Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik mechatronik
  • Kwalifikacja: ELM.03 - Montaż, uruchamianie i konserwacja urządzeń i systemów mechatronicznych
  • Data rozpoczęcia: 17 grudnia 2025 12:26
  • Data zakończenia: 17 grudnia 2025 12:47

Egzamin zdany!

Wynik: 21/40 punktów (52,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Z odległości jednego metra można zarejestrować temperaturę obudowy urządzenia

A. multimetrem.
B. fotometrem.
C. daloczułkiem.
D. pirometrem.
Wybór dalmierza, fotometru czy multimetru jako narzędzi do pomiaru temperatury obudowy urządzenia jest nieprawidłowy, ponieważ każde z tych urządzeń ma swoje specyficzne zastosowania, które nie obejmują bezpośredniego pomiaru temperatury. Dalmierz jest narzędziem wykorzystywanym do pomiaru odległości, które działa na zasadzie pomiaru czasu, w jakim fala elektromagnetyczna przebywa dystans między nadajnikiem a obiektem. Nie posiada on jednak zdolności do wyczuwania temperatury, co czyni go nieodpowiednim do tego typu pomiarów. Fotometr, z drugiej strony, jest urządzeniem służącym do pomiaru natężenia światła, co również nie ma związku z pomiarem temperatury. Użycie fotometru w tym kontekście prowadzi do fundamentalnych błędów myślowych dotyczących jego funkcji i przeznaczenia. Multimetr, chociaż jest wszechstronnym narzędziem pomiarowym, również nie może być użyty do bezpośredniego pomiaru temperatury obiektu z odległości. Jego główne funkcje obejmują pomiar napięcia, prądu i oporu, a nie temperatury. W przypadku pomiarów temperatury, multimetr może być użyty tylko w połączeniu z odpowiednimi czujnikami, jednak wymaga to kontaktu z obiektem lub jego bliskiego umiejscowienia, co nie jest zgodne z zasadą pomiaru stosowaną w pirometrii. Zrozumienie właściwego zastosowania tych narzędzi jest kluczowe dla uzyskania dokładnych i wiarygodnych wyników pomiarów.

Pytanie 2

W systemie mechatronicznym interfejs komunikacyjny ma na celu łączenie

A. programatora ze sterownikiem
B. grupy siłowników z modułem rozszerzającym
C. silnika z pompą hydrauliczną
D. programatora z siłownikiem
Interfejs komunikacyjny w systemie mechatronicznym pełni kluczową rolę w umożliwieniu wymiany informacji pomiędzy różnymi komponentami systemu. W przypadku poprawnej odpowiedzi, czyli połączenia sterownika z programatorem, mamy do czynienia z fundamentalnym aspektem integracji i automatyzacji. Sterownik, jako serce systemu mechatronicznego, interpretuje dane z czujników i generuje sygnały sterujące do różnych elementów wykonawczych, takich jak siłowniki czy pompy. Programator natomiast dostarcza odpowiednie algorytmy i logikę działania, co pozwala na precyzyjne sterowanie procesami. Przykładem zastosowania może być system automatyzacji w zakładzie produkcyjnym, gdzie sterownik komunikuje się z programatorem, aby precyzyjnie kontrolować cykl pracy maszyn. Tego typu komunikacja opiera się na standardach, takich jak CAN, Modbus czy Profibus, które zapewniają niezawodność i skalowalność systemów mechatronicznych. Przy odpowiedniej konfiguracji interfejsu komunikacyjnego możliwe jest również zdalne monitorowanie i diagnostyka, co podnosi efektywność operacyjną.

Pytanie 3

Jaki rodzaj zaworu powinien zostać zainstalowany w systemie, aby umożliwić przepływ medium wyłącznie w jednym kierunku?

A. Bezpieczeństwa
B. Rozdzielający
C. Odcinający
D. Zwrotny
Zawór zwrotny, znany również jako zawór jednokierunkowy, jest kluczowym elementem w wielu systemach hydraulicznych oraz pneumatycznych, którego głównym zadaniem jest umożliwienie przepływu medium w jednym kierunku, jednocześnie zapobiegając cofaniu się go. Działa na zasadzie automatycznej regulacji, co oznacza, że nie wymaga zewnętrznego źródła energii do działania. Zawory te są powszechnie stosowane w aplikacjach takich jak pompy, gdzie zapobiegają cofaniu się cieczy do pompy, co mogłoby prowadzić do uszkodzenia urządzenia. W praktyce, instalacje, które wymagają ciągłego przepływu medium w określonym kierunku, korzystają z zaworów zwrotnych, aby zapewnić ich efektywność i bezpieczeństwo. Ponadto, stosowanie zaworów zwrotnych jest zgodne z dobrymi praktykami inżynieryjnymi, ponieważ minimalizuje ryzyko awarii systemu oraz zapewnia jego stabilność operacyjną. W związku z tym, zawory zwrotne są niezbędnymi komponentami w systemach, gdzie kontrola kierunku przepływu medium jest krytyczna.

Pytanie 4

Sprężarka przepracowała w ciągu 3 miesięcy 500 godzin od początku jej zainstalowania w systemie. Na podstawie tabeli czynności konserwacyjnych wskaż rodzaj pracy konserwacyjnej, którą należy wykonać, aby utrzymać właściwą sprawność urządzenia.

Tabela czynności konserwacyjnych
Rodzaje prac konserwacyjnychHarmonogram konserwacji
Godziny pracyCo najmniej
ZWYKŁE CZYNNOŚCI KONSERWACYJNEDwa razy w miesiącu
Odprowadzenie kondensatu50Raz w tygodniu
Czyszczenie wstępnego filtra powietrza500Raz w miesiącu
Sprawdzenie poziomu leju, uzupełnienie oleju500
Czyszczenie filtra oleju500
Sprawdzenie pasa transmisyjnego1000Raz w roku
Sprawdzenie zapchania i czyszczenie chłodnicy2000Raz w roku
Wymiana filtra powietrza4000Raz w roku
Wymiana filtra oleju4000Raz w roku
Wymiana filtra na wylocie oleju4000Raz w roku
Wymiana jednokierunkowego zaworu zlewowego4000Raz w roku
A. Czyszczenie filtra oleju.
B. Wymiana filtra oleju.
C. Sprawdzenie pasa transmisyjnego.
D. Wymiana całego oleju.
Czyszczenie filtra oleju to naprawdę ważna sprawa, jeśli chodzi o konserwację sprężarek. Powinno to być robione zgodnie z tym, co mówi producent i co jest uznawane za dobry standard w branży. Jak sprężarka ma za sobą 500 godzin pracy, to czyszczenie filtra ma na celu pozbycie się zanieczyszczeń i brudu, które mogą wpłynąć na jakość oleju. Utrzymanie filtra w czystości to dobra rzecz, bo to nie tylko poprawia wydajność silnika, ale też przedłuża jego trwałość, co jest zgodne z normami jakości. Gdybyśmy tego nie robili, sprężarka mogłaby się przegrzewać, a jej efektywność mogłaby spadać. Przykładem tego może być regularne serwisowanie sprzętu w fabrykach, gdzie niezawodność sprężarek jest kluczowa dla całej produkcji.

Pytanie 5

Przedstawiony na rysunku czujnik Pt100 jest przeznaczony do pomiaru

Ilustracja do pytania
A. temperatury cieczy.
B. poziomu cieczy.
C. ciśnienia cieczy.
D. przepływu w cieczy.
Czujnik Pt100 jest jednym z najpowszechniej stosowanych czujników temperatury w przemyśle i laboratoriach. Jego zasada działania opiera się na zmianie rezystancji platyny w funkcji temperatury, co czyni go bardzo dokładnym i stabilnym rozwiązaniem. Przy 0°C rezystancja wynosi dokładnie 100 omów, co pozwala na precyzyjne pomiary w szerokim zakresie temperatur, zazwyczaj od -200°C do 850°C. Czujniki te są stosowane w wielu aplikacjach, od monitorowania procesów przemysłowych, przez systemy HVAC, aż po laboratoria naukowe. Warto podkreślić, że stosowanie czujników Pt100 jest zgodne z międzynarodowymi standardami, takimi jak IEC 60751, co zapewnia ich wysoką jakość i niezawodność. Dzięki ich precyzyjności i stabilności, czujniki te są często wybierane do zastosowań wymagających dokładnych danych temperaturowych, co w praktyce może wpływać na wydajność i bezpieczeństwo różnych procesów.

