Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik mechatronik
  • Kwalifikacja: ELM.03 - Montaż, uruchamianie i konserwacja urządzeń i systemów mechatronicznych
  • Data rozpoczęcia: 13 lutego 2026 00:54
  • Data zakończenia: 13 lutego 2026 01:10

Egzamin zdany!

Wynik: 32/40 punktów (80,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Rysunek przedstawia proces

Ilustracja do pytania
A. nitowania.
B. gwintowania.
C. frezowania.
D. wiercenia.
Wybrana odpowiedź, nitowanie, jest poprawna, ponieważ proces ten polega na łączeniu dwóch lub więcej elementów za pomocą nitów, które są mechanicznie łączone w wyniku zakuwania. Rysunek przedstawia charakterystyczne elementy, takie jak nit, dociągacz oraz zakuwka, co jednoznacznie wskazuje na ten proces. Nitowanie jest powszechnie stosowane w budownictwie i przemyśle lotniczym, gdzie wymagana jest wysoka odporność połączeń na obciążenia. Standardy ISO dotyczące nitów oraz ich stosowania w konstrukcjach gwarantują bezpieczeństwo i trwałość. Dobre praktyki w nitowaniu obejmują odpowiednie przygotowanie powierzchni połączeń oraz kontrolę jakości używanych materiałów. Proces nitowania może być również stosowany w produkcji mebli metalowych oraz w samochodach, co czyni go uniwersalnym w wielu branżach.

Pytanie 2

Którego urządzenia dotyczą podane w tabeli parametry?

Ilość wejść 24 VDC
Ilość wyjść przekaźnikowych
Rozszerzenie we/wyMaksymalna ilość
Maksymalna ilość we/wy
Pojemność programu
Czas przetwarzaniaInstrukcji podstawowych
systemowych
Pamięć danychWewnętrznych bajtów
Słów wewnętrznych
Timery
Liczniki
ZasilanieZnamionowe napięcie zasilania
A. Czujnika optycznego.
B. Silnika.
C. Falownika.
D. Sterownika PLC.
Sterownik PLC, czyli Programmable Logic Controller, jest kluczowym elementem w automatyzacji procesów przemysłowych. Parametry takie jak liczba wejść i wyjść, możliwość rozszerzenia tych wejść i wyjść, pojemność programu oraz czas przetwarzania instrukcji są typowe dla tego urządzenia. Sterowniki PLC są programowalne i umożliwiają realizację złożonych algorytmów sterujących, co jest niezbędne w nowoczesnych liniach produkcyjnych. Na przykład, w przemyśle motoryzacyjnym, sterowniki PLC mogą być używane do kontrolowania procesów montażowych, synchronizując pracę robotów i maszyn. Dodatkowo, możliwość monitorowania danych w czasie rzeczywistym oraz implementacji logiki sekwencyjnej dostosowuje je do różnych zastosowań, co potwierdza ich wszechstronność. Warto również podkreślić, że zastosowanie sterowników PLC zgodnie z zasadami automatyzacji, jak IEC 61131-3, zapewnia efektywność i zgodność z międzynarodowymi standardami.

Pytanie 3

Na podstawie przedstawionej tabliczki znamionowej pompy hydraulicznej określ jej maksymalną wydajność.

Ilustracja do pytania
A. 43 m
B. 4,50 m3/h
C. 0,75 kW
D. 1,20 kW
Odpowiedź 4,50 m3/h jest na pewno trafna, bo maksymalna wydajność pompy hydraulicznej jest jasno podana na tabliczce znamionowej. To ważne, żeby wiedzieć, ile cieczy pompa może przepompować w danym czasie, bo ma to ogromne znaczenie w różnych zastosowaniach przemysłowych. Na przykład w hydraulice, gdzie potrzebna jest konkretna ilość płynów do napędzania maszyn, znajomość wydajności pompy pozwala na jej lepsze dobranie. Stabilność tej wydajności w różnych warunkach też jest kluczowa. Dobrze zaprojektowany system hydrauliczny, bazujący na danych z tabliczki, może naprawdę poprawić efektywność energetyczną i wydłużyć żywotność maszyn. To, jak rozumiemy te kwestie, jest istotne zarówno dla projektantów, jak i dla operatorów maszyn.

Pytanie 4

Na schemacie przedstawiono układ sterowania hydraulicznego, który zapewnia

Ilustracja do pytania
A. szybkie odciążenie tłoczyska.
B. uzyskanie różnych prędkości tłoczyska w obu kierunkach.
C. połączenie różnicowe zasilania.
D. podtrzymanie tłoczyska przy zmieniających się siłach.
Dobra robota! Twoja odpowiedź pokazuje, że rozumiesz, jak działa hydrauliczny układ sterowania do regulacji prędkości tłoczyska. Wiesz, te dwa zawory dławiące naprawdę pomagają w precyzyjnym kontrolowaniu przepływu oleju, co jest mega ważne w różnych maszynach. Pomyśl tylko o robotach czy maszynach budowlanych – tam trzeba czasem dostosować prędkość, żeby wszystko działało jak należy. Dzięki tym zaworom operator może płynnie poruszać siłownikiem, co jest kluczowe, zwłaszcza przy precyzyjnych operacjach. W sumie, korzystanie z takich układów to nie tylko efektywność, ale i bezpieczeństwo. Super, że to rozumiesz!

Pytanie 5

Jaki przyrząd pomiarowy jest używany do wyznaczenia poziomu skrzynki montowanej jako osłona dla zamontowanego elektrozaworu?

A. Poziomnica
B. Mikrometr
C. Klepsydra
D. Kątomierz
Poziomnica jest narzędziem kontrolno-pomiarowym, które służy do określenia poziomu w różnych zastosowaniach budowlanych i montażowych. Jej działanie opiera się na małym pojemniku wypełnionym cieczą i zamontowanej w nim bąbelkowej poziomicy, która wskazuje, czy dany obiekt znajduje się w poziomie. Użycie poziomnicy jest kluczowe w przypadku montażu skrzynek na elektrozawory, ponieważ zapewnia, że elementy te będą stabilne i prawidłowo funkcjonujące, co ma bezpośredni wpływ na ich efektywność operacyjną. Przykładowo, w systemach hydraulicznych, niezrównoważone montaż skrzynki może prowadzić do awarii, a nawet uszkodzenia sprzętu. Dobre praktyki branżowe zazwyczaj zalecają korzystanie z poziomnicy przed finalnym zamocowaniem elementów, co pozwala na eliminację potencjalnych błędów i zapewnienie długotrwałej niezawodności systemu. Ponadto, poziomnice są często używane w budownictwie i instalacjach, gdzie precyzyjne ustawienie jest niezbędne, co czyni je narzędziem nieodzownym w każdej pracowni oraz na placu budowy.

Pytanie 6

Jaką funkcję pełnią diody Zenera w elektronice?

