Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik budownictwa
  • Kwalifikacja: BUD.12 - Wykonywanie robót murarskich i tynkarskich
  • Data rozpoczęcia: 17 grudnia 2025 20:53
  • Data zakończenia: 17 grudnia 2025 21:23

Egzamin zdany!

Wynik: 25/40 punktów (62,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Na którym rysunku przedstawiono prawidłowy kształt rysy o głębokości poniżej 0,5 cm, występującej na tynku wewnętrznym, przygotowanej do uzupełnienia zaprawą?

Ilustracja do pytania
A. C.
B. B.
C. D.
D. A.
Rysunek A pokazuje, jak powinna wyglądać rysa do naprawy. Ta głębokość poniżej 0,5 cm jest wręcz idealna do uzupełnienia zaprawą. Kształt trapezu, który tu zastosowano, naprawdę sprzyja dobremu trzymaniu się zaprawy, co jest mega ważne, żeby naprawa była skuteczna. Kiedy rysa ma szerszy dół i węższy górę, jak w tym przypadku, zmniejsza się ryzyko odpryskiwania zaprawy. To też trochę zmniejsza szansę na nowe pęknięcia, co jest super ważne, zwłaszcza w budowlance. W sumie, to co opisałeś, pasuje do najlepszych praktyk w naprawie tynków. Również, jak dobrze przygotujesz rysę–czyli oczyścisz ją z luźnych fragmentów i nałożysz grunt–to połączenie zaprawy z podłożem będzie znacznie lepsze i bardziej trwałe, więc warto o tym pamiętać.

Pytanie 2

Jakie właściwości wełny mineralnej mają wpływ na jej użycie jako materiału izolacyjnego termicznie?

A. Niski współczynnik przewodzenia ciepła oraz nieprzepuszczalność pary
B. Niski współczynnik przewodzenia ciepła oraz paroprzepuszczalność
C. Wysoki współczynnik przewodzenia ciepła oraz paroprzepuszczalność
D. Wysoki współczynnik przewodzenia ciepła oraz nieprzepuszczalność pary
Współczynnik przewodności cieplnej jest kluczowym parametrem charakteryzującym zdolność materiału do przewodzenia ciepła. Odpowiedzi sugerujące wysoki współczynnik przewodności cieplnej oraz nieprzepuszczalność pary są nieprawidłowe, ponieważ takie materiały nie spełniają podstawowych wymogów izolacyjnych. Materiały o wysokim współczynniku przewodności cieplnej, takie jak niektóre metale, są stosowane w kontekście przewodzenia ciepła, a nie jako izolatory. W budownictwie, wykorzystanie takich materiałów prowadziłoby do dużych strat energii i obniżenia efektywności energetycznej budynków. Ponadto, nieprzepuszczalność pary prowadziłaby do problemów z kondensacją, co mogłoby zagrażać integralności konstrukcji oraz zdrowiu mieszkańców poprzez rozwój pleśni i grzybów. Z kolei paroprzepuszczalność w kontekście wełny mineralnej pozwala na odprowadzanie nadmiaru wilgoci, co jest kluczowe dla zdrowego mikroklimatu w budynkach. Dlatego kluczowe jest stosowanie materiałów, które zapewniają równocześnie niską przewodność cieplną oraz odpowiednią paroprzepuszczalność, co jest zgodne z zasadami zrównoważonego budownictwa i normami takimi jak PN-EN 13162.

Pytanie 3

Na rysunku przedstawiono rzut pomieszczenia, w którym zaplanowano wyburzenie ściany. Oblicz powierzchnię ściany przeznaczonej do rozbiórki, jeżeli wysokość pomieszczenia wynosi 3,2 m.

Ilustracja do pytania
A. 10,88 m2
B. 8,96 m2
C. 8,00 m2
D. 5,44 m2
Poprawna odpowiedź to 5,44 m2, co wynika z właściwego obliczenia powierzchni ściany przeznaczonej do rozbiórki. W celu obliczenia powierzchni ściany należy znać jej długość oraz wysokość pomieszczenia. W tym przypadku długość ściany, która ma zostać wyburzona, wynosi 1,7 m, a wysokość pomieszczenia to 3,2 m. Obliczamy powierzchnię, stosując wzór: Powierzchnia = długość × wysokość. Podstawiając wartości, otrzymujemy: Powierzchnia = 1,7 m × 3,2 m = 5,44 m2. Tego typu obliczenia są kluczowe w projektach budowlanych, ponieważ zapewniają precyzyjne oszacowanie materiałów potrzebnych do rozbiórki oraz kosztów związanych z tym procesem. W praktyce, znajomość takich obliczeń jest niezbędna do efektywnego zarządzania projektami budowlanymi, a także do ustalania odpowiednich procedur w zakresie bezpieczeństwa pracy oraz zgodności z normami budowlanymi.

