Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik pojazdów samochodowych
  • Kwalifikacja: MOT.05 - Obsługa, diagnozowanie oraz naprawa pojazdów samochodowych
  • Data rozpoczęcia: 7 lutego 2026 16:48
  • Data zakończenia: 7 lutego 2026 17:19

Egzamin zdany!

Wynik: 32/40 punktów (80,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Jakie informacje powinny być zawarte w dokumentacji dotyczącej przyjęcia pojazdu do diagnostyki?

A. wady podwozia
B. regulacji zbieżności
C. wady nadwozia
D. regulacji świateł
Zauważam, że niektóre odpowiedzi nie do końca rozumieją, jak ważna jest dokumentacja diagnostyczna. Uszkodzenia podwozia, mimo że są istotne, nie są priorytetem, gdy przyjmujemy auto do diagnostyki. To nadwozie, z uwagi na swoje znaczenie dla bezpieczeństwa pasażerów, powinno być na pierwszym miejscu. Ustawienie zbieżności jest ważne, ale to bardziej efekt diagnostyki niż coś, co trzeba badać na etapie przyjęcia. A ustawienie świateł? Też istotne, ale nie wpływa bezpośrednio na integralność pojazdu. Często jest tak, że ludzie koncentrują się na technicznych aspektach, które nie są aż tak krytyczne dla bezpieczeństwa. Powinno się skupić na uszkodzeniach, które naprawdę zagrażają stabilności i bezpieczeństwu pasażerów, a to właśnie uszkodzenia nadwozia są kluczowe w tej kwestii.

Pytanie 2

Retarder to element systemu

A. zasilania
B. hamulcowego
C. nośnego
D. kierowniczego
Retarder jest urządzeniem składającym się z mechanizmu, który służy do wspomagania hamowania pojazdów, szczególnie ciężarowych. Działa poprzez generowanie oporu mechanicznego, co powoduje spowolnienie ruchu pojazdu. W przypadku hamulców hydraulicznych, retarder może być integralną częścią systemu, zwiększając efektywność hamowania i wydłużając żywotność tradycyjnych hamulców. Używanie retardera jest szczególnie zalecane w warunkach górskich lub przy długich zjazdach, gdzie hamulce mogą się przegrzewać. Przykładowo, w pojazdach ciężarowych, często stosuje się retarder w połączeniu z hamulcami tarczowymi, co redukuje ryzyko ich przegrzania i poprawia bezpieczeństwo na drodze. Dobrą praktyką jest regularne serwisowanie systemu hamulcowego oraz retardera, aby zapewnić ich prawidłowe działanie zgodnie z normami bezpieczeństwa i wydajności.

Pytanie 3

Symbol znajdujący się na oponie 145/50 wskazuje szerokość opony

A. w milimetrach oraz wskaźnik profilu w %
B. w calach oraz wskaźnik profilu w milimetrach
C. w calach oraz wskaźnik profilu w %
D. w milimetrach oraz wskaźnik profilu w milimetrach
Dobrze zauważyłeś, że symbol na oponie 145/50 mówi o szerokości opony w milimetrach i wskaźniku profilu w %, co jest naprawdę istotne. To znaczy, że szerokość opony to 145 mm, a ten 50 oznacza, że wysokość profilu to 50% z tej szerokości, czyli 72,5 mm. Zrozumienie tych oznaczeń jest ważne, bo odpowiednie opony mają ogromny wpływ na to, jak jeździmy - zarówno pod kątem bezpieczeństwa, jak i komfortu. Jak dobierasz nowe opony, warto wiedzieć, co oznaczają te liczby, żeby dobrze wybrać. Dzięki temu będziesz mieć lepszą przyczepność i krótszą drogę hamowania, co na pewno jest na plus na drodze.

Pytanie 4

Jaki jest całkowity wydatek związany z wymianą oleju silnikowego, jeśli jego ilość w silniku wynosi 3,5 litra, cena za litr wynosi 21 zł, a koszt filtra oleju to 65 zł? Prace zajmują 30 minut, a stawka za godzinę roboczą to 120 zł?

A. 258,50 zł
B. 198,50 zł
C. 146,00 zł
D. 138,50 zł
Aby obliczyć całkowity koszt wymiany oleju silnikowego, należy uwzględnić kilka istotnych elementów. Po pierwsze, ilość oleju w silniku wynosi 3,5 litra, a cena za litr wynosi 21 zł. Dlatego koszt samego oleju wynosi 3,5 litra * 21 zł/litr = 73,5 zł. Po drugie, koszt filtra oleju wynosi 65 zł. Następnie należy uwzględnić koszt robocizny. Wymiana oleju trwa 30 minut, co przekłada się na 0,5 godziny. Stawka za roboczogodzinę wynosi 120 zł, więc koszt robocizny wynosi 0,5 godziny * 120 zł/godzina = 60 zł. Sumując wszystkie te koszty: 73,5 zł (olej) + 65 zł (filtr) + 60 zł (robocizna) = 198,5 zł. Takie podejście do wyceny usługi jest zgodne z dobrymi praktykami w branży motoryzacyjnej, gdzie dokładne oszacowanie kosztów jest kluczowe dla przejrzystości i zaufania klientów.

Pytanie 5

Aby rozmontować półosie napędowe z obudowy tylnego mostu napędowego, należy zastosować ściągacz

A. bezwładnościowy
B. 2-ramienny
C. do łożysk
D. 3-ramienny
Użycie ściągacza bezwładnościowego do demontażu półosi napędowych z pochwy tylnego mostu napędowego jest właściwym rozwiązaniem, ponieważ ten typ ściągacza jest zoptymalizowany do pracy z elementami, które mogą być trudno dostępne lub mocno osadzone. Ściągacze bezwładnościowe działają na zasadzie wykorzystania energii kinetycznej do uwolnienia zablokowanych komponentów, co jest szczególnie przydatne w przypadku półosi, które są często narażone na korozję i inne uszkodzenia. W praktyce, aby skutecznie zdemontować półosie, należy umieścić ściągacz bezwładnościowy w odpowiedniej pozycji, a następnie wykonać kilka krótkich uderzeń, co pozwoli na stopniowe i bezpieczne wprowadzenie siły na element. Taki sposób działania zmniejsza ryzyko uszkodzenia otaczających komponentów oraz samej półosi. W branży motoryzacyjnej standardem jest stosowanie narzędzi, które minimalizują ryzyko uszkodzeń mechanicznych, a ściągacze bezwładnościowe idealnie wpisują się w te normy. Warto zainwestować w wysokiej jakości ściągacz, który zapewni długoterminową niezawodność i bezpieczeństwo pracy.

