Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektryk
  • Kwalifikacja: ELE.02 - Montaż, uruchamianie i konserwacja instalacji, maszyn i urządzeń elektrycznych
  • Data rozpoczęcia: 4 grudnia 2025 11:42
  • Data zakończenia: 4 grudnia 2025 11:53

Egzamin zdany!

Wynik: 21/40 punktów (52,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Jaką klasę mają oprawy stosowane do oświetlenia miejscowego?

A. II
B. I
C. IV
D. III
Wybór opraw klasy II, III lub IV wskazuje na nieporozumienie dotyczące standardów bezpieczeństwa i funkcji oświetlenia miejscowego. Klasa II opisuje oprawy, które są podwójnie izolowane, co sprawia, że nie wymagają uziemienia, ale nie są one rekomendowane do zastosowań, gdzie istnieje ryzyko kontaktu z wodą lub innymi cieczyami, co często ma miejsce w miejscach pracy. Wybierając te oprawy na stanowiska robocze, narażamy użytkowników na potencjalne zagrożenia elektryczne. Klasa III z kolei odnosi się do urządzeń zasilanych z niskonapięciowych źródeł, co może być stosowane w niektórych aplikacjach, ale nie jest odpowiednie do typowego oświetlenia miejscowego, które wymaga wyższego napięcia dla efektywnego działania. Klasa IV dotyczy produktów przeznaczonych do zastosowań specjalnych, które są często chronione przed czynnikami zewnętrznymi, ale nie mają zastosowania w standardowych warunkach biurowych czy przemysłowych. Wybór niewłaściwej klasy oprawy może prowadzić do poważnych konsekwencji zdrowotnych i bezpieczeństwa, dlatego zrozumienie tych różnic jest kluczowe w procesie projektowania efektywnego oświetlenia miejscowego. Podstawowym błędem myślowym jest zakładanie, że wszystkie oprawy mogą być stosowane zamiennie, co ignoruje różnice w wymaganiach bezpieczeństwa i funkcjonalności. W kontekście standardów branżowych, stosowanie opraw klasy I jest najlepszą praktyką, ponieważ minimalizuje ryzyko porażenia prądem i zapewnia bezpieczeństwo pracy.

Pytanie 2

Na rysunku przedstawiono symbol graficzny

Ilustracja do pytania
A. odgromnika zaworowego.
B. iskiernika.
C. odgromnika wydmuchowego.
D. warystora.
Wybór odpowiedzi 'wary stora' jest poprawny, ponieważ symbol graficzny przedstawiony na rysunku rzeczywiście reprezentuje warystor, który jest kluczowym elementem w systemach ochrony przed przepięciami. Warystor działa na zasadzie zmiany rezystancji w odpowiedzi na przyłożone napięcie, co pozwala na skuteczne odprowadzanie nadmiaru energii w sytuacjach awaryjnych. Jest on często stosowany w obwodach zasilających, aby chronić urządzenia elektroniczne przed uszkodzeniami spowodowanymi nagłymi wzrostami napięcia. Standardy takie jak IEC 61643-1 określają wymagania dla urządzeń ochronnych, w tym warystorów, co czyni je niezbędnymi w projektowaniu systemów zabezpieczeń. Warto również zauważyć, że warystory są często łączone z innymi elementami ochrony, takimi jak odgromniki czy bezpieczniki, aby zapewnić kompleksową ochronę. Zastosowanie warystorów w urządzeniach domowych oraz przemysłowych pomaga w zwiększeniu ich żywotności i niezawodności.

Pytanie 3

W jakiej kolejności należy włączać styczniki w układzie przedstawionym na schemacie, aby przeprowadzić prawidłowy rozruch silnika, przy zamkniętym wyłączniku Q1?

Ilustracja do pytania
A. W odstępach czasu kolejno: K1M, K42M, K41M
B. Najpierw K1M i K42M, następnie wyłączyć K42M, a włączyć K41M
C. W odstępach czasu kolejno: K41M, K42M, K1M
D. Najpierw K1M i K41M, następnie wyłączyć K41M, a włączyć K42M
Wybór innej odpowiedzi, która sugeruje inną kolejność włączania styczników w układzie, zawiera poważne błędy koncepcyjne, które mogą prowadzić do nieprawidłowego działania silnika i potencjalnego uszkodzenia systemu. Na przykład, jeżeli stycznik K1M zostanie włączony jako pierwszy, a K41M nie zostanie aktywowany, silnik zacznie pracować w pełnym obciążeniu bez wcześniejszego zmniejszenia prądu rozruchowego. Taki proces może prowadzić do nadmiernego prądu, co z kolei zwiększa ryzyko przegrzania i uszkodzenia uzwojeń silnika. Włączenie stycznika K42M przed K41M nie tylko nie jest zgodne z zasadami bezpieczeństwa, ale także może prowadzić do nieprawidłowego działania silnika w trybie gwiazdy, co neguje jego zalety. W kontekście dobrych praktyk, stosowanie się do ustalonej sekwencji włączania styczników jest kluczowe dla zapewnienia długotrwałej i bezawaryjnej pracy układów elektrycznych. Niewłaściwe podejście do rozruchu silnika może skutkować poważnymi konsekwencjami finansowymi i operacyjnymi, dlatego tak ważne jest przestrzeganie ustalonych procedur, które opierają się na zasadzie minimalizacji ryzyka i maksymalizacji efektywności działania całego układu.

Pytanie 4

W jakim typie układu sieciowego możemy spotkać przewód PEN?

A. IT
B. TN-C
C. TN-S
D. TT
Odpowiedź TN-C jest prawidłowa, ponieważ w tym układzie sieciowym przewód PEN łączy funkcje przewodu neutralnego (N) i ochronnego (PE). Układ TN-C jest stosowany w wielu instalacjach elektrycznych, w tym w budynkach użyteczności publicznej oraz w przemyśle, gdzie zapewnia zarówno transport energii, jak i ochronę przed porażeniem elektrycznym. Kluczowym aspektem tego układu jest to, że przewód PEN jest wspólny dla wielu odbiorników i umożliwia efektywne prowadzenie instalacji przy ograniczeniu liczby przewodów. Zgodnie z normą PN-EN 60364, przewód PEN musi być odpowiednio zaprojektowany i wykonany, aby zapewnić wysoką niezawodność oraz bezpieczeństwo użytkowników. W praktyce stosowanie przewodu PEN w układzie TN-C jest również korzystne z punktu widzenia kosztów, ponieważ ogranicza ilość potrzebnych przewodów, co przekłada się na mniejsze wydatki materiałowe oraz prostotę instalacji. Na przykład w wielu budynkach mieszkalnych stosuje się układ TN-C, co pozwala na wydajne i bezpieczne zasilanie różnych urządzeń elektrycznych.

Pytanie 5

Strzałka na rysunku wskazuje

Ilustracja do pytania
A. styk pomocniczy rozwierny.
B. przycisk zwiemy.
C. styk pomocniczy zwiemy.
D. przycisk rozwierny.
Wybór niepoprawnej odpowiedzi może sprawiać kłopot przez to, że oznaczenia w schematach elektrycznych są czasem mylące. Przyciski rozwierne, styk pomocniczy rozwierny oraz styk pomocniczy zwiemy to różne typy styków i przycisków, które pełnią różne funkcje w obwodach elektrycznych. Przyciski rozwierne to te normalnie zamknięte (NC), więc w spoczynku obwód jest zamknięty, a naciśnięcie przycisku go otwiera. Używa się ich zazwyczaj tam, gdzie jest potrzeba interakcji ze strony użytkownika, żeby wyłączyć jakieś urządzenie, co może czasami prowadzić do nieprzewidzianych skutków w systemach bezpieczeństwa, gdy są źle zastosowane. Styki pomocnicze, zarówno rozwierne, jak i zwiemy, służą do rozszerzania funkcji głównych przełączników. Styki pomocnicze zwiemy (NO) zamykają obwód po aktywacji, a rozwierne (NC) działają na zasadzie przeciwnej. Dosyć łatwo je pomylić z przyciskami przez ich podobieństwo, ale różnią się swoją podstawową funkcją. Kluczowym błędem, przy wyborze odpowiedzi, może być pomylenie funkcji normalnie otwartych z normalnie zamkniętymi stykami. Zrozumienie tych różnic jest naprawdę ważne w inżynierii elektrycznej, bo poprawna identyfikacja i wykorzystanie tych komponentów mogą decydować o bezpieczeństwie i efektywności całego systemu. Może warto jeszcze raz zastanowić się nad funkcjami i zastosowaniem każdego z tych elementów, żeby lepiej uchwycić ich rolę w obwodach elektrycznych.

