościach. Typowe błędy myślowe, które prowadzą do błędnych odpowiedzi, to np. analizowanie jedynie pojedynczych aspektów uszkodzenia, bez uwzględnienia całościowego obrazu pomiarów. W kontekście diagnostyki silników prądu stałego, kluczowe jest przyjrzenie się nie tylko wartościom rezystancji, ale także ich wzajemnym relacjom, aby uzyskać pełny obraz stanu maszyny i jej ewentualnych uszkodzeń.

Pytanie 15

Jaka jest maksymalna wartość skuteczna napięcia przemiennego, która może być wykorzystana do zasilania lamp oświetleniowych umieszczonych w strefie 0 łazienki?

A. 25 V
B. 60 V
C. 12 V
D. 30 V
Maksymalna dopuszczalna wartość skuteczna napięcia przemiennego do zasilania lamp oświetleniowych zainstalowanych w strefie 0 łazienki wynosi 12 V. Strefa 0 to obszar, w którym istnieje bezpośrednie ryzyko kontaktu z wodą, co stwarza większe zagrożenie porażeniem prądem. Z tego powodu normy elektryczne, takie jak PN-IEC 60364, nakładają restrykcje na używanie napięcia w tych strefach. Użycie niskiego napięcia, takiego jak 12 V, minimalizuje ryzyko wystąpienia niebezpiecznych sytuacji, które mogłyby prowadzić do porażenia prądem. W praktyce, lampy LED, które są zaprojektowane do pracy w takich warunkach, zwykle wykorzystują zasilacze transformujące napięcie sieciowe na 12 V, a ich instalacja jest zgodna z zasadami ochrony przeciwporażeniowej. Ponadto, stosowanie niskonapięciowych źródeł światła w strefie 0 jest nie tylko zgodne z przepisami, ale również sprzyja efektywności energetycznej oraz wydłuża żywotność urządzeń oświetleniowych.

Pytanie 16

Który z wymienionych czynników dotyczących przewodów nie wpływa na wartość spadku napięcia w systemie elektrycznym?

A. Typ materiału izolacyjnego
B. Długość przewodu
C. Typ materiału żyły
D. Przekrój żył
Rodzaj materiału izolacji nie ma wpływu na spadek napięcia w przewodach elektrycznych, ponieważ spadek napięcia jest ściśle związany z oporem żyły przewodowej, jej długością oraz przekrojem. Opór elektryczny przewodu jest obliczany na podstawie materiału, z którego wykonana jest żyła, oraz jej wymiarów. Izolacja przewodu ma na celu zapewnienie bezpieczeństwa, ochrony przed uszkodzeniami i minimalizacji strat energii, ale sama w sobie nie wpływa na opór elektryczny. Przykładowo, w instalacjach domowych wykorzystywane są przewody miedziane o odpowiednich przekrojach, co zapewnia minimalny spadek napięcia. Standardy takie jak PN-IEC 60228 oraz PN-EN 50525 precyzują wymagania dotyczące przewodów, skupiając się na ich właściwościach elektrycznych, a nie na materiale izolacyjnym. Ważne jest, aby inżynierowie i elektrycy zdawali sobie sprawę, że odpowiednio dobrane przewody mogą znacznie zwiększyć efektywność energetyczną instalacji elektrycznych.

Pytanie 17

Kontrole okresowe instalacji elektrycznych niskiego napięcia powinny być realizowane co najmniej raz na

A. 3 lata
B. 1 rok
C. 4 lata
D. 5 lat
Podawanie krótszych okresów między badaniami, takich jak 1 rok, 3 lata czy 4 lata, może wydawać się rozsądne, jednak w rzeczywistości jest to podejście, które nie odzwierciedla wymogów prawnych oraz najlepszych praktyk w zakresie zarządzania bezpieczeństwem instalacji elektrycznych. Przeprowadzanie kontroli co 1 rok może być zbędne dla wielu instalacji, które są w dobrym stanie technicznym i nie wykazują oznak zużycia. Tego rodzaju częste inspekcje mogą generować niepotrzebne koszty oraz obciążenie dla osób odpowiedzialnych za zarządzanie instalacjami. Z drugiej strony, zbyt długie odstępy, jak 6 lat, mogą stwarzać ryzyko, że ewentualne usterki nie zostaną wykryte na czas, co może prowadzić do niebezpieczeństw związanych z użytkowaniem instalacji. Warto również zauważyć, że niektóre czynniki, takie jak warunki eksploatacji, środowisko czy intensywność użycia instalacji, mogą wymagać dostosowania częstotliwości badań do konkretnych potrzeb. Z tego względu, zalecenie przeprowadzania badań co 5 lat stanowi kompromis pomiędzy bezpieczeństwem a efektywnością kosztową, co jest zgodne z normami i praktykami branżowymi.

Pytanie 18

Jakie uszkodzenie elektryczne może być przyczyną braku obrotów w lewą stronę w ręcznej wiertarce elektrycznej?