A. Prostują napięcie
B. Modulują częstotliwość
C. Ograniczają prąd
D. Stabilizują napięcie
Diody Zenera pełnią kluczową rolę w stabilizacji napięcia w układach elektronicznych. Działają w trybie odwrotnym, co oznacza, że kiedy napięcie na diodzie przekracza jej wartość Zenera, zaczyna ona przewodzić prąd w kierunku przeciwnym. Dzięki temu, dioda Zenera pozwala na utrzymanie stabilnego napięcia, nawet przy dużych zmianach w obciążeniu lub napięciu zasilającym. Jest to szczególnie istotne w aplikacjach, gdzie precyzyjne napięcie zasilania jest kluczowe, na przykład w układach z mikroprocesorami, które wymagają stabilnego zasilania dla poprawnego działania. W praktyce, diody Zenera często stosuje się w zasilaczach liniowych oraz jako komponenty w filtrach, gdzie stabilizacja napięcia jest niezbędna. W branżowych standardach, takich jak IEC 60747, diody Zenera są klasyfikowane jako elementy ochronne, co podkreśla ich znaczenie w zapewnieniu niezawodności układów elektronicznych. Dobra praktyka inżynieryjna zaleca zastosowanie diod Zenera o odpowiednich parametrach, aby zapewnić ich skuteczność w stabilizacji napięcia w określonym przedziale temperatury i obciążenia.

Pytanie 7

Którą z poniższych czynności należy regularnie przeprowadzać podczas serwisowania układu pneumatycznego?

A. Dostosowywać ciśnienie powietrza
B. Zastępować przewody pneumatyczne
C. Usuwać kondensat
D. Wymieniać szybkozłączki
Usuwanie kondensatu z układu pneumatycznego jest kluczowym elementem konserwacji, ponieważ nadmiar wilgoci może prowadzić do wielu problemów, w tym korozji, uszkodzenia komponentów oraz obniżenia wydajności systemu. Kondensat jest efektem skraplania się pary wodnej zawartej w powietrzu sprężonym, a jego obecność w układzie może mieć negatywny wpływ na działanie zarówno zaworów, jak i siłowników pneumatycznych. Regularne usuwanie kondensatu, na przykład poprzez stosowanie separatorów kondensatu lub automatycznych zaworów odpływowych, jest zgodne z dobrymi praktykami w branży pneumatycznej. Przykładem zastosowania jest przemysł motoryzacyjny, gdzie układy pneumatyczne są powszechnie wykorzystywane w narzędziach i maszynach. W takim przypadku niewłaściwe zarządzanie kondensatem może prowadzić do zacięć narzędzi oraz nieefektywnego działania linii produkcyjnej. Właściwa konserwacja nie tylko wydłuża żywotność układu, ale także zapewnia bezpieczeństwo i efektywność pracy.

Pytanie 8

Aby zmierzyć temperaturę, należy podłączyć do wejścia sterownika PLC

A. przekaźnik elektromagnetyczny
B. prądnicę tachometryczną
C. czujnik indukcyjny
D. czujnik rezystancyjny
Czujnik rezystancyjny, znany również jako czujnik RTD (Resistance Temperature Detector), jest najczęściej wykorzystywany do pomiaru temperatury w systemach automatyki. Jego działanie opiera się na zasadzie zmiany oporu elektrycznego materiału w zależności od temperatury. W praktyce, czujniki te oferują wysoką precyzję oraz stabilność pomiaru, co czyni je odpowiednimi do zastosowań w przemyśle chemicznym, petrochemicznym oraz w systemach HVAC. Dodatkowo, czujniki rezystancyjne mogą być stosowane w szerokim zakresie temperatur, co sprawia, że są uniwersalne i elastyczne w zastosowaniach. W kontekście połączenia z PLC, czujnik rezystancyjny może być podłączony bezpośrednio do wejścia analogowego sterownika, umożliwiając dokładny odczyt temperatury oraz kontrolę procesów. Warto również dodać, że dla zapewnienia dokładnych pomiarów, stosuje się standardy takie jak IEC 60751, które określają charakterystyki czujników RTD.

Pytanie 9

Z tabeli wynika, że orientacyjna siła siłownika o średnicy tłoka 12 mm, tłoczyska 6 mm, przy ciśnieniu roboczym 4 bar uzyskiwana podczas powrotu wynosi

Orientacyjna siła uzyskana na siłowniku w zależności od zadanego ciśnienia
Średnica tłokaŚrednica tłoczyskaPowierzchnia pracy mm²Ciśnienie robocze (bar)
12345678910
siła w N
ø12ø6wysuw = 1131123344557687990102113
powrót = 858172534425159687685
ø16ø8wysuw = 20120406080100121141161181201
powrót = 151153045607590106121136151
ø20ø10wysuw = 314316394126157188220251283314
powrót = 23624477194118141165189212236
ø25ø10wysuw = 4914998147196245295344393442491
powrót = 4124182124165206247289330371412
A. 80 N
B. 34 N
C. 60 N
D. 45 N
Poprawna odpowiedź wynosi 34 N, co jest wartością uzyskaną bezpośrednio z tabeli. W przypadku siłownika o średnicy tłoka 12 mm i tłoczyska 6 mm przy ciśnieniu roboczym 4 bar, siła uzyskiwana podczas powrotu jest kluczowym parametrem do określenia wydajności oraz skuteczności systemu pneumatycznego. W praktyce, znajomość siły uzyskiwanej przez siłownik jest niezbędna przy projektowaniu urządzeń automatyki, w których siłowniki są stosowane do wykonywania pracy mechanicznej. Na przykład, w systemach transportu wewnętrznego, siłowniki pneumatyczne mogą być używane do podnoszenia i przesuwania różnych elementów, dlatego tak ważne jest, aby dobrać odpowiednie parametry do wymagań aplikacji. Wartość ta powinna być również zgodna z normami i standardami branżowymi, które definiują dopuszczalne wartości sił dla danych konstrukcji siłowników. Zrozumienie tych parametrów pozwala na efektywne projektowanie oraz optymalizację procesów w automatyce przemysłowej.

Pytanie 10

Na podstawie widoku płytki drukowanej i schematu ideowego wskaż który element należy zamontować w miejscu oznaczonym C3.

Ilustracja do pytania
A. C.
B. A.
C. D.
D. B.
Odpowiedź B jest poprawna, ponieważ na podstawie analizy schematu ideowego oraz widoku płytki drukowanej, element oznaczony jako C3 to kondensator o pojemności 100 µF. Kondensatory są kluczowymi elementami w obwodach elektronicznych, pełniącymi funkcję filtracji, przechowywania energii oraz stabilizacji napięcia. W kontekście tego pytania, zastosowanie kondensatora o pojemności 100 µF w miejscu C3 może być związane z zapewnieniem odpowiedniej stabilności napięcia zasilającego inne komponenty obwodu. Zgodnie z dobrymi praktykami projektowania elektroniki, wartość pojemności kondensatorów powinna być starannie dobrana, uwzględniając wymagania aplikacji, takie jak czas odpowiedzi oraz częstotliwość sygnałów. Jeśli w aplikacji kondensator ten ma za zadanie wygładzenie napięcia w zasilaczu, jego dobór musi być zgodny z wymaganiami prądowymi oraz charakterystyką obciążenia, co podkreśla znaczenie właściwego wyboru komponentów w projektowaniu obwodów elektronicznych.

Pytanie 11

Element elektroniczny przedstawiony na rysunku to

Ilustracja do pytania
A. dioda.
B. kondensator.
C. rezystor.
D. tranzystor.
Tranzystor, który został przedstawiony na zdjęciu, jest kluczowym elementem w nowoczesnej elektronice, szczególnie w układach analogowych i cyfrowych. Posiada on trzy wyprowadzenia: bramkę (G), dren (D) oraz źródło (S), które są charakterystyczne dla tranzystora polowego typu MOSFET. Tranzystory są powszechnie używane do wzmacniania sygnałów oraz jako przełączniki w obwodach elektronicznych. Na przykład, w zastosowaniach audio, tranzystory mogą wzmacniać sygnały, pozwalając na wytwarzanie dźwięku o wyższej mocy. W systemach cyfrowych, tranzystory stanowią podstawę działania układów logicznych, umożliwiając realizację operacji arytmetycznych i logicznych. Dodatkowo, tranzystory są niezbędne w projektach fotowoltaicznych, gdzie kontrolują przepływ prądu z paneli słonecznych do akumulatorów. Warto również podkreślić, że znajomość działania tranzystorów jest niezbędna dla każdego inżyniera elektronika, ponieważ są one fundamentem wielu nowoczesnych technologii.