Pytanie 6

Elektryczne połączenie, które umożliwia przesył energii elektrycznej, znajdujące się pomiędzy złączem a systemem odbiorczym w budynku, określane jest mianem

A. wewnętrznej linii zasilającej
B. przyłącza kablowego
C. instalacji wewnętrznej
D. przyłącza napowietrznego
Odpowiedzi takie jak "instalacja wnętrzowa", "przyłącze kablowe" oraz "przyłącze napowietrzne" odnoszą się do innych aspektów systemu elektrycznego, które są mylone z wewnętrzną linią zasilającą. Instalacja wnętrzowa dotyczy ogółu elementów zainstalowanych wewnątrz budynku, takich jak gniazdka, włączniki czy oświetlenie, ale nie wskazuje na konkretne połączenie zasilające. Przyłącze kablowe odnosi się do połączenia między siecią dystrybucyjną a budynkiem, które ma na celu dostarczenie energii do budynku, ale nie jest to już linia zasilająca wewnętrzna. Natomiast przyłącze napowietrzne to forma dostarczenia energii elektrycznej, która wykorzystuje przewody zawieszone na słupach, co również nie dotyczy przesyłu energii wewnątrz budynku. Pojęcia te mogą prowadzić do nieporozumień, zwłaszcza u osób, które nie mają doświadczenia w dziedzinie elektryki. Poprawne zrozumienie różnicy między tymi terminami jest kluczowe dla projektowania i realizacji efektywnych oraz bezpiecznych systemów zasilania w obiektach budowlanych.

Pytanie 7

Jaką minimalną wartość prądu powinno mieć wykonanie pomiaru ciągłości elektrycznej przewodów ochronnych w głównych i dodatkowych połączeniach wyrównawczych oraz przewodów czynnych w przypadku obwodów odbiorczych typu pierścieniowego?

A. 200 mA
B. 150 mA
C. 100 mA
D. 500 mA
Udzielenie odpowiedzi innej niż 200 mA może prowadzić do nieprawidłowej oceny stanu ciągłości przewodów ochronnych. Wartości takie jak 100 mA, 150 mA czy 500 mA nie są wystarczające lub nieadekwatne do przeprowadzenia rzetelnych pomiarów w kontekście ochrony przeciwporażeniowej. Wybór niższej wartości prądu, jak 100 mA, może skutkować sytuacją, w której nie zostaną wykryte niewielkie przerwy w ciągłości przewodu, co z kolei stwarza poważne zagrożenie dla bezpieczeństwa użytkowników. Z kolei wartość 150 mA, mimo że może wydawać się bardziej sensowna, wciąż nie spełnia wymagań dotyczących dokładności pomiarów, co może prowadzić do fałszywych odczytów. Zwiększenie prądu do 500 mA, choć teoretycznie może wydawać się korzystne, może w rzeczywistości prowadzić do uszkodzenia delikatnych elementów instalacji, a także może doprowadzić do niebezpiecznych sytuacji, takich jak przegrzanie przewodów. Kluczowe jest zrozumienie, że odpowiednie wartości prądu pomiarowego mają na celu nie tylko wykrycie ewentualnych usterek, ale także zapewnienie, że instalacja działa w sposób bezpieczny i niezawodny. Właściwe rozumienie norm oraz ich stosowanie jest niezbędne w praktyce inżynierskiej.

Pytanie 8

Na podstawie zamieszczonych wyników pomiarów rezystancji w przewodzie elektrycznym przedstawionym na ilustracji można stwierdzić, że żyły

Ilustracja do pytania
A. L1 i L2 są zwarte.
B. N i PE są zwarte oraz L3 jest przerwana.
C. N i L3 są zwarte oraz PE jest przerwana.
D. L1 i L2 są przerwane.
Poprawna odpowiedź wskazuje, że żyły N i PE są zwarte oraz L3 jest przerwana. Wyniki pomiarów rezystancji potwierdzają, że między żyłami N i PE nie ma oporu, co oznacza, że są one ze sobą połączone. Przykładowo, w instalacjach elektrycznych, żyła neutralna (N) oraz żyła ochronna (PE) powinny być połączone w punkcie zerowym, co jest zgodne z normami bezpieczeństwa. W przypadku, gdy rezystancja między L3.1 a L3.2 wynosi ∞, mamy do czynienia z przerwaniem w tej żyle, co może prowadzić do niebezpiecznych sytuacji, takich jak wzrost napięcia na żyłach fazowych. Istotne jest, aby przy każdorazowej kontroli instalacji elektrycznych stosować takie pomiary, aby zidentyfikować wszelkie nieprawidłowości. Praktyki te są zgodne z normami PN-IEC 60364, które określają wymagania dotyczące bezpieczeństwa instalacji elektrycznych. Zrozumienie tych zależności jest kluczowe dla zapewnienia bezpieczeństwa oraz długotrwałej eksploatacji instalacji elektrycznych.

Pytanie 9

Narzędzie z rysunku służy do

Ilustracja do pytania
A. ściągania izolacji.
B. zaciskania końcówek tulejkowych.
C. profilowania przewodów.
D. tworzenia oczek na przewodzie.
Narzędzie przedstawione na zdjęciu to ściągacz izolacji, który jest niezbędnym przyrządem w dziedzinie prac elektrycznych. Jego głównym zadaniem jest usuwanie izolacji z przewodów bez uszkodzenia samego przewodu, co jest kluczowe dla zapewnienia właściwego połączenia elektrycznego. Dzięki regulowanej średnicy szczęk, ściągacz izolacji może być używany do różnych grubości przewodów, co zwiększa jego uniwersalność. W praktyce, stosowanie tego narzędzia pozwala na szybkie i precyzyjne przygotowanie przewodów do dalszej obróbki, na przykład przed lutowaniem lub zaciskaniem końcówek. W branży elektrycznej, standardy dotyczące bezpieczeństwa i jakości często wymagają, aby przewody były odpowiednio przygotowane, co czyni to narzędzie niezastąpionym. Ponadto, stosowanie ściągacza pozwala na zachowanie integralności przewodu, co ma kluczowe znaczenie dla przewodności elektrycznej i bezpieczeństwa instalacji.

Pytanie 10

Symbol graficzny przedstawiony na rysunku oznacza łącznik

Ilustracja do pytania
A. dwubiegunowy.
B. schodowy.
C. hotelowy.
D. świecznikowy.
Wybór jednego z pozostałych typów łączników, takich jak dwubiegunowy, hotelowy czy świecznikowy, prowadzi do nieporozumień dotyczących ich funkcji oraz zastosowania. Łącznik dwubiegunowy, w przeciwieństwie do schodowego, służy głównie do włączania i wyłączania zasilania w obwodzie, ale nie umożliwia zdalnej kontroli z dwóch miejsc. Jego zastosowanie zazwyczaj ogranicza się do pojedynczego miejsca, co nie jest odpowiednie w kontekście schodów lub długich korytarzy. Z kolei łącznik hotelowy jest wykorzystywany w specyficznych aplikacjach w hotelach, gdzie ma inną funkcjonalność, najczęściej związaną z systemami zarządzania pokojami. Natomiast łącznik świecznikowy, używany do podłączenia świeczników i lamp, również nie spełnia roli łącznika schodowego, ponieważ nie jest skonstruowany do obsługi oświetlenia z dwóch miejsc jednocześnie. Wybierając nieodpowiedni typ łącznika, można narazić użytkowników na niewygodę lub wręcz niebezpieczeństwo, jeśli oświetlenie będzie nietypowo skonfigurowane. Użycie właściwego oznaczenia ma kluczowe znaczenie w zapewnieniu poprawności instalacji elektrycznej, co jest zgodne z obowiązującymi normami branżowymi.

Pytanie 11

Na podstawie rysunku określ kolejność zamontowanych aparatów elektrycznych w rozdzielnicy.