Pytanie 6

Jakiego płynu należy użyć do napełnienia systemu hamulcowego?

A. L-DAA
B. SG/CD SAE 5W/40
C. L-HV
D. DOT-4
DOT-4 to specyfikacja płynu hamulcowego, który jest zalecany do stosowania w nowoczesnych układach hamulcowych. Jego główną zaletą jest wysoka temperatura wrzenia, wynosząca około 230°C, co sprawia, że jest odporny na zjawisko 'fadingu' hamulców. Płyn DOT-4 jest na bazie glikolu i zawiera dodatki, które zwiększają jego właściwości smarne i zapobiegają korozji komponentów układu hamulcowego. W praktyce oznacza to, że jego zastosowanie pozwala na skuteczniejsze działanie hamulców, co jest kluczowe w pojazdach osobowych oraz sportowych, gdzie wymagane są wysokie osiągi. Dobrą praktyką jest również regularne sprawdzanie poziomu płynu oraz jego wymiana co 2-3 lata, aby zapewnić optymalną wydajność układu hamulcowego. Użycie niewłaściwego płynu może prowadzić do poważnych konsekwencji, takich jak uszkodzenie uszczelek czy przegrzanie układu hamulcowego.

Pytanie 7

Aby czterosuwowy silnik zrealizował pełny cykl pracy (cztery suwy), wał korbowy musi wykonać obrót

A. o 720°
B. o 180°
C. o 360°
D. o 540°
Wiesz co? Twoja odpowiedź "o 720°" jest jak najbardziej na miejscu. Silnik czterosuwowy to trochę skomplikowana sprawa, ale ogólnie wykonuje pełny cykl w czterech etapach: ssanie, sprężanie, praca (to ten moment, gdy mamy wybuch) i wydech. Żeby to wszystko zadziałało, wał korbowy musi zrobić dwa pełne obroty. To oznacza, że po każdym cyklu wał obraca się o 720°. Fajnie, że to zrozumiałeś, bo to mega istotne dla działania silnika. W praktyce, przy każdym obrocie wału o 360° kończy się tylko dwa suwki. Jak myślisz, czemu tak jest? To wiedza, która naprawdę przydaje się w mechanice i naukach o silnikach, bo bez tego ciężko ogarnąć diagnozowanie czy regulacje. Także, dobra robota w zrozumieniu tego tematu!

Pytanie 8

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 9

Aby ocenić użyteczność eksploatacyjną płynu hamulcowego, konieczne jest zmierzenie jego temperatury

A. krzepnięcia
B. zamarzania
C. odparowywania
D. wrzenia
Pomiar temperatury wrzenia płynu hamulcowego jest kluczowym aspektem oceny jego przydatności eksploatacyjnej. Płyny hamulcowe, w szczególności te na bazie glikolu, charakteryzują się określoną temperaturą wrzenia, która wpływa na ich skuteczność i bezpieczeństwo. W momencie, gdy temperatura wrzenia płynu hamulcowego spada poniżej zalecanych wartości, może dojść do zjawiska wrzenia w układzie hamulcowym, co prowadzi do poważnych problemów z hamowaniem. W praktyce, zbyt wysoka temperatura pracy układu hamulcowego, na przykład podczas intensywnego użytkowania pojazdu, może powodować degradację płynu, co skutkuje obniżeniem jego temperatury wrzenia. Regularne pomiary tej temperatury, realizowane zgodnie z normami takimi jak DOT (Department of Transportation) czy SAE (Society of Automotive Engineers), pozwalają na wczesne wykrycie problemów i wymianę płynu hamulcowego, co jest kluczowe dla zapewnienia bezpieczeństwa na drodze. Przykładowo, w pojazdach sportowych, gdzie intensywne hamowanie jest na porządku dziennym, monitorowanie temperatury wrzenia płynu hamulcowego powinno być standardową praktyką serwisową.

Pytanie 10

Amortyzatory, które zostały poddane badaniu metodą Eusama, mają współczynnik tłumienia drgań na poziomie 60%

A. kwalifikują się do wymiany
B. są w stanie dostatecznym
C. są w dobrym stanie
D. są w 40% uszkodzone
Amortyzatory badane metodą Eusama z 60% współczynnikiem tłumienia drgań to naprawdę nieźle działające elementy. To oznacza, że dobrze radzą sobie z wygładzaniem jazdy i ogólnie poprawiają komfort. Dzięki temu wstrząsy są lepiej absorbowane i to jest mega ważne, jak chodzi o prowadzenie auta. Jak amortyzatory są w takiej formie, to mają szansę, że wszystko będzie działać sprawnie, a zawieszenie będzie miało dłuższą żywotność. Wiesz, w branży auto zawsze zwracamy uwagę na takie normy jak SAE czy ISO, bo to potwierdza, że sprawne amortyzatory to podstawa. Jak masz 60% współczynnika tłumienia, to możesz być pewny, że wszystko jest w porządku z bezpieczeństwem i wygodą jazdy.

Pytanie 11

W głowicy znajdują się dwa wałki rozrządu. Który symbol to przedstawia?