Pytanie 12

Korzystając z danych zamieszczonych w tabeli, określ klasę jakości oleju, który można zastosować do urządzeń pracujących przy wysokim ciśnieniu i w stałej temperaturze otoczenia?

Klasa jakości
ISO 6743/4
Charakterystyka olejuZastosowanie olejuZawartość dodatków
%
HHoleje bez dodatków uszlachetniającychdo słabo obciążonych systemów0
HLoleje z inhibitorami utlenienia i korozjido umiarkowanie obciążonych systemówOk. 0,6
HRoleje z inhibitorami utlenienia i korozji oraz modyfikatorami lepkoścido umiarkowanie obciążonych systemów pracujących w zmiennych temperaturach otoczeniaOk. 8,0
HMoleje z inhibitorami utlenienia dodatkami przeciwzużyciowymido systemów pracujących przy wysokim ciśnieniuOk. 1,2
HVoleje z inhibitorami utlenienia i korozji, dodatkami przeciwzużyciowymi oraz modyfikatorami lepkoścido systemów pracujących przy wysokim ciśnieniu w zmiennych temperaturach otoczeniaOk. 8,0
A. HL
B. HR
C. HM
D. HH
Odpowiedź HM jest poprawna, ponieważ oleje klasy HM są specjalnie zaprojektowane do pracy w systemach hydraulicznych, które operują pod wysokim ciśnieniem. Oleje te zawierają inhibitory utleniania, co zwiększa ich trwałość i stabilność w trudnych warunkach eksploatacyjnych. Dodatki przeciwzużyciowe pomagają redukować zużycie komponentów, co jest istotne w aplikacjach, gdzie wymagana jest niezawodność i długoterminowa efektywność. Zgodnie z normami branżowymi, takie jak ISO 6743-4, oleje hydrauliczne HM są uznawane za standard w wielu zastosowaniach przemysłowych, w tym w systemach hydraulicznych w maszynach budowlanych i produkcyjnych, gdzie występują wysokie obciążenia oraz stałe warunki pracy. Użycie oleju klasy HM w takich systemach pozwala na optymalizację wydajności, zmniejszenie ryzyka awarii oraz prolongowanie żywotności urządzeń, co jest kluczowe dla efektywności produkcji i obniżenia kosztów utrzymania.

Pytanie 13

Jakiego rodzaju środek ochrony indywidualnej powinien w szczególności wykorzystać pracownik podczas wymiany tranzystora CMOS?

A. Ochronne okulary
B. Opaskę uziemiającą
C. Fartuch ochronny z bawełny
D. Buty z izolującą podeszwą
Opaska uziemiająca to kluczowy element ochrony indywidualnej, szczególnie podczas pracy z wrażliwymi komponentami elektronicznymi, takimi jak tranzystory CMOS. Te elementy są szczególnie podatne na uszkodzenia spowodowane wyładowaniami elektrostatycznymi (ESD). Uziemienie pozwala na odprowadzenie ładunków elektrycznych, które mogłyby uszkodzić delikatne układy. W praktyce, noszenie opaski uziemiającej jest standardowym wymogiem w branży elektroniki, aby zapewnić, że operatorzy nie wprowadzą niepożądanych ładunków podczas manipulacji elementami. Przykładowo, w laboratoriach i zakładach produkcyjnych, gdzie pracuje się z urządzeniami wrażliwymi na ESD, stosowanie tych opasek jest obligatoryjne i często wymaga ich podłączenia do odpowiednich gniazd uziemiających. Warto również dodać, że zgodność z normami, takimi jak ANSI/ESD S20.20, podkreśla znaczenie stosowania środków ochrony ESD, w tym opasek uziemiających, w celu minimalizacji ryzyka uszkodzeń. Dzięki temu można znacznie zwiększyć niezawodność i żywotność urządzeń elektronicznych.

Pytanie 14

Jaką metodę łączenia materiałów należy wybrać do połączenia stali nierdzewnej z mosiądzem?

A. Zgrzewania
B. Lutowania twardego
C. Lutowania miękkiego
D. Klejenia
Lutowanie twarde jest techniką łączenia, która polega na wykorzystaniu stopu o wyższej temperaturze topnienia niż w przypadku lutowania miękkiego. Jest to proces, który zapewnia silne i trwałe połączenia, co czyni go idealnym do łączenia metali o różnych właściwościach, takich jak stal nierdzewna i mosiądz. W przypadku tych dwóch materiałów, lutowanie twarde umożliwia osiągnięcie wysokiej wytrzymałości na rozciąganie oraz odporności na korozję, co jest kluczowe w aplikacjach przemysłowych. W praktyce lutowanie twarde wymaga zastosowania odpowiednich lutów, które mają podobne właściwości fizyczne i chemiczne do łączonych materiałów. Dobrą praktyką jest również precyzyjne przygotowanie powierzchni, aby zapewnić skuteczną adhezję. Lutowanie twarde jest szeroko stosowane w branży motoryzacyjnej, elektronicznej oraz w produkcji sprzętu medycznego, gdzie niezawodność połączeń jest kluczowa.

Pytanie 15

Które urządzenie ma symbol graficzny taki jak na rysunku?

Ilustracja do pytania
A. Smarownica.
B. Osuszacz powietrza.
C. Filtr.
D. Zawór spustowy.
Wybór odpowiedzi wskazujących na inne urządzenia, takie jak filtr, osuszacz powietrza czy zawór spustowy, może wynikać z pomyłek w interpretacji symboli graficznych. Filtry, na przykład, pełnią funkcję oczyszczania cieczy lub gazów z zanieczyszczeń, a ich symbole często przedstawiają struktury oparte na siatkach lub wkładach filtracyjnych. Osuszacze powietrza wykorzystują różne metody do usuwania wilgoci z powietrza, co jest kluczowe w wielu aplikacjach przemysłowych oraz w klimatyzacji. Zawory spustowe, z kolei, są używane do regulacji przepływu cieczy i mogą być reprezentowane przez symbole wskazujące ich funkcję otwierania i zamykania przepływu. Te błędne wybory mogą zatem wynikać z niepełnej wiedzy na temat zastosowania i interpretacji symboli, co z kolei prowadzi do mylnych wniosków. Kluczowe jest zrozumienie, że każdy z tych komponentów ma specyficzną funkcję, a ich symbole są tak zaprojektowane, aby jednoznacznie komunikować tę funkcjonalność. Pomocne może być zapoznanie się z dokumentacją techniczną oraz normami branżowymi, które precyzują, jak i kiedy należy używać tych urządzeń, aby uniknąć nieporozumień w przyszłości.

Pytanie 16

Jakie narzędzie jest wykorzystywane do zaciskania końcówek na przewodach elektrycznych?