Pytanie 4

Na ilustracji przedstawiono urządzenie przeznaczone do

Ilustracja do pytania
A. mieszania składników zaprawy budowlanej.
B. zagęszczania mieszanki betonowej.
C. dozowania składników zaprawy budowlanej.
D. transportu mieszanki betonowej.
Betoniarka, przedstawiona na ilustracji, to kluczowe urządzenie w procesie budowlanym, służące do mieszania składników zaprawy budowlanej. Jej konstrukcja, z wirującym bębnem oraz łopatkami wewnątrz, umożliwia efektywne łączenie cementu, piasku, kruszywa oraz wody, co jest niezbędne do uzyskania jednorodnej mieszanki betonowej. Właściwe wymieszanie składników wpływa na jakość końcowego produktu, co jest zgodne z normami budowlanymi, takimi jak PN-EN 206 dotycząca betonu. W praktyce betoniarki są wykorzystywane na placach budowy do produkcji betonowych fundamentów, elementów prefabrykowanych oraz innych konstrukcji. Ich wydajność oraz zdolność do szybkiego przygotowania mieszanki sprawiają, że są niezastąpione w branży budowlanej, szczególnie w dużych projektach, gdzie czas oraz jakość materiałów są kluczowe.

Pytanie 5

Pomierzono 4 otwory drzwiowe o przewidzianych w dokumentacji wymiarach 90 x 200 cm. Na podstawie podanych w tabeli dopuszczalnych odchyleń wskaż wymiary otworu wykonanego nieprawidłowo.

Dopuszczalne odchylenia wymiarów otworów w świetle ościeży
Wymiary otworu [mm]Dopuszczalne odchylenie [mm]
szerokośćwysokość
do 1000+6
-3
+15
-10
powyżej 1000+10
-5
+15
-10
A. 905 x 2012 mm
B. 896 x 2015 mm
C. 897 x 1991 mm
D. 903 x 1990 mm
Odpowiedź 896 x 2015 mm jest poprawna, ponieważ wymiary te są niezgodne z dopuszczalnymi odchyleniami dla otworów drzwiowych. Dokumentacja przewiduje szerokość otworu na poziomie 90 cm, co odpowiada 900 mm. Minimalne dopuszczalne odchylenie wynosi 900 mm - 3 mm = 897 mm, co oznacza, że szerokość otworu nie powinna być mniejsza niż 897 mm. W tym przypadku, szerokość 896 mm jest zbyt mała. Dodatkowo, wysokość otworu wynosi 2015 mm, co również wykracza powyżej maksymalnego dopuszczalnego odchylenia dla wysokości, które wynosi 200 cm + 3 mm = 2003 mm. W praktyce, przestrzeganie tych wymiarów jest kluczowe dla zapewnienia prawidłowego montażu drzwi, wpływa to na ich funkcjonalność oraz estetykę. Dobrą praktyką jest przeprowadzanie regularnych pomiarów otworów przed montażem i dostosowywanie ich do wymagań technicznych, co przyczyni się do zwiększenia trwałości oraz bezpieczeństwa użytkowania.

Pytanie 6

Jakie z podanych cegieł powinny być użyte do budowy lekkiej ścianki działowej o grubości 12 cm?

A. Dziurawki
B. Ceramiczne pełne
C. Klinkierowe
D. Silikatowe pełne
Silikatowe pełne cegły, mimo iż mają wysoką wytrzymałość i są często stosowane w budownictwie, nie nadają się do wymurowania lekkiej ścianki działowej o grubości 12 cm. Ich pełna struktura sprawia, że są znacznie cięższe i trudniejsze do montażu, co może prowadzić do niepotrzebnego obciążenia konstrukcji. W przypadku lekkich ścian działowych kluczowe jest stosowanie materiałów, które nie tylko zmniejszą obciążenie, ale również zapewnią odpowiednią izolację akustyczną, co silikaty nie zawsze gwarantują. Klinkierowe cegły, z kolei, są znane ze swojej trwałości i odporności na warunki atmosferyczne, co czyni je idealnymi do stosowania w ścianach zewnętrznych, a nie wewnętrznych ścianach działowych. Ich zastosowanie w tym kontekście jest nieodpowiednie ze względu na wysoką masę oraz koszt, co czyni je niepraktycznymi w przypadku lekkich ścianek. Ceramiczne pełne cegły również nie są najlepszym wyborem do budowy lekkich ścianek działowych. Choć ceramiczne cegły oferują dobre właściwości izolacyjne, ich pełna budowa prowadzi do zwiększenia masy oraz trudności w montażu, co jest niekorzystne w przypadku konstrukcji, gdzie kluczowa jest lekkość i łatwość w montażu. Wybierając materiały do budowy ścianek działowych, ważne jest, aby kierować się nie tylko estetyką, ale przede wszystkim funkcjonalnością i zgodnością z normami budowlanymi.

Pytanie 7

Jeżeli w trakcie remontu czas pracy na wykonanie 100 m2 tynku wynosi 35 r-g, to ile czasu będzie potrzebne na otynkowanie ścian pomieszczenia o wymiarach 5×6 m i wysokości 3 m?