A. SOHC
B. OHV
C. OHC
D. DOHC
Termin DOHC, czyli Double Overhead Camshaft, odnosi się do silników, które posiadają dwa wałki rozrządu umieszczone w głowicy cylindrów. Taki układ umożliwia bardziej precyzyjne sterowanie zaworami w porównaniu do starszych rozwiązań. Dzięki temu, silniki DOHC mogą osiągać wyższe obroty, co przekłada się na lepsze osiągi i efektywność. Dodatkowo, zastosowanie dwóch wałków pozwala na lepszą synchronizację otwierania i zamykania zaworów, co z kolei wpływa na optymalizację cyklu pracy silnika. Przykładowo, silniki sportowe często korzystają z tego typu rozrządu, aby uzyskać maksymalne parametry mocy i momentu obrotowego. W praktyce, DOHC jest powszechnie stosowany w nowoczesnych samochodach, co czyni tę wiedzę istotną dla każdego, kto zajmuje się motoryzacją czy inżynierią mechaniczną.

Pytanie 12

Która z poniższych części nie podlega regeneracji?

A. Przekładni kierowniczej
B. Sworznia kulistego wahacza
C. Wtryskiwacza
D. Turbosprężarki
Sworzeń kulisty wahacza jest elementem układu zawieszenia, który łączy wahacz z elementami zawieszenia lub podwozia pojazdu. W odróżnieniu od innych elementów wymienionych w pytaniu, sworznie kuliste wahacza nie są projektowane z myślą o regeneracji. Zastosowanie tego typu elementów w konstrukcji pojazdów ma na celu zapewnienie bezpiecznej i stabilnej pracy zawieszenia, co ma kluczowe znaczenie dla komfortu jazdy oraz bezpieczeństwa. Kiedy sworzeń kulisty wykazuje oznaki zużycia, takie jak luz w połączeniu, jest wskazane jego całkowite wymienienie, aby uniknąć potencjalnych awarii układu zawieszenia. Przykładowo, nieprawidłowe funkcjonowanie sworznia kulistego może prowadzić do niestabilności pojazdu podczas jazdy, co z kolei zwiększa ryzyko wypadków. Zgodnie z dobrymi praktykami branżowymi, zaleca się regularne sprawdzanie stanu sworzni kulistych podczas przeglądów technicznych pojazdu.

Pytanie 13

W wyniku kontroli zawieszenia tylnego pojazdu stwierdzono pęknięcie sprężyny zawieszenia i wyciek płynu hydraulicznego jednego z amortyzatorów. Pozostałe elementy nie wykazują uszkodzeń, należy jednak wymienić nakrętki samokontrujące (2 szt. na amortyzator). Szacunkowy koszt części zamiennych wyniesie

Nazwa częściCena jednostkowa
[zł]
Amortyzator220,00
Sprężyna145,00
Nakrętka samokontruąca1,00
A. 369 zł
B. 734 zł
C. 590 zł
D. 366 zł
Odpowiedź 734 zł jest prawidłowa, ponieważ uwzględnia wszystkie elementy, które należy wymienić w wyniku stwierdzonych uszkodzeń zawieszenia tylnego pojazdu. W przypadku wymiany amortyzatorów i sprężyn, standardowym zabiegiem jest wymiana tych części parami, co oznacza, że koszt zakupu dwóch amortyzatorów oraz dwóch sprężyn należy pomnożyć przez dwa. Dodatkowo, w celu zapewnienia odpowiedniego działania układu, wymiana nakrętek samokontrujących jest również niezbędna. Każdy amortyzator wymaga dwóch nakrętek, co daje w sumie cztery na dwa amortyzatory. W praktyce, przy planowaniu naprawy pojazdu, należy zsumować koszt wszystkich niezbędnych części, co pozwala na dokładniejsze oszacowanie wydatków oraz uniknięcie nieprzewidzianych kosztów. W branży motoryzacyjnej standardem jest również stosowanie części zamiennych o wysokiej jakości, co zapewnia długotrwałe i bezpieczne użytkowanie pojazdu.

Pytanie 14

Częścią systemu hamulcowego nie jest

A. wysprzęglik
B. modulator ABS
C. korektor siły hamowania
D. hamulec awaryjny
Wysprzęglik to taki element, który nie ma nic wspólnego z układem hamulcowym. Jego głównym zadaniem jest rozłączanie silnika od skrzyni biegów, co jest super ważne w autach z manualną skrzynią. Zamiast tego, jeśli chodzi o hamulce, mamy do czynienia z hamulcami tarczowymi, bębnowymi, a także z systemami wspomagającymi, jak ABS, które zapobiegają blokowaniu kół. Wysprzęglik, jako część sprzęgła, w ogóle nie wpływa na hamowanie. Ale, żeby było jasne, jego działanie jest kluczowe dla bezpieczeństwa jazdy, bo pozwala kierowcy na precyzyjne włączanie biegów, co zwiększa kontrolę nad autem. Zrozumienie tej różnicy jest naprawdę ważne, bo przy diagnozowaniu i konserwacji pojazdów to może robić różnicę.

Pytanie 15

Jakie jest łączne wydatki na naprawę systemu smarowania, jeśli cena pompy oleju wynosi 145 zł, filtr oleju kosztuje 45 zł, a cena oleju silnikowego to 160 zł? Czas potrzebny na naprawę to 150 minut przy stawce za godzinę roboczą wynoszącej 100 zł?

A. 450 zł
B. 600 zł
C. 550 zł
D. 650 zł
Całkowity koszt naprawy układu smarowania wynosi 600 zł, co wynika z sumy kosztów części oraz robocizny. Koszt pompy oleju wynosi 145 zł, filtr oleju kosztuje 45 zł, a koszt oleju silnikowego to 160 zł. Łącznie, wydatki na części wynoszą 145 zł + 45 zł + 160 zł = 350 zł. Następnie obliczamy koszt robocizny. Czas naprawy to 150 minut, co odpowiada 2,5 godziny. Przy stawce 100 zł za roboczo-godzinę, koszt robocizny wynosi 2,5 * 100 zł = 250 zł. Sumując koszty części oraz robocizny, otrzymujemy 350 zł + 250 zł = 600 zł. Warto zaznaczyć, że dokładne obliczenia kosztów naprawy są kluczowe w warsztatach, ponieważ pomagają w określeniu ceny dla klienta oraz w zarządzaniu budżetem warsztatu. Praktyczne podejście do kalkulacji kosztów naprawczych może również przyczynić się do lepszego planowania i kontroli wydatków.