Pytanie 6

Siłownik hydrauliczny o parametrach znamionowych zamieszczonych w tabeli, w warunkach nominalnych zasilany jest czynnikiem roboczym o ciśnieniu

Parametry siłownika hydraulicznego
TłokØ 25 mm ÷ Ø 500 mm
TłoczyskoØ 16 mm ÷ Ø 250 mm
Skokdo 5000 mm
Ciśnienie nominalnePn = 35 MPa (350 bar)
Ciśnienie próbnePp = 1,5 x Pn
Prędkość przesuwu tłokaVmax = 0,5 m/s
Temperatura czynnika roboczego-25°C ÷ +200°C (248 K ÷ 473 K)
Temperatura otoczenia-20°C ÷ +100°C (253 K ÷ 373 K)
A. 525 bar
B. 70 bar
C. 350 bar
D. 35 bar
Wybór odpowiedzi 350 bar jako poprawnej opiera się na danych przedstawionych w tabeli parametrów siłownika hydraulicznego. Według tych danych, ciśnienie nominalne (Pn) wynosi 35 MPa, co jest równoważne 350 bar. Zastosowanie siłowników hydraulicznych o odpowiednich parametrach ciśnienia jest kluczowe w wielu branżach, takich jak budownictwo, przemysł motoryzacyjny czy robotyka, gdzie precyzyjne działanie i niezawodność są niezbędne. W praktyce, jeśli siłownik jest zasilany ciśnieniem przekraczającym jego parametry nominalne, może to prowadzić do uszkodzenia urządzenia, a w rezultacie do awarii systemu. Często w zastosowaniach inżynieryjnych zaleca się stosowanie marginesu bezpieczeństwa, aby uniknąć sytuacji, w której ciśnienie robocze zbliża się do maksymalnych wartości znamionowych. Dobrą praktyką jest również regularne monitorowanie stanu siłowników oraz ich parametrów, aby zapewnić ich prawidłową pracę i wydajność. Znajomość specyfikacji technicznych i właściwości materiałów, z których wykonane są siłowniki, ma bezpośredni wpływ na ich długowieczność i efektywność w działaniu.

Pytanie 7

Który symbol graficzny oznacza cewkę przekaźnika o opóźnionym załączaniu?

Ilustracja do pytania
A. A.
B. D.
C. C.
D. B.
Odpowiedź B jest poprawna, ponieważ znak graficzny cewki przekaźnika o opóźnionym załączaniu jest dobrze zdefiniowany w normach dotyczących symboli elektrycznych. Oznaczenie to zawiera charakterystyczny element w postaci dwóch przekątnych linii, które znajdują się w obrębie prostokąta reprezentującego cewkę. Te linie symbolizują opóźnienie czasowe, co jest istotne w kontekście zastosowania przekaźników w systemach automatyki. Przekaźniki o opóźnionym załączaniu są wykorzystywane w wielu aplikacjach, takich jak systemy zabezpieczeń, gdzie potrzebne jest opóźnienie przed aktywacją alarmu, bądź w układach automatyki domowej, gdzie używa się ich do kontroli oświetlenia lub urządzeń. Zrozumienie tego symbolu jest kluczowe dla inżynierów i techników, którzy zajmują się projektowaniem i wdrażaniem systemów elektrycznych, ponieważ pozwala to na prawidłowe interpretowanie schematów oraz zapewnienie ich zgodności z obowiązującymi standardami, takimi jak IEC 60617, co zwiększa przejrzystość i efektywność projektowania systemów elektronicznych.

Pytanie 8

Co oznaczają kolory przewodów w trójprzewodowych czujnikach zbliżeniowych prądu stałego?

A. niebieski - przewód sygnałowy; brązowy (czerwony) - przewód sygnałowy; czarny - minus zasilania; niebieski - plus zasilania
B. brązowy (czerwony) - plus zasilania; czarny - przewód sygnałowy; niebieski - minus zasilania
C. brązowy (czerwony) - minus zasilania; czarny - plus zasilania
D. brązowy (czerwony) - przewód sygnałowy; czarny - minus zasilania; niebieski - plus zasilania
Odpowiedź, w której brązowy (czerwony) przewód oznacza plus zasilania, czarny przewód to przewód impulsowy, a niebieski przewód to minus zasilania, jest prawidłowa i zgodna z powszechnie przyjętymi standardami branżowymi. W systemach zbliżeniowych prądu stałego kolorystyka przewodów ma kluczowe znaczenie dla zapewnienia prawidłowego działania urządzeń. Użycie brązowego lub czerwonego przewodu jako przewodu dodatniego (plus) jest normą w wielu krajach, a czarny przewód jest standardowo używany jako przewód sygnałowy lub impulsowy. Niebieski przewód w tym kontekście pełni funkcję przewodu ujemnego (minus). W praktyce, stosowanie się do tych oznaczeń ma kluczowe znaczenie dla prawidłowego podłączenia urządzeń, co zapobiega zwarciom oraz uszkodzeniom komponentów. W przypadku błędnego podłączenia, na przykład zamieniając przewody plus i minus, może dojść do uszkodzenia czujnika lub nieprawidłowego działania systemu. Przykładem zastosowania tej wiedzy może być instalacja systemów automatyki budynkowej, gdzie prawidłowe podłączenie czujników zbliżeniowych jest kluczowe dla ich efektywności.

Pytanie 9

Na rysunku przedstawiono wykres zależności sygnału wyjściowego od wielkości regulowanej (temperatury) regulatora

Ilustracja do pytania
A. dwustanowego.
B. impulsowego.
C. ciągłego.
D. trójstanowego.
Regulator dwustanowy charakteryzuje się tym, że jego wyjście może przyjmować jedynie dwa stany: włączony (1) lub wyłączony (0). W przedstawionym wykresie, sygnał wyjściowy zmienia się z 0 na 1 przy osiągnięciu temperatury 100°C, a następnie wraca do 0 po przekroczeniu kolejnej wartości 150°C. Takie zachowanie jest typowe dla regulatorów stosowanych w prostych aplikacjach, takich jak sterowanie grzałkami, klimatyzatorami czy systemami ogrzewania, gdzie istotne jest utrzymanie temperatury w określonych granicach. W praktyce, zastosowanie regulatorów dwustanowych pozwala na prostotę konstrukcji oraz łatwość w implementacji systemów automatyki. W kontekście standardów branżowych, regulator dwustanowy spełnia wymagania normy IEC 61131 dotyczącej programowalnych kontrolerów logicznych, co zapewnia jego uniwersalność i niezawodność w różnych zastosowaniach przemysłowych. Dodatkowo, jego prostota w konfiguracji czyni go popularnym wyborem w systemach HVAC, gdzie szybkość reakcji na zmiany temperatury jest kluczowa dla efektywności energetycznej.

Pytanie 10

Który z komponentów powinien zostać wymieniony w podnośniku hydraulicznym, gdy tłoczysko siłownika unosi się, ale po pewnym czasie samoistnie opada?

A. Tłokowy pierścień uszczelniający
B. Filtr oleju
C. Sprężynę zaworu zwrotnego
D. Zawór bezpieczeństwa
Tłokowy pierścień uszczelniający jest kluczowym elementem w podnośniku hydraulicznym, który zapewnia nieprzepuszczalność pomiędzy tłokiem a cylindrem. Gdy ten pierścień jest uszkodzony lub zużyty, może dochodzić do wycieków oleju hydraulicznego, co prowadzi do niepożądanych spadków ciśnienia i samoczynnego opadania tłoczyska siłownika. Zastosowanie odpowiednich materiałów do produkcji pierścieni uszczelniających, takich jak elastomery odpornie na działanie wysokich temperatur oraz chemikaliów, jest zgodne z najlepszymi praktykami w branży hydrauliki. Bardzo ważne jest regularne sprawdzanie i wymiana tłokowych pierścieni uszczelniających, co wpływa na niezawodność i bezpieczeństwo pracy urządzenia. Przykładowo, w zastosowaniach przemysłowych, takich jak podnośniki używane w warsztatach samochodowych, skuteczna uszczelka pozwala na stabilne podnoszenie pojazdów, eliminując ryzyko opadania, co z kolei chroni zdrowie pracowników oraz mienie. Właściwe utrzymanie tych elementów przyczynia się do długowieczności urządzenia i jego efektywności operacyjnej.