A. 35,0 r-g
B. 10,5 r-g
C. 31,5 r-g
D. 23,1 r-g
Odpowiedzi 31,5 r-g, 10,5 r-g oraz 35,0 r-g zawierają błędy w obliczeniach lub w interpretacji danych. W przypadku pierwszej odpowiedzi, osoba mogła źle ocenić powierzchnię pomieszczenia lub pomylić jednostki miary. Powierzchnia ścian nie może być obliczana bez uwzględnienia wszystkich czterech ścian, co jest kluczowe w obliczeniach remontowych. Przykładowo, niektóre osoby mogą pomyśleć, że wystarczy pomnożyć długość przez wysokość jedynie dwóch ścian, co daje zaniżoną powierzchnię. Druga odpowiedź, 10,5 r-g, może wynikać z błędnych proporcji czasowych, co wskazuje na brak zrozumienia, jak dokładnie obliczyć czas robocizny w stosunku do powierzchni. Natomiast odpowiedź 35,0 r-g sugeruje, że osoba przyjęła nieprawidłowe założenie, iż całkowity czas robocizny na pokrycie 100 m<sup>2</sup> jest równy czasowi na pokrycie mniejszej powierzchni, co jest nieprawidłowe. W takim przypadku powinno się stosować proporcje, by dostosować czas do rzeczywistej powierzchni, co jest niezbędne w każdej pracy budowlanej. Wnioskując, kluczowe jest posługiwanie się odpowiednimi wzorami i metodami oraz odpowiednie rozumienie proporcji, co jest fundamentalną umiejętnością w tej branży.

Pytanie 8

Na rysunku przedstawiono zakończenie muru wykonane na strzępia

Ilustracja do pytania
A. na wpust i wypust.
B. zazębione boczne.
C. uciekające.
D. zazębione końcowe.
Odpowiedź "uciekające" jest prawidłowa, ponieważ odnosi się do specyficznego sposobu zakończenia muru murarskiego, który został przedstawiony na rysunku. Strzępia uciekające charakteryzują się przesunięciem kolejnych warstw cegieł w stosunku do poprzednich, co tworzy efekt uciekania. Ta technika jest często stosowana w budownictwie, aby zwiększyć stabilność konstrukcji, a także estetykę elewacji. W praktyce, taki sposób układania cegieł pozwala na lepsze rozłożenie obciążeń i redukcję ryzyka pęknięć, co jest zgodne z zasadami inżynierii budowlanej. Przykładem zastosowania strzępów uciekających mogą być mury oporowe, gdzie ich struktura nie tylko wspiera inne elementy budowlane, ale również nadaje estetyczny wygląd. W kontekście norm budowlanych, wykorzystanie strzępów uciekających jest zgodne z wytycznymi dotyczącymi trwałości i wytrzymałości konstrukcji.

Pytanie 9

Kiedy powinno się dokonać pomiaru robót rozbiórkowych ścian?

A. Po zakończeniu rozbiórki ścian oraz usunięciu gruzu
B. Przed przystąpieniem do robót rozbiórkowych
C. W trakcie wykonywania robót rozbiórkowych
D. Po finalizacji rozbiórki ścian
Przeprowadzenie obmiaru robót rozbiórkowych ścian przed rozpoczęciem prac jest kluczowym krokiem w procesie planowania i realizacji projektu budowlanego. Obmiar pozwala na dokładne określenie zakresu prac, co jest niezbędne do wyceny projektu oraz przygotowania odpowiednich zasobów. W praktyce, przed rozpoczęciem rozbiórki, należy zmierzyć nie tylko powierzchnię ścian, ale również uwzględnić dodatkowe czynniki, takie jak izolacje, rodzaj materiałów użytych w budowie oraz wszelkie elementy instalacyjne, które mogą wpłynąć na proces rozbiórki. Dobrą praktyką jest sporządzenie dokumentacji fotograficznej i rysunkowej stanu istniejącego, co pomoże w analizie i późniejszym rozliczeniu prac. Zgodnie z normami budowlanymi, obmiar powinien być przeprowadzany zgodnie z obowiązującymi przepisami, co zapewnia nie tylko bezpieczeństwo, ale również zgodność z projektem. Takie podejście pozwala na identyfikację potencjalnych problemów przed rozpoczęciem prac, co z kolei może prowadzić do ograniczenia kosztów i czasu realizacji projektu.

Pytanie 10

Do zbudowania 1 m2 ściany o grubości 25 cm z pełnych cegieł budowlanych potrzebne jest 0,084 m3 zaprawy cementowo-wapiennej. Jaką kwotę należy przeznaczyć na zaprawę do postawienia ściany o powierzchni 12 m2, jeśli cena jednostkowa zaprawy wynosi 250,00 zł/m3?

A. 2 520,00 zł
B. 242,00 zł
C. 2 420,00 zł
D. 252,00 zł
Aby obliczyć koszt zaprawy cementowo-wapiennej potrzebnej do wymurowania ściany o powierzchni 12 m<sup>2</sup>, należy najpierw ustalić, ile zaprawy potrzebujemy na tę powierzchnię. Z danych wynika, że do wymurowania 1 m<sup>2</sup> ściany potrzeba 0,084 m<sup>3</sup> zaprawy. Dlatego na 12 m<sup>2</sup> ściany potrzebne będzie: 12 m<sup>2</sup> * 0,084 m<sup>3</sup>/m<sup>2</sup> = 1,008 m<sup>3</sup> zaprawy. Następnie, mnożąc objętość zaprawy przez cenę jednostkową, otrzymujemy całkowity koszt: 1,008 m<sup>3</sup> * 250,00 zł/m<sup>3</sup> = 252,00 zł. Przykładowo, wiedza na temat kosztów materiałów budowlanych jest kluczowa w procesie budowy, ponieważ pozwala na odpowiednie planowanie budżetu oraz unikanie nieprzewidzianych wydatków. Również zrozumienie ilości materiałów potrzebnych do realizacji projektu budowlanego pomaga w efektywnym zarządzaniu czasem i zasobami, co jest istotne dla przekroczenia standardów branżowych w zakresie efektywności i oszczędności.