Pytanie 16

Jak przeprowadza się pomiar gęstości elektrolitu?

A. z wykorzystaniem amperomierza
B. przy użyciu areometru
C. z użyciem aerografu
D. za pomocą analizatora
Pomiar gęstości elektrolitu wykonuje się areometrem, który jest prostym i skutecznym narzędziem stosowanym w laboratoriach oraz w zastosowaniach przemysłowych. Areometr działa na zasadzie wyporu, co oznacza, że jego pomiar opiera się na zasadzie Archimedesa. Przy pomiarze gęstości elektrolitu, areometr zanurza się w cieczy, a jego wynik odczytuje się na skali umieszczonej na jego korpusie. W praktyce, dokładność pomiarów gęstości elektrolitu jest istotna, szczególnie w przypadku akumulatorów kwasowo-ołowiowych, gdzie gęstość elektrolitu informuje o stanie naładowania akumulatora. Standardy branżowe, takie jak ISO 2871, zalecają stosowanie areometrów do tego typu pomiarów, gdyż zapewniają one powtarzalność i dokładność wyników. Warto również zwrócić uwagę na to, że gęstość elektrolitu jest parametrem krytycznym w ocenie jego właściwości elektrochemicznych, co ma kluczowe znaczenie dla efektywności i długowieczności systemów zasilania.

Pytanie 17

Czym są elementy wałka rozrządu?

A. pierścienie
B. łożyska
C. krzywki
D. gniazda
Elementy takie jak pierścienie, łożyska i gniazda pełnią różne funkcje w silniku, ale nie są częścią wałka rozrządu, co prowadzi do mylnych wniosków. Pierścienie tłokowe, na przykład, mają na celu uszczelnienie komory spalania oraz kontrolowanie oliwienia cylindrów. Właściwy montaż i stan pierścieni są kluczowe dla wydajności silnika, jednak ich funkcja jest zupełnie inna niż krzywek. Łożyska, z drugiej strony, służą do podparcia obracających się elementów, takich jak wałki czy wały korbowe, redukując tarcie i zużycie materiału. Gniazda, które mogą odnosić się do miejsc zakotwienia różnych elementów, również nie mają bezpośredniego związku z mechanizmem działania wałka rozrządu. Problemy z identyfikacją odpowiednich elementów mogą wynikać z braku zrozumienia ich funkcji oraz zasad działania silnika. Ważne jest, aby pamiętać, że każdy element silnika ma swoje specyficzne zadanie i nie można mylić funkcji poszczególnych komponentów. Wiedza ta jest istotna nie tylko w kontekście diagnostyki, ale także podczas przeprowadzania napraw i konserwacji pojazdów. Zrozumienie, jak poszczególne elementy współpracują ze sobą, jest niezbędne dla prawidłowego funkcjonowania całego układu silnikowego. Dlatego warto inwestować czas w naukę i praktyczne zrozumienie budowy i działania silników spalinowych.

Pytanie 18

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 19

Ile kresek znajduje się na noniuszu suwmiarki, która ma dokładność 0,05 mm?

A. 10 kresek
B. 50 kresek
C. 40 kresek
D. 20 kresek
Odpowiedź 20 kresek jest prawidłowa, ponieważ suwmiarka mikrometryczna z dokładnością 0,05 mm zazwyczaj ma noniusz podzielony na 20 kresek. Każda kreska na noniuszu odpowiada 0,05 mm, co sprawia, że cała skala noniusza pokrywa zakres 1 mm. Dzięki temu, suwmiarka pozwala na precyzyjne pomiary z dokładnością do 0,05 mm, co jest niezwykle przydatne w różnych zastosowaniach inżynieryjnych, mechanicznych i precyzyjnych. Na przykład w przemyśle motoryzacyjnym, gdzie dokładność pomiarów jest kluczowa dla zapewnienia jakości komponentów, użycie suwmiarki o takiej dokładności pozwala na kontrolę wymiarów elementów z bardzo małymi tolerancjami. Dobrą praktyką jest regularne kalibrowanie narzędzi pomiarowych oraz znajomość technik pomiarowych, aby uniknąć błędów i uzyskać wiarygodne wyniki pomiarów. Warto również zwrócić uwagę na to, że im większa liczba kresek na noniuszu, tym większa dokładność pomiaru, co jest kluczowe w precyzyjnej obróbce materiałów.

Pytanie 20

Wibracje oscylacyjne odczuwane w pojeździe na kole kierownicy przy niskiej prędkości mogą być spowodowane

A. awarią amortyzatora
B. biciem opony
C. zgubą sztywności sprężyny śrubowej
D. niewyważeniem koła
Utrata sztywności sprężyny śrubowej, uszkodzenie amortyzatora oraz niewyrównoważenie koła to problemy, które także mogą wpływać na komfort jazdy, jednak nie są one bezpośrednio odpowiedzialne za drgania odczuwane w kole kierownicy przy małych prędkościach. Zaczynając od sprężyny, jej utrata sztywności może prowadzić do spadku stabilności pojazdu podczas jazdy, zwłaszcza na nierównych nawierzchniach, jednak wibracje, które można odczuć na kierownicy, są zazwyczaj efektem problemów z kołami, a nie z samą sprężyną. Uszkodzenie amortyzatora również wpływa na komfort jazdy, ale jego główną rolą jest tłumienie drgań wynikających z nierówności drogi, a nie generowanie drgań na kole kierownicy. Niewyrównoważenie koła może prowadzić do wibracji, jednak zazwyczaj występują one przy wyższych prędkościach, a w tym przypadku pytanie dotyczy sytuacji przy małych prędkościach, co czyni tę odpowiedź mniej trafną. Typowym błędem jest mylenie źródła drgań; należy zwrócić uwagę na to, że ostatecznym źródłem powstania drgań w pojeździe są opony. Rekomendowane jest zatem regularne sprawdzanie stanu opon oraz ich właściwego wyważenia, co ma kluczowe znaczenie dla komfortu i bezpieczeństwa podczas jazdy.