A. O przerwie w uzwojeniu stojana
B. O uszkodzeniu wyłącznika z regulatorem prędkości obrotowej
C. O zwarciu w uzwojeniach wirnika
D. O uszkodzeniu przełącznika kierunku prądu w wirniku
Odpowiedź o uszkodzeniu przełącznika kierunku prądu w wirniku jest prawidłowa, ponieważ brak obrotów w lewo w ręcznej wiertarce elektrycznej najczęściej oznacza, że mechanizm odpowiedzialny za zmianę kierunku obrotów nie działa poprawnie. Przełącznik kierunku prądu jest kluczowym elementem, który umożliwia zmianę kierunku obrotów silnika, co jest niezbędne do wykonywania prac w różnych warunkach. Przykładem zastosowania tej wiedzy jest potrzeba zmiany kierunku obrotów wiertarki podczas pracy z różnymi materiałami, gdzie w prawo i w lewo może być wymagane do usunięcia wiórów z otworu. Regularne sprawdzanie i konserwacja przełączników kierunkowych, zgodnie z zaleceniami producenta, może zapobiec awariom i zwiększyć żywotność narzędzia. W przypadku awarii przełącznika, najczęściej zauważalne są problemy z samym mechanizmem przełączania oraz opóźnienia w reakcjach przy zmianie kierunków. W praktyce, jeśli wiertarka działa w jednym kierunku, należy najpierw zdiagnozować przełącznik przed podejmowaniem innych działań naprawczych.

Pytanie 19

Jakie z wymienionych urządzeń, przy zastosowaniu przekaźnika termicznego oraz stycznika, umożliwia zapewnienie pełnej ochrony przed zwarciem i przeciążeniem silnika trójfazowego o parametrach: Pn = 5,5 kW, Un = 400/690 V?

A. Bezpiecznik typu aR
B. Wyłącznik nadprądowy typu Z
C. Wyłącznik nadprądowy typu B
D. Bezpiecznik typu aM
Zastosowanie wyłącznika nadprądowego typu Z, bezpiecznika typu aR czy wyłącznika nadprądowego typu B nie jest odpowiednie do zabezpieczenia silnika trójfazowego o podanych parametrach. Wyłącznik nadprądowy typu Z, mimo że jest skuteczny w ochronie przed przeciążeniem, nie oferuje optymalnej ochrony dla silników, ponieważ jego charakterystyka czasowo-prądowa jest dostosowana głównie do obwodów oświetleniowych i urządzeń elektronicznych. W przypadku silników, istotna jest możliwość tolerowania krótkotrwałych prądów startowych, a wyłącznik typu Z może wyzwolić zbyt szybko. Bezpiecznik typu aR również nie nadaje się do tego celu, gdyż jest przeznaczony do ochrony obwodów oporowych, a nie silników. Jego reakcja na przeciążenie jest zbyt szybka, co może prowadzić do niepotrzebnych wyłączeń podczas normalnej pracy silnika. Z kolei wyłącznik nadprądowy typu B, podobnie jak wyżej wymienione rozwiązania, ma ograniczoną zdolność do radzenia sobie z prądami rozruchowymi, co sprawia, że nie jest najlepszym rozwiązaniem w przypadku silników z dużymi prądami rozruchowymi. W praktyce, wybór niewłaściwego zabezpieczenia może prowadzić do uszkodzenia silnika, a także zwiększenia kosztów eksploatacji i przestojów. Dlatego ważne jest, aby przy wyborze zabezpieczeń kierować się standardami branżowymi i analizować specyfikę aplikacji, aby zapewnić odpowiednią ochronę urządzeń elektrycznych.

Pytanie 20

Jakie z wymienionych powodów wpływa na zmniejszenie prędkości obrotowej trójfazowego silnika klatkowego w trakcie jego pracy?

A. Zmniejszenie obciążenia silnika.
B. Zwarcie pierścieni ślizgowych.
C. Wzrost wartości napięcia zasilającego.
D. Przerwa w zasilaniu jednej z faz.
Przerwa w zasilaniu jednej fazy w trójfazowym silniku klatkowym prowadzi do poważnych zaburzeń w jego pracy. Silniki te są zaprojektowane do pracy w układzie trójfazowym, co oznacza, że ​​każda faza zasilania przyczynia się do generowania pola magnetycznego o określonym kącie fazowym. Gdy jedna z faz zostaje odcięta, silnik zaczyna działać na zasadzie silnika jednofazowego, co prowadzi do spadku momentu obrotowego i prędkości obrotowej. W praktyce może to doprowadzić do przegrzania silnika, a w konsekwencji do uszkodzenia uzwojeń. Przykładem zastosowania tej wiedzy jest konieczność monitorowania jakości zasilania w zakładach przemysłowych, gdzie stosuje się urządzenia pomiarowe do identyfikacji przerw w zasilaniu, co pozwala zapobiegać awariom i minimalizować przestoje. W branży elektromaszynowej stosowanie rozwiązań takich jak zabezpieczenia przed przeciążeniem i monitorowanie fazy jest standardem, który wspiera efektywność operacyjną i bezpieczeństwo urządzeń.

Pytanie 21

Podczas użytkowania standardowej instalacji z żarowym źródłem światła zaobserwowano po kilku minutach działania częste wahania natężenia oświetlenia (migotanie światła). Najrzadziej występującą przyczyną usterki może być

A. zwarcie między przewodem fazowym a neutralnym
B. wilgotna izolacja przewodów zasilających
C. zwarcie między przewodem ochronnym a neutralnym
D. wypalenie styków w łączniku
Wypalenie styków w łączniku jest najczęstszą przyczyną migania światła w instalacjach oświetleniowych. W trakcie pracy instalacji, styk łącznika może podlegać znacznym obciążeniom elektrycznym, co prowadzi do przegrzewania i wypalania się materiału styku. W takich przypadkach pojawiają się przerwy w przewodzeniu prądu, co skutkuje wahań natężenia oświetlenia. Zastosowanie wysokiej jakości łączników oraz regularna ich konserwacja mogą znacząco wpłynąć na niezawodność instalacji. Dobrze zaprojektowane instalacje elektryczne powinny uwzględniać dobór odpowiednich komponentów, które są zgodne z normami PN-EN 60669-1. Przykładowo, w instalacjach o wysokim natężeniu prądu warto stosować łączniki o zwiększonej odporności na wypalanie. Warto również regularnie kontrolować stan łączników, aby uniknąć sytuacji, które mogą prowadzić do awarii, co z kolei wpływa na bezpieczeństwo użytkowania i komfort oświetlenia.