A. praski ręcznej
B. pincety
C. ucinaczki boczne
D. kombinerki
Praska ręczna to narzędzie zaprojektowane specjalnie do zaciskania końcówek przewodów elektrycznych, co zapewnia solidne i trwałe połączenia. Dzięki mechanizmowi dźwigniowemu, praska umożliwia uzyskanie odpowiedniej siły zacisku, co jest kluczowe dla uniknięcia luzów w połączeniach oraz ich późniejszych awarii. Praski ręczne są dostosowane do różnych typów końcówek, takich jak złącza typu ring, fork czy blade, co czyni je uniwersalnym narzędziem w instalacjach elektrycznych. W praktyce, zaciskanie końcówek przy pomocy praski zapewnia nie tylko bezpieczeństwo, ale także efektywność pracy, ponieważ właściwie wykonane połączenia ograniczają straty energii oraz ryzyko przegrzewania się przewodów. Ponadto, stosując praski, można łatwo dostosować siłę zacisku do specyfiki zastosowania, co jest zgodne z najlepszymi praktykami branżowymi wynikającymi z norm IEC oraz PN-EN. Warto również zaznaczyć, że użycie praski jest zalecane w przypadku pracy z przewodami o różnych przekrojach, co zwiększa wszechstronność tego narzędzia.

Pytanie 17

Który z wymienionych elementów zabezpiecza łożysko przed wysunięciem z obudowy w mechanizmie przedstawionym na rysunku?

Ilustracja do pytania
A. Zawleczka zabezpieczająca.
B. Pierścień Segera.
C. Nakrętka koronowa.
D. Podkładka dystansująca.
Pierścień Segera to kluczowy element zabezpieczający łożysko przed wysunięciem z obudowy w mechanizmach maszynowych. Zamontowany w rowku na zewnętrznej powierzchni łożyska lub wału, pierścień ten blokuje ruch łożyska w kierunku osiowym, co jest szczególnie ważne w zastosowaniach, gdzie występują znaczne siły działające na łożysko. W przemyśle maszynowym, na przykład w silnikach elektrycznych czy przekładniach, obecność pierścieni Segera minimalizuje ryzyko uszkodzenia łożyska oraz zwiększa trwałość całego systemu. Dobrą praktyką jest regularne sprawdzanie stanu pierścieni zabezpieczających w celu zapewnienia niezawodności działania urządzeń. Zgodnie z normami ISO, stosowanie odpowiednich elementów zabezpieczających jest kluczowe dla bezpieczeństwa i wydajności mechanizmów, co podkreśla znaczenie stosowania pierścieni Segera w projektach inżynieryjnych. W praktyce, nieodpowiedni dobór lub brak pierścienia Segera może prowadzić do awarii, a w konsekwencji do przestojów w pracy maszyn, co generuje dodatkowe koszty.

Pytanie 18

Na zdjęciu przedstawiono element hydrauliczny i odpowiadający mu symbol graficzny. Jest to

Ilustracja do pytania
A. zasilacz kompaktowy.
B. zawór kulowy.
C. rozdzielacz suwakowy.
D. pompa łopatkowa.
Zawór kulowy, który widzisz na zdjęciu, to naprawdę ważna część w systemach hydraulicznych. Dzięki jego budowie, gdzie kulisty element zamyka otwór, można łatwo i szybko kontrolować przepływ cieczy. Taki zawór sprawdzi się świetnie w różnych instalacjach, przykładowo w wodociągach czy w przemyśle. Musisz pamiętać, że w hydraulice ważne jest, by stosować zawory zgodnie z normami – na przykład ISO 1219, które mówią, jak powinny wyglądać oznaczenia w schematach. Dobrze dobrany zawór nie tylko działa efektywnie, ale też zwiększa bezpieczeństwo, co jest kluczowe w hydraulice. Różne rozmiary i materiały, z jakich są produkowane, dają możliwość ich zastosowania w różnych warunkach, co z mojego doświadczenia jest sporym plusem.

Pytanie 19

Transformator specjalny działający w warunkach zbliżonych do zwarcia, do którego podłącza się przyrząd pomiarowy, nosi nazwę

A. transformator bezpieczeństwa
B. przekładnik napięciowy
C. transformator do zmiany liczby faz
D. przekładnik prądowy
Przekładnik prądowy jest urządzeniem zaprojektowanym do pomiaru prądu w obwodach elektrycznych, które działa w stanie zbliżonym do zwarcia. Jego głównym zadaniem jest proporcjonalne przekształcanie prądu wysokiego napięcia na prąd niskiego napięcia, umożliwiając tym samym bezpieczne podłączenie przyrządów pomiarowych, takich jak amperomierze, do obwodów. W praktyce, przekładniki prądowe są szeroko stosowane w systemach energetycznych, w tym w stacjach transformatorowych oraz rozdzielniach elektrycznych. Dzięki nim można monitorować i analizować prądy robocze oraz przeciążeniowe, co jest niezbędne do zapewnienia bezpieczeństwa i niezawodności pracy instalacji elektrycznych. W kontekście norm branżowych, przekładniki prądowe muszą spełniać określone standardy, takie jak normy IEC 60044, co zapewnia ich wysoką jakość i niezawodność w trudnych warunkach pracy. Użycie przekładników prądowych w systemach automatyki przemysłowej pozwala na dokładne monitorowanie parametrów energii, co jest kluczowe dla optymalizacji procesów produkcyjnych oraz redukcji kosztów eksploatacji.

Pytanie 20

Jak należy skojarzyć w napędzie urządzenia mechatronicznego uzwojenie stojana silnika o przedstawionej tabliczce zaciskowej, obciążonego znamionowo i jak podłączyć do sieci 400 V 3/N/PE ~ 50 Hz, aby jego wał obracał się w lewo?

Ilustracja do pytania
A. W gwiazdę i podłączyć U – L1, V – L2, W – L3
B. W trójkąt i podłączyć U – L1, V – L2, W – L3
C. W gwiazdę i podłączyć U – L1, V – L3, W – L2
D. W trójkąt i podłączyć U – L1, V – L3, W – L2
Połączenie silnika w konfiguracji trójkąta (Δ) z zaciskami U – L1, V – L3, W – L2 jest kluczowe dla uzyskania obrotu wału w lewo. W tej konfiguracji prąd wpływa na uzwojenia w sposób, który generuje odpowiednią siłę elektromotoryczną, umożliwiającą zmianę kierunku obrotów. Takie połączenie pozwala na pełne wykorzystanie mocy silnika, co jest istotne przy zastosowaniach przemysłowych, gdzie wydajność jest kluczowa. Przykładowo, w systemach transportowych, gdzie kierunek obrotów jest istotny dla prawidłowego działania taśmociągów, odpowiednia konfiguracja jest niezbędna. W branży elektrotechnicznej często stosuje się standardy IEC, które wskazują na konieczność przeprowadzania odpowiednich prób w celu weryfikacji poprawności połączeń. Dobrze zrozumiane zasady połączeń trójfazowych oraz ich wpływ na kierunek obrotów są fundamentem dla techników i inżynierów zajmujących się automatyką oraz urządzeniami mechatronicznymi.