Pytanie 11

Na którym rysunku przedstawiono podłużny układ konstrukcyjny budynku?

Ilustracja do pytania
A. B.
B. A.
C. C.
D. D.
Wybór odpowiedzi B, C lub D wskazuje na pewne błędne zrozumienie podstawowych zasad układów konstrukcyjnych w architekturze. Odpowiedzi te mogą sugerować mylne założenie, że wszelkie układy, które nie są podłużne, mogą być równie efektywne, co układy podłużne, co jest nieprawdziwe. W rzeczywistości, w układzie podłużnym, kluczowym aspektem jest to, iż ściany nośne muszą być odpowiednio rozmieszczone wzdłuż dłuższych boki budynku, co nie zostało przedstawione na rysunkach B, C i D. Na tych rysunkach mogą znajdować się układy, gdzie ściany nośne są zlokalizowane w inny sposób, co prowadzi do wielu problemów konstrukcyjnych, w tym do nieefektywnego przenoszenia obciążeń oraz ograniczonej funkcjonalności przestrzennej. Często w praktyce inżynierskiej spotyka się błędy polegające na niewłaściwej interpretacji układów ścian nośnych, co skutkuje nieodpowiednim zaprojektowaniem obiektów, które nie spełniają norm bezpieczeństwa oraz nie mogą być w przyszłości dostosowywane do zmieniających się potrzeb użytkowników. Dlatego zrozumienie różnic między poszczególnymi układami konstrukcyjnymi jest kluczowe dla sukcesu projektowego oraz dla zapewnienia długotrwałej trwałości i funkcjonalności budynków.

Pytanie 12

Aby naprawić głębokie pęknięcia w ścianie murowanej, należy zastosować

A. cegły kominowe i zaprawę cementową
B. cegły dziurawe wraz z zaczynem gipsowym
C. stalowe pręty oraz zaprawę gipsową
D. klamry stalowe oraz zaczyn cementowy
Użycie klamer stalowych i zaczynu cementowego do naprawy głębokich pęknięć w ścianach murowanych jest zgodne z najlepszymi praktykami budowlanymi. Klamry stalowe służą do stabilizacji strukturalnej i wzmocnienia połączeń między elementami budowlanymi, co jest kluczowe w przypadku uszkodzeń o dużej głębokości. Zastosowanie zaczynu cementowego jako materiału wypełniającego pęknięcia jest również podstawą dobrych praktyk. Zaczyn cementowy charakteryzuje się wysoką wytrzymałością na ściskanie oraz odpornością na czynniki atmosferyczne, co czyni go idealnym do zastosowań zarówno wewnętrznych, jak i zewnętrznych. Przykładowo, w przypadku renowacji starych budynków, które mają pęknięcia wynikające z osiadania lub ruchów fundamentów, klamry stalowe mogą zostać użyte do złączenia i wzmocnienia uszkodzonych elementów, a zaczyn cementowy do ich wypełnienia. Warto również zwrócić uwagę na normy budowlane, które zalecają stosowanie tego typu materiałów w celu zapewnienia trwałości i bezpieczeństwa budynków.

Pytanie 13

Oblicz wydatki na robociznę wzniesienia 100 m2 ścian obiektu z pustaków Porotherm, mając na uwadze, że czas potrzebny na wykonanie 1 m2 muru z tych pustaków wynosi 1,15 h, przy założonym 10-godzinnym czasie pracy, a wynagrodzenie murarza to 140 zł.

A. 1 410 zł
B. 2 012 zł
C. 1 610 zł
D. 1 232 zł
Koszt robocizny wymurowania 100 m2 ścian z pustaków Porotherm oblicza się na podstawie nakładu czasu oraz stawki za roboczogodzinę murarza. W przypadku, gdy nakład czasu na wykonanie 1 m2 muru wynosi 1,15 h, to dla 100 m2 potrzebujemy 115 h (1,15 h/m2 x 100 m2). Przy 10-godzinnym systemie pracy, murarz wykonuje 10 m2 w ciągu jednego dnia, co oznacza, że na wymurowanie 100 m2 potrzeba 10 dni (100 m2 ÷ 10 m2/dzień). Przy stawce 140 zł za dniówkę, całkowity koszt robocizny wynosi 10 dni x 140 zł/dzień, co daje 1400 zł. Jednak, przy dokładnym przeliczeniu czasu pracy, koszt robocizny powinien być obliczony jako (115 h x 14 zł/h) co daje nam 1610 zł. To podejście uwzględnia zarówno stawkę godzinową, jak i efektywność pracy w danym systemie. W budownictwie kluczowe jest dokładne oszacowanie czasu pracy, aby uniknąć niedoszacowania kosztów projektu."