Pytanie 11

Co należy uczynić w przypadku rany z krwotokiem tętniczym?

A. przemyć ranę wodą utlenioną i oczekiwać na pomoc medyczną
B. założyć opaskę uciskową powyżej miejsca urazu
C. nałożyć opatrunek z jałowej gazy bezpośrednio na ranę
D. położyć poszkodowanego w pozycji bocznej ustalonej i czekać na pomoc medyczną
Założenie opatrunku z gazy jałowej bezpośrednio na ranę, przemycie rany wodą utlenioną, czy ułożenie poszkodowanego w pozycji bocznej ustalonej to działania, które w kontekście krwotoku tętniczego mogą być niewłaściwe i potencjalnie niebezpieczne. Opatrunek z gazy ma na celu jedynie zabezpieczenie rany przed zakażeniem i nie jest skuteczny w przypadku intensywnego krwawienia, jakim jest krwotok tętniczy. Gazy mogą wchłonąć część krwi, ale nie zatrzymają krwawienia, co grozi zaostrzeniem stanu pacjenta. Przemywanie rany wodą utlenioną również nie jest rekomendowane, ponieważ może prowadzić do uszkodzenia tkanek oraz zapozostawania resztek płynów, co może zwiększyć ryzyko infekcji. Ponadto, oczekiwanie na pomoc medyczną w pozycji bocznej ustalonej, stosowane w przypadku podejrzenia urazów kręgosłupa, nie jest adekwatną reakcją w sytuacji krwotoku. Kluczem do skutecznego działania w takich przypadkach jest natychmiastowe zatrzymanie krwawienia, co można osiągnąć tylko przez zastosowanie opaski uciskowej. Ignorowanie tej zasady może prowadzić do poważnych konsekwencji zdrowotnych, w tym do wstrząsu, a w skrajnych przypadkach do śmierci pacjenta. Dlatego niezwykle ważne jest, aby podejmować świadome decyzje w sytuacjach zagrożenia życia, kierując się wiedzą na temat skutecznych metod udzielania pierwszej pomocy.

Pytanie 12

Na rysunku przedstawiono

Ilustracja do pytania
A. frezowanie.
B. toczenie.
C. szlifowanie.
D. struganie.
Struganie to proces obróbki skrawaniem, gdzie narzędzie porusza się wzdłuż materiału, usuwając warstwę materiału. W przeciwieństwie do toczenia, przy którym obrabiany materiał obraca się, a narzędzie wykonuje ruch posuwowy, w struganiu materiał pozostaje nieruchomy lub przemieszcza się minimalnie. Narzędzie strugarskie ma charakterystyczny kształt, co pozwala na uzyskanie gładkiej powierzchni oraz precyzyjne wymiarowanie. Proces ten jest powszechnie stosowany w obróbce drewna oraz metali, umożliwiając uzyskanie odpowiednich wymiarów i kształtów elementów. Przykładowo, w przemyśle meblarskim struganie jest używane do wygładzania powierzchni drewnianych, co zwiększa estetykę i jakość wyrobu finalnego. Dobre praktyki związane z struganiem obejmują dobór odpowiednich narzędzi oraz parametrów obróbczych, takich jak prędkość posuwu i głębokość skrawania, co ma kluczowe znaczenie dla uzyskania optymalnych rezultatów i minimalizacji odpadów materiałowych.

Pytanie 13

Jakie jest przeznaczenie przedstawionego na rysunku zbiornika rozdzielonego elastyczną membraną, w którym jedna komora przeznaczona jest na ciecz pod ciśnieniem, a druga na gaz?

Ilustracja do pytania
A. Gromadzenie oleju transformatorowego.
B. Naolejanie powietrza.
C. Magazynowanie energii hydraulicznej.
D. Chłodzenie cieczy.
Wybór odpowiedzi, która sugeruje chłodzenie cieczy, wskazuje na pewne nieporozumienie dotyczące funkcji zbiorników z membraną. Zbiorniki te nie są zaprojektowane do chłodzenia, ponieważ ich głównym celem jest akumulowanie energii hydraulicznej, a nie regulowanie temperatury cieczy. Chłodzenie cieczy odbywa się zazwyczaj w dedykowanych układach chłodzenia z wymiennikami ciepła, a nie w zbiornikach akumulacyjnych. Podobnie, odpowiedź dotycząca gromadzenia oleju transformatorowego nie odpowiada funkcji opisanego zbiornika. Olej transformatorowy jest wykorzystywany w urządzeniach elektrycznych, a nie w hydraulice, gdzie zbiorniki z membraną są stosowane do przechowywania płynów hydraulicznych. Z kolei naolejanie powietrza jest procesem, który odnosi się do systemów pneumatycznych i nie ma bezpośredniego związku z funkcją akumulatora hydraulicznego. W konsekwencji, odpowiedzi te nie uwzględniają kluczowych właściwości i zastosowań systemów hydraulicznych, co może prowadzić do mylnych interpretacji ich funkcjonowania. W inżynierii hydraulicznej akumulatory są niezbędne do zapewnienia stabilności i efektywności systemu, a ich niewłaściwe zrozumienie prowadzi do niepoprawnych wniosków i projektów.

Pytanie 14

Przed wykonaniem czynności konserwacyjnych zawsze należy

A. zweryfikować stan izolacji.
B. uziemić urządzenie.
C. odłączyć urządzenie od źródła zasilania.
D. zdjąć obudowę.
Odłączenie urządzenia od prądu to naprawdę ważny krok, zanim zaczniemy cokolwiek robić przy konserwacji. Głównym powodem jest to, że chcemy zadbać o swoje bezpieczeństwo. Jeśli urządzenie jest pod napięciem, to może dojść do porażenia, co naprawdę może skończyć się tragicznie. W elektrotechnice mamy różne przepisy BHP, które mówią, że najpierw trzeba odłączyć zasilanie, zanim weźmiemy się do roboty. Po odłączeniu warto też upewnić się, że ktoś nie włączy sprzętu przypadkiem. Fajnie jest zastosować blokady i oznaczenia, które są zgodne z zasadą Lockout/Tagout (LOTO) - to takie standardy, które pomagają nam zachować bezpieczeństwo w pracy.

Pytanie 15

Jaką metodę pomiaru prędkości obrotowej powinno się zastosować do uwzględnienia ustalonej prędkości małego obiektu, gdy przerwanie procesu produkcyjnego jest niemożliwe, a miejsce pomiaru jest trudno dostępne?

A. Optyczną
B. Stroboskopową
C. Mechaniczną
D. Elektromagnetyczną
Metoda pomiaru prędkości obrotowej za pomocą stroboskopu jest idealnym wyborem w sytuacjach, gdy zachowanie ciągłości procesu produkcji jest kluczowe, a dostęp do miejsca pomiaru jest ograniczony. Stroboskopy działają na zasadzie emitowania błysków światła o określonym interwale czasowym, co pozwala na 'zamrożenie' ruchu obiektu i jego obserwację w czasie rzeczywistym. Taki sposób pomiaru jest nieinwazyjny, co oznacza, że nie zakłóca pracy urządzenia ani nie wymaga jego zatrzymywania. W praktyce stroboskopy wykorzystywane są w różnych gałęziach przemysłu, np. w produkcji, gdzie monitorowanie prędkości obrotowej silników jest kluczowe dla zachowania normatywnych wartości pracy maszyn. Zgodnie z normą ISO 10816, regularne kontrolowanie parametrów pracy maszyn pozwala na identyfikację potencjalnych problemów, co jest niezwykle istotne dla utrzymania efektywności i bezpieczeństwa produkcji. Stroboskopy są zatem uniwersalnym narzędziem, które pozwala na precyzyjny pomiar prędkości obrotowej w trudnych warunkach operacyjnych.