Pytanie 22

Jakiego składnika nie może mieć kabel zasilający do rozdzielnicy głównej w pomieszczeniu przemysłowym uznawanym za niebezpieczne pod kątem pożaru?

A. Zewnętrznego oplotu włóknistego
B. Żył aluminiowych
C. Powłoki polietylenowej
D. Pancerza stalowego
Zewnętrzny oplot włóknisty w kablach zasilających nie jest zalecany w pomieszczeniach przemysłowych, które są klasyfikowane jako niebezpieczne pod względem pożarowym, ponieważ może on stanowić dodatkowe źródło łatwopalne. W takich środowiskach ważne jest, aby stosować zabezpieczenia, które minimalizują ryzyko pożaru. Zamiast oplotu włóknistego, lepszym rozwiązaniem są materiały odporniejsze na działanie wysokich temperatur oraz ognia, takie jak pancerz stalowy lub powłoka polietylenowa, które zapewniają lepszą ochronę mechaniczną oraz zabezpieczenie przed uszkodzeniami. Przykładem zastosowania mogą być różnego rodzaju zakłady przemysłowe, w których występują substancje łatwopalne, takie jak chemikalia, co wymusza na projektantach instalacji elektrycznych przestrzeganie standardów, takich jak norma IEC 60079 dotycząca urządzeń elektrycznych przeznaczonych do pracy w atmosferze wybuchowej. Wybór odpowiednich kabli zasilających jest kluczowy dla zapewnienia bezpieczeństwa pracy i ochrony mienia.

Pytanie 23

Co należy zrobić przed przystąpieniem do pomiaru rezystancji izolacji za pomocą megomierza?

A. Uziemić megomierz
B. Odłączyć zasilanie
C. Zmierzyć napięcie zasilania
D. Podłączyć urządzenie do sieci
Podłączanie urządzenia do sieci przed pomiarem rezystancji izolacji jest niebezpieczne i sprzeczne z zasadami bezpieczeństwa. Megomierz sam generuje wysokie napięcie potrzebne do wykonania pomiaru, więc dodatkowe podłączenie do sieci mogłoby spowodować przepięcie i uszkodzenie izolacji, a co gorsza, stanowić zagrożenie dla operatora. Z kolei pomiar napięcia zasilania nie jest konieczny przed pomiarem rezystancji izolacji. Owszem, pomiar napięcia może być istotny w innych kontekstach, ale dla tego konkretnego zadania kluczowe jest upewnienie się, że obwód jest beznapięciowy. Uziemienie megomierza, choć może wydawać się rozsądne, nie jest konieczne w kontekście pomiaru samej izolacji. Megomierze są projektowane tak, aby były bezpieczne w użyciu bez dodatkowego uziemienia, o ile są używane zgodnie z instrukcją producenta. Uziemienie może być ważne w innych kontekstach pomiarowych, ale nie w przypadku samego pomiaru rezystancji izolacji. Często mylne przekonanie o konieczności uziemienia wynika z niepełnego zrozumienia specyfikacji urządzeń pomiarowych. Dlatego kluczowe jest dokładne zapoznanie się z instrukcją obsługi urządzenia i przestrzeganie jej zaleceń dla danego typu pomiaru.

Pytanie 24

Która z podanych czynności nie zalicza się do weryfikacji stanu technicznego podczas przeglądu układu napędowego z energoelektronicznym przekształtnikiem?

A. Ocena czystości filtrów powietrza chłodzącego
B. Pomiar natężenia oświetlenia na stanowisku obsługi układu napędowego
C. Sprawdzenie jakości zabezpieczeń nadprądowych i zmiennozwarciowych
D. Weryfikacja połączeń stykowych
Sprawdzenie oświetlenia na stanowisku obsługi układu napędowego nie jest tak naprawdę częścią ogólnej oceny stanu technicznego tego układu, szczególnie jeśli chodzi o przekształtniki energoelektroniczne. Większość przeglądów skupia się na tym, czy wszystkie elementy mechaniczne i elektryczne są w porządku. To znaczy, trzeba porządnie sprawdzić połączenia stykowe, upewnić się, że filtry powietrza chłodzącego są czyste, a także kontrolować zabezpieczenia nadprądowe i zmiennozwarciowe. Oświetlenie jest ważne dla bezpieczeństwa ludzi pracujących przy tych urządzeniach, ale nie ma bezpośredniego wpływu na to, jak wydajnie układ działa. Na przykład, jeśli mówimy o przekształtnikach, kluczowe jest zapewnienie właściwego chłodzenia, co możemy kontrolować poprzez te filtry powietrza. Dobre połączenia stykowe i odpowiednie zabezpieczenia są także bardzo ważne, żeby uniknąć awarii. Warto pamiętać, że istnieją normy, jak IEC czy ISO, które podkreślają, jak istotne są regularne przeglądy komponentów elektrycznych dla bezpieczeństwa w pracy.