Pytanie 21

Aby przeprowadzić weryfikację wałka rozrządu, należy użyć

A. czujnika zegarowego
B. płyty traserskiej
C. średnicówki
D. manometru
Czujnik zegarowy jest kluczowym narzędziem w weryfikacji wałka rozrządu, ponieważ pozwala na precyzyjne pomiary i sprawdzenie ustawień wałka w zakresie tolerancji producenta. Dzięki swojej konstrukcji umożliwia on dokładne wskazanie wszelkich odchyleń od normy, co jest szczególnie istotne w kontekście precyzyjnego działania silnika. Używając czujnika zegarowego, mechanik może z łatwością monitorować ruch wałka i oceniać, czy jego położenie jest zgodne z wymaganiami technicznymi. Przykładowo, w silnikach o wysokich obrotach, precyzyjne ustawienie rozrządu jest kluczowe dla osiągnięcia optymalnej mocy i efektywności paliwowej. Ponadto, stosowanie czujnika zegarowego jest zgodne z zasadami dobrej praktyki inżynieryjnej, co zapewnia nie tylko zgodność z normami, ale również bezpieczeństwo i niezawodność pracy silnika. Warto również zwrócić uwagę, że czujniki zegarowe są często używane w połączeniu z innymi narzędziami pomiarowymi, co zwiększa dokładność i możliwości diagnostyczne. W przypadku wątpliwości dotyczących precyzji pomiarów, czujnik zegarowy staje się niezastąpionym narzędziem w warsztacie.

Pytanie 22

Diagnostyka systemu hamulcowego na stanowisku rolkowym nie umożliwia

A. wykrycia owalizacji bębnów hamulcowych
B. oceny stopnia zużycia elementów ciernych
C. wykrycia deformacji oraz bicia tarcz hamulcowych
D. ustalenia różnic sił hamowania na wszystkich kołach pojazdu
Wybór odpowiedzi dotyczącej oceny stopnia zużycia elementów ciernych jako poprawnej jest uzasadniony z punktu widzenia diagnostyki układu hamulcowego. Stanowisko rolkowe, używane do testowania hamulców, pozwala na analizę siły hamowania w warunkach dynamicznych, jednakże nie dostarcza informacji o stopniu zużycia klocków czy szczęk hamulcowych. Zużycie tych elementów jest oceniane na podstawie grubości materiału ciernego, a nie na podstawie testów na rolkach. W praktyce, monitoring zużycia elementów ciernych powinien odbywać się podczas regularnych przeglądów technicznych, gdzie możliwa jest wizualna inspekcja oraz pomiar grubości klocków. Standardy takie jak ECE R90 w Europie wymagają, by części zamienne były identyczne pod względem jakości i wydajności z oryginalnymi elementami. Dlatego wiedza o zużyciu elementów ciernych jest kluczowa dla zapewnienia bezpieczeństwa pojazdu oraz efektywności układu hamulcowego.

Pytanie 23

Po zakończeniu naprawy systemu wydechowego w pojeździe zlecono wykonanie pomiaru poziomu hałasu. Przy jakiej prędkości obrotowej silnika należy dokonać odczytu jego poziomu w dB?

A. Przy 75% maksymalnej prędkości obrotowej.
B. Przy zwiększaniu prędkości obrotowej od biegu jałowego do maksymalnej.
C. Przy prędkości 1 000-15 000 obr/min.
D. Przy maksymalnej prędkości obrotowej.
Pomiary hałasu w pojazdach wymagają precyzyjnych procedur, aby uzyskane wyniki były wiarygodne i miały zastosowanie w praktyce. Odczyt przy maksymalnej prędkości obrotowej silnika nie jest zalecany, ponieważ w tym zakresie silnik może działać w warunkach skrajnych, co prowadzi do zniekształcenia wyników. Zbyt wysoka prędkość obrotowa może zmieniać charakterystykę dźwięków emitowanych przez silnik i układ wydechowy, co utrudnia dokładną ocenę hałasu. Z kolei pomiar podczas stopniowego zwiększania prędkości obrotowej od biegu jałowego do maksymalnej nie dostarcza stabilnych danych, ponieważ hałas zmienia się w sposób nieliniowy w zależności od obrotów, co może prowadzić do niejednoznacznych wyników. Odpowiedź sugerująca zakres 1 000-15 000 obr/min również jest błędna, ponieważ pomiar hałasu powinien być przeprowadzany w ściśle określonych warunkach, które nie obejmują tak szerokiego zakresu obrotów. Tego rodzaju podejście może prowadzić do nieprawidłowego wnioskowania na temat efektywności układu wydechowego i jego wpływu na emisję hałasu, a co za tym idzie, na zgodność z obowiązującymi normami prawnymi. W praktyce, stosowanie się do 75% prędkości maksymalnej obrotowej silnika stanowi najlepszą praktykę, która pozwala na realistyczną i wiarygodną ocenę hałasu, spełniającą wymagania prawne i techniczne.

Pytanie 24

Co oznacza symbol API GL-4?

A. oleju silnikowego
B. płynu hamulcowego
C. oleju przekładniowego
D. płynu chłodzącego
Symbol API GL-4 odnosi się do olejów przekładniowych, które są zaprojektowane do zastosowania w skrzyniach biegów manualnych, szczególnie w jednostkach wymagających olejów o wyższej wydajności. Standard ten zapewnia odpowiednie właściwości smarne, ochronę przed zużyciem oraz odporność na wysokie temperatury, co jest kluczowe dla prawidłowego funkcjonowania układu przekładniowego. Oleje oznaczone jako GL-4 są specyfikowane do zastosowań, gdzie występują wysokie obciążenia, a także do przekładni, w których nie jest wymagane stosowanie olejów o właściwościach EP (Extreme Pressure). Przykładem zastosowania olejów GL-4 są pojazdy wyposażone w manualne skrzynie biegów, które często nie wymagają olejów o wyższej klasie, takich jak GL-5, które są przeznaczone do bardziej obciążonych przekładni. Właściwy dobór oleju wpływa na efektywność pracy przekładni oraz wydłuża jej żywotność, co jest zgodne z zaleceniami producentów pojazdów oraz normami branżowymi, co czyni tę wiedzę istotną dla każdego użytkownika samochodu oraz specjalisty w dziedzinie motoryzacji.