Pytanie 16

Jakiego koloru powinna być izolacja przewodu PE?

A. Żółto-zielony.
B. Brązowy.
C. Niebieski.
D. Zielony.
Jak wybierzesz zły kolor dla izolacji przewodu PE, możesz wpakować się w spore kłopoty związane z bezpieczeństwem. Na przykład, brązowy kolor zwykle jest używany dla przewodów fazowych, więc mogą być pomyłki przy podłączaniu. Gdy przewód PE jest źle oznaczony, to ryzyko porażenia prądem wzrasta, bo niebezpieczne napięcia mogą nie być dobrze odprowadzane. Oprócz tego, niebieski kolor stosuje się dla przewodów neutralnych, co też może wprowadzać zamieszanie. Zielony kolor bywa mylony z żółto-zielonym, co prowadzi do błędów przy podłączeniach. Na pewno znasz standardy w branży elektrycznej, one są niezbędne dla bezpieczeństwa wszystkich. Jakieś błędy w kolorze mogą dać fałszywe poczucie bezpieczeństwa i spowodować awarie urządzeń. Dlatego naprawdę trzeba trzymać się tych norm, żeby uniknąć problemów z bezpieczeństwem i funkcjonowaniem instalacji elektrycznych.

Pytanie 17

Jakie pomiary należy przeprowadzić, aby zidentyfikować awarię w urządzeniu mechatronicznym, które uruchamia wyłącznik różnicowoprądowy w chwili włączenia zasilania?

A. Poboru prądu
B. Rezystancji izolacji
C. Napięcia zasilania
D. Ciągłości uzwojeń
Wykonanie pomiaru napięcia zasilania, choć istotne w diagnozowaniu układów elektrycznych, nie jest wystarczające do zlokalizowania przyczyny zadziałania wyłącznika różnicowoprądowego. Pomiar ten dostarcza informacji o dostępności zasilania, ale nie daje odpowiedzi na pytanie o stan izolacji czy potencjalne upływy prądu. Z kolei pomiar ciągłości uzwojeń jest również niewłaściwą metodą w kontekście zadziałania wyłącznika różnicowoprądowego, ponieważ dotyczy on jedynie sprawdzenia, czy obwody są zamknięte i nie ma przerw w przewodach. Ciągłość uzwojeń nie dostarcza informacji o stanie izolacji, przez co nie pozwala na identyfikację problemu związanego z upływem prądu. Pomiar poboru prądu, chociaż może wskazywać na obciążenie układu, nie identyfikuje problemów izolacyjnych, które są kluczowe dla działania wyłączników różnicowoprądowych. Często w praktyce technicy mogą mylić zjawisko zadziałania wyłącznika z innymi problemami, co prowadzi do nieefektywnych działań naprawczych. Dlatego tak ważne jest, aby zrozumieć, że diagnostyka oparta na rezystancji izolacji jest fundamentem w zapewnieniu bezpieczeństwa i niezawodności systemów mechatronicznych.

Pytanie 18

Którego klucza należy użyć do zamocowania przedmiotu w uchwycie tokarki?

Ilustracja do pytania
A. B.
B. A.
C. D.
D. C.
Wybór niewłaściwego klucza do mocowania przedmiotu w uchwycie tokarki może prowadzić do poważnych problemów w trakcie obróbki. Klucze, które nie są dostosowane do gniazd sześciokątnych, takie jak klucze płaskie, mogą nie zapewniać odpowiedniego chwytu, co skutkuje nieprawidłowym dokręceniem lub wręcz zerwaniem śruby. Użycie klucza, który nie pasuje do specyfikacji uchwytu, może również prowadzić do uszkodzenia narzędzia lub obrabianego materiału, co jest niebezpieczne i kosztowne. Często występuje też mylne przekonanie, że klucz do śrub płaskich lub krzyżakowych może być użyty zamiennie z kluczem imbusowym, co jest błędne. Klucz imbusowy jest zaprojektowany tak, aby idealnie pasował do gniazda, co zapewnia równomierne rozłożenie siły i minimalizuje ryzyko uszkodzenia. Dodatkowo, klucze nieimbusy nie umożliwiają odpowiedniego momentu dokręcania, co jest niezbędne w zastosowaniach mechanicznych. Przestrzeganie zasad dotyczących użycia odpowiednich narzędzi jest kluczowe dla zapewnienia bezpieczeństwa i efektywności w pracy w warsztacie.

Pytanie 19

Aby zrealizować lutowanie na płytce drukowanej, konieczne jest użycie stacji lutowniczej oraz

A. obcinacze i szczypce
B. lampy UV i odsysacz
C. lampy UV i szczypce
D. obcinacze i odsysacz
Wybór obcinaczy i odsysacza, lampy UV i szczypców, czy lampy UV i odsysacza wskazuje na niezrozumienie podstawowych narzędzi oraz procesów wymaganych do lutowania. Odsysacz jest używany głównie do usuwania nadmiaru cyny z połączeń lutowanych, jednak nie jest to element niezbędny do samego wykonania lutowania, lecz narzędzie pomocnicze, które stosuje się w przypadku błędów lub poprawy połączeń. Niezrozumienie jego roli prowadzi do błędnego wniosku, że jest on kluczowy w standardowym procesie lutowania. Lampa UV, z kolei, jest stosowana w kontekście technologii lutowania w obszarze materiałów fotooptycznych i nie ma zastosowania w tradycyjnym lutowaniu komponentów elektronicznych, które wykorzystują cynę. Zastosowanie lampy UV w tym kontekście jest zupełnie nieadekwatne, co pokazuje brak znajomości standardów lutowania oraz technologii, które są podstawą w inżynierii elektronicznej. W praktyce, poprawne zrozumienie procesu lutowania wymaga znajomości narzędzi i ich właściwego zastosowania, co jest kluczowe dla uzyskania wysokiej jakości połączeń lutowanych.

Pytanie 20

Przedstawione na rysunku przebiegi czasowe są właściwe dla licznika o cyklu zliczania

Ilustracja do pytania
A. 9
B. 6
C. 4
D. 7
Wybór innej liczby jako cyklu zliczania wskazuje na brak zrozumienia fundamentów działania liczników binarnych. Cykle zliczania licznika binarnego są definiowane jako sekwencje, w których licznik przechodzi przez wszystkie możliwe stany, zanim wróci do stanu początkowego. W przypadku 4-bitowego licznika, gdy wszystkie bity są ustawione na niskim poziomie (0000) i zliczają do wartości maksymalnej (1111), pełny cykl zliczania kończy się, gdy licznik powraca do wartości 0, co jest równoznaczne z tym, że wszystkie bity wracają do stanu niskiego. Wybierając liczby takie jak 4, 7, czy 9, pomijasz kluczowe aspekty, które związane są z pełnym cyklem zliczania, jak np. zrozumienie, że cykl ten nie kończy się po osiągnięciu pojedynczego stanu, ale obejmuje przejście przez wszystkie możliwe stany. Typowym błędem jest mylenie momentów czasowych z rzeczywistym stanem wyjściowym liczników, co może prowadzić do nieprawidłowych wniosków w bardziej zaawansowanych aplikacjach, takich jak w systemach osłony czasowej czy w projektach wykorzystujących złożone liczniki o różnych bitach. W praktyce, wiedza o cyklach zliczania jest kluczowa w kontekście projektowania urządzeń cyfrowych, programowania i analizy systemów oraz może znacząco wpłynąć na efektywność procesów w systemach elektronicznych.

Pytanie 21

Jaką kolejność należy zastosować przy montażu zespołu do przygotowania powietrza, zaczynając od sprężarki?