Ilustracja do pytania
A. Wyłącznik różnicowoprądowy, przekaźnik bistabilny, lampka kontrolna, automat schodowy.
B. Ochronnik przeciwprzepięciowy, przekaźnik bistabilny, lampka kontrolna, automat schodowy.
C. Ochronnik przeciwprzepięciowy, wyłącznik nadprądowy, automat schodowy, przekaźnik bistabilny.
D. Wyłącznik różnicowoprądowy, wyłącznik nadprądowy, lampka kontrolna, przekaźnik bistabilny.
Wybrana odpowiedź jest poprawna, ponieważ prawidłowo odzwierciedla kolejność zamontowanych aparatów elektrycznych w rozdzielnicy. Wyłącznik różnicowoprądowy, umieszczony jako pierwszy, ma kluczowe znaczenie dla ochrony użytkowników przed porażeniem prądem, wykrywając różnicę w prądzie między przewodami fazowymi a neutralnym. Następnie, wyłącznik nadprądowy chroni instalację przed przeciążeniem i zwarciami. Lampka kontrolna, jako trzeci element, pełni funkcję sygnalizacyjną, informując o stanie działania urządzeń. Na końcu znajduje się przekaźnik bistabilny, który służy do sterowania obwodami z wykorzystaniem małej mocy. Taka sekwencja jest zgodna z najlepszymi praktykami przy projektowaniu rozdzielnic, gdzie bezpieczeństwo i efektywność są priorytetem. Przy projektowaniu instalacji elektrycznych warto uwzględniać normy PN-IEC 60364, które regulują zasady projektowania i wykonania instalacji elektrycznych. Wiedza na temat rozmieszczenia aparatów w rozdzielnicach jest kluczowa dla zapewnienia niezawodności oraz bezpieczeństwa systemów elektrycznych.

Pytanie 12

W obiekcie zasilanym napięciem 400 V (3/N/PE 50Hz) zainstalowano następujące urządzenia:
1. przepływowy podgrzewacz wody - 12 kW - obwód trójfazowy
2. zmywarka - 3,5 kW - obwód jednofazowy
3. kuchenka elektryczna - 9,5 kW - obwód trójfazowy
4. pralka automatyczna - 4,5 kW - obwód jednofazowy

Każde z urządzeń stanowi odrębny obwód w tablicy rozdzielczej. Jakie wyłączniki instalacyjne należy zastosować z odpowiednimi wartościami prądu znamionowego, według kolejności dla każdego urządzenia (w kolejności 1,2,3,4)?

A. 20 A, 16 A, 20 A, 16 A
B. 16 A, 20 A, 20 A, 16 A
C. 20 A, 16 A, 16 A, 20 A
D. 16 A, 20 A, 20 A, 16 A
Wybór innych wartości prądów znamionowych dla wyłączników instalacyjnych może prowadzić do niewłaściwej ochrony odbiorników i stwarzać ryzyko ich uszkodzenia, a nawet pożaru. Dla przykładu, zastosowanie wyłącznika o prądzie 16 A dla kuchenki elektrycznej o mocy 9,5 kW w obwodzie 3-fazowym jest błędne, ponieważ moc ta wymaga przynajmniej 20 A. Prąd znamionowy wyłączników powinien być zawsze dobrany na podstawie obliczeń mocy i zastosowanej metody ochrony. Wybór zbyt niskiego prądu znamionowego może prowadzić do częstego wyłączania się zabezpieczenia, co nie tylko jest niewygodne, ale także może doprowadzić do uszkodzenia urządzenia przez nienależyte zasilanie. Z kolei użycie wyłącznika o zbyt wysokim prądzie może nie zapewnić odpowiedniej ochrony przed przeciążeniem, co stwarza ryzyko przegrzania i uszkodzenia przewodów. W normach instalacyjnych oraz w praktyce inżynierskiej kluczowe jest przestrzeganie zasad doboru zabezpieczeń, które uwzględniają zarówno moc odbiorników, jak i ich charakterystykę. Istotne jest również, aby uwzględniać współczynniki obciążenia, które mogą wpływać na rzeczywisty pobór prądu przez urządzenia. Dlatego też właściwe zrozumienie i stosowanie tych zasad jest niezbędne dla zapewnienia bezpieczeństwa instalacji elektrycznych.

Pytanie 13

Jakie parametry ma wyłącznik różnicowoprądowy, zastosowany w instalacji zasilającej mieszkanie, której schemat ideowy przedstawiono na rysunku?

Ilustracja do pytania
A. Prąd znamionowy 10 A oraz charakterystykę B
B. Prąd znamionowy 30 mA i prąd znamionowy różnicowy 25 A
C. Prąd znamionowy 16 A oraz charakterystykę B
D. Prąd znamionowy 25 A i prąd znamionowy różnicowy 30 mA
Wyłącznik różnicowoprądowy z parametrami, jak prąd znamionowy 25 A i prąd różnicowy 30 mA, to naprawdę ważny element w zabezpieczaniu elektryki w mieszkaniach. Prąd znamionowy 25 A mówi nam, ile maksymalnie może on przenieść, co jest kluczowe, bo musimy myśleć o zasilaniu domowych sprzętów. Z kolei prąd różnicowy 30 mA to wartość, która bardzo dobrze chroni przed porażeniem, bo jak zauważy różnicę w prądzie, to odetnie zasilanie. Te wartości są zgodne z normami PN-EN 61008-1 i PN-EN 60947-2, które mówią, jak powinny być projektowane wyłączniki. Używając takich parametrów, zapewniamy bezpieczeństwo i ochronę przed ewentualnymi awariami. Fajnie jest także regularnie sprawdzać wyłączniki różnicowoprądowe, żeby mieć pewność, że działają, a można to łatwo zrobić przyciskiem testowym, który jest na każdym z tych urządzeń.

Pytanie 14

Na podstawie przedstawionej tabeli obciążalności długotrwałej przewodów dobierz przekrój żył przewodu czterożyłowego ułożonego na ścianie, na uchwytach, zasilającego oporowy piec trójfazowy o prądzie znamionowym 36 A w sieci o napięciu 230/400 V.

Ilustracja do pytania
A. 6 mm2
B. 2,5 mm2
C. 4 mm2
D. 10 mm2
Wybór przekroju przewodu jest kluczowym zagadnieniem w projektowaniu instalacji elektrycznych, a niewłaściwe podejście do tego tematu może prowadzić do poważnych konsekwencji. Wiele osób może pomylić przekroje żył, myśląc, że im mniejszy przekrój, tym mniejsze straty energii lub łatwiejsza instalacja. Takie podejście jest błędne, ponieważ niewłaściwie wybrany przekrój przewodu może skutkować przegrzewaniem, co z kolei może prowadzić do uszkodzenia przewodów, a nawet pożaru. Na przykład, wybór 10 mm² dla obciążenia 36 A może wydawać się nadmiernym zabezpieczeniem, jednak warto uwzględnić, że nie jest to zgodne z zasadami doboru, które nakazują stosować najbliższą większą wartość w odniesieniu do aktualnego obciążenia. Zastosowanie 4 mm² byłoby niewystarczające, ponieważ nie pokrywałoby minimalnych wymagań dla obciążenia 36 A. Z kolei 2,5 mm² jest zdecydowanie zbyt małym przekrojem, co stwarzałoby ryzyko przegrzewania i uszkodzenia instalacji. Dlatego zasadniczym błędem jest ignorowanie tabel obciążalności, które są niezbędne do bezpiecznego i efektywnego projektowania instalacji elektrycznych. W przemyśle elektrycznym przestrzeganie norm i standardów, takich jak PN-IEC 60364, jest kluczowe dla zapewnienia bezpieczeństwa i efektywności energetycznej. Zrozumienie tych zasad jest kluczowe dla każdego, kto pracuje z instalacjami elektrycznymi i chce uniknąć potencjalnie niebezpiecznych sytuacji.

Pytanie 15

Które z przedstawionych na rysunkach narzędzi najlepiej nadaje się do wyznaczania tras przebiegu przewodów przed montażem instalacji elektrycznej w pomieszczeniu o dużej powierzchni?

Ilustracja do pytania
A. A.
B. B.
C. C.
D. D.
Odpowiedź B jest prawidłowa, ponieważ laser krzyżowy jest narzędziem wykorzystywanym w budownictwie i instalacjach elektrycznych do precyzyjnego wyznaczania linii. Jego działanie opiera się na emisji dwóch linii - pionowej i poziomej - które są widoczne na powierzchni roboczej, co ułatwia planowanie i montaż instalacji. Dzięki zastosowaniu lasera krzyżowego, technik może z łatwością wyznaczyć trasy dla przewodów elektrycznych na dużych powierzchniach, co jest kluczowe przy instalacjach w przestronnych pomieszczeniach. W praktyce, użycie lasera krzyżowego minimalizuje ryzyko błędów, które mogą wyniknąć z ręcznego mierzenia i rysowania linii. Zgodnie z normami branżowymi, precyzyjność w wyznaczaniu tras jest niezwykle istotna dla bezpieczeństwa i efektywności instalacji elektrycznych, co czyni laser krzyżowy niezastąpionym narzędziem w tej dziedzinie. Dodatkowo, wiele modeli laserów krzyżowych oferuje funkcje automatycznego poziomowania, co jeszcze bardziej zwiększa ich użyteczność.