Pytanie 21

Olej hydrauliczny klasy HL to olej

A. syntetyczny
B. o polepszonych parametrach lepkości i temperatury
C. mineralny bez dodatków uszlachetniających
D. mineralny posiadający właściwości antykorozyjne
Olej hydrauliczny HL to mineralny olej, który ma fajne właściwości antykorozyjne. Jest używany w hydraulice, gdzie trzeba dbać o to, żeby nie było rdzy, a lepkość była w porządku. To oznaczenie HL znaczy, że olej jest naprawdę dobrej jakości i spełnia normy ISO 6743-4. Dlatego często wykorzystuje się go w maszynach, jak prasy czy dźwigi, gdzie niezawodność to podstawa. Dzięki jego właściwościom, olej ten pomaga wydłużyć żywotność elementów układu hydraulicznego, co z czasem pozwala zaoszczędzić trochę pieniędzy na eksploatacji. No i pamiętaj, że jak chcesz, żeby maszyny działały sprawnie i w miarę wiekowe były w dobrym stanie, to musisz stosować odpowiednie oleje jak HL, bo to jest ważne dla gwarancji i efektywności pracy.

Pytanie 22

Demontaż niepodłączonego elementu, przedstawionego na rysunku, zamontowanego na szynie DIN wymaga użycia

Ilustracja do pytania
A. wkrętaka o specjalnych końcówkach.
B. klucza z regulowaną szerokością rozstawu szczęk.
C. wkrętaka płaskiego.
D. klucza nasadowego.
Wybór wkrętaka płaskiego jako narzędzia do demontażu elementu zamontowanego na szynie DIN jest prawidłowy, ponieważ ten typ narzędzia został zaprojektowany do odciągania dźwigni blokującej, która jest typową konstrukcją w urządzeniach montowanych na szynach DIN, jak np. wyłączniki nadprądowe. W praktyce, aby wymontować ten element, należy najpierw zlokalizować dźwignię blokującą, a następnie włożyć wkrętak płaski w szczelinę i delikatnie pociągnąć, co pozwala na zwolnienie mechanizmu blokującego. Tego rodzaju operacje są powszechne w instalacjach elektrycznych, gdzie konieczna jest wymiana lub konserwacja urządzeń. Prawidłowe użycie narzędzi, takich jak wkrętaki płaskie, jest zgodne z normami bezpieczeństwa oraz dobrymi praktykami, które zalecają użycie odpowiednich narzędzi do konkretnego zadania, co minimalizuje ryzyko uszkodzenia urządzeń oraz zapewnia bezpieczeństwo użytkownika.

Pytanie 23

Na rysunku przedstawiono schemat

Ilustracja do pytania
A. wyspy zaworowej.
B. pneumatycznego przekaźnika czasowego z opóźnionym wyłączeniem.
C. pneumatycznego przekaźnika czasowego z opóźnionym włączeniem.
D. reduktora z manometrem.
Wybór innej odpowiedzi może wynikać z nieporozumień związanych z funkcją i budową poszczególnych elementów pneumatycznych systemów automatyki. Na przykład, odpowiedź sugerująca, że rysunek przedstawia reduktor z manometrem, jest błędna, ponieważ reduktory służą do regulacji ciśnienia w systemie, a manometry do pomiaru ciśnienia, co nie jest zgodne z charakterystyką przedstawionego schematu. Ponadto, niektóre osoby mogą mylić pneumatyczny przekaźnik czasowy z opóźnionym włączeniem z jego odpowiednikiem z opóźnionym wyłączeniem, co prowadzi do mylnego wniosku, że oba urządzenia działają na podobnej zasadzie, podczas gdy ich funkcje są całkowicie przeciwstawne. W rzeczywistości przekaźnik z opóźnionym włączeniem uruchamia proces po określonym czasie, co jest przydatne w sytuacjach, gdy niezbędne jest opóźnienie załączenia maszyny, a nie jej wyłączenia. Warto również zauważyć, że wyspa zaworowa, będąca innym z możliwych wyborów, skupia się na zarządzaniu wieloma zaworami w danym obszarze, ale nie posiada mechanizmu czasowego, co sprawia, że nie pasuje do opisanego schematu. Takie niepoprawne rozumienie może prowadzić do błędów w projektowaniu systemów automatyki, a także do nieefektywnego wykorzystania komponentów, co jest niezgodne z najlepszymi praktykami inżynieryjnymi oraz normami branżowymi.

Pytanie 24

Którym wtykiem powinien być zakończony kabel komunikacyjny do sterownika przedstawionego na rysunku?

Ilustracja do pytania
A. DE-9
B. PS-2
C. DB-25
D. RJ-45
Odpowiedź RJ-45 jest poprawna, ponieważ złącze to jest standardem stosowanym w komunikacji sieciowej, w tym w połączeniach Ethernet. W analizowanym zdjęciu sterownika widać port, który wizualnie przypomina złącze RJ-45, co wskazuje na jego przeznaczenie do komunikacji w sieci komputerowej. Złącze to obsługuje 8-pinowe połączenia, co pozwala na przesyłanie danych z odpowiednią szybkością i stabilnością. W kontekście przemysłowym, RJ-45 jest powszechnie wykorzystywane w różnych zastosowaniach, takich jak automatyzacja procesów, monitoring czy integracja z systemami SCADA. Używanie RJ-45 w sterownikach przemysłowych jest zgodne z normami, co zapewnia interoperacyjność sprzętu i oprogramowania, a także ułatwia serwisowanie i modernizację systemów. Dodatkowo, złącze RJ-45 jest znane z łatwości montażu oraz dostępności, co czyni je preferowanym wyborem w wielu aplikacjach. Zrozumienie zastosowania złącza RJ-45 jest kluczowe dla efektywnego projektowania i wdrażania systemów komunikacyjnych.

Pytanie 25

Obniżenie temperatury czynnika w sprężarkach skutkuje

A. wzrostem ciśnienia sprężonego powietrza
B. osadzaniem zanieczyszczeń na dnie zbiornika
C. powiększaniem objętości sprężonego powietrza
D. skraplaniem pary wodnej oraz osuszaniem powietrza
Zwiększenie objętości sprężonego powietrza, które jest sugerowane w jednej z odpowiedzi, jest błędnym założeniem. W rzeczywistości, schładzanie czynnika roboczego w sprężarkach nie skutkuje zwiększeniem objętości, ponieważ objętość gazu w zamkniętym układzie nie zmienia się w sposób znaczący podczas tego procesu. Z kolei wzrost ciśnienia sprężonego powietrza to efekt spadku temperatury, który prowadzi do kompaktowania cząsteczek gazu. Osuszanie powietrza poprzez skraplanie pary wodnej jest również związane z innymi mechanizmami, takimi jak stosowanie separatorów czy filtrów, a nie bezpośrednio ze schładzaniem czynnika. Osadzanie zanieczyszczeń na dnie zbiornika jest również mylone z procesem schładzania, jednakże dotyczy ono głównie aspektów związanych z niewłaściwą filtracją oraz z przegrzewaniem powietrza. Takie nieporozumienia mogą wynikać z braku zrozumienia podstawowych zasad termodynamiki oraz procesów fizycznych zachodzących w sprężarkach. Ważne jest, aby zgłębić temat właściwego działania sprężarek oraz ich wpływu na jakość sprężonego powietrza, co jest kluczowe w przemyśle oraz w zastosowaniach technologicznych.

Pytanie 26

Którego urządzenia nie wolno zasilać z źródła napięcia oznaczonego jako 400 V; 3/N/PE ~50 Hz?