A. smarownica, filtr powietrza, manometr
B. smarownica, filtr powietrza, zawór redukcyjny, manometr
C. manometr, filtr powietrza, smarownica
D. filtr powietrza, zawór redukcyjny z manometrem, smarownica
Montaż elementów systemu przygotowania powietrza jest kluczowy dla jego efektywności i bezpieczeństwa. Wybór niewłaściwej kolejności montażu może prowadzić do poważnych problemów, w tym uszkodzeń sprzętu oraz obniżenia efektywności systemu. Odpowiedzi, które nie uwzględniają zasady, że filtr powietrza należy zainstalować jako pierwszy, ignorują podstawową funkcję tego elementu. Filtr powietrza ma za zadanie usunąć zanieczyszczenia oraz wilgoć, które mogłyby uszkodzić inne elementy systemu. Montując smarownicę przed filtrem, ryzykujemy, że zanieczyszczenia dostaną się do smarowania, co może prowadzić do uszkodzenia zarówno smarownicy, jak i urządzeń, które ona zasilają. Ponadto, zawór redukcyjny powinien być umiejscowiony za filtrem, aby zapewnić, że ciśnienie regulowane jest na czystym i wysuszonej powietrzu, co jest zgodne z zasadą stosowania komponentów w optymalnych warunkach. Właściwa kolejność montażu jest nie tylko kwestią estetyki czy wygody, ale przede wszystkim funkcjonalności całego systemu oraz zgodności z normami technicznymi i branżowymi, które nakładają na nas obowiązek zapewnienia odpowiednich warunków dla pracy sprężonego powietrza.

Pytanie 22

Trójfazowy silnik elektryczny o podanych parametrach zasilany jest z sieci.
Silnik elektryczny: moc P = 4 kW i cosφ = 0,75
Zasilany z sieci: 400 V; 3/PE ~, 50 Hz.
Prąd pobierany przez silnik z sieci jest równy

A. 5,77 A
B. 7,70 A
C. 13,33 A
D. 10,00 A
Poprawna odpowiedź wynika z obliczeń mocy dla trójfazowego silnika elektrycznego. Moc czynna (P) silnika można obliczyć za pomocą wzoru P = √3 × U × I × cos(φ), gdzie U to napięcie zasilania, I to prąd, a cos(φ) to współczynnik mocy. W tym przypadku mamy 4 kW mocy, współczynnik mocy 0,75 oraz napięcie 400 V. Obliczając prąd, przekształcamy wzór do postaci I = P / (√3 × U × cos(φ)). Podstawiając wartości, otrzymujemy I = 4000 W / (√3 × 400 V × 0,75) co daje około 7,70 A. Dzięki tym obliczeniom możemy zrozumieć, jak ważne jest uwzględnienie wszystkich parametrów w obliczeniach elektrycznych. Praktyczne zastosowanie tej wiedzy ma miejsce przy projektowaniu instalacji elektrycznych oraz doborze zabezpieczeń, które muszą być odpowiednio dobrane do wartości prądu znamionowego urządzeń. W branży elektrycznej standardy dotyczące doboru mocy i prądu są kluczowe dla zapewnienia bezpieczeństwa oraz efektywności energetycznej.

Pytanie 23

Przez jaki element manipulatora realizowane są różne operacje manipulacyjne?

A. Regulatora
B. Silnika
C. Sondy
D. Chwytaka
Chwytak jest kluczowym elementem w systemach manipulacyjnych, odpowiedzialnym za wykonywanie operacji manipulacyjnych. Jego zadaniem jest chwytanie, przenoszenie i wydawanie obiektów w zadanych lokalizacjach, co jest fundamentalne w automatyzacji procesów produkcyjnych i logistycznych. Chwytaki mogą mieć różne formy, takie jak chwytaki pneumatyczne, elektryczne czy hydrauliczne, co pozwala na dostosowanie ich do specyfiki manipulowanych obiektów. Przykładowo, w przemyśle motoryzacyjnym chwytaki są wykorzystywane do montażu komponentów, gdzie precyzyjne i szybkie operacje są kluczowe dla efektywności produkcji. W praktyce, dobór odpowiedniego chwytaka wymaga analizy właściwości manipulowanych przedmiotów, takich jak ich waga, kształt i materiał, co jest zgodne z dobrą praktyką projektowania systemów automatyzacji. Standardy, takie jak ISO 9283, dotyczące oceny wydajności chwytaków, są również istotne, zapewniając ich odpowiednią funkcjonalność w zastosowaniach industrialnych.

Pytanie 24

W układzie zasilającym napęd pneumatyczny urządzenia mechatronicznego zamontowano zespół przygotowania powietrza złożony z 4 elementów. Którą z wymienionych funkcji realizuje element, którego symbol graficzny wskazuje strzałka?

Ilustracja do pytania
A. Reguluje poziom ciśnienia w układzie.
B. Filtruje powietrze dostarczane ze sprężarki.
C. Wprowadza mgłę olejową do układu.
D. Osusza powietrze dostarczane z sprężarki.
Wybór nieprawidłowej odpowiedzi wskazuje na pewne nieporozumienia dotyczące funkcji elementów w układzie przygotowania powietrza. W przypadku odpowiedzi dotyczących regulacji ciśnienia, warto zaznaczyć, że ta funkcja jest typowo realizowana przez regulator ciśnienia, a nie filtr. Regulator ciśnienia stabilizuje ciśnienie powietrza w układzie, co jest krytyczne dla zapewnienia prawidłowego działania urządzeń pneumatycznych. Przyjęcie, że filtr powietrza reguluje ciśnienie, może prowadzić do błędnego doboru komponentów, co w konsekwencji wpłynie na efektywność całego systemu. Z kolei osuszanie powietrza to funkcja wykonywana przez osuszacz, a nie filtr. Osuszacze eliminują wilgoć z powietrza, co jest równie istotne, gdyż nadmiar wody w systemie pneumatycznym może powodować korozję i inne problemy operacyjne. Co więcej, wprowadzenie mgły olejowej do układu jest funkcją naolejacza, który zapewnia smarowanie elementów ruchomych. Te nieporozumienia w ocenie funkcji mogą prowadzić do niedokładności w projektowaniu układów pneumatycznych oraz ich późniejszej eksploatacji. Dlatego tak ważne jest, aby dokładnie rozumieć różnice między poszczególnymi komponentami oraz ich rolami w układzie zasilającym.

Pytanie 25

Podzespół instalacji pneumatycznej, którego fragment dokumentacji technicznej przedstawiono poniżej, służy do usuwania

Dane techniczne:

  • całość można rozmontować i użyć jako osobne urządzenia (filtro-reduktor i olejarka)
  • filtr to podstawa do otrzymania czystego powietrza szczególnie w lakiernictwie
  • zalecany dla wszystkich pneumatycznych narzędzi takich jak: klucze, piły pneumatyczne, młotki itd.
  • ciśnienie jest dokładnie ustawialne dzięki zastosowanemu regulatorowi na filtrze
  • można też dokładnie ustawić wielkość mgły olejowej poprzez śrubę regulacyjną
  • filtr jest wyposażony w półautomatyczny spust kondensatu
  • przepływ powietrza na poziomie 750 l/min.
Ilustracja do pytania
A. oleju, wilgoci i wytwarzania nadciśnienia powietrza.
B. zanieczyszczeń powietrza w postaci drobin stałych i cząstek oleju.
C. zanieczyszczeń powietrza w postaci drobin stałych, redukowania ciśnienia i naolejania powietrza.
D. wilgoci z powietrza oraz stabilizowania jego ciśnienia i temperatury.
Wybór nieprawidłowej odpowiedzi wskazuje na pewne nieporozumienia dotyczące roli podzespołu instalacji pneumatycznej. Zanieczyszczenia powietrza to kluczowy element, który musi być skutecznie kontrolowany, aby zapewnić optymalną wydajność narzędzi pneumatycznych. Odpowiedzi sugerujące, że podzespół zajmuje się usuwaniem wilgoci lub stabilizowaniem ciśnienia i temperatury, mogą prowadzić do błędnych wniosków. Wilgoć w układzie pneumatycznym może prowadzić do korozji i uszkodzeń, a stabilizacja ciśnienia i temperatury to zadanie, które bardziej przypisane jest innym systemom. Niepoprawne odpowiedzi mogą także sugerować, że redukcja ciśnienia oraz naolejanie są niezwiązane z usuwaniem zanieczyszczeń, co jest nieprawdziwe. Te elementy są kluczowe w kontekście prawidłowego funkcjonowania systemów pneumatycznych, a ich niewłaściwe zrozumienie może prowadzić do nieefektywności w procesach przemysłowych. Właściwe zastosowanie filtrów, reduktorów i oliwiarek stanowi fundament dobrej praktyki w inżynierii pneumatycznej, a ich prawidłowe funkcjonowanie ma za zadanie nie tylko poprawić wydajność, ale również wydłużyć żywotność sprzętu. Niezrozumienie tych aspektów prowadzi do ryzyka awarii i zwiększenia kosztów związanych z konserwacją i naprawami.