Pytanie 25

Dokumentacja użytkowania instalacji elektrycznych, które są chronione wyłącznikami nadmiarowo-prądowymi, nie musi zawierać

A. spisu terminów oraz zakresów prób i pomiarów kontrolnych
B. specyfikacji technicznej instalacji
C. zasad bezpieczeństwa przy realizacji prac eksploatacyjnych
D. opisu doboru urządzeń zabezpieczających
Opis doboru urządzeń zabezpieczających nie jest konieczny w instrukcji eksploatacji instalacji elektrycznych zabezpieczonych wyłącznikami nadmiarowo-prądowymi, ponieważ taki dobór powinien być już wykonany na etapie projektowania instalacji. Instrukcja eksploatacji koncentruje się na użytkowaniu oraz utrzymaniu instalacji, nie zaś na jej projektowaniu. W praktyce oznacza to, że wszystkie istotne decyzje dotyczące doboru wyłączników, takich jak typ, charakterystyka oraz zasady działania, powinny być przedstawione w dokumentacji projektowej, zgodnie z normami takimi jak PN-IEC 60947-2, które regulują zasady stosowania urządzeń zabezpieczających. Przykładem może być sytuacja, w której instalacja elektryczna już funkcjonuje i wymaga okresowych przeglądów – w takim przypadku istotne jest, aby instrukcja eksploatacji zawierała informacje o terminach przeglądów oraz zasadach ich przeprowadzania, a nie szczegóły dotyczące wcześniejszego doboru sprzętu. To pozwala na efektywne zarządzanie instalacją oraz zapewnia zgodność z przepisami BHP i normami technicznymi.

Pytanie 26

Jakie rozwiązania powinny być wdrożone w celu kompensacji mocy biernej w zakładzie przemysłowym, w którym znajdują się liczne silniki indukcyjne?

A. Podłączyć dławiki indukcyjne równolegle do silników
B. Podłączyć kondensatory równolegle do silników
C. Podłączyć dławiki indukcyjne szeregowo do silników
D. Podłączyć kondensatory szeregowo do silników
Włączenie dławików indukcyjnych równolegle do silników nie jest skuteczną metodą kompensacji mocy biernej, ponieważ dławiki wytwarzają moc bierną indukcyjną. Ich zastosowanie w tej konfiguracji zwiększałoby zapotrzebowanie na moc bierną, co prowadziłoby do dalszego obciążenia sieci zasilającej i zwiększenia kosztów energii. Wprowadzenie kondensatorów szeregowo do silników również jest niewłaściwe, ponieważ tak skonfigurowane kondensatory nie mogą efektywnie kompensować mocy biernej silników indukcyjnych, gdyż ich działanie jest ograniczone do specyficznych warunków prądowych, co zmniejsza efektywność kompensacji. Działanie dławików indukcyjnych szeregowo z silnikami wprowadza dodatkowe straty mocy i może prowadzić do niestabilnych warunków pracy. Typowym błędem myślowym jest przyjmowanie, że urządzenia indukcyjne mogą być wspomagane przez inne urządzenia indukcyjne lub na zasadzie szeregowego połączenia. W praktyce, do efektywnej kompensacji mocy biernej w systemach z silnikami indukcyjnymi, niezbędne jest zastosowanie kondensatorów w konfiguracji równoległej, co pozwala na stabilizację mocy biernej i poprawę współczynnika mocy w instalacjach przemysłowych.

Pytanie 27

Gdy prace pomiarowe i kontrolne w instalacjach elektrycznych są wymagane do wykonania przez dwie osoby, to osoba przeprowadzająca pomiary powinna mieć odpowiednie kwalifikacje, a druga osoba wspierająca

A. nie jest zobowiązana do posiadania świadectwa kwalifikacji, jeśli ukończyła szkołę zawodową
B. musi dysponować świadectwem kwalifikacyjnym na stanowisku dozoru, lecz bez zakresu pomiarów
C. powinna posiadać świadectwo kwalifikacyjne na stanowisku eksploatacji w zakresie pomiarów
D. nie musi mieć świadectwa kwalifikacji, jeśli przeszła odpowiednie szkolenie
Odpowiedź jest prawidłowa, ponieważ obecne przepisy oraz normy branżowe, takie jak PN-EN 50110-1, wskazują, że dla niektórych prac pomiarowych obecność osoby wspomagającej jest niezbędna, jednak nie wymaga się od niej posiadania świadectwa kwalifikacji, o ile przeszła odpowiednie szkolenie. Taki model pracy ma na celu zwiększenie bezpieczeństwa oraz efektywności przeprowadzanych pomiarów. W praktyce oznacza to, że osoba wspierająca, mimo że nie jest w pełni wykwalifikowana, powinna dobrze rozumieć procedury bezpieczeństwa oraz potrafić reagować w sytuacjach awaryjnych. Przykładami mogą być prace polegające na pomiarach rezystancji uziemienia czy pomiarach napięcia. W takich przypadkach, osoba wspomagająca może zajmować się przygotowaniem sprzętu, monitorowaniem warunków pracy, a także wspieraniem głównego pomiarowca w zakresie organizacyjnym, co jest zgodne z zasadami efektywnej współpracy w zespole. Dzięki temu, można minimalizować ryzyko wystąpienia błędów pomiarowych oraz zwiększać bezpieczeństwo całego procesu.

Pytanie 28

Które z poniższych rozwiązań gwarantuje podstawową ochronę przed porażeniem w grzejniku elektrycznym działającym w systemie TN-S?