A. Silnika prądu stałego o napięciu 400 V
B. Silnika jednofazowego o napięciu 230 V
C. Silnika trójfazowego klatkowego o napięciu międzyfazowym 400 V skojarzonego w Δ
D. Transformatora trójfazowego o napięciu górnym 400 V i skojarzeniu Dy5
Silnik prądu stałego o napięciu 400 V nie może być zasilany ze źródła napięciowego 400 V; 3/N/PE ~50 Hz, ponieważ wymaga on specyficznego napięcia zasilania i charakterystyki napięcia stałego. Silniki prądu stałego są projektowane do pracy przy konkretnym napięciu, a ich zasilanie napięciem przemiennym mogłoby spowodować uszkodzenie mechanizmu wirnika oraz układów regulacji. W praktyce, silniki te są zasilane z falowników lub prostowników, które konwertują napięcie przemienne na stałe. Standardy IEC 60034 dotyczące maszyn elektrycznych oraz normy dotyczące bezpieczeństwa elektrycznego podkreślają konieczność stosowania odpowiednich wartości napięcia, aby zapewnić prawidłową i bezpieczną pracę urządzeń. Należy również pamiętać, że każdy silnik powinien być dopasowany do specyfikacji źródła zasilania, co zapobiega nieprawidłowym działaniom i możliwym uszkodzeniom.

Pytanie 27

Zadziałanie cewki przekaźnika K1 określone jest przez funkcję

Ilustracja do pytania
A. alternatywy stanów przycisków S1 i S2.
B. koniunkcji stanów przycisków S1 i S2.
C. negacji koniunkcji stanów przycisków S1 i S2.
D. alternatywy wykluczającej stanów przycisków S1 i S2.
Cewka przekaźnika K1 zadziała tylko w przypadku, gdy oba przyciski S1 i S2 będą jednocześnie w stanie załączonym, co odpowiada prawidłowemu działaniu koniunkcji logicznej. W praktyce oznacza to, że dla zasilania cewki przekaźnika konieczne jest zamknięcie obwodu elektrycznego. Taka konfiguracja jest szeroko stosowana w automatyce oraz układach sterowania, gdzie wykorzystuje się logikę AND do zapewnienia bezpieczeństwa i kontrolowania procesów. Przykładowo, w systemach alarmowych, w których wymagane jest jednoczesne wciśnięcie dwóch przycisków w celu aktywacji alarmu, stosuje się podobne podejście. W dobrych praktykach inżynieryjnych kluczowe jest zapewnienie, że wszystkie warunki muszą być spełnione, aby aktywować działanie urządzenia. Takie podejście zwiększa niezawodność i bezpieczeństwo całego systemu.

Pytanie 28

Jaki instrument pomiarowy powinno się użyć do określenia amplitudy, częstotliwości oraz kształtu sygnałów w instalowanych urządzeniach mechatronicznych?

A. Częstościomierz
B. Mostek RLC
C. Multimetr
D. Oscyloskop
Oscyloskop to zaawansowane narzędzie pomiarowe, które umożliwia wizualizację kształtu sygnałów elektronicznych w czasie rzeczywistym. Działa na zasadzie przetwarzania napięcia, które jest przedstawiane na ekranie w formie wykresu, gdzie oś X reprezentuje czas, a oś Y napięcie. Dzięki oscyloskopowi inżynierowie mogą analizować zarówno amplitudę, jak i częstotliwość sygnałów, co jest niezbędne przy projektowaniu i testowaniu urządzeń mechatronicznych. W praktyce oscyloskop jest wykorzystywany do badania układów elektronicznych, diagnostyki usterek czy oceny jakości sygnału. Na przykład, podczas analizy sygnałów z czujników w systemach automatyki przemysłowej, oscyloskop pozwala na szybkie wychwycenie anomalii w komunikacji czy nieprawidłowości w działaniu układów przetwarzających dane. W branży mechatronicznej standardem jest korzystanie z oscyloskopów, które spełniają normy IEC 61010, zapewniając bezpieczeństwo i dokładność pomiarów. Używanie oscyloskopu to nie tylko praktyka, ale i dobra praktyka, umożliwiająca skuteczną analizę skomplikowanych sygnałów.

Pytanie 29

Czujnik indukcyjny, którego dane techniczne przedstawiono w tabeli, może pracować w układzie elektrycznym o następujących parametrach:

Typ czujnikaindukcyjny
Konfiguracja wyjścia2-przewodowy NO
Zasięg0÷4 mm
Napięcie zasilania15÷34V DC
Obudowa czujnikaM12
Przyłączeprzewód 2 m
Klasa szczelnościIP67
Prąd pracy max.25 mA
Temperatura pracy-25÷70°C
Rodzaj czoławysunięte
Częstotliwość przełączania maks.300 Hz
A. napięcie zasilania 15 V DC i prąd pracy 0,02 A
B. napięcie zasilania 24 V DC i prąd pracy 30 mA
C. napięcie zasilania 24 V DC i prąd pracy 0,02 A
D. napięcie zasilania 20 V AC i prąd pracy 0,02 A
Wybór innych wartości napięcia zasilania i prądu pracy wskazuje na brak zrozumienia specyfiki pracy czujników indukcyjnych oraz ich parametrów technicznych. Na przykład, napięcie zasilania 15 V DC jest poniżej standardowego zasilania stosowanego w nowoczesnych systemach automatyki, co może prowadzić do niewłaściwego działania czujnika lub jego całkowitego braku reakcji. Prąd pracy 0,02 A, będący równy 20 mA, również może nie być dostateczny dla niektórych zastosowań, w których wymagane są wyższe wartości prądów, co może skutkować niestabilnością działania urządzenia. W przypadku napięcia 20 V AC, pojawia się dodatkowy problem związany z typem prądu – czujniki indukcyjne zazwyczaj są projektowane do pracy z prądem stałym (DC), a niewłaściwe zasilanie prądem zmiennym (AC) może skutkować ich uszkodzeniem. Odpowiedź z napięciem zasilania 24 V DC i prądem pracy 30 mA jest zgodna z normami IEC oraz najlepszymi praktykami stosowanymi w branży, które zapewniają optymalne warunki pracy czujników oraz ich długotrwałą żywotność. Dodatkowo, stosowanie nieodpowiednich wartości może prowadzić do nieprawidłowych odczytów i błędnych decyzji w automatyzacji procesów, co podkreśla konieczność przemyślanej konfiguracji zasilania w systemach automatyki.

Pytanie 30

W skład systemu do przygotowania sprężonego powietrza nie wchodzi

A. reduktor ciśnienia
B. sprężarka
C. filtr powietrza
D. smarownica
W systemie sprężonego powietrza występuje wiele komponentów, które wspólnie działają, aby zapewnić skuteczne i bezpieczne funkcjonowanie. Sprężarka jest niezaprzeczalnie najważniejszym elementem, ale inne składniki, takie jak smarownica, reduktor ciśnienia i filtr powietrza, odgrywają kluczową rolę w całym procesie. Smarownica jest odpowiedzialna za dostarczanie odpowiedniego smaru do narzędzi pneumatycznych, co pozwala na ich prawidłowe działanie i zwiększenie wydajności. Brak tego elementu może prowadzić do nadmiernego zużycia i awarii sprzętu. Reduktor ciśnienia natomiast reguluje ciśnienie sprężonego powietrza, zapewniając jego optymalne wartości w zależności od wymagań konkretnego zastosowania. Zbyt wysokie ciśnienie może prowadzić do uszkodzeń systemu, a zbyt niskie nie zapewni odpowiedniej mocy dla narzędzi. Filtr powietrza ma na celu usunięcie zanieczyszczeń i wilgoci, co jest niezbędne do uzyskania wysokiej jakości sprężonego powietrza, zgodnie z normami ISO 8573. Zrozumienie roli tych elementów jest kluczowe w projekcie i eksploatacji systemów sprężonego powietrza, a ich prawidłowe dobranie oraz konserwacja mogą znacznie wpłynąć na efektywność operacyjną oraz koszty eksploatacji systemu.