Pytanie 26

W pomiarze deformacji konstrukcji nośnych najczęściej wykorzystuje się czujniki, które działają na zasadzie

A. zmiany rezystancji
B. efektu piezoelektrycznego
C. zmiany indukcyjności własnej
D. zmiany pojemności elektrycznej
W przypadku pomiarów odkształceń, metody oparte na zmianie indukcyjności własnej, pojemności elektrycznej oraz efekcie piezoelektrycznym nie są tak powszechnie stosowane jak tensometry. Zmiana indukcyjności własnej może być wykorzystywana w niektórych aplikacjach, jednak nie jest ona standardowym rozwiązaniem w kontekście monitorowania odkształceń konstrukcji nośnych. Wzory analityczne związane z tą metodą często wymagają skomplikowanych obliczeń oraz precyzyjnego dostrojenia, co czyni je mniej praktycznymi w realnych zastosowaniach budowlanych. Zmiana pojemności elektrycznej może być używana w czujnikach pojemnościowych, jednak ich zastosowanie w kontekście monitorowania odkształceń wymaganych w inżynierii budowlanej nie jest tak efektywne. Efekt piezoelektryczny, zaś, mimo że ma swoje miejsce w technologii czujników, głównie w aplikacjach takich jak detekcja drgań, nie jest typowym sposobem na pomiar odkształceń konstrukcyjnych. Te metody mogą prowadzić do błędów pomiarowych, zwłaszcza w dynamicznych warunkach pracy konstrukcji, gdzie tensometry zapewniają znacznie większą dokładność i niezawodność. Zastosowanie bardziej skomplikowanych technologii powinno być zarezerwowane dla specyficznych przypadków, gdzie prostsze metody, takie jak zmiana rezystancji, nie mogą być zastosowane.

Pytanie 27

Którego z wymienionych przyrządów pomiarowych należy użyć do wykonania pomiaru szerokości otworu nieprzelotowego, blisko dna otworu w sposób przedstawiony na rysunku?

Ilustracja do pytania
A. Głębokości omierza.
B. Wysokościomierza.
C. Przymiaru liniowego.
D. Średnicówki czujnikowej.
Średnicówka czujnikowa jest narzędziem najwyższej precyzji, które umożliwia dokładne pomiary średnicy wewnętrznej otworów, co jest kluczowe w zadaniach inżynieryjnych i produkcyjnych. Użycie tego przyrządu w kontekście pomiaru szerokości otworu nieprzelotowego blisko dna otworu jest uzasadnione, ponieważ średnicówka czujnikowa jest zaprojektowana do wykonywania pomiarów na określonej głębokości. Na przykład, w przemyśle motoryzacyjnym, gdzie precyzyjne dopasowanie części ma kluczowe znaczenie, zastosowanie średnicówki czujnikowej pozwala inżynierom na dokładne określenie wymagań dotyczących tolerancji. Zgodnie z normami ISO 2768, które dotyczą tolerancji wymiarowej, precyzyjne pomiary są niezbędne, aby zapewnić jakość produktów. Średnicówki czujnikowe są wykorzystywane również w laboratoriach badawczych do oceny wyników prób materiałowych, co podkreśla ich wszechstronność i zastosowanie w różnych dziedzinach inżynierii.

Pytanie 28

Sprężarka typu śrubowego jest sprężarką

A. przepływową
B. wyporową
C. rotacyjną
D. turbinową
Sprężarki turbinowe nie są tym samym, co sprężarki śrubowe, ponieważ opierają się na zupełnie innej zasadzie działania. Turbiny sprężają gaz poprzez jego przyspieszenie w wirnikach, co prowadzi do wzrostu ciśnienia. Ta metoda jest bardziej charakterystyczna dla sprężarek używanych w silnikach lotniczych lub w systemach generacji energii. Z kolei sprężarki wyporowe działają na zasadzie zmiany objętości, gdzie tłok porusza się w cylindrze, sprężając gaz. To rozwiązanie, chociaż powszechnie stosowane w mniejszych urządzeniach, ma swoje ograniczenia w kontekście efektywności przy dużych przepływach. Ostatnią z wymienionych opcji, sprężarki przepływowe, również różnią się od sprężarek rotacyjnych, gdyż ich konstrukcja opiera się na ciągłym przepływie gazu przez układ, co czyni je bardziej odpowiednimi dla specyficznych zastosowań przemysłowych, a nie uniwersalnych. Mylenie tych różnych typów sprężarek wynika często z niewłaściwego zrozumienia ich mechanizmów działania, co prowadzi do błędnych wniosków. Kluczowe jest zrozumienie, że każdy typ sprężarki ma swoje unikalne cechy, zalety i ograniczenia, które determinują ich zastosowanie w praktyce. Właściwy dobór sprężarki powinien być uzależniony od specyficznych wymagań procesu oraz warunków operacyjnych.

Pytanie 29

Który proces technologiczny przedstawiono na rysunku?

Ilustracja do pytania
A. Struganie.
B. Dłutowanie.
C. Frezowanie.
D. Toczenie.
Struganie to proces technologiczny, który polega na usuwaniu materiału z obrabianego przedmiotu za pomocą narzędzia, które wykonuje ruch posuwisto-zwrotny. W przeciwieństwie do toczenia, gdzie przedmiot obrabiany obraca się, a narzędzie pozostaje statyczne, w struganiu to narzędzie porusza się w prostoliniowym ruchu. Proces ten jest szeroko stosowany w obróbce drewna, metalu oraz tworzyw sztucznych, gdzie uzyskuje się wysoką jakość powierzchni oraz precyzyjne wymiary. W praktyce struganie jest wykorzystywane w produkcji elementów meblowych, form i matryc, a także w precyzyjnych operacjach obróbczych, gdzie wymagana jest dokładność. Zgodnie z normami branżowymi, w procesie strugania kluczowe jest właściwe dobranie narzędzi oraz parametrów obróbczych, co zapewnia efektywność i jakość procesu. Dobre praktyki w struganiu obejmują także regularne kontrolowanie stanu narzędzi oraz optymalizację ściegów w celu minimalizacji zużycia materiałów.

Pytanie 30

W siłowniku o jednostronnym działaniu, w trakcie realizacji ruchu roboczego tłoka, doszło do nagłego wstrzymania ruchu tłoczyska. Ruch ten odbywał się bez obciążenia i nie zaobserwowano nieszczelności w układzie pneumatycznym. Jakie mogą być przyczyny zatrzymania tłoczyska?

A. blokada odpowietrzania
B. niespodziewany spadek ciśnienia roboczego
C. zakleszczenie tłoka
D. wyboczenie tłoczyska
Zakleszczenie tłoka w siłowniku jednostronnego działania może być przyczyną nagłego zatrzymania ruchu tłoczyska, co jest szczególnie istotne w kontekście działania urządzeń pneumatycznych. W przypadku braku obciążenia, jak w opisanym scenariuszu, wszelkie nieprawidłowości w ruchu tłoka mogą prowadzić do zacięcia, co skutkuje zatrzymaniem wyjścia roboczego. Zakleszczenie może być spowodowane różnymi czynnikami, takimi jak zanieczyszczenia wewnętrzne, niewłaściwe smarowanie, czy też uszkodzenia mechaniczne. Praktycznie, w systemach, w których stosuje się siłowniki, regularna konserwacja i czyszczenie układów pneumatycznych są kluczowe dla zapewnienia ich niezawodności. Standardy branżowe, jak ISO 5598, podkreślają znaczenie odpowiedniego projektowania oraz użytkowania komponentów pneumatycznych, aby minimalizować ryzyko zakleszczeń. W związku z tym, monitorowanie stanu technicznego siłowników oraz wdrażanie odpowiednich procedur serwisowych są kluczowe w praktyce inżynieryjnej.