Pytanie 14

Do tworzenia tynków zabezpieczających przed promieniowaniem rentgenowskim, wykorzystywanych w pomieszczeniach pracowni diagnostycznych, stosuje się zaprawy z dodatkiem kruszywa

A. bazaltowego
B. barytowego
C. granitowego
D. wapiennego
Wybór kruszywa wapiennego, granitowego czy bazaltowego nie jest właściwy w kontekście ochrony przed promieniowaniem rentgenowskim. Kruszywo wapienne, mimo że jest powszechnie używane w budownictwie, ma niską gęstość, co sprawia, że nie jest w stanie skutecznie blokować promieniowania ionizującego. Jego zastosowanie w tynkach ochronnych nie zapewni wystarczającej bariery dla promieni X, przez co narażałoby osoby znajdujące się w pobliżu na niebezpieczne poziomy promieniowania. Granit i bazalt, choć charakteryzują się większą gęstością niż wapń, również nie są odpowiednie ze względu na swoje właściwości fizyczne. Granite, jako materiał naturalny, jest ciężki i trudny w obróbce, a jego zdolności ochronne w kontekście promieniowania są ograniczone. Bazalt, będący wynikiem wulkanicznej działalności, również nie dostarcza potrzebnej ochrony przed promieniowaniem rentgenowskim. Wybierając materiał do tynków ochronnych, kluczowe jest zrozumienie, że efektywność ochrony przed promieniowaniem zależy głównie od gęstości i specyfikacji chemicznych materiału, co czyni baryt jedynym słusznym rozwiązaniem w tym przypadku. Powszechnym błędem w myśleniu jest zakładanie, że większa masa materiału automatycznie przekłada się na lepszą ochronę, podczas gdy najważniejsza jest ich odpowiednia struktura i rodzaj.

Pytanie 15

Do wymurowania ściany o wymiarach 10,0 x 5,0 m i grubości 0,24 m zaplanowano bloczki Ytong łączone na pióro i wpust. Korzystając z danych zawartych w tabeli wskaż, ile 20-kilogramowych worków zaprawy należy kupić, aby sporządzić potrzebną ilość zaprawy.

Zużycie na 1 m³ muru zaprawy do cienkich spoin Ytong
Bloczki gładkieBloczki z piórem i wpustemWielkość opakowania
20 kg15 kg20 kg
A. 7
B. 9
C. 8
D. 6
Poprawna odpowiedź to 9 worków zaprawy, co wynika z precyzyjnych obliczeń związanych z wymiarami wymurowania ściany. Najpierw obliczamy objętość ściany, która wynosi 10,0 m x 5,0 m x 0,24 m, co daje 12 m³. W zależności od rodzaju bloczków oraz metody ich łączenia, zużycie zaprawy na 1 m³ muru jest różne. W przypadku bloczków Ytong łączonych na pióro i wpust, standardowo przyjmuje się, że na 1 m³ muru potrzeba około 0,1 m³ zaprawy. Dlatego całkowita ilość zaprawy potrzebna do wymurowania ściany wynosi 12 m³ x 0,1 m³/m³ = 1,2 m³ zaprawy. Jeśli jeden worek zaprawy waży 20 kg, a gęstość zaprawy wynosi 1,5 t/m³, to jeden worek odpowiada 0,013 m³. Wówczas liczba worków zaprawy to 1,2 m³ / 0,013 m³/worek = 92,3, co po zaokrągleniu daje 9 worków. Zastosowanie takiej metody obliczeniowej jest zgodne z zasadami sztuki budowlanej i zapewnia optymalne wykorzystanie materiałów budowlanych.

Pytanie 16

Na podstawie fragmentu instrukcji producenta oblicz, ile kilogramów zaprawy murarskiej potrzeba do wymurowania jednej ściany grubości 25 cm, długości 12 m i wysokości 4 m.

Fragment instrukcji producenta
Zużycie zaprawy murarskiej
Grubość ściany
z cegły pełnej
Zużycie suchej zaprawy
[kg/m²]
½ cegłyok. 40
1 cegłaok. 100
A. ok. 4800 kg
B. ok. 1200 kg
C. ok. 1920 kg
D. ok. 400 kg
Wielu wykonawców i studentów popełnia typowy błąd, nie analizując dokładnie zużycia zaprawy murarskiej w kontekście wymagań konkretnego projektu budowlanego. Odpowiedzi wskazujące na zaniżone ilości zaprawy, takie jak 1200 kg czy 400 kg, mogą wynikać z błędnych obliczeń powierzchni lub zastosowania niewłaściwych wskaźników zużycia. Zdarza się, że osoby te mylnie zakładają, iż zaprawa jest potrzebna tylko na powierzchni ściany, bez uwzględnienia grubości muru oraz charakterystyki użytych materiałów budowlanych. Innym częstym błędem jest nieuwzględnienie specyfiki materiałów, gdzie różne rodzaje cegieł czy bloczków mogą wymagać odmiennego zużycia zaprawy. Ponadto, niektórzy mogą nie brać pod uwagę strat materiałowych, które są nieodłącznym elementem każdego procesu budowlanego. Przy planowaniu budowy zaleca się korzystanie z tabel zużycia dostarczanych przez producentów materiałów, co pozwoli uniknąć kosztownych pomyłek. Warto również zwrócić uwagę na to, że w praktyce budowlanej zawsze należy mieć na uwadze dodatkowe zapasy materiałów, aby sprostać ewentualnym nieprzewidzianym sytuacjom na placu budowy. W ten sposób, można nie tylko zminimalizować ryzyko błędów, ale również poprawić efektywność realizacji projektu budowlanego.