Pytanie 31

Jakim symbolem literowym określa się zmienną wyjściową w sterowniku PLC?

A. Q
B. R
C. T
D. I
Odpowiedź Q jest poprawna, ponieważ w systemach programowalnych sterowników logicznych (PLC) zmienne wyjściowe oznaczane są właśnie tym symbolem. Wyjścia są sygnałami, które sterownik generuje na podstawie przetworzonych danych wejściowych oraz zaimplementowanych algorytmów. Standardowe oznaczenia w programowaniu PLC opierają się na konwencjach przyjętych w branży, gdzie 'I' oznacza wejścia (Input), 'Q' wyjścia (Output), 'R' jest często używane dla rejestrów, a 'T' odnosi się do timerów. Przykładem zastosowania zmiennych wyjściowych jest kontrola urządzeń wykonawczych, takich jak silniki, siłowniki czy zawory. Na przykład, w prostym procesie automatyzacji, sygnał wyjściowy Q0.0 może być użyty do włączania lub wyłączania silnika w odpowiedzi na warunki zdefiniowane przez czujniki wejściowe. Zrozumienie tych oznaczeń jest kluczowe dla efektywnego programowania i diagnostyki systemów automatyki przemysłowej, co jest zgodne z normami IEC 61131-3, które definiują struktury programowania w PLC.

Pytanie 32

Aby chronić silnik przed wystąpieniem napięcia zasilającego po krótkim zgaśnięciu, należy użyć przekaźnika

A. podnapięciowy zwłoczny
B. nadnapięciowy zwłoczny
C. różnicowoprądowy
D. nadprądowy zwłoczny
Wybór innych typów przekaźników, takich jak nadnapięciowy zwłoczny, nadprądowy zwłoczny czy różnicowoprądowy, nie jest odpowiedni w kontekście zabezpieczania silnika przed pojawieniem się napięcia zasilania po krótkotrwałym zaniku. Przekaźnik nadnapięciowy zwłoczny jest zaprojektowany do wyłączania obwodu, gdy napięcie przekracza ustaloną wartość, co w przypadku zaniku napięcia nie zabezpiecza silnika, lecz może doprowadzić do niebezpiecznej sytuacji, gdy napięcie powraca. Nadprądowy zwłoczny z kolei ma na celu zabezpieczenie przed przeciążeniem, a nie przed zanikami napięcia, więc jego funkcjonalność w tym kontekście będzie niewystarczająca. Przekaźnik różnicowoprądowy wykrywa różnice w prądzie między przewodami roboczymi, chroniąc przed porażeniem elektrycznym, ale nie zareaguje na zmiany w napięciu zasilania. Wybór niewłaściwego przekaźnika może prowadzić do potencjalnych uszkodzeń silnika, a także stwarzać ryzyko dla osób pracujących w pobliżu. Dlatego istotne jest zrozumienie specyfiki działania różnych typów przekaźników, aby skutecznie zabezpieczyć urządzenia w warunkach zmienności napięcia zasilania.

Pytanie 33

Napięcie testowe, strata dielektryczna, maksymalne napięcie, opór izolacji, temperatury współczynnik pojemności - to parametry znamionowe

A. kondensatora
B. diody pojemnościowej
C. rezystora
D. solenoidu
Kondensator jest elementem elektronicznym, który gromadzi ładunek elektryczny, a jego zachowanie jest określane przez szereg parametrów znamionowych, takich jak napięcie probiercze, stratność dielektryczna, dopuszczalna wartość napięcia, rezystancja izolacji oraz temperaturowy współczynnik pojemności. Napięcie probiercze odnosi się do maksymalnego napięcia, które kondensator może wytrzymać bez uszkodzeń. Stratność dielektryczna jest miarą strat energii w dielektryku, co wpływa na efektywność kondensatora. Dopuszczalna wartość napięcia to maksymalne napięcie robocze, przy którym kondensator działa prawidłowo. Rezystancja izolacji jest istotna dla przewodności dielektryka, a temperaturowy współczynnik pojemności wskazuje, jak wartość pojemności zmienia się w funkcji temperatury. W praktyce kondensatory są wykorzystywane w filtrach, układach czasowych, oraz w stabilizacji napięcia w zasilaczach, co czyni je niezbędnymi w wielu zastosowaniach elektronicznych. W branży istnieją normy, takie jak IEC 60384, które definiują wymagania dotyczące jakości i bezpieczeństwa kondensatorów.

Pytanie 34

Na rysunku przedstawione zostały fragmenty dwóch elementów, które należy połączyć techniką połączenia wciskowego wtłaczanego. Jaka powinna być zależność pomiędzy wymiarami d1 i d2?

Ilustracja do pytania
A. dl ≤ d2
B. dl < d2
C. dl > d2
D. dl = d2
W odpowiedzi dl > d2 uznano, że średnica otworu (d2) musi być mniejsza od średnicy wału (d1) w połączeniu wciskowym wtłaczanym. Ta zasada jest fundamentalna dla zapewnienia stabilności i trwałości połączenia. W praktyce, podczas projektowania komponentów mechanicznych, inżynierowie często korzystają z tej zasady, aby zminimalizować ryzyko luzów i zapewnić odpowiednią siłę tarcia między elementami. Na przykład, w zastosowaniach motoryzacyjnych, takie jak łączenie wałów napędowych z osią, dokładne dopasowanie średnic jest kluczowe dla uniknięcia awarii i zwiększenia żywotności komponentów. W standardach branżowych, jak ISO lub ANSI, zaleca się określenie tolerancji wymiarowych, aby zminimalizować ryzyko nadmiernych naprężeń. Różnica pomiędzy wymiarami musi być starannie dobrana, aby umożliwić efektywne przekazywanie obciążeń, a jednocześnie unikać zbyt dużych naprężeń, które mogą prowadzić do deformacji lub pęknięć. Takie podejście jest zgodne z najlepszymi praktykami inżynieryjnymi, co podkreśla znaczenie właściwego doboru wymiarów w projektowaniu komponentów mechanicznych.

Pytanie 35

Na rysunku przedstawiono przekładnię o zębach

Ilustracja do pytania
A. łukowych.
B. daszkowych.
C. śrubowych.
D. prostych.
Odpowiedź "łukowych" jest prawidłowa, ponieważ zęby łukowe charakteryzują się zakrzywionym kształtem, co zapewnia ich lepszą współpracę i przenoszenie obciążeń. Przekładnie zębate z zębami łukowymi są szeroko stosowane w przemyśle, zwłaszcza w aplikacjach wymagających cichej i precyzyjnej pracy, takich jak w przekładniach samochodowych, gdzie redukcja hałasu i drgań jest kluczowa dla komfortu użytkowania. W porównaniu do zębów prostych, zęby łukowe oferują znacznie lepsze właściwości eksploatacyjne, w tym zwiększoną trwałość oraz mniejsze zużycie. W praktyce, takie przekładnie są stosowane w wielu mechanizmach, od maszyn przemysłowych po urządzenia codziennego użytku, spełniając normy branżowe i dobre praktyki inżynieryjne, które zalecają stosowanie zębów łukowych w sytuacjach, gdzie liczy się wydajność i niezawodność.