Pytanie 16

Kiedy należy dokonać przeglądu instalacji elektrycznej w obiekcie przemysłowym?

A. Co pięć lat
B. Po każdej naprawie maszyn
C. Co najmniej raz na rok
D. Tylko przed uruchomieniem nowych maszyn
Przegląd instalacji elektrycznej w obiektach przemysłowych powinien być dokonywany co najmniej raz na rok. Częstotliwość ta jest zgodna z normami i przepisami dotyczącymi bezpieczeństwa w przemyśle, które wymagają regularnych przeglądów w celu zapewnienia bezpiecznego i efektywnego działania instalacji. Przykładowo, roczne przeglądy pozwalają na wczesne wykrycie potencjalnych uszkodzeń, które mogą prowadzić do awarii lub zagrożeń dla bezpieczeństwa pracowników. Dodatkowo, regularne przeglądy umożliwiają identyfikację zużycia podzespołów i przewodów, co jest kluczowe w kontekście ich konserwacji i wymiany. W praktyce, podczas takiego przeglądu sprawdza się m.in. stan izolacji przewodów, działanie zabezpieczeń oraz poprawność połączeń, co ma na celu zminimalizowanie ryzyka porażenia prądem czy pożaru. Ponadto, zgodnie z dobrymi praktykami branżowymi, przeglądy roczne są uznawane za minimalny standard dla utrzymania optymalnego stanu technicznego instalacji w intensywnie eksploatowanych środowiskach przemysłowych.

Pytanie 17

Na którym rysunku przedstawiono świetlówkę kompaktową?

Ilustracja do pytania
A. C.
B. B.
C. A.
D. D.
Świetlówka kompaktowa, znana również jako lampa energooszczędna, jest nowoczesnym rozwiązaniem w dziedzinie oświetlenia, które łączy w sobie efektywność energetyczną oraz długowieczność. W przeciwieństwie do tradycyjnych żarówek, świetlówki kompaktowe emitują znacznie więcej światła przy tej samej mocy, co sprawia, że są bardziej ekonomiczne i ekologiczne. Odpowiedź D przedstawia lampę o charakterystycznym kształcie składającym się z kilku zwiniętych rurek, co jest typowe dla świetlówek kompaktowych. W praktyce, zastosowanie takich lamp w domach i biurach pozwala na znaczące obniżenie kosztów energii elektrycznej, co jest zgodne z aktualnymi trendami w zakresie zrównoważonego rozwoju oraz normami dotyczącymi ochrony środowiska. Dodatkowo, świetlówki kompaktowe charakteryzują się dłuższą żywotnością, co ogranicza liczbę odpadów, a wiele modeli jest kompatybilnych z oprawami standardowymi, co ułatwia ich wymianę. W kontekście dobrych praktyk, warto zwrócić uwagę na certyfikaty energetyczne, które świadczą o wysokiej efektywności tych lamp.

Pytanie 18

Jakiego narzędzia należy użyć, aby zweryfikować, czy nie ma napięcia w instalacji elektrycznej 230 V, przed przystąpieniem do prac konserwacyjnych?

A. Czujnika zaniku fazy
B. Omomierza cyfrowego
C. Miernika parametrów instalacji
D. Neonowego wskaźnika napięcia
Neonowy wskaźnik napięcia to urządzenie, które pozwala na szybkie i skuteczne sprawdzenie obecności napięcia w instalacjach elektrycznych. Działa na zasadzie świecenia diody neonowej, gdy napięcie przekracza określony próg. Jest to podstawowe narzędzie, które powinno być używane przed rozpoczęciem jakichkolwiek prac konserwacyjnych, aby zapewnić bezpieczeństwo techników. W praktyce, po podłączeniu wskaźnika do przewodów, jego świecenie sygnalizuje, że w instalacji występuje napięcie, co oznacza, że nie powinno się przystępować do prac. Zgodnie z ogólnymi zasadami BHP, każda osoba pracująca w branży elektrycznej powinna posiadać odpowiednie narzędzia do pomiaru, a neonowy wskaźnik jest jednym z najprostszych i najtańszych. Przykładem może być sytuacja, gdy elektryk musi wymienić gniazdko – przed rozpoczęciem wymiany, zawsze powinien skontrolować, czy w obwodzie nie ma napięcia, używając neonowego wskaźnika. Tego rodzaju praktyki są zgodne z normami PN-IEC 61010, które regulują kwestie bezpieczeństwa urządzeń elektrycznych.

Pytanie 19

Na rysunku przedstawiono charakterystykę wyłącznika nadmiarowo-prądowego KS6 B32/3 znajdującą się w katalogu producenta. Wyłącznik ten można zastosować do zabezpieczenia przewodów o obciążalności długotrwałej

Ilustracja do pytania
A. 29 A
B. 25 A
C. 30 A
D. 34 A
Wybór niewłaściwej obciążalności przewodów, na przykład 29 A, 25 A czy 30 A, wynika często z niewłaściwego zrozumienia zasad doboru zabezpieczeń elektrycznych. Prąd znamionowy wyłącznika nadmiarowo-prądowego KS6 B32/3 wynosi 32 A, co oznacza, że obciążalność długotrwała przewodów musi być wyższa od tej wartości, aby uniknąć sytuacji, w której wyłącznik będzie się zbyt często wyzwalał podczas normalnej pracy. Wybór 29 A to minimalna wartość, która nie spełnia wymogu większej obciążalności długotrwałej, co może prowadzić do niepożądanych wyłączeń urządzenia. Z kolei 25 A jest jeszcze bardziej nieodpowiedni, ponieważ nie tylko nie przekracza prądu znamionowego wyłącznika, ale także stwarza ryzyko uszkodzenia instalacji w przypadku krótkotrwałego wzrostu obciążenia. Wybór 30 A również jest niewłaściwy, gdyż nie zapewnia odpowiedniego marginesu, co może prowadzić do nieefektywności systemu zabezpieczeń. Podstawową zasadą projektowania instalacji elektrycznych jest zapewnienie, że każdy element systemu jest dobrany z odpowiednim zapasem, co nie tylko zwiększa bezpieczeństwo, ale również stabilność i niezawodność całej instalacji. Niezrozumienie tych zasad może prowadzić do poważnych konsekwencji, w tym ryzyka uszkodzenia sprzętu oraz zagrożenia dla użytkowników.

Pytanie 20

Określ przyczynę nadmiernego wzrostu napięcia na zaciskach odbiornika Z1 w układzie przedstawionym na schemacie, przy założeniu, że impedancje Z1, Z2 i Z3 znacznie się różnią.

Ilustracja do pytania
A. Zwarcie na zaciskach odbiornika Z2 lub Z3.
B. Zwarcie pomiędzy dwoma przewodami fazowymi.
C. Przerwa w przewodzie neutralnym.
D. Przerwa na zaciskach odbiornika Z2 lub Z3.
Zwarcia pomiędzy przewodami fazowymi czy na zaciskach odbiorników Z2 lub Z3 są powszechnie mylone z przyczynami nadmiernego wzrostu napięcia na zaciskach Z1. Zwarcie w obwodzie fazowym prowadziłoby do znaczącego wzrostu prądu w danym obwodzie, co skutkowałoby zadziałaniem zabezpieczeń, a tym samym wyłączeniem zasilania, a nie do długotrwałego wzrostu napięcia. Podobnie, zwarcie na zaciskach odbiorników Z2 czy Z3 wpłynęłoby na ich własne parametry pracy, ale nie na napięcia na zaciskach Z1. Przerwa na zaciskach odbiornika Z2 lub Z3 wprowadzałaby natomiast zjawisko wyłączenia jednego z obwodów, co również nie prowadziłoby do wzrostu napięcia na Z1, a raczej do obniżenia jego wartości. Ostatecznie, nieprawidłowe założenie dotyczące braku wpływu przewodu neutralnego na rozkład napięcia jest typowym błędem myślowym. Kluczowym zrozumieniem jest, jak współdziałają ze sobą różne komponenty układu elektrycznego. Normy takie jak PN-IEC 60364 podkreślają znaczenie solidnych połączeń neutralnych dla zachowania stabilności napięcia w całym systemie. Użytkownicy powinni być świadomi potencjalnych konsekwencji niewłaściwego podejścia do analizy układów trójfazowych, co może prowadzić do poważnych awarii i zagrożeń dla bezpieczeństwa.

Pytanie 21

Który rodzaj sterowania zapewnia układ silnika przedstawiony na schemacie?