A. Zastosowanie wyłącznika różnicowoprądowego w obwodzie zasilania
B. Izolacja robocza
C. Zastosowanie wyłącznika instalacyjnego nadprądowego w obwodzie zasilania
D. Podłączenie obudowy do uziemienia ochronnego
Izolacja robocza jest kluczowym elementem zapewniającym podstawową ochronę przeciwporażeniową w urządzeniach elektrycznych, takich jak grzejniki elektryczne, pracujące w sieci TN-S. W tym systemie zasilania, który charakteryzuje się oddzieleniem przewodu neutralnego od przewodu ochronnego, odpowiednie zastosowanie izolacji roboczej ma na celu minimalizowanie ryzyka porażenia prądem w przypadku uszkodzenia urządzenia. Izolacja robocza to warstwa materiału izolacyjnego, która otacza przewody elektryczne i zapobiega ich kontaktowi z elementami metalowymi urządzenia, a tym samym z użytkownikiem. Przykładem praktycznego zastosowania izolacji roboczej jest użycie wysokiej jakości materiałów takich jak PVC lub guma, które są odporne na wysokie temperatury i działanie chemikaliów. Standardy takie jak IEC 60364 oraz normy krajowe dotyczące instalacji elektrycznych wskazują na konieczność stosowania izolacji roboczej, aby zapewnić bezpieczeństwo użytkowników. W praktyce, każdy grzejnik elektryczny powinien być zaprojektowany tak, aby spełniał wymagania dotyczące izolacji, co znacznie redukuje ryzyko wypadków związanych z porażeniem prądem.

Pytanie 29

Jak zmieni się ilość ciepła wydobywanego przez grzejnik elektryczny w jednostce czasu, jeśli jego spiralę grzejną skróci się o połowę, a napięcie zasilające pozostanie takie samo?

A. Zwiększy się dwukrotnie
B. Zmniejszy się czterokrotnie
C. Zmniejszy się dwukrotnie
D. Zwiększy się czterokrotnie
Wybierając odpowiedzi, które sugerują, że zmiana długości spiral grzejnych skutkuje znacznym zmniejszeniem ilości wydzielanego ciepła, można popaść w pułapkę błędnych założeń dotyczących zasad działania grzejników elektrycznych. Odpowiedzi takie jak "Zmniejszy się czterokrotnie" lub "Zmniejszy się dwukrotnie" opierają się na mylnym założeniu, że skrócenie elementu grzewczego automatycznie prowadzi do proporcjonalnego spadku wydajności cieplnej, co jest sprzeczne z prawem Ohma oraz zasadą zachowania energii. Kluczowym aspektem jest zrozumienie, że moc wydobywana z grzejnika elektrycznego nie tylko zależy od długości spirali, ale również od napięcia i oporu. Przy stałym napięciu zasilania, zmniejszenie oporu (wynikające ze skrócenia spirali) prowadzi do wzrostu prądu, a tym samym do wzrostu mocy.Odpowiedzi sugerujące, że moc spadnie, mogą wynikać z nieporozumień dotyczących tego, jak opór i prąd elektryczny współdziałają w obwodach. W rzeczywistości, przy krótszej spirali, opór maleje, a prąd rośnie, co skutkuje wyższą mocą. W praktyce, projektując urządzenia grzewcze, należy brać pod uwagę te fundamentalne zasady, aby uniknąć nieefektywności oraz potencjalnych uszkodzeń sprzętu. Zatem wszelkie wnioski opierające się na intuicji a nie na solidnych podstawach teoretycznych mogą prowadzić do nieprawidłowych wyników i decyzji w inżynierii grzewczej.

Pytanie 30

W celu sprawdzenia poprawności działania wyłączników różnicowoprądowych zmierzono ich różnicowe prądy zadziałania i wyniki zamieszczono w przedstawionej tabeli. Który z wyłączników spełnia warunek prądu zadziałania IA = (0,5÷1,00) IΔN?

WyłącznikWynik pomiaru różnicowego prądu zadziałania IΔ
P302 25-10-AC25 mA
P202 25-30-AC25 mA
P304 40-30-AC40 mA
P304 40-100-AC40 mA
A. P304 40-30-AC
B. P202 25-30-AC
C. P302 25-10-AC
D. P304 40-100-AC
Wybór wyłącznika różnicowoprądowego, który nie spełnia założonego zakresu prądu zadziałania, może prowadzić do poważnych problemów w systemie elektrycznym. Na przykład, wyłącznik P304 40-30-AC, który ma prąd zadziałania poza wymaganym zakresem, może nie wykrywać niebezpiecznych sytuacji, co zwiększa ryzyko porażenia prądem lub pożaru. Podobnie, wyłącznik P302 25-10-AC, ze zbyt niskim prądem zadziałania, może zadziałać w sytuacjach, które nie zagrażają bezpieczeństwu, co prowadzi do niepotrzebnych przerw w zasilaniu. Te błędy mogą wynikać z braku zrozumienia związku między nominalnym prądem różnicowym a prądem zadziałania. Kluczowym jest, aby zrozumieć, że prąd zadziałania musi być odpowiednio dobrany do wartości nominalnej wyłącznika, aby zapewnić jego skuteczność i niezawodność. Niezrozumienie tych zasad prowadzi do wyboru nieodpowiednich urządzeń, co w praktyce może skutkować poważnymi konsekwencjami. W wyborze wyłączników różnicowoprądowych należy kierować się normami oraz specyfikacjami technicznymi, aby zapewnić odpowiedni poziom ochrony w każdej instalacji elektrycznej.