Pytanie 31

Do jakiej kategorii pomiarów można zakwalifikować pomiar długości gwintowanego fragmentu śruby przy użyciu przymiaru kreskowego?

A. Pośrednich
B. Złożonych
C. Uwikłanych
D. Bezpośrednich
Pomiar długości nagwintowanego odcinka śruby nie może być klasyfikowany jako złożony, uwikłany ani pośredni. Pojęcia te odnoszą się do różnych metod pomiarowych, które obejmują bardziej skomplikowane procesy lub obliczenia. Złożone pomiary wymagają zastosowania kilku różnych narzędzi lub metod do uzyskania końcowego wyniku, co w przypadku bezpośredniego pomiaru długości nie ma miejsca. Uwikłane pomiary odnoszą się do sytuacji, gdzie wyniki są zależne od wielu czynników, co nie ma zastosowania w prostym pomiarze długości. Natomiast pomiary pośrednie polegają na obliczaniu jednego wymiaru na podstawie innych wymiarów, co również nie dotyczy pomiaru bezpośredniego, gdzie mierzona wartość uzyskiwana jest natychmiast. Osiągając niewłaściwą odpowiedź, można wpaść w pułapkę myślową, zakładając, że każdy pomiar, który wymaga użycia narzędzi, musi być złożony lub pośredni. W rzeczywistości prostota pomiaru bezpośredniego w kontekście narzędzi i metod jest kluczowa dla zapewnienia efektywności i dokładności w procesach inżynieryjnych.

Pytanie 32

Modulacja szerokości impulsu (PWM) w systemach sterujących odnosi się do regulacji poprzez zmianę

A. amplitudy impulsu
B. częstotliwości sygnału
C. szerokości impulsu
D. fazy sygnału
W poprzednich odpowiedziach pojawiły się koncepcje, które nie odpowiadają zasadom działania modulatorów PWM. Zmiana częstotliwości sygnału nie jest głównym sposobem działania PWM, ale może wpływać na wydajność w pewnych kontekstach. W rzeczywistości, w PWM częstotliwość pozostaje stała, a zmienia się szerokość impulsów. Amplituda impulsu również nie odgrywa kluczowej roli w PWM, gdyż sygnał PWM zazwyczaj operuje na stałym poziomie napięcia, a jego moc modyfikowana jest przez szerokość impulsu, a nie jego wysokość. W kontekście fazy sygnału, jest to zupełnie inna technika modulacji, która nie ma zastosowania w PWM. Zmiana fazy może wprowadzać inne zjawiska, takie jak interferencja w falach sinusoidalnych, ale nie ma związku z modulacją szerokości impulsu. Typowym błędem myślowym jest mylenie tych różnych technik, co prowadzi do nieporozumień dotyczących ich zastosowań i skuteczności. Zrozumienie, że PWM koncentruje się na szerokości impulsu, jest kluczowe dla prawidłowego zastosowania tej technologii w praktycznych aplikacjach, takich jak sterowanie silnikami czy regulacja jasności światła.

Pytanie 33

Aby chronić silnik przed wystąpieniem napięcia zasilającego po krótkim zgaśnięciu, należy użyć przekaźnika

A. nadnapięciowy zwłoczny
B. podnapięciowy zwłoczny
C. różnicowoprądowy
D. nadprądowy zwłoczny
Wybór innych typów przekaźników, takich jak nadnapięciowy zwłoczny, nadprądowy zwłoczny czy różnicowoprądowy, nie jest odpowiedni w kontekście zabezpieczania silnika przed pojawieniem się napięcia zasilania po krótkotrwałym zaniku. Przekaźnik nadnapięciowy zwłoczny jest zaprojektowany do wyłączania obwodu, gdy napięcie przekracza ustaloną wartość, co w przypadku zaniku napięcia nie zabezpiecza silnika, lecz może doprowadzić do niebezpiecznej sytuacji, gdy napięcie powraca. Nadprądowy zwłoczny z kolei ma na celu zabezpieczenie przed przeciążeniem, a nie przed zanikami napięcia, więc jego funkcjonalność w tym kontekście będzie niewystarczająca. Przekaźnik różnicowoprądowy wykrywa różnice w prądzie między przewodami roboczymi, chroniąc przed porażeniem elektrycznym, ale nie zareaguje na zmiany w napięciu zasilania. Wybór niewłaściwego przekaźnika może prowadzić do potencjalnych uszkodzeń silnika, a także stwarzać ryzyko dla osób pracujących w pobliżu. Dlatego istotne jest zrozumienie specyfiki działania różnych typów przekaźników, aby skutecznie zabezpieczyć urządzenia w warunkach zmienności napięcia zasilania.

Pytanie 34

Którymi cyframi oznaczono moduły wejść i wyjść dyskretnych sterownika PLC?

Ilustracja do pytania
A. Wejścia cyfrowe – 4, wyjścia cyfrowe – 2.
B. Wejścia cyfrowe – 1, wyjścia cyfrowe – 3.
C. Wejścia cyfrowe – 3, wyjścia cyfrowe – 4.
D. Wejścia cyfrowe – 2, wyjścia cyfrowe – 1.
W przypadku niepoprawnych odpowiedzi możemy zauważyć typowe nieporozumienia dotyczące funkcjonalności modułów w sterownikach PLC. Odpowiedzi sugerujące mniejszą liczbę wejść lub wyjść mogą wynikać z niepełnego zrozumienia zasad działania modułów cyfrowych. Przyjęcie, że wejścia cyfrowe są oznaczone cyframi 2, 1 czy 3, może prowadzić do nieodpowiedniego wyboru komponentów w systemie automatyki. W rzeczywistości, liczba wejść i wyjść powinna być dostosowana do wymagań aplikacji, a nie na zasadzie subiektywnego osądu. Na przykład, jeśli system ma obsługiwać więcej czujników, konieczne jest posiadanie większej liczby wejść, co jest niezgodne z powszechnymi praktykami. W przemyśle automatyzacyjnym standardem jest projektowanie systemów z odpowiednią ilością modułów, co zapewnia elastyczność i możliwość rozbudowy. Liczby 2 czy 1 w kontekście wyjść cyfrowych także mogą wskazywać na ograniczenia w zdolności sterowania, co w praktyce może prowadzić do problemów z implementacją urządzeń w systemie. Aby uniknąć takich błędów, kluczowe jest, aby projektanci i inżynierowie automatyki dokładnie analizowali potrzeby aplikacji, bazując na rzeczywistych wymaganiach, a także stosowali się do dobrych praktyk w zakresie doboru sprzętu i projektowania układów sterujących.

Pytanie 35

Aby przeprowadzić bezdotykowy pomiar bardzo wysokiej temperatury, powinno się użyć

A. pirometru
B. termopary
C. termometru rezystancyjnego
D. termometru półprzewodnikowego
Pirometr to instrument przeznaczony do bezdotykowego pomiaru temperatury, wykorzystujący promieniowanie podczerwone emitowane przez obiekty. Jego działanie opiera się na zasadzie, że wszystkie obiekty emitują promieniowanie w zależności od swojej temperatury. Pirometry są szczególnie przydatne w sytuacjach, gdzie tradycyjne metody pomiaru, takie jak termometry cieczowe czy termopary, są niewłaściwe lub niemożliwe do zastosowania, na przykład w przypadku gorących lub trudno dostępnych powierzchni. W przemyśle metalurgicznym, hutniczym czy w obiektach energetycznych pirometry znajdują szerokie zastosowanie do monitorowania procesów technologicznych oraz do oceny temperatury w piecach. Standardy takie jak ASTM E2877-13 definiują metody i procedury pomiarowe dla pirometrów, co zwiększa ich wiarygodność i precyzję. Dzięki zastosowaniu pirometrów można także uniknąć kontaktu z niebezpiecznymi materiałami oraz zredukować ryzyko uszkodzenia czujników w ekstremalnych warunkach temperaturowych.