Ilustracja do pytania
A. Hamowanie prądnicowe.
B. Regulację obrotów przez bocznikowanie uzwojenia wzbudzenia.
C. Regulację obrotów przez zmianę napięcia twornika.
D. Hamowanie dynamiczne.
W kontekście przedstawionego schematu oraz dostępnych odpowiedzi, wiele osób może błędnie zinterpretować sposób regulacji obrotów silnika. Odpowiedzi związane z hamowaniem prądnicowym i dynamicznym dotyczą zupełnie innych mechanizmów, które nie są odpowiednie w kontekście zmiany napięcia twornika. Hamowanie prądnicowe polega na wykorzystaniu energii kinetycznej wirnika do generowania napięcia, co prowadzi do jego spowolnienia, a nie do regulacji prędkości w sposób ciągły. Z kolei hamowanie dynamiczne, które zazwyczaj polega na podłączeniu rezystorów do obwodu silnika, aby rozproszyć energię, jest techniką używaną głównie do zapewnienia szybkiego zatrzymania, co również nie odpowiada za regulację prędkości obrotowej. Kolejna koncepcja, czyli bocznikowanie uzwojenia wzbudzenia, odnosi się do innego aspektu sterowania silnikami prądu stałego, gdzie zmiana wartości prądu wzbudzenia wpływa na siłę elektromotoryczną, ale nie bezpośrednio na napięcie twornika. Użytkownicy mogą zapominać, że każda z tych metod ma swoje zastosowanie w specyficznych warunkach, co może prowadzić do niepoprawnych wniosków. Kluczowe jest zrozumienie, że regulacja obrotów przez zmianę napięcia twornika pozostaje najskuteczniejszą metodą w wielu zastosowaniach, gdzie płynność i precyzja są najważniejsze.

Pytanie 22

Jaki jest najmniejszy błąd pomiaru natężenia prądu wynoszącego 30 mA, gdy używamy cyfrowego miliamperomierza z wyświetlaczem do 2 miejsc po przecinku oraz miernika o określonej dokładności?

A. ±2,5% + 1 cyfra
B. ±1,5% + 3 cyfry
C. ±2,0% + 2 cyfry
D. ±1,0% + 4 cyfry
Odpowiedź ±1,0% + 4 cyfry jest prawidłowa, ponieważ oferuje najwyższą precyzję pomiaru wśród dostępnych opcji. Przy natężeniu prądu wynoszącym 30 mA błąd pomiaru obliczamy na podstawie wzoru: błąd = (wartość pomiaru × procent dokładności) + liczba cyfr. Dla podanej odpowiedzi, maksymalny błąd wynosi: 30 mA × 1,0% + 4 cyfry, co daje 0,3 mA + 0,04 mA, czyli 0,34 mA. Taki poziom dokładności jest szczególnie istotny w zastosowaniach, gdzie precyzyjne pomiary są kluczowe, np. w laboratoriach badawczych, w elektronice czy przy kalibracji urządzeń. Wybór miernika z lepszą dokładnością pozwala także na uniknięcie błędów w dalszych obliczeniach oraz wpływa na wiarygodność wyników. Stąd, zgodnie z dobrymi praktykami w inżynierii, zawsze warto wybierać urządzenia o jak najwyższej dokładności, aby zapewnić rzetelność pomiarów i ich zgodność z obowiązującymi normami.

Pytanie 23

Rysunek przedstawia sposób zainstalowania urządzenia ochronnego różnicowoprądowego w sieci typu

Ilustracja do pytania
A. TN-C-S
B. TT
C. IT
D. TN-S
Wybór odpowiedzi spośród pozostałych typów sieci może prowadzić do nieporozumień związanych z zasadami ich działania. Sieci TN-S charakteryzują się tym, że przewód neutralny i przewód ochronny są oddzielone, co jest zupełnie inną koncepcją niż izolacja stosowana w sieciach IT. Użytkownicy mogą błędnie myśleć, że w sieci TN-S urządzenia różnicowoprądowe są tak samo efektywne jak w IT, jednak w przypadku awarii izolacji, prąd upływowy w sieci TN-S może spowodować poważniejsze konsekwencje. Podobnie sieci TN-C-S, które łączą funkcję przewodów neutralnych i ochronnych, są bardziej narażone na zjawiska związane z prądami upływowymi, co stawia pod znakiem zapytania ich bezpieczeństwo. Z kolei w sieciach TT, gdzie przewód neutralny i ochronny są oddzielne, istnieje większe ryzyko wystąpienia różnicy potencjałów między ziemią a neutralnym przewodem, co może prowadzić do niebezpiecznych sytuacji. Błędem jest zakładanie, że wszystkie te systemy zapewniają taki sam poziom ochrony jak sieci IT; każdy typ ma swoje unikalne właściwości i zastosowania, które powinny być starannie rozważane w kontekście wymagań bezpieczeństwa. W przypadku sieci IT, kluczowe jest zrozumienie ich struktury oraz właściwego zastosowania, aby uniknąć niebezpieczeństw związanych z awariami. Warto również zaznaczyć, że w sieciach TN i TT instalacje różnicowoprądowe są często mniej skuteczne w detekcji uszkodzeń, co może prowadzić do większych zagrożeń dla użytkowników i urządzeń.

Pytanie 24

Na którym rysunku przedstawiono schemat podłączenia automatu schodowego, umożliwiający prawidłową pracę układu oświetlenia?

Ilustracja do pytania
A. A.
B. D.
C. B.
D. C.
Rysunek C przedstawia prawidłowe podłączenie automatu schodowego, co jest kluczowe dla zapewnienia efektywnego i bezpiecznego działania systemu oświetleniowego w miejscach o dużym natężeniu ruchu, takich jak klatki schodowe. W tym układzie przewód fazowy L jest prawidłowo podłączony do zacisku L automatu, co umożliwia kontrolowanie przepływu prądu. Zastosowanie przewodu neutralnego N do zacisku N zapewnia zamknięcie obwodu, a poprawne podłączenie przewodu oświetleniowego do symbolu żarówki gwarantuje, że po naciśnięciu przycisku oświetlenie zostanie włączone. Przyciski połączeniowe do zacisków A1 i A2 są niezbędne, aby umożliwić użytkownikom uruchomienie oświetlenia z różnych lokalizacji. Dobrą praktyką jest również stosowanie automatów schodowych, które mają możliwość regulacji czasu świecenia, co zwiększa komfort użytkowania oraz oszczędność energii. W kontekście norm i standardów, instalacje elektryczne powinny być zgodne z wymaganiami normy PN-IEC 60364, która określa zasady projektowania i wykonania instalacji elektrycznych, zapewniając bezpieczeństwo oraz efektywność energetyczną.

Pytanie 25

Do realizacji układu przedstawionego na schemacie należy zastosować stycznik Q21 z następującą liczbą i rodzajem zestyków:

Ilustracja do pytania
A. 3NC + 2NC + 1NO
B. 3NC + 2NO + 1NC
C. 3NO + 2NO + 1NC
D. 3NO + 2NC + 1NO
Wybór odpowiedzi 3NO + 2NO + 1NC jest poprawny, gdyż dokładnie odpowiada wymaganiom wynikającym z analizy schematu elektrycznego. Stycznik Q21, aby prawidłowo realizować swoje funkcje, potrzebuje trzech zestyków normalnie otwartych (3NO), które służą do załączania trzech faz silnika, co jest standardowym rozwiązaniem w instalacjach trójfazowych. Dodatkowo, dwa zestyków normalnie otwartych (2NO) są niezbędne do funkcji sterowania, co jest zgodne z powszechnie stosowanymi normami w automatyce, aby zminimalizować ryzyko awarii oraz zapewnić odpowiednie zarządzanie procesem. Zestyk normalnie zamknięty (1NC) jest kluczowy dla funkcji zabezpieczających lub sygnalizacyjnych, co pozwala na zastosowanie dodatkowych zabezpieczeń, takich jak wyłączniki awaryjne lub sygnalizatory stanu. Taki układ zapewnia nie tylko efektywność działania, ale także bezpieczeństwo w eksploatacji, co jest zgodne z najlepszymi praktykami w branży elektrycznej.

Pytanie 26

Określ sposób podłączenia łącznika przedstawionego na fotografii, aby w układzie, którego schemat przedstawiono na rysunku, zapewnione było sterowanie oświetleniem z trzech niezależnych miejsc.