Pytanie 17

Która z metod osuszania mokrych ścian nie wymaga ingerencji w ich strukturę?

A. Iniekcja krystaliczna w nawiercone w murze otwory
B. Podcinanie muru strugą mieszanki cieczy z piaskiem kwarcowym
C. Umieszczanie blachy falistej lub fałdowej w spoinie, pod kątem do lica ściany
D. Wykonanie tynku renowacyjnego po usunięciu starego tynku
Odpowiedzi, które sugerują stosowanie blach falistych, iniekcji krystalicznej czy podcinania muru, są nieodpowiednie w kontekście metod osuszania, które nie naruszają konstrukcji ściany. Wciskanie blach falistych w spoiny muru może prowadzić do dodatkowych uszkodzeń i osłabienia struktury, ponieważ zaburza naturalny proces wentylacji oraz może zatrzymywać wilgoć wewnątrz muru. Iniekcja krystaliczna, mimo, że jest skuteczną metodą w niektórych przypadkach, wymaga nawiercania otworów w murze, co narusza jego integralność i może prowadzić do mikropęknięć. Podcinanie muru to jedna z najbardziej inwazyjnych metod, która prowadzi do osłabienia jego struktury i ryzyka osunięcia się tynku. Należy pamiętać, że każda z tych metod, choć ma swoje miejsce w technologii osuszania, wiąże się z pewnym stopniem ingerencji w konstrukcję muru, co może stwarzać długofalowe problemy. Kluczem do efektywnego osuszania jest wybór metody, która harmonijnie współpracuje z istniejącą strukturą budynku, co czyni tynk renowacyjny najbardziej odpowiednim rozwiązaniem.

Pytanie 18

Jaką technikę powinno się zastosować do murowania na puste spoiny?

A. Na wycisk zaprawy cegłą
B. Na wycisk z podcięciem zaprawy kielnią
C. Z nakładaniem zaprawy na całą powierzchnię cegły
D. Na docisk zaprawy kielnią
Nieprawidłowe metody murowania, takie jak murowanie na docisk zaprawy kielnią, nie są zalecane, ponieważ mogą prowadzić do problemów związanych z jakością muru. Technika ta nie zapewnia odpowiedniego wypełnienia spoin, co skutkuje powstawaniem szczelin, które mogą negatywnie wpływać na trwałość i stabilność konstrukcji. Murowanie z użyciem kielni może prowadzić do nadmiaru zaprawy w spoinach, co z kolei przyczynia się do deformacji cegieł oraz może prowadzić do ich pęknięcia w dłuższym okresie użytkowania. Nakładanie zaprawy na całą powierzchnię cegły, choć może wydawać się wygodne, również nie jest zalecane, ponieważ może spowodować, że zaprawa będzie się wydobywać na zewnątrz, co wpływa na estetykę muru. W przypadku zastosowania wycisku z podcięciem zaprawy kielnią, może dochodzić do nieprzewidywalnych efektów związanych z przyczepnością, co jest niezgodne z aktualnymi standardami budowlanymi. Wszystkie te błędne podejścia często wynikają z niewłaściwego zrozumienia zasad murowania oraz zaniedbania w zakresie techniki, które są kluczowe dla stworzenia solidnej i estetycznej konstrukcji. Dlatego warto kłaść nacisk na odpowiednie metody, które są zgodne z najlepszymi praktykami w budownictwie.

Pytanie 19

Na podstawie fragmentu specyfikacji technicznej określ, w których miejscach na elewacji budynku, nie należy wykonywać przerw technologicznych podczas wykonywania tynków mozaikowych.