Pytanie 31

Do zabezpieczenia silnika, którego parametry znamionowe zamieszczono w ramce, należy wybrać wyłącznik silnikowy o oznaczeniu fabrycznym

Silnik 3~   Typ MAS063-2BA90-Z

0,25 kW   0,69 A   Izol. F

IP54   2755 obr/min   cosφ 0,81

400 V (Y)   50 Hz

A. MMS-32S – 4A
B. PKZM01 – 1
C. PKZM01 – 0,63
D. MMS-32S – 1,6A
Wybór niewłaściwego wyłącznika silnikowego może prowadzić do poważnych szkód zarówno w urządzeniu, jak i w sieci zasilającej. Odpowiedzi MMS-32S – 4A oraz MMS-32S – 1,6A są nieodpowiednie, ponieważ prądy znamionowe tych wyłączników są znacznie wyższe niż prąd znamionowy silnika wynoszący 0,69 A. Użycie wyłącznika o zbyt wysokim prądzie znamionowym skutkuje brakiem efektywnego zabezpieczenia przed przeciążeniem, co może prowadzić do uszkodzenia silnika w przypadku wystąpienia nieprawidłowości w układzie. Wyłącznik PKZM01 – 0,63, mimo że jest bliski prądu znamionowego, również nie jest optymalny, gdyż jego prąd znamionowy jest niższy od wymaganej normy, co może skutkować fałszywym wyłączeniem. W praktyce, niewłaściwy dobór wyłącznika może być wynikiem braku zrozumienia zasad działania zabezpieczeń elektrycznych oraz niewłaściwej analizy charakterystyki obciążenia. Standardy branżowe, takie jak IEC 60947-4-1, podkreślają, jak istotne jest precyzyjne dobieranie parametrów wyłączników, aby zapewnić nie tylko ochronę urządzeń, ale także bezpieczeństwo użytkowników oraz trwałość całej instalacji elektrycznej.

Pytanie 32

W którym z poniższych miejsc, podczas pracy z urządzeniami elektrycznymi, nie jest dopuszczalne stosowanie izolacji stanowiska jako środków ochrony przed dotykiem pośrednim?

A. Pracowni edukacyjnej
B. Placu budowy
C. Warsztacie sprzętu RTV
D. Laboratorium
Odpowiedź 'plac budowy' to strzał w dziesiątkę! Na budowie mamy do czynienia z różnymi trudnymi warunkami, które utrudniają stosowanie izolacji jako formy ochrony przed dotykiem pośrednim. Często jest tam wilgoć, pyły i materiały budowlane wokół, co zwiększa ryzyko porażenia prądem. Z normami BHP się nie żartuje, bo w takich warunkach izolacja może być niewystarczająca. Wyobraź sobie, że coś się popsuje i pracownicy mogą mieć kontakt z przewodami pod napięciem! Dlatego na budowach zaleca się dodatkowe środki ochrony, jak odpowiednia odzież robocza, systemy ochrony różnicowoprądowej i różne osłony. Regularne szkolenia i audyty sprzętu to też kluczowe elementy utrzymania bezpieczeństwa elektrycznego w takim miejscu.

Pytanie 33

Który z wymienionych czynników nie wpływa na dopuszczalne obciążenie długotrwałe przewodów stosowanych w instalacji elektrycznej?

A. Długość ułożonych przewodów.
B. Rodzaj materiału izolacyjnego.
C. Metoda ułożenia przewodów.
D. Przekrój poprzeczny żył.
Wszystkie wymienione parametry mają istotny wpływ na dopuszczalną obciążalność długotrwałą przewodów elektrycznych, co jest kluczowe dla zapewnienia bezpieczeństwa i efektywności instalacji. Przekrój poprzeczny żył przewodów wpływa na ich oporność, co z kolei determinuje ilość wydzielającego się ciepła podczas przepływu prądu. Zbyt mały przekrój może prowadzić do nadmiernego nagrzewania się przewodów, co w najgorszym przypadku skutkuje pożarem. Rodzaj materiału izolacji jest równie ważny, ponieważ różne materiały mają różne właściwości, takie jak odporność na wysoką temperaturę. Na przykład, materiały takie jak PVC mogą mieć ograniczoną odporność na wysokie temperatury, co w sytuacji długotrwałego obciążenia może prowadzić do uszkodzenia izolacji. Sposób ułożenia przewodów również ma kluczowe znaczenie: przewody ułożone blisko siebie mogą mieć ograniczone możliwości odprowadzania ciepła, co przekłada się na wyższą temperaturę pracy. Długość przewodów, chociaż nie wpływa bezpośrednio na obciążalność, może wpływać na spadki napięcia, co również jest istotne podczas projektowania instalacji. W efekcie, ignorowanie tych parametrów może prowadzić do poważnych problemów w instalacjach elektrycznych, od ich niewłaściwego działania po uszkodzenia, a nawet zagrożenia dla bezpieczeństwa użytkowników. Dlatego należy zawsze zwracać uwagę na wszystkie wymienione czynniki i stosować praktyki zgodne z obowiązującymi normami.