Pytanie 25

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 26

Podczas wymiany wahacza poprzecznego wykonanego z lekkich stopów z nadmiernym luzem w przegubie kulistym, możliwe jest zastosowanie

A. tańszego stalowego zamiennika
B. części powypadkowej
C. zamiennika spełniającego normy producenta
D. wyłącznie elementu z logo producenta
Wymieniając wahacz poprzeczny, naprawdę ważne jest, żeby użyć zamiennika, który spełnia normy producenta. Wahacz to kluczowa część zawieszenia, ma wpływ na to, jak się jeździ i jak stabilny jest samochód. Gdy musisz wymienić część, najlepiej postawić na zamienniki, które są zgodne z tym, co mówi producent. Jeśli zamiennik jest z dobrych materiałów, które są wytrzymałe na różne warunki, to można liczyć na to, że wszystko będzie działać jak należy. Z tego co zauważyłem, dobrze jest też, jak takie zamienniki mają jakieś certyfikaty jakości, bo wtedy można mieć pewność, że są solidne. Generalnie, stosując odpowiednie części, nie tylko poprawiasz bezpieczeństwo jazdy, ale i zmniejszasz ryzyko kolejnych awarii, co w końcu przynosi oszczędności i większy komfort w korzystaniu z auta.

Pytanie 27

Ile dm3 powietrza potrzeba do całkowitego spalenia 1 kg benzyny?

A. 14,7 mm powietrza
B. 14,7 m3 powietrza
C. 14,7 dm3 powietrza
D. 14,7 kg powietrza
Poprawna odpowiedź to 14,7 kg powietrza, ponieważ do całkowitego spalenia 1 kg benzyny potrzebna jest odpowiednia ilość tlenu, który jest dostarczany przez powietrze. Benzyna (C8H18) spala się w tlenie, a reakcja spalenia wymaga około 14,7 kg powietrza na każdy kilogram benzyny, co odpowiada stechiometrycznemu obliczeniu proporcji. W praktyce oznacza to, że w warunkach standardowych, gdzie powietrze składa się z około 21% tlenu, potrzebna ilość powietrza jest znacznie większa niż ilość tlenu. Przykładowo, silniki spalinowe, które wykorzystują benzynę, muszą być odpowiednio dostrojone, aby zapewnić optymalne spalanie, co wpływa na emisje spalin i wydajność energetyczną. Zrozumienie tego procesu jest kluczowe w przemyśle motoryzacyjnym oraz w projektowaniu systemów grzewczych, gdzie wydajność spalania ma bezpośredni wpływ na zużycie paliwa oraz emisję zanieczyszczeń. Wiedza ta jest również istotna w kontekście ochrony środowiska oraz regulacji dotyczących emisji gazów cieplarnianych.

Pytanie 28

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 29

Na podstawie tabeli oblicz koszt wymiany świec zapłonowych w 4-cylindrowym silniku systemu DOHC 16 V, jeżeli czynność zajmuje 45 minut.

Nazwa części / usługiKwota [zł]
szlifowanie głowicy70,00
świeca zapłonowa30,00
wymiana prowadnicy 1 zaworu15,00
prowadnica zaworu10,00
1 roboczogodzina120,00
A. 120,00 zł
B. 240,00 zł
C. 570,00 zł
D. 210,00 zł
Poprawna odpowiedź wynika z dokładnego obliczenia kosztów związanych z wymianą świec zapłonowych. Koszt świec zapłonowych wynosi 30,00 zł za sztukę. W przypadku 4-cylindrowego silnika, potrzebujemy 4 świec, co daje łączny koszt zakupu wynoszący 120,00 zł. Następnie, musimy uwzględnić koszt robocizny. Czas wymiany wynosi 45 minut, co w przeliczeniu na godziny daje 0,75 godziny. Stawka za godzinę pracy wynosi 120,00 zł, co przekłada się na koszt robocizny równy 90,00 zł. Sumując oba koszty (120,00 zł za świece i 90,00 zł za robociznę), otrzymujemy 210,00 zł. Warto zwrócić uwagę, że przy obliczeniach należy zawsze uwzględniać zarówno koszt materiałów, jak i robocizny, co jest zgodne z ogólnymi zasadami kalkulacji kosztów w branży motoryzacyjnej.

Pytanie 30

Na przedstawionym rysunku numerem 14 oznaczony jest pierścień

Ilustracja do pytania
A. odprowadzający temperaturę.
B. uszczelniający.
C. zgarniający.
D. sworznia tłokowego.
Pierścień zgarniający, oznaczony na rysunku numerem 14, odgrywa kluczową rolę w prawidłowym funkcjonowaniu silnika spalinowego. Jego głównym zadaniem jest usuwanie nadmiaru oleju z powierzchni cylindra, co jest niezbędne dla zapewnienia optymalnego smarowania i minimalizacji zużycia oleju. Stosowanie pierścieni zgarniających zgodnie z normami przemysłowymi, takimi jak ISO 9001, jest istotne dla osiągnięcia wysokiej efektywności i niezawodności jednostek napędowych. Dobrze zaprojektowany pierścień zgarniający minimalizuje ryzyko przedostawania się oleju do komory spalania, co mogłoby prowadzić do niepożądanych efektów, takich jak dymienie silnika czy obniżona wydajność spalania. W praktyce, pierścienie zgarniające są często wykorzystywane w silnikach wysokoprężnych, gdzie ich zadanie ma kluczowe znaczenie dla kontroli emisji spalin oraz zachowania odpowiednich parametrów pracy silnika. Przyczyniają się one również do dłuższej żywotności silnika przez ograniczenie ryzyka awarii związanych z nadmiernym zużyciem oleju.