n n nn n nn
n Specyfikacja techniczna wykonania i odbioru robót budowlanych
n Wykonanie tynków mozaikowych
n (fragment)n
n „(...) Materiał należy nakładać metodą „mokre na mokre", nie dopuszczając do zaschnięcia zatartej partii przed nałożeniem kolejnej. W przeciwnym razie miejsce tego połączenia będzie widoczne. Przerwy technologiczne należy z góry zaplanować na przykład: w narożnikach i załamaniach budynku, pod rurami spustowymi, na styku kolorów itp. Czas wysychania tynku zależnie od podłoża, temperatury i wilgotności względnej powietrza wynosi od ok. 12 do 48 godzin. W warunkach podwyższonej wilgotności i temperatury około +5°C czas wiązania tynku może być wydłużony. Podczas wykonywania i wysychania tynku min. temperatura otoczenia powinna wynosić +5°C, a max. +25°C.(...)"
A. W załamaniach budynku.
B. Na środku ściany.
C. Na styku kolorów.
D. W narożnikach budynku.
Wybór lokalizacji przerw technologicznych jest kluczowy dla jakości wykonania tynków mozaikowych, a odpowiedzi, które wskazują na styki kolorów, załamania budynku oraz narożniki jako miejsca, gdzie przerwy mogą być wykonane, są powszechnym błędem. Wielu wykonawców błędnie interpretują te lokalizacje jako potencjalnie odpowiednie, co w rzeczywistości prowadzi do poważnych problemów. Przerwy technologiczne na styku kolorów mogą powodować widoczne zmiany w tonacji tynku, co jest szczególnie niepożądane w przypadku tynków mozaikowych, które mają na celu uzyskanie jednolitego wyglądu. Dodatkowo, umieszczanie przerw w narożnikach budynku lub w załamaniach może prowadzić do osłabienia struktury tynku, co skutkuje pęknięciami i odspojeniem materiału. Typowym błędem myślowym jest zakładanie, że przerwy technologiczne w tych miejscach będą niezauważalne lub estetyczne. Niestety, niewłaściwie wykonane przerwy mogą nie tylko wpłynąć na wygląd budynku, ale także na jego trwałość i odporność na działanie czynników atmosferycznych. Dlatego kluczowe jest, aby każdy fachowiec w tej dziedzinie dokładnie zrozumiał znaczenie optymalnych lokalizacji dla przerw technologicznych, zgodnych z aktualnymi normami i dobrymi praktykami budowlanymi.

Pytanie 20

Gdy konstrukcja budynku opiera się na stalowych kształtownikach, to przed nałożeniem tynku na słup stalowy należy go

A. umyć wodą
B. owinąć siatką
C. oszlifować
D. pomalować farbą
Owinąć siatką słup stalowy przed otynkowaniem jest kluczowe dla zapewnienia odpowiedniego współczynnika przyczepności między tynkiem a stalą. Siatka zbrojeniowa, wykonana z odpowiednich materiałów, takich jak stal lub włókna syntetyczne, tworzy solidną podstawę dla tynku, poprawiając jego przyczepność oraz zwiększając ogólną trwałość wykończenia. Stalowe słupy, ze względu na swoją gładką powierzchnię, mogą mieć trudności z utrzymaniem tynku, jeśli nie zostaną odpowiednio przygotowane. Oprócz tego, owinęcie siatką chroni stal przed uszkodzeniami mechanicznymi podczas wykonywania dalszych prac budowlanych. W praktyce budowlanej często stosuje się również siatki o różnej wielkości oczek, co pozwala na dostosowanie ich do specyficznych wymagań projektu. Zgodnie z normami budowlanymi, takimi jak PN-EN 13914, odpowiednie przygotowanie podłoża jest kluczowe dla uzyskania trwałych i estetycznych wykończeń budowlanych.

Pytanie 21

Na rysunku przedstawiono fragment stropu

Ilustracja do pytania
A. DZ.
B. Teriva.
C. Akermana.
D. Fert.
Wybór odpowiedzi związanych z innymi typami stropów, jak Akerman, Teriva czy DZ, wskazuje na pewne błędy w zrozumieniu konstrukcji stropowych. Stropy Akermana wyróżniają się użyciem prefabrykowanych belek teowych oraz pustaków betonowych, które są umieszczane w formie bloków. Taki typ stropu, choć popularny w Polsce, nie jest przedstawiony na rysunku. Problemy z identyfikacją stropu Teriva mogą wynikać z jego charakterystyki, która jest oparta na pustakach ceramicznych, ale różni się od Fert pod względem używanych belek i ogólnej konstrukcji. Stropy DZ, choć użyteczne, są stosowane w zupełnie innych kontekstach, często jako stropy monolityczne, co również nie znajduje odzwierciedlenia na przedstawionym rysunku. Typowe błędy myślowe w wyborze błędnych odpowiedzi dotyczą m.in. utożsamienia pustaków ceramicznych z danym typem stropu bez uwzględnienia, jakie belki są używane w danej konstrukcji. Każdy z wymienionych typów stropów ma swoje specyficzne zastosowania i parametry, które decydują o ich użyteczności w różnych projektach budowlanych. Zrozumienie tych różnic jest kluczowe dla podejmowania właściwych decyzji projektowych oraz zgodności z obowiązującymi normami budowlanymi.

Pytanie 22

Na rysunku przedstawiono

Ilustracja do pytania
A. mieszarkę do zapraw,
B. wiertarkę wolnoobrotową.
C. wkrętarkę,
D. młot udarowy.
Mieszarka do zapraw, przedstawiona na zdjęciu, jest narzędziem o charakterystycznym mieszadle, które zostało zaprojektowane specjalnie do mieszania różnych materiałów budowlanych, w tym zapraw, betonu i tynków. Jej konstrukcja umożliwia efektywne i jednorodne połączenie składników, co jest kluczowe w procesie budowlanym. W praktyce, stosowanie mieszarki do zapraw pozwala na zaoszczędzenie czasu i zwiększenie jakości wykonywanych prac. W porównaniu do ręcznego mieszania, maszyna ta zapewnia lepszą kontrolę nad proporcjami składników oraz ich dokładnością, co jest zgodne z normami budowlanymi. Używając mieszarki, można również zminimalizować ryzyko błędów ludzkich, które mogą prowadzić do nieprawidłowych właściwości mieszanki. W branży budowlanej, zaleca się korzystanie z mieszarek o odpowiedniej mocy i pojemności w zależności od skali projektu, aby zapewnić optymalne wyniki. Dobrą praktyką jest także regularne konserwowanie sprzętu, co zapewnia jego długą żywotność oraz niezawodność w trakcie użytkowania.