Pytanie 34

Aby przeprowadzić pomiar rezystancji metodą techniczną, należy przygotować

A. mostek Wheatstone'a
B. omomierz oraz woltomierz
C. amperomierz i woltomierz
D. mostek Thomsona
Istnieją różne metody pomiaru rezystancji, jednak nie wszystkie z nich są odpowiednie do pomiarów technicznych w tym kontekście. Wykorzystanie mostka Wheatstone'a do pomiaru rezystancji jest jedną z popularnych metod, ale nie jest to podejście, które wykorzystuje amperomierz i woltomierz bezpośrednio. Mostek Wheatstone'a działa na zasadzie porównywania nieznanej rezystancji z rezystancjami znanymi, co wymaga bardziej złożonego układu, w którym zbalansowanie mostka jest kluczowe. Dodatkowo, mostek Thomsona, chociaż również używany do pomiaru rezystancji, jest bardziej skomplikowany i odnosi się do sytuacji, w których występują dodatkowe czynniki wpływające na pomiar, takie jak temperatura. Z kolei omomierz to urządzenie elektroniczne, które mierzy rezystancję i robi to automatycznie, ale w kontekście pytania o metodę techniczną, pomiar za pomocą omomierza nie odzwierciedla zasady Ohma w sposób bezpośredni, ponieważ nie uwzględnia pomiaru napięcia i natężenia prądu. Często pojawiają się mylne interpretacje, które prowadzą do przekonania, że inne urządzenia mogą zastąpić amperomierz i woltomierz. Kluczowe jest zrozumienie, że podstawowym warunkiem prawidłowego pomiaru rezystancji jest zastosowanie metody, która opiera się na bezpośrednich pomiarach napięcia i natężenia prądu, co umożliwia dokładne obliczenie rezystancji zgodnie z zasadą Ohma.

Pytanie 35

Jakie elementy wykorzystuje się w silnikach elektrycznych, aby chronić je przed negatywnymi skutkami wzrostu temperatury uzwojeń?

A. Termistor
B. Wyłącznik silnikowy
C. Przekaźnik nadprądowy
D. Bezpiecznik
Bezpiecznik działa na zasadzie przerwania obwodu w przypadku nadmiernego przepływu prądu, co skutkuje jego stopieniem. Choć zapewnia podstawowe zabezpieczenie przed przeciążeniem, nie jest bezpośrednio odpowiedzialny za monitorowanie temperatury uzwojeń silnika. Istnieje ryzyko, że w sytuacji, gdy uzwojenia silnika się przegrzewają, a prąd nie osiągnie wartości krytycznej, bezpiecznik nie zareaguje, co może prowadzić do uszkodzenia silnika. Przekaźnik nadprądowy, z kolei, jest przeznaczony do ochrony przed przeciążeniem, ale podobnie jak bezpiecznik, nie monitoruje temperatury uzwojeń. Jego działanie opiera się na detekcji wartości prądu, co w przypadku nagłego wzrostu temperatury uzwojeń może być niewystarczające, zwłaszcza w sytuacjach, gdy obciążenie jest zmienne. Wyłącznik silnikowy, mimo że oferuje szereg funkcji ochronnych, takich jak zabezpieczenie przed przeciążeniem i zwarciem, nie jest ukierunkowany na monitorowanie temperatury, co czyni go niewłaściwym rozwiązaniem w kontekście pytania. Ważne jest zrozumienie, że zabezpieczenia termiczne, takie jak termistory, są kluczowe dla prawidłowego funkcjonowania silników elektrycznych, ponieważ bez nich, urządzenia są narażone na poważne uszkodzenia, co może prowadzić do kosztownych napraw i przestojów. W związku z tym, stosowanie odpowiednich metod detekcji temperatury powinno być kluczowym elementem projektowania systemów zabezpieczeń w silnikach elektrycznych.

Pytanie 36

Jak wpłynie na napięcie dolnej strony transformatora wzrost liczby aktywnych zwojów w uzwojeniu górnym, przy niezmienionym napięciu zasilania?

A. Wzrośnie
B. Nie ulegnie zmianie
C. Zmniejszy się
D. Spadnie do zera
Gdy zwiększamy liczbę zwojów w uzwojeniu górnym transformatora przy niezmienionym napięciu zasilania, zjawisko to wpływa na napięcie na uzwojeniu dolnym. W transformatorze napięcie jest proporcjonalne do liczby zwojów w danym uzwojeniu, zgodnie z zasadą działania transformatora, która jest opisana równaniem: U1/U2 = N1/N2, gdzie U1 i U2 to napięcia na uzwojeniach górnym i dolnym, a N1 i N2 to liczby zwojów w tych uzwojeniach. Zwiększenie liczby zwojów w uzwojeniu górnym (N1) spowoduje proporcjonalny wzrost napięcia U1. Przy stałym napięciu zasilania, napięcie na uzwojeniu dolnym (U2) musi się zmniejszyć, aby zachować równowagę w równaniu. Praktycznie oznacza to, że w sytuacji, gdy transformator pracuje w trybie zasilania, zmiana liczby zwojów w uzwojeniu górnym wpływa na efektywność transformacji energii, co jest kluczowe w zastosowaniach takich jak zasilanie niskonapięciowe, gdzie kontrola napięcia jest krytyczna dla bezpieczeństwa i wydajności urządzeń elektrycznych.