Pytanie 31

W przypadku wykrycia niekontrolowanego podniesienia poziomu oleju w układzie smarowania silnika, możliwe przyczyny to

A. uszkodzenie uszczelki pod głowicą
B. zbyt duże zanieczyszczenie filtra oleju
C. zużycie czopów wału korbowego
D. awaria pompy olejowej
Uszkodzenie uszczelki pod głowicą jest jedną z najczęstszych przyczyn wzrostu poziomu oleju w silniku. Kiedy uszczelka jest uszkodzona, może dojść do przedostawania się płynów chłodniczych do komory spalania lub do układu smarowania. Płyn chłodniczy, który dostaje się do silnika, może powodować zubożenie oleju lub jego nadmiar z powodu zjawiska emulgacji, co prowadzi do wzrostu poziomu oleju. W praktyce, mechanik powinien regularnie sprawdzać uszczelki oraz wykonywać testy ciśnienia, aby wykryć potencjalne nieszczelności. Dobre praktyki w zakresie konserwacji silnika obejmują również korzystanie z oleju i płynów chłodniczych o odpowiednich parametrach, co ma kluczowe znaczenie dla długowieczności silnika. Rekomendowane jest również regularne przeprowadzanie inspekcji wizualnych, które mogą pomóc w wczesnym wykryciu problemów z uszczelką pod głowicą, co może zapobiec poważniejszym uszkodzeniom silnika.

Pytanie 32

Pojęcia takie jak: kąt wyprzedzenia osi sworznia zwrotnicy oraz kąt nachylenia osi sworznia zwrotnicy są powiązane z systemem

A. napędowym
B. kierowniczym
C. jezdnym
D. hamulcowym
Odpowiedzi dotyczące układu napędowego, jezdnego czy hamulcowego są po prostu nieprawidłowe, bo skupiają się na zupełnie innych rzeczach w budowie i działaniu pojazdu. Układ napędowy to ten, który przenosi moc z silnika na koła, więc jego elementy, jak skrzynia biegów czy wały napędowe, nie mają nic wspólnego z kątami, o których mówisz. Kąt wyprzedzenia i kąt pochylenia nie wpływają na to, jak samochód przyspiesza. Z drugiej strony, układ jezdny dotyczy zawieszenia i kontaktu auta z nawierzchnią. Choć kąt pochylenia osi sworznia w jakiś sposób może wpływać na zawieszenie, to jednak nie jest to kluczowy parametr dla całego układu. A układ hamulcowy, który zatrzymuje auto, również nie ma z tym związku, bo te kąty bardziej dotyczą sterowności i stabilności. Mylenie tych układów i ich roli to częsty błąd, który może prowadzić do błędnych wniosków o tym, jak one działają i jak je ustawić.

Pytanie 33

Jaką jednostkę stosuje się do określenia momentu obrotowego silnika?

A. kW
B. KM
C. N
D. Nm
Moment obrotowy silnika, określany w niutonometrach (Nm), jest kluczowym parametrem, który wskazuje na zdolność silnika do wykonywania pracy obrotowej. W praktyce, moment obrotowy jest istotny w zastosowaniach takich jak napęd pojazdów, gdzie większy moment obrotowy pozwala na lepsze przyspieszenie i osiąganie wyższych prędkości w niższych zakresach obrotów silnika. Na przykład, silniki diesla zazwyczaj charakteryzują się wyższym momentem obrotowym w porównaniu do silników benzynowych, co czyni je bardziej efektywnymi w cięższych pojazdach transportowych. W branży motoryzacyjnej i inżynieryjnej, moment obrotowy jest również kluczowym wskaźnikiem dla systemów napędowych, gdyż pozwala na optymalizację konstrukcji przekładni. Standardy ISO oraz SAE dostarczają wytycznych dotyczących pomiarów i interpretacji momentu obrotowego, co jest niezbędne dla zapewnienia spójności i jakości w produkcji oraz testach silników.

Pytanie 34

Frekfencja migania świateł kierunkowskazów powinna wynosić

A. 120 do 30 błysków na minutę
B. 60 do 30 błysków na minutę
C. 90 do 30 błysków na minutę
D. 100 do 30 błysków na minutę
Optymalna częstotliwość błysków świateł kierunkowskazów, wynosząca od 90 do 30 błysków na minutę, jest zgodna z obowiązującymi normami i dobrymi praktykami w zakresie bezpieczeństwa ruchu drogowego. Taki zakres częstotliwości zapewnia odpowiednią widoczność sygnałów kierunkowych, co jest kluczowe dla innych uczestników ruchu. W praktyce oznacza to, że kierowcy mają wystarczająco dużo czasu na zauważenie sygnału i na podjęcie odpowiednich działań, co przekłada się na zmniejszenie ryzyka wypadków. Częstość ta jest również zgodna z przepisami prawa w wielu krajach, co sprawia, że jest to standard, którego powinni przestrzegać producenci pojazdów. Warto pamiętać, że zbyt wolne błyski mogą być mylnie interpretowane jako nieczytelne, a zbyt szybkie mogą wprowadzać w błąd. Utrzymanie tej częstotliwości jest zatem niezbędne dla poprawy bezpieczeństwa na drogach oraz dla efektywnej komunikacji między kierowcami.

Pytanie 35

Do diagnostyki stosuje się lampę stroboskopową w przypadku

A. systemu napędowego
B. systemu zapłonowego
C. systemu hamulcowego
D. systemu kierowniczego
Lampa stroboskopowa jest narzędziem diagnostycznym, które umożliwia ocenę działania układu zapłonowego silnika spalinowego. Jej działanie opiera się na emitowaniu błysków świetlnych w regularnych odstępach czasu, co pozwala na wizualizację ruchu elementów silnika, takich jak wałek rozrządu czy zapłon. Dzięki stroboskopowi mechanik może ocenić synchronizację zapłonu oraz ewentualne opóźnienia, co jest kluczowe dla prawidłowego funkcjonowania silnika. Przykładem praktycznego zastosowania lampy stroboskopowej jest analiza działania pojedynczego cylindra w silniku, co umożliwia wykrycie problemów z iskrownikiem lub cewką zapłonową. Dobrym standardem w branży jest przeprowadzanie diagnozy przy użyciu lampy stroboskopowej w trakcie regulacji zapłonu, aby upewnić się, że osiągnięto optymalne ustawienia dla maksymalnej efektywności silnika. Regularne użycie tego narzędzia w warsztatach samochodowych przyczynia się do poprawy jakości usług oraz zadowolenia klientów.