Ilustracja do pytania
A. I-1, II-2, III-3, IV-4
B. I-4, II-3, III-2, IV-1
C. I-2, II-4, III-1, IV-3
D. I-1, II-4, III-2, IV-3
Poprawne podłączenie łącznika krzyżowego oznaczone jako I-1, II-4, III-2, IV-3 wynika z analizy schematu elektrycznego oraz właściwego oznaczenia wejść i wyjść łącznika. Wejścia 1 i 4 są odpowiedzialne za przyjmowanie sygnałów z dwóch niezależnych punktów sterujących, co pozwala na ich połączenie w systemie wielopunktowego sterowania oświetleniem. Dobrze skonstruowany układ umożliwia użytkownikowi włączanie i wyłączanie źródła światła z trzech różnych punktów, co jest szczególnie przydatne w dużych pomieszczeniach lub korytarzach. Tego typu rozwiązanie jest zgodne z normami instalacji elektrycznych oraz zaleceniami dotyczącymi ergonomii w projektowaniu przestrzeni. Ponadto, zastosowanie łącznika krzyżowego zwiększa elastyczność w zakresie zarządzania oświetleniem, co przyczynia się do oszczędności energii i poprawy komfortu użytkowania, spełniając standardy zrównoważonego rozwoju.

Pytanie 27

Na tynku wykonanym na ścianie działowej z cegły pełnej wytyczono miejsce dla rurek PVC. Jakie narzędzia należy zgromadzić, aby zapewnić szybki i precyzyjny montaż rurek?

A. Taśmę mierniczą, młotek, wiertarkę udarową, wiertło widiowe dostosowane do średnicy kołka rozporowego, poziomicę, zestaw wkrętaków
B. Wiertarkę, punktak, zestaw wkrętaków
C. Taśmę mierniczą, wiertarkę, piłę do metalu, młotek
D. Punktak, młotek, wiertarka udarowa, wiertło widiowe dostosowane do średnicy kołka rozporowego, piła do metalu, zestaw wkrętaków
Wybór punktaka, młotka, wiertarki udarowej, wiertła widiowego dopasowanego do rozmiarów kołka rozporowego, piły do metalu oraz kompletu wkrętaków jest odpowiedni do montażu rurek PVC na ścianie działowej z cegły pełnej. Punktak i młotek są niezbędne do precyzyjnego wyznaczania miejsc, w których będą wiercone otwory, co pozwala na uniknięcie uszkodzeń materiału oraz zachowanie dokładności w montażu. Wiertarka udarowa, w połączeniu z wiertłem widiowym, zapewnia skuteczne wiercenie w twardym materiale, jakim jest cegła pełna, a odpowiednie dopasowanie wiertła do rozmiaru kołka gwarantuje stabilne mocowanie rurek. Piła do metalu umożliwia precyzyjne przycinanie elementów instalacji, a komplet wkrętaków jest niezbędny do montażu uchwytów mocujących. Taki zestaw narzędzi wpisuje się w dobre praktyki branżowe, gdzie kluczową rolę odgrywa precyzja i odpowiednie przygotowanie do wykonania zadania, co przekłada się na trwałość i bezpieczeństwo instalacji. Przykładem może być sytuacja, w której nieodpowiednie narzędzia mogą prowadzić do uszkodzenia materiałów lub nietrwałego montażu, co w efekcie wiąże się z dodatkowymi kosztami i czasem potrzebnym na poprawki.

Pytanie 28

Którego typu gniazda elektrycznego dotyczy symbol graficzny przedstawiony na ilustracji?

Ilustracja do pytania
A. Trójfazowego bez styku ochronnego.
B. Jednofazowego bez styku ochronnego.
C. Jednofazowego ze stykiem ochronnym.
D. Trójfazowego ze stykiem ochronnym.
Wybór niewłaściwej odpowiedzi może wynikać z nieporozumień dotyczących klasyfikacji gniazd elektrycznych. Gniazda jednofazowe bez styku ochronnego oraz gniazda trójfazowe, zarówno z jak i bez styku ochronnego, różnią się zasadniczo pod względem zastosowania i bezpieczeństwa. Gniazda jednofazowe bez styku ochronnego, mimo że są popularne w niektórych aplikacjach, nie zapewniają ochrony przed porażeniem, co czyni je mniej bezpiecznymi w zastosowaniach, gdzie ryzyko kontaktu z prądem jest wyższe. Gniazda trójfazowe, z kolei, są projektowane do zasilania większych urządzeń przemysłowych i wymagają zastosowania specjalistycznych wtyczek oraz kabli. W kontekście domowym lub w małych biurach, gniazda trójfazowe są zazwyczaj zbędne, a ich używanie bez odpowiedniego uzasadnienia może prowadzić do nieefektywności energetycznej. Często błędne wybory wynikają z mylnego założenia, że większa liczba faz przekłada się na lepsze parametry elektryczne w każdej sytuacji. Należy pamiętać, że dobór odpowiedniego gniazda elektrycznego powinien być oparty na specyfikacji urządzeń, które mają być podłączone, oraz na obowiązujących normach bezpieczeństwa. Zrozumienie tych podstawowych zasad jest kluczowe do uniknięcia potencjalnych zagrożeń i nieprawidłowości w instalacjach elektrycznych.

Pytanie 29

Jaki rodzaj wkładki topikowej powinien być użyty do ochrony nadprądowej obwodu jednofazowych gniazd do użytku ogólnego?

A. gL
B. gG
C. aM
D. aR
Wybór wkładek topikowych aM, gL, czy aR w kontekście zabezpieczeń nadprądowych obwodów jednofazowych gniazd ogólnego przeznaczenia jest niewłaściwy, ponieważ każdy z tych typów jest zaprojektowany do innego rodzaju zastosowań i nie spełnia wymagań stawianych wkładkom gG. Wkładki aM służą głównie do zabezpieczania silników, a ich charakterystyka prądowa nie jest dostosowana do ochrony obwodów z gniazdami. W przypadku wkładek gL, ich zastosowanie jest ograniczone do obwodów, w których nie występują duże prądy rozruchowe, co czyni je mniej efektywnymi w obwodach ogólnych. Z kolei wkładki aR są przeznaczone do ochrony układów elektronicznych, a ich charakterystyka może być niewystarczająca dla obwodów z gniazdami, gdzie mogą wystąpić skoki prądu. Zrozumienie różnicy pomiędzy tymi typami wkładek jest kluczowe dla prawidłowego doboru zabezpieczeń. Błędem jest również założenie, że wszystkie typy wkładek działają w podobny sposób; każde z nich ma swoją specyfikę, która musi być brana pod uwagę w procesie projektowania instalacji elektrycznych. Dlatego tak ważne jest, aby przed wyborem wkładki topikowej poznać wymagania konkretnego obwodu oraz zastosowane urządzenia, co pozwoli na odpowiednie zabezpieczenie i zapewnienie bezpieczeństwa użytkowników.

Pytanie 30

Które żyły przewodów należy połączyć ze sobą w puszce rozgałęźnej układu elektrycznego, przedstawionej na rysunku, aby połączenie zapewniało sterowanie oświetleniem i było zgodne ze sztuką monterską?

Ilustracja do pytania
A. L z 4, N z 1, 2 z 3
B. L z 1, N z 4, 2 z 3
C. L z 1, N z 3, 2 z 4
D. L z 3, N z 2, 1 z 4
Wybór niewłaściwej kombinacji przewodów może prowadzić do poważnych problemów w instalacji elektrycznej. Na przykład, w przypadku połączenia L z 3, N z 2 oraz 1 z 4, przewód fazowy (L) zostaje połączony z niewłaściwym punktem, co nie tylko może uniemożliwić włączenie oświetlenia, ale także stwarza ryzyko niebezpiecznych sytuacji, takich jak zwarcie czy porażenie prądem. Przewód neutralny (N) w takim układzie może pozostać niepodłączony lub niewłaściwie połączony, co zakłóca prawidłowy przepływ prądu. W praktyce, połączenie przewodów w puszce rozgałęźnej jest kluczowe do zapewnienia, że wszystkie elementy działają w zgodzie ze sobą. Zdarza się, że osoby wykonujące instalacje pomijają te fundamentalne zasady, co prowadzi do typowych błędów, takich jak nieprawidłowe łączenie przewodów, nieprzestrzeganie kolorów przewodów (np. nieodpowiednie użycie przewodu neutralnego), czy niezrozumienie roli przełącznika. Należy pamiętać, że każde połączenie powinno być zgodne z obowiązującymi normami, aby zapewnić bezpieczeństwo oraz efektywność całego obwodu. Z tego powodu kluczowe jest zrozumienie podstawowych zasad i standardów montażu elektrycznego, aby uniknąć takich pomyłek.