Pytanie 36

Które elementy przedstawiono na rysunku?

Ilustracja do pytania
A. Pojemniki na sprężone powietrze.
B. Sondy pomiarowe.
C. Obciążniki do układów hydraulicznych.
D. Akumulatory hydrauliczne.
Wydaje mi się, że wybór obciążników hydraulicznych, sond pomiarowych czy pojemników na sprężone powietrze jako odpowiedzi na to pytanie nie do końca pasuje do akumulatorów hydraulicznych. Obciążniki są używane głównie dla stabilizacji, ale nie są magazynami energii. Ich funkcjonalność jest dosyć ograniczona i nie odpowiada ogólnej roli akumulatorów. Sondy pomiarowe monitorują parametry, jak ciśnienie czy temperatura, ale nie przechowują energii. Pojemniki na sprężone powietrze to już zupełnie inna bajka, bo dotyczą pneumatyki, gdzie energia jest w sprężonym powietrzu, nie w cieczy. Ta pomyłka pokazuje, że możesz nie do końca rozumieć różnice między hydrauliką a pneumatyka oraz ich komponentami. Zrozumienie tych różnic jest naprawdę istotne, żeby dobrze dobierać elementy do maszyn i systemów. Znalezienie się w temacie hydrauliki wymaga znajomości specyfiki poszczególnych części i ich zastosowań, co jest ważne, jeśli chcesz działać w branży inżynieryjnej.

Pytanie 37

Dławienie zaworów dławiąco-zwrotnych przedstawionych na schemacie ustawiono odpowiednio
1V1 – 50% i 1V2 - 100%. Określ prędkość wysuwania tłoczyska A1 przyjmując, że 0% oznacza całkowite dławienie, 100% oznacza brak dławienia.

Ilustracja do pytania
A. Równa prędkości wsuwania.
B. Cztery razy większa niż wsuwania.
C. Dwa razy mniejsza niż wsuwania.
D. Dwa razy większa niż wsuwania.
Prędkość wysuwania tłoczyska A1 wynika z różnych ustawień dławienia zaworów 1V1 i 1V2. Zawór 1V1 jest ustawiony na 50% dławienia, co oznacza, że ogranicza on przepływ oleju podczas wsuwania tłoczyska. Natomiast zawór 1V2 jest na 100%, co oznacza, że nie występuje żadne dławienie podczas wysuwania. W praktyce oznacza to, że podczas wysuwania tłoczyska dostępny jest pełny przepływ oleju, co zwiększa jego prędkość. Zastosowanie takich regulacji jest istotne w automatyzacji procesów, gdzie kontrola nad prędkościami ruchów jest kluczowa dla efektywności i bezpieczeństwa. W standardach branżowych, takich jak ISO 4413 dotyczące hydrauliki, wskazuje się na znaczenie precyzyjnego dostosowania parametrów pracy urządzeń, co wpływa na ich żywotność oraz funkcjonalność. Dlatego zrozumienie, jak dławienie wpływa na prędkości wysuwania i wsuwania, jest niezbędne dla inżynierów projektujących systemy hydrauliczne.

Pytanie 38

Na rysunku przedstawiono diodę

Ilustracja do pytania
A. Schottky'ego.
B. tunelową.
C. Zenera.
D. pojemnościową.
Dioda Zenera, która została przedstawiona na rysunku, jest kluczowym elementem w układach elektronicznych, często używanym do stabilizacji napięcia. Jej unikalna konstrukcja umożliwia przewodzenie prądu w kierunku odwrotnym po osiągnięciu określonego napięcia, co czyni ją idealnym komponentem do regulacji napięcia w obwodach. Przykładowo, diody Zenera często stosowane są w zasilaczach jako elementy stabilizujące, zapewniające, że napięcie wyjściowe pozostaje na stałym poziomie, nawet przy zmieniających się warunkach obciążenia. W branży elektronicznej, zgodnie z najlepszymi praktykami, wykorzystuje się diody Zenera do ochrony wrażliwych komponentów przed przepięciami, co jest szczególnie istotne w przypadku urządzeń mikroprocesorowych. Warto również wspomnieć, że diody Zenera mogą być używane w układach detekcji, gdzie precyzyjne napięcie odniesienia jest kluczowe. Ich zrozumienie i umiejętność zastosowania są niezbędne dla projektantów obwodów elektronicznych.

Pytanie 39

Który z poniższych czujników jest elementem serwomechanizmu sterującego ruchem ramienia robota?

A. Pirometr
B. Przepływomierz powietrza
C. Mostek tensometryczny
D. Enkoder
Enkoder jest elementem pomiarowym, który odgrywa kluczową rolę w systemach serwomechanizmów, szczególnie w aplikacjach związanych z robotyką. Jego główną funkcją jest precyzyjne określanie pozycji oraz prędkości obrotowej silnika, co jest niezbędne do dokładnego sterowania ruchem ramion robota. Enkodery mogą być optyczne, magnetyczne lub mechaniczne, każdy rodzaj ma swoje zastosowania w zależności od wymagań projektu. W praktyce, enkoder zastosowany w ramieniu robota pozwala na precyzyjne pozycjonowanie, co jest szczególnie istotne w zadaniach wymagających wysokiej dokładności, takich jak montaż komponentów elektronicznych czy operacje chirurgiczne. W kontekście standardów branżowych, stosowanie enkoderów w robotach przemysłowych jest zgodne z normami ISO 10218, które określają wymagania dotyczące bezpieczeństwa robotów. To sprawia, że enkodery są nie tylko niezawodne, ale także kluczowe dla zapewnienia jakości i bezpieczeństwa w automatyzacji procesów przemysłowych.

Pytanie 40

Z wykorzystaniem równania F_u = η ∙ S ∙ p oblicz powierzchnię S tłoka siłownika, w przypadku gdy siłownik generuje siłę czynną F_u = 1,6 kN przy ciśnieniu p = 1 MPa oraz współczynniku sprawności η = 0,8.

A. 1000 mm2
B. 1500 mm2
C. 3000 mm2
D. 2000 mm2
Wybór niewłaściwej odpowiedzi może wynikać z nieprawidłowego przekształcenia wzoru lub błędnego zrozumienia zależności między siłą, ciśnieniem a powierzchnią tłoka. Na przykład, przy wyborze opcji 1500 mm<sup>2</sup>, można pomyśleć, że siła jest wystarczająca, ale nie uwzględnia się współczynnika sprawności. W przypadku opcji 3000 mm<sup>2</sup>, być może nie rozumiano, że większa powierzchnia tłoka nie zawsze przekłada się na większą siłę, zwłaszcza przy tym samym ciśnieniu. Jeśli chodzi o odpowiedź 1000 mm<sup>2</sup>, mogło to wynikać z błędnego założenia, że ciśnienie jest wyższe, niż w rzeczywistości, co prowadzi do mylnego wniosku o mniejszej powierzchni. Te błędy myślowe często wynikają z nieścisłości w rozumieniu podstawowych zasad hydrauliki. W praktyce inżynieryjnej istotne jest, aby przy obliczeniach uwzględniać wszystkie istotne elementy, w tym współczynniki sprawności, aby uniknąć nieprawidłowych wyników. Kluczowe jest również dostosowanie obliczeń do specyfikacji technicznych i norm, które regulują projektowanie i zastosowanie siłowników hydraulicznych, by zapewnić ich efektywność oraz bezpieczeństwo w użytkowaniu.