Pytanie 37

W ramach badań eksploatacyjnych silnika indukcyjnego, wykonuje się pomiar

A. oporu uzwojeń stojana
B. intensywności pola magnetycznego
C. okresu jego działania
D. oporu rdzenia stojana
Pomiar natężenia pola magnetycznego w silniku indukcyjnym, choć istotny w kontekście analizy działania silników elektrycznych, nie jest uważany za kluczowy element badań eksploatacyjnych. Zamiast tego, takie pomiary są często stosowane w bardziej zaawansowanych analizach, jak ocena efektywności energetycznej lub badania wydajności, a nie w rutynowej diagnostyce. Rezystancja rdzenia stojana, z drugiej strony, odnosi się do strat materiałowych, które są istotne, ale ich pomiar nie jest bezpośrednio związany z codziennym utrzymaniem silników. Czas pracy silnika może być używany jako wskaźnik eksploatacji, ale nie dostarcza bezpośrednich informacji o stanie technicznym silnika. W praktyce, pomiar rezystancji uzwojeń stojana jest bardziej miarodajny, gdyż wskazuje na kondycję uzwojeń i ich zdolność do przewodzenia prądu. Niezrozumienie znaczenia pomiarów rezystancji lub pomylenie ich z innymi parametrami może prowadzić do nieprawidłowych wniosków dotyczących stanu technicznego silnika, a tym samym do nieefektywnej konserwacji i zwiększenia ryzyka wystąpienia awarii.

Pytanie 38

Jakie urządzenie wykorzystuje się do określenia prędkości obrotowej wału silnika?

A. prądnicę tachometryczną
B. pirometr
C. przekładnik napięciowy
D. induktor
Prądnica tachometryczna jest urządzeniem służącym do pomiaru prędkości obrotowej wału silnika poprzez generowanie napięcia elektrycznego proporcjonalnego do tej prędkości. Jej działanie opiera się na zasadzie elektromechanicznej, gdzie wirnik prądnicy obracany przez wał silnika wytwarza napięcie elektryczne, które jest bezpośrednio związane z prędkością obrotową. W praktyce, prądnice tachometryczne są szeroko stosowane w różnych zastosowaniach przemysłowych, takich jak automatyka, robotyka czy systemy sterowania silnikami. Dzięki ich wysokiej dokładności, stosowane są w precyzyjnych układach regulacji prędkości, co pozwala na optymalne zarządzanie procesami technologicznymi. W branży inżynieryjnej, prądnice tachometryczne są często preferowane ze względu na ich stabilność i niezawodność, co wpisuje się w najlepsze praktyki projektowania systemów z kontrolą prędkości. Dodatkowo, są one zgodne z normami IEC oraz ISO, co zapewnia ich uniwersalność i szerokie zastosowanie w przemyśle. Dzięki tym cechom, prądnice tachometryczne stanowią kluczowy element w nowoczesnych systemach pomiarowych i kontrolnych.

Pytanie 39

Które z poniższych działań nie są przypisane do zadań eksploatacyjnych osób obsługujących urządzenia elektryczne?

A. Włączanie i wyłączanie urządzeń
B. Monitorowanie urządzeń w trakcie pracy
C. Realizowanie przeglądów niewymagających demontażu
D. Przeprowadzanie oględzin wymagających demontażu
Dokonywanie oględzin wymagających demontażu nie jest czynnością, która wchodzi w zakres typowych zadań eksploatacyjnych pracowników obsługujących urządzenia elektryczne. Eksploatacja urządzeń elektrycznych skupia się głównie na ich bieżącym użytkowaniu, co obejmuje uruchamianie, zatrzymywanie oraz nadzorowanie pracy urządzeń. Przeglądy niewymagające demontażu są zazwyczaj efektywne i zgodne z praktykami, które ograniczają przestoje oraz zwiększają efektywność operacyjną. Oględziny, które wiążą się z demontażem, są zarezerwowane dla specjalistycznych prac, które powinny być przeprowadzane przez wykwalifikowanych techników w celu zapewnienia bezpieczeństwa i zgodności z normami, takimi jak PN-EN 60204-1, dotycząca bezpieczeństwa maszyn. Dlatego też, w kontekście eksploatacji, czynności te powinny być planowane w ramach konserwacji urządzeń, a nie codziennych zadań eksploatacyjnych. Przykładem może być okresowe przeglądanie silników elektrycznych, gdzie demontaż jest konieczny do sprawdzenia stanu uzwojeń, co jest kluczowe dla ich dalszej eksploatacji.

Pytanie 40

W jakim zakresie powinien znajdować się zmierzony rzeczywisty prąd różnicowy IΔN wyłącznika różnicowoprądowego typu AC w odniesieniu do jego wartości znamionowej, aby mógł być dopuszczony do użytkowania?

A. Od 0,3 IΔN do 0,8 IΔN
B. Od 0,3 IΔN do 1,0 IΔN
C. Od 0,5 IΔN do 1,0 IΔN
D. Od 0,5 IΔN do 1,2 IΔN
Zakresy prądów różnicowych, które są w niepoprawnych odpowiedziach, mogą powodować złe wnioski o tym, jak działają wyłączniki różnicowoprądowe. Odpowiedzi, które mówią o zakresach poniżej 0,5 IΔN, nie są dobre, bo mogą wywoływać fałszywe wyłączenia i stanowią zagrożenie dla ludzi. Wyłączniki są projektowane do działania w określonych warunkach, więc ich czułość musi być dopasowana do tego, co się dzieje w rzeczywistości. Na przykład, ustawienie na 0,3 IΔN może sprawić, że wyłącznik wyłączy się z powodu normalnych wahań prądu, a nie rzeczywistego zagrożenia. Z drugiej strony, za wysoki zakres, jak 1,2 IΔN, może stwarzać niebezpieczeństwo, bo nie uwzględnia, że ​​ochrona różnicowoprądowa ma za zadanie wykrywać małe prądy upływowe. Ważne, żeby użytkownicy wiedzieli, że wybór odpowiedniego wyłącznika różnicowoprądowego oraz zrozumienie jego parametrów jest kluczowe dla bezpieczeństwa, czy to w domach, czy w przemyśle.