Pytanie 31

Jaką funkcję w wyłączniku nadprądowym pełni element wskazany na rysunku czerwoną strzałką?

Ilustracja do pytania
A. Komory łukowej.
B. Wyzwalacza zwarciowego.
C. Wyzwalacza przeciążeniowego.
D. Styku ruchomego.
Element wskazany na rysunku czerwoną strzałką to wyzwalacz zwarciowy, który odgrywa kluczową rolę w działaniu wyłącznika nadprądowego. Jego podstawowym zadaniem jest szybkie reagowanie na sytuacje zwarciowe, co jest niezbędne dla zapewnienia bezpieczeństwa instalacji elektrycznej. W momencie wystąpienia zwarcia, następuje gwałtowny wzrost prądu, który wyzwalacz wykrywa i natychmiast przerywa obwód elektryczny. To działanie zapobiega uszkodzeniom przewodów oraz innych elementów instalacji, a także minimalizuje ryzyko pożaru. W praktyce, zastosowanie wyzwalacza zwarciowego jest normą w instalacjach elektrycznych, a jego obecność jest zgodna z normami takimi jak PN-EN 60947-2, które regulują kwestie bezpieczeństwa urządzeń elektrycznych. Dzięki zastosowaniu wyzwalaczy zwarciowych, użytkownicy mogą mieć pewność, że ich instalacja będzie chroniona przed niebezpiecznymi skutkami awarii. Dodatkowo, w wielu systemach automatyki budynkowej wyzwalacze te mogą być integrowane z systemami monitoringu, co zwiększa poziom ochrony.

Pytanie 32

Aby zabezpieczyć silnik indukcyjny trójfazowy w układzie zasilania ze stycznikiem przed przeciążeniem, należy użyć przekaźnika termobimetalowego. Jaki typ przekaźnika powinien być zastosowany?

A. jednotorowy ze stykiem kontrolnym
B. trójtorowy ze stykiem kontrolnym
C. jednotorowy bez styku kontrolnego
D. trójtorowy bez styku kontrolnego
Wybór przekaźnika jednostorowego, niezależnie od tego, czy ma on styk sterujący, czy nie, jest niewłaściwy w kontekście zabezpieczania silnika trójfazowego. Przekaźnik jednostorowy monitoruje tylko jedną fazę, co nie zapewnia pełnej ochrony w przypadku przeciążenia, które może wystąpić w którejkolwiek z pozostałych faz. Silniki trójfazowe są zaprojektowane do pracy równomiernie w trzech fazach, dlatego ich zabezpieczenie wymaga kompleksowego podejścia. Zastosowanie przekaźnika trójtorowego jest kluczowe, ponieważ pozwala na równoczesne monitorowanie prądów w każdej fazie, co umożliwia szybkie wykrycie anomalii. W przypadku przekaźnika trójtorowego bez styku sterującego, brak integracji z systemami automatyki może prowadzić do opóźnień w reakcji na przeciążenie, co zwiększa ryzyko uszkodzenia silnika. Z kolei jednostorowy przekaźnik ze stykami sterującymi, mimo że może wydawać się użyteczny, również nie spełnia wymagań w kontekście monitorowania całego układu zasilania. W praktyce, profesjonalne podejście do zabezpieczeń wymaga zastosowania przekaźnika trójfazowego, który zapewnia nie tylko ochronę, ale i możliwość integracji z nowoczesnymi systemami zarządzania energetycznego.

Pytanie 33

Wymagana izolacja przewodów używanych w trójfazowej sieci niskiego napięcia 230/400 V powinna wynosić co najmniej

A. 300/500 V
B. 100/100 V
C. 450/750 V
D. 300/300 V
Izolacja przewodów stosowanych w sieci trójfazowej niskiego napięcia 230/400 V powinna być wykonana na poziomie co najmniej 300/500 V, co jest zgodne z obowiązującymi normami IEC 60227 oraz IEC 60502. Tego rodzaju izolacja zapewnia odpowiednią ochronę przed przebiciem i krótko-terminowymi napięciami, które mogą wystąpić w trakcie normalnej eksploatacji instalacji elektrycznej. Przykładowo, w systemach zasilania budynków komercyjnych, gdzie przewody muszą być odporne na różne warunki otoczenia, zastosowanie przewodów o klasie izolacji 300/500 V jest standardem, który zapewnia długotrwałość oraz bezpieczeństwo użytkowników. Warto również zauważyć, że wyższe klasy izolacji, takie jak 450/750 V, są stosowane w bardziej wymagających aplikacjach, jak instalacje przemysłowe, ale w przypadku typowych instalacji niskonapięciowych, klasa 300/500 V jest wystarczająca i zalecana.

Pytanie 34

Posługując się tabelą dobierz wyłącznik nadmiarowo-prądowy o największym prądzie znamionowym, który może zabezpieczać obwód jednofazowy, wykonany przewodami o przekroju 1,5 mm2, ułożonymi w sposób B2.

Tabela: Obciążalność długotrwała I, [A] przewodów miedzianych o izolacji polwinitowej przy obliczeniowej temperaturze 25oC
UłożenieA1A2B1B2CE
Liczba jednocześnie obciążonych żył232323232323
Przekrój mm2Dopuszczalna obciążalność długotrwała, A
1,515,514,515,51418,516,517,5162118,52319,5
2,5211918,519,52522242129253227
4282527243430322928344236
A. B20
B. B16
C. C6
D. B6
Odpowiedź "B16" jest poprawna, ponieważ wyłącznik nadmiarowo-prądowy oznaczony jako B16 ma prąd znamionowy 16 A, co jest najbliższą wartością nieprzekraczającą dopuszczalnej obciążalności długotrwałej przewodów o przekroju 1,5 mm² ułożonych w sposób B2 wynoszącej 16,5 A. Wybór odpowiedniego wyłącznika nadmiarowo-prądowego jest kluczowy w kontekście zapewnienia bezpieczeństwa instalacji elektrycznej. W przypadku przewodów o takim przekroju, należy pamiętać, że ich maksymalna obciążalność długotrwała powinna być zawsze przekraczana przez wartość prądową wyłącznika, jednak nie może ona jej przekraczać o więcej niż 10%. Używając wyłącznika B16, możemy być pewni, że ochrona przewodów będzie odpowiednia, a ryzyko przegrzania lub ich uszkodzenia zostanie zminimalizowane. Rekomendacje dotyczące użycia wyłączników nadmiarowo-prądowych w instalacjach jednofazowych, takie jak te zawarte w normie PN-IEC 60898-1, jasno określają, że dobór odpowiedniego zabezpieczenia powinien być uzależniony od zastosowania oraz przewidywanego obciążenia. Przykładowo, w przypadku obwodów zasilających gniazdka w domach jednorodzinnych, wyłącznik B16 jest standardowym wyborem, zapewniającym nie tylko ochronę przed przeciążeniem, ale również przed zwarciem.

Pytanie 35

Podaj rodzaj i miejsce uszkodzenia w trójfazowym silniku indukcyjnym o uzwojeniach połączonych w gwiazdę, jeżeli wyniki pomiarów rezystancji jego uzwojeń przedstawione są w tabeli.

Rezystancja między zaciskamiWartość
U - V20,0 Ω
V - W15,0 Ω
W - U15,0 Ω
A. Przerwa w uzwojeniu fazy V
B. Zwarcie międzyzwojowe w fazie V
C. Przerwa w uzwojeniu fazy W
D. Zwarcie międzyzwojowe w fazie W
Odpowiedź "Zwarcie międzyzwojowe w fazie W" jest prawidłowa, ponieważ analiza wyników pomiarów rezystancji uzwojeń trójfazowego silnika indukcyjnego wskazuje na istotne różnice w wartościach rezystancji, które są kluczowym wskaźnikiem stanu uzwojeń. W przypadku uzwojenia W, wartość rezystancji wynosi 5,0 Ω, co jest znacznie niższe od wartości uzwojeń U i V, które wynoszą odpowiednio 20,0 Ω i 15,0 Ω. Taka różnica wskazuje na wystąpienie zwarcia międzyzwojowego. W praktyce, gdy rezystancja jednego z uzwojeń jest znacznie niższa, oznacza to, że w tym uzwojeniu doszło do nieprawidłowości, która prowadzi do utraty właściwości izolacyjnych. W przypadku silników indukcyjnych, regularne monitorowanie rezystancji uzwojeń jest kluczowe dla wczesnego wykrywania uszkodzeń, co pozwala na zapobieganie poważniejszym awariom. Standardy branżowe, takie jak IEC 60034, podkreślają znaczenie regularnych przeglądów oraz testów, by zapewnić niezawodność i efektywność pracy urządzeń elektrycznych. Dodatkowo, znajomość typowych uszkodzeń, takich jak zwarcia międzyzwojowe, jest niezbędna dla techników w celu szybkiej diagnozy i naprawy silników elektrycznych.