Pytanie 36

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 37

Na ilustracji przedstawiono filtr

Ilustracja do pytania
A. powietrza.
B. cząstek stałych.
C. paliwa.
D. oleju.
Niepoprawne odpowiedzi mogą wynikać z błędnego zrozumienia funkcji filtrów w różnych układach pojazdu. Wybór opcji dotyczącej filtra powietrza jest często uzasadniany mylnym rozumieniem obu filtrów. Filtr powietrza jest odpowiedzialny za oczyszczanie powietrza, które dostaje się do silnika, jednak jego funkcja jest odmienna od roli filtra paliwa. Filtr oleju z kolei służy do oczyszczania oleju silnikowego, co również jest kluczowe dla prawidłowego działania jednostki napędowej, ale nie ma związku z paliwem. Z kolei filtr cząstek stałych dotyczy systemów zarządzania emisją spalin i nie jest bezpośrednio związany z układem paliwowym. Wybór nieodpowiedniej odpowiedzi może wynikać z typowego błędu myślowego, polegającego na myleniu różnych systemów filtracji w samochodach. Każdy z tych filtrów ma swoje unikalne zastosowanie i miejsce w układzie, a ich rola jest kluczowa dla prawidłowego funkcjonowania pojazdu. Aby uniknąć takich pomyłek, warto zaznajomić się z podstawami budowy oraz funkcji poszczególnych elementów układów paliwowego, powietrznego i olejowego, co pozwoli na lepsze zrozumienie ich oddziaływań i wpływu na wydajność silnika.

Pytanie 38

Po zainstalowaniu nowej pompy cieczy chłodzącej trzeba

A. ustawić luz zaworowy
B. uzupełnić poziom płynu chłodzącego
C. ustawić zbieżność kół
D. wyczyścić układ chłodzenia
Uzupełnienie płynu chłodzącego po wymianie pompy to naprawdę ważna sprawa, żeby silnik działał jak należy. Jak już wymienisz pompę, musisz zadbać o to, żeby cały układ był dobrze napełniony. Bez tego może się zdarzyć, że silnik się przegrzeje, a to może być kosztowne. Po wymianie pompy warto też odpowietrzyć układ, żeby pozbyć się powietrza, które może powodować przegrzewanie w niektórych miejscach. Nie zapomnij też regularnie sprawdzać poziomu płynu w zbiorniku, a także zajrzeć, czy nie ma jakiś wycieków. Rada dla Ciebie - lepiej używać płynów chłodzących, które producent zaleca, bo dzięki temu silnik będzie miał lepsze właściwości termiczne i ochroni sobie przed korozją. No i oczywiście, regularne kontrolowanie stanu płynu to klucz do dłuższego życia silnika i jego efektywności.

Pytanie 39

Czy azotowanie stali prowadzi do

A. wzmocnienia powierzchni
B. oczyszczenia wyrobu z tłuszczu
C. zapobiegania korozji
D. eliminacji negatywnych efektów hartowania
Choć azotowanie stali może być mylone z innymi procesami obróbki, kluczowe jest zrozumienie, że żaden z wymienionych w pytaniu procesów nie jest związany z utwardzeniem powierzchni. Usunięcie szkodliwych skutków hartowania, jak na przykład naprężenia wewnętrzne, nie ma nic wspólnego z azotowaniem. Proces hartowania polega na szybkim chłodzeniu stali, co może wprowadzać niepożądane naprężenia, ale azotowanie nie jest techniką, która je eliminuje. Ochrona przed korozją jest również niepoprawnym skojarzeniem; azotowanie może podnieść odporność na zużycie, ale nie ma bezpośredniego wpływu na odporność stali na korozję, co jest bardziej związane z odpowiednim doborem materiałów i warstw ochronnych. Proces odtłuszczenia wyrobu, z kolei, jest etapem przygotowawczym, który ma na celu usunięcie zanieczyszczeń z powierzchni stali przed jakąkolwiek obróbką, ale nie jest bezpośrednio związany z azotowaniem. Typowym błędem myślowym jest utożsamienie azotowania z innymi procesami obróbczo-chemicznymi, co prowadzi do nieporozumień w kontekście ich zastosowań. Aby uniknąć tych nieporozumień, warto zgłębić różne techniki obróbcze i ich specyfikę, co pozwoli na lepsze zrozumienie właściwości materiałów i optymalizację procesów produkcyjnych.

Pytanie 40

Duża ilość węglowodorów w spalinach sugeruje

A. o niewłaściwym spalaniu paliwa
B. o efektywnym spalaniu paliwa
C. o wysokiej liczbie oktanowej paliwa
D. o samozapłonie paliwa
Wysoka zawartość węglowodorów w spalinach jest oznaką nieefektywnego procesu spalania paliwa. W wyniku niedostatecznej reakcji chemicznej między paliwem a powietrzem, nie wszystkie cząsteczki paliwa są spalane, co prowadzi do wydobywania się nieprzekształconych węglowodorów do atmosfery. Przykładem mogą być silniki spalinowe, w których niewłaściwe ustawienia mieszanki paliwowo-powietrznej, uszkodzone wtryskiwacze czy zanieczyszczone filtry powietrza mogą powodować zjawisko tzw. "zubożenia mieszanki". Dobre praktyki inżynieryjne zakładają regularną konserwację silników, co obejmuje kontrolę systemów wtryskowych oraz monitorowanie parametrów pracy silnika, aby zapewnić optymalne warunki spalania. Dodatkowo, w kontekście ochrony środowiska, odpowiednie normy emisji, takie jak Euro 6, wymagają minimalizacji emisji węglowodorów, co obliguje producentów do rozwijania technologii zmniejszających ich obecność w spalinach.