Pytanie 36

Jakiego rodzaju cieczy hydraulicznej powinno się użyć w urządzeniu hydrauliczny, które może być narażone na kontakt z otwartym ogniem?

A. HV - dla urządzeń funkcjonujących w zmiennych warunkach temperatury
B. HFA - emulsja olejowo-wodna, mająca w składzie ponad 80 % wody
C. HT - ester syntetyczny, najlepiej ulegający biodegradacji
D. HTG - produkowana na bazie olejów roślinnych, rozpuszczalna w wodzie
Odpowiedź HFA, czyli emulsja olejowo-wodna, zawierająca ponad 80% wody, jest prawidłowa w kontekście pracy urządzeń hydraulicznych w warunkach zagrożenia pożarowego. Tego rodzaju ciecz hydrauliczna charakteryzuje się znacznie wyższą odpornością na wysokie temperatury i działanie ognia, co jest kluczowe w miejscach, gdzie istnieje ryzyko kontaktu z otwartym płomieniem. W przypadku wycieku emulsji olejowo-wodnej, woda działa jako czynnik chłodzący, minimalizując ryzyko pożaru. Tego rodzaju cieczy hydrauliczne są szeroko stosowane w przemyśle, gdzie praca z substancjami łatwopalnymi jest powszechna, jak na przykład w rafineriach, piecach przemysłowych czy zakładach chemicznych. Zgodnie z normami, takimi jak NFPA (National Fire Protection Association), stosowanie cieczy o obniżonej palności, takich jak HFA, jest zalecane w środowiskach o wysokim ryzyku pożaru. Dodatkowo, emulsje olejowo-wodne są często używane w zastosowaniach, gdzie wymagane jest smarowanie oraz chłodzenie, co czyni je wszechstronnym rozwiązaniem w hydraulice przemysłowej.

Pytanie 37

Pralka automatyczna nie reaguje po naciśnięciu przycisku zasilania. Co może być przyczyną takiej sytuacji?

A. usterką silnika pralki
B. niewłaściwym zerowaniem obudowy silnika pralki
C. brakiem dopływu wody do urządzenia
D. brakiem zasilania elektrycznego
Wybór odpowiedzi dotyczącej niesprawności silnika pralki, braku dopływu wody czy nieskutecznego zerowania korpusu silnika może być mylny, ponieważ wszystkie te czynniki wymagają, aby pralka była najpierw zasilana elektrycznością. W przypadku niesprawności silnika, pralka mogłaby wykazywać inne oznaki życia, takie jak hałas czy drżenie, a nie całkowity brak reakcji. Brak dopływu wody do pralki, choć istotny dla prawidłowego funkcjonowania urządzenia, nie jest przyczyną, dla której pralka nie włącza się. W takim przypadku, pralka mogłaby zasygnalizować problem poprzez odpowiednie diody LED lub błędy na wyświetlaczu, a nie przez całkowity brak reakcji. Nieskuteczne zerowanie korpusu silnika to również mało prawdopodobna przyczyna, ponieważ zjawisko to dotyczy bardziej zaawansowanych usterek, które manifestują się w czasie pracy pralki, a nie na etapie włączania. Typowym błędem myślowym jest zatem zakładanie, że usterki mechaniczne mogą wykluczyć zasilanie elektryczne, co jest fundamentalnym błędem w diagnostyce urządzeń elektrycznych.

Pytanie 38

Silnik krokowy (skokowy) nie reaguje na próby zmiany prędkości obrotów. Możliwą przyczyną nieprawidłowego działania silnika może być

A. brak modyfikacji częstotliwości impulsów z kontrolera
B. nadmierne obciążenie silnika
C. wysyłanie impulsów sterujących w błędnej kolejności
D. zbyt wysokie napięcie zasilające
Podawanie impulsów sterujących w niewłaściwej kolejności może wpływać na działanie silnika krokowego, jednak nie jest to przyczyna braku zmiany prędkości obrotowej w kontekście tego pytania. Silniki krokowe działają na zasadzie sekwencyjnego przełączania poszczególnych cewek, które odpowiadają za obrót wirnika. Jeśli impulsy są podawane w niewłaściwej kolejności, może to skutkować zablokowaniem silnika lub nieprawidłowym ruchem, jednak nie wstrzyma to samej zmiany prędkości. Zbyt duże obciążenie silnika również może prowadzić do problemów, takich jak nadmierne grzanie lub zmniejszenie momentu obrotowego, ale nie bezpośrednio do braku zmiany prędkości - silnik może wciąż reagować na zmiany prędkości, nawet jeśli z trudnością. Z kolei zbyt wysokie napięcie zasilania przynosi ryzyko uszkodzenia silnika i nie jest standardem pracy silników krokowych, które powinny być zasilane napięciem zgodnym z ich specyfikacją. Te koncepcje często prowadzą do nieporozumień. Kluczowe jest zrozumienie, że silnik krokowy wymaga odpowiedniej częstotliwości impulsów, aby móc swobodnie zmieniać swoją prędkość obrotową. Osoby zajmujące się projektowaniem systemów automatyki powinny zwracać szczególną uwagę na konfigurację systemów sterowania, aby uniknąć takich błędów w przyszłości.

Pytanie 39

Jakie komponenty powinny być wykorzystane do stworzenia półsterowanego mostka prostowniczego?

A. Triaki
B. Triaki oraz diaki
C. Diody i tyrystory
D. Diody
Półsterowany mostek prostowniczy to układ, który wykorzystuje diody oraz tyrystory do konwersji prądu zmiennego na prąd stały. Użycie diod w tym układzie jest kluczowe, ponieważ pełnią one funkcję prostowników, umożliwiając przepływ prądu w jednym kierunku. Tyrystory natomiast pozwalają na kontrolowanie momentu, w którym prąd zaczyna płynąć, co jest szczególnie istotne w aplikacjach wymagających regulacji mocy. Przykładem zastosowania półsterowanego mostka prostowniczego jest zasilanie silników elektrycznych, gdzie konieczne jest nie tylko prostowanie, ale także kontrolowanie prędkości obrotowej silnika. W takich aplikacjach zarządzanie energią i efektywnością jest kluczowe, a użycie tyrystorów pozwala na uzyskanie lepszej jakości sygnału oraz redukcję strat energii. Zgodnie z normami branżowymi, takie układy są często wykorzystywane w przemyśle automatyki, a ich prawidłowe projektowanie wymaga znajomości zasad działania komponentów elektronicznych oraz ich interakcji w obwodach. W praktyce, dobrze zaprojektowany mostek prostowniczy zwiększa niezawodność i efektywność systemu zasilania.

Pytanie 40

Które oprogramowanie należy zainstalować do tworzenia wizualizacji procesu przedstawionego na rysunku?

Ilustracja do pytania
A. CAM
B. CAD
C. CAQ
D. SCADA
Odpowiedź SCADA jest poprawna, ponieważ oprogramowanie to jest kluczowym narzędziem w obszarze automatyki przemysłowej, stosowanym do nadzorowania oraz kontrolowania procesów technologicznych. SCADA (Supervisory Control and Data Acquisition) umożliwia zbieranie danych z różnych źródeł, takich jak czujniki i urządzenia pomiarowe, co pozwala na bieżąco monitorować stany procesów, w tym poziomy cieczy i przepływy, jak przedstawiono na załączonym rysunku. Przykładem zastosowania SCADA może być przemysł chemiczny, gdzie systemy te są wykorzystywane do monitorowania zbiorników z substancjami chemicznymi oraz kontrolowania ich przepływów, co zapewnia bezpieczeństwo oraz optymalizację procesów. Standardy takie jak ISA-95 i ISA-88 określają najlepsze praktyki dotyczące integracji systemów SCADA z innymi systemami automatyki i rozwoju wizualizacji procesów. SCADA nie tylko wspiera efektywność operacyjną, ale także pozwala na szybkie podejmowanie decyzji dzięki dostępowi do aktualnych danych.