Pytanie 36

Prace przeprowadzane pod napięciem w instalacji domowej wymagają użycia narzędzi izolowanych o minimalnym poziomie napięcia izolacji

A. 1000 V
B. 250 V
C. 500 V
D. 120 V
Wybór wartości 500 V jako minimalnego napięcia izolacji dla narzędzi używanych w pracach pod napięciem w instalacjach mieszkaniowych jest zgodny z normami bezpieczeństwa, które nakładają wymogi dotyczące odpowiedniego poziomu izolacji. Narzędzia izolowane o napięciu 500 V są powszechnie stosowane w branży elektrycznej, aby zapewnić bezpieczeństwo podczas wykonywania czynności konserwacyjnych lub naprawczych. Takie narzędzia są zaprojektowane w taki sposób, aby minimalizować ryzyko porażenia prądem elektrycznym, a ich izolacja powinna być testowana w odpowiednich warunkach. Przykłady takich narzędzi to wkrętaki, szczypce czy kombinerki, które mają oznaczenia jakościowe i są produkowane zgodnie z międzynarodowymi standardami, takimi jak IEC 60900, które definiują wymagania dla narzędzi izolowanych. Użycie narzędzi o odpowiedniej izolacji nie tylko chroni technika, ale także zapewnia, że prace są wykonywane zgodnie z najlepszymi praktykami w zakresie bezpieczeństwa elektrycznego.

Pytanie 37

Przyrząd przedstawiony na rysunku służy do

Ilustracja do pytania
A. pomiaru rezystancji żył przewodów.
B. wyznaczania trasy przewodów.
C. sprawdzania ciągłości żył przewodów.
D. szacowania długości przewodów.
Odpowiedzi, które wskazują na wyznaczanie trasy przewodów, szacowanie długości przewodów czy pomiar rezystancji żył, nie uwzględniają fundamentalnych zasad działania urządzeń pomiarowych w elektryce. Wyznaczanie trasy przewodów wymaga zastosowania innych narzędzi, takich jak lokalizatory kabli, które działają na zasadzie detekcji sygnałów w przewodach. Te urządzenia nie są w stanie ocenić ciągłości obwodu, a jedynie lokalizować przewody w ścianach czy ziemi. Szacowanie długości przewodów natomiast wiąże się z użyciem taśmy mierniczej lub innego urządzenia mierniczego, co różni się od funkcji testera ciągłości. Pomiar rezystancji żył wymaga zastosowania specjalistycznych multimetrach, które są w stanie dokonać pomiaru wartości oporu elektrycznego, lecz nie zajmują się bezpośrednio sprawdzaniem ciągłości obwodu. Typowe błędy, prowadzące do tych nieprawidłowych wniosków, to mylenie funkcji różnych urządzeń pomiarowych oraz niewłaściwe zrozumienie ich zastosowania w praktyce. Zrozumienie, jaki dokładnie rodzaj przyrządów jest potrzebny w konkretnych sytuacjach, jest kluczowe dla efektywnej pracy w obszarze elektryki.

Pytanie 38

W celu sprawdzenia poprawności działania dwóch wyłączników różnicowoprądowych EFI-2-25/003 pracujących w instalacji elektrycznej zmierzono ich różnicowe prądy zadziałania. Na podstawie wyników pomiarów zamieszczonych w tabeli, określ poprawność działania tych wyłączników przy założeniu, że zmierzony różnicowy prąd zadziałania powinien wynosić (0,5 ÷ 1) IΔN.

Wyłącznik różnicowoprądowyZmierzony prąd różnicowoprądowy
IΔ w mA
115
225
A. 1 - sprawny, 2 - niesprawny.
B. 1 - niesprawny, 2 - sprawny.
C. Oba sprawne.
D. Oba niesprawne.
Stwierdzenie, że oba wyłączniki są niesprawne, jest niewłaściwe z kilku powodów. Przede wszystkim, analiza wyników pomiarów powinna opierać się na zrozumieniu zakresów prądów różnicowych, które są kluczowe dla oceny stanu technicznego wyłączników. W przypadku wyłączników EFI-2-25/003, prawidłowy zakres różnicowego prądu zadziałania wynosi od 0,5 do 1 IΔN. Użytkownicy często mylą pojęcia związane z parametrami technicznymi i mogą błędnie interpretować wartości pomiarów. Nieprawidłowe wnioski mogą się również wynikać z braku znajomości norm i standardów dotyczących testowania wyłączników różnicowoprądowych. Wiele osób zakłada, że wartości prądów, które są znacznie niższe od nominalnych, są sygnałem awarii, co jest mylące. Wyłączniki, które zadziałały przy odpowiednich wartościach, są w istocie sprawne i spełniają swoją funkcję ochronną. Kluczowe jest, aby użytkownicy mieli świadomość, że różnicowe prądy są tylko jednym z wielu parametrów, które należy brać pod uwagę przy ocenie stanu technicznego wyłączników. Wiedza na temat tego, jak prawidłowo interpretować wyniki pomiarów, jest niezbędna dla zapewnienia bezpieczeństwa instalacji elektrycznych.

Pytanie 39

Jaką minimalną wartość powinno mieć napięcie probiercze miernika używanego do pomiaru rezystancji izolacji w instalacji elektrycznej pracującej pod napięciem 230/400 V?

A. 500 V
B. 2 500 V
C. 1 000 V
D. 250 V
Minimalna wartość napięcia probierczego miernika używanego do pomiaru rezystancji izolacji w instalacjach elektrycznych o napięciu 230/400 V powinna wynosić 500 V. Taka wartość jest zgodna z międzynarodowymi standardami, takimi jak IEC 61557, które określają wymagania dotyczące pomiaru rezystancji izolacji. Przy napięciu probierczym wynoszącym 500 V, można skutecznie ocenić stan izolacji przewodów oraz innych elementów instalacji, co jest kluczowe dla zapewnienia bezpieczeństwa użytkowników. Pomiar przy tym napięciu pozwala na wykrycie potencjalnych uszkodzeń izolacji, które mogą prowadzić do zwarć czy porażenia prądem. W praktyce, testowanie izolacji w instalacjach elektrycznych wykonywane jest regularnie, szczególnie przed oddaniem do użytkowania nowych instalacji oraz podczas przeglądów okresowych. Użycie napięcia 500 V zapewnia odpowiednią reprezentatywność stanu izolacji, co jest istotne dla dalszej eksploatacji i bezpieczeństwa całej instalacji elektrycznej.

Pytanie 40

W obwodzie odbiorczym zastosowano wyłącznik typu CLS6 o prądzie znamionowym 13 A i charakterystyce B. Jaki najmniejszy prąd znamionowy powinna mieć wkładka bezpiecznikowa typu gL/gG w zabezpieczeniu poprzedzającym wyłącznik, jeżeli prąd zwarcia jest nie większy niż 1 kA?

Ilustracja do pytania
A. 16 A
B. 20 A
C. 25 A
D. 35 A
Odpowiedzi 20 A, 25 A i 16 A nie są odpowiednie, ponieważ nie spełniają kryteriów selektywności w kontekście podanego wyłącznika CLS6. Wybierając niższy prąd znamionowy, taki jak 20 A czy 16 A, ryzykuje się, że w przypadku zwarcia zadziała wkładka bezpiecznikowa zamiast wyłącznika, co może prowadzić do wyłączenia całego obwodu zamiast jedynie usunięcia awarii. Taka sytuacja jest niepożądana, zwłaszcza w instalacjach, w których ciągłość zasilania jest kluczowa. Z kolei wybór 25 A również jest niewłaściwy, ponieważ jest to wartość zbyt bliska prądu znamionowego wyłącznika, co skutkowałoby problemami z selektywnością. W praktyce, warto stosować wkładki bezpiecznikowe o znacznie wyższym prądzie znamionowym niż prąd znamionowy wyłącznika, aby zapewnić, że w przypadku zwarcia najpierw reaguje wyłącznik, co jest zgodne z zasadą selektywności przyjętą w standardach branżowych. Wybór niewłaściwego prądu znamionowego może również prowadzić do zwiększonego ryzyka uszkodzenia urządzeń, co w dłuższej perspektywie pociąga za sobą straty finansowe związane z naprawami oraz przestojami produkcyjnymi.