Pytanie 23

Do zdzierania starego tynku należy zastosować pacę przedstawioną na rysunku

Ilustracja do pytania
A. D.
B. A.
C. B.
D. C.
Wybór innej odpowiedzi, niż "A", prowadzi do kilku nieprawidłowych przekonań dotyczących narzędzi do zdzierania tynku. Odpowiedzi takie jak "B", "C" i "D" sugerują, że inne narzędzia, takie jak paca do wygładzania, narzędzie do nanoszenia tynku lub szlifierka, mogą być używane do usuwania starego tynku. Pacę do wygładzania, oznaczoną jako "B", stosuje się głównie do wygładzania powierzchni tynku, co jest całkowicie innym procesem niż jego usuwanie. Narzędzie to nie jest przystosowane do właściwego rozluźnienia starych warstw materiału, co może prowadzić do zniszczenia jego struktury i opóźnienia prac budowlanych. W przypadku odpowiedzi "C", paca do nanoszenia tynku jest narzędziem, które służy do aplikacji świeżego tynku na przygotowaną wcześniej powierzchnię, a nie do usuwania. Wreszcie, odpowiedź "D" odnosi się do szlifowania, co także jest procesem końcowym, stosowanym do wygładzania powierzchni, a nie do ich przygotowania poprzez usunięcie starych warstw. Wybierając nieodpowiednie narzędzia, można doprowadzić do nieefektywności pracy, co skutkuje wydłużeniem czasu realizacji projektu i zwiększeniem kosztów. Kluczowym błędem myślowym jest mylenie narzędzi używanych w różnych etapach procesu tynkowania, co jest powszechną pułapką dla mniej doświadczonych pracowników budowlanych.

Pytanie 24

Określ, na podstawie danych zawartych w tabeli, dopuszczalną ilość ziaren o wymiarach 2-5 mm w piasku do zapraw murarskich.

Tabela. Uziarnienie i dopuszczalne zanieczyszczenia piasku

Rodzaj cechyPiasek do
zapraw
murarskich
wyprawgładzibetonu
dopuszczalna ilość w % w stosunku do masy
Pyły mineralne poniżej 0,05 mm
(części ilaste i muły)
853
Zanieczyszczenia obce, np. gruz,
ziemia, muszle itp.
0,25ślady0,5
Ziarna większe od 2 mm, ale
nieprzekraczające 5 mm
20100-
Związki siarki rozpuszczalne
w wodzie w przeliczeniu na SO3
1
A. 0,5%
B. 10%
C. 0,25%
D. 20%
Dopuszczalna ilość ziaren o wymiarach 2-5 mm w piasku do zapraw murarskich wynosi 20% masy, co jest zgodne z normami budowlanymi oraz wytycznymi dotyczącymi materiałów budowlanych. W kontekście stosowania zapraw murarskich, odpowiednia frakcja ziaren w piasku ma kluczowe znaczenie dla uzyskania właściwych parametrów wytrzymałościowych oraz trwałości konstrukcji. Ziarna o takich wymiarach przyczyniają się do poprawy struktury zaprawy, umożliwiając lepsze wypełnienie przestrzeni międzycząsteczkowych oraz zapewniając odpowiednie właściwości plastyczne. Należy również pamiętać, że przewidywana ilość ziaren większych niż 2 mm jest istotna w kontekście zagęszczania i kompozycji zapraw. Uwzględnienie tej proporcji pozwala na osiągnięcie optymalnej przyczepności zaprawy do elementów konstrukcyjnych, co jest zgodne z rekomendacjami Polskiej Normy PN-EN 998-1 dotyczącej zapraw murarskich. W praktyce, podczas mieszania zaprawy warto kontrolować proporcje, aby zapewnić jej odpowiednie właściwości mechaniczne oraz długowieczność. Wydajność zaprawy uzależniona jest również od innych czynników, takich jak rodzaj cementu czy dodatki mineralne, co należy brać pod uwagę w projektowaniu mieszanek budowlanych.

Pytanie 25

Wskaż oznaczenie graficzne zaprawy stosowane na rysunkach budowlanych.

Ilustracja do pytania
A. B.
B. A.
C. D.
D. C.
Wybór innej odpowiedzi niż "B" sygnalizuje zrozumienie tematu, które może być niekompletne lub błędne. Symbolika używana na rysunkach budowlanych jest ustalona na podstawie norm oraz dobrych praktyk w branży budowlanej. Oznaczenia graficzne, które nie przedstawiają poprawnie zaprawy, mogą wprowadzać wykonawców w błąd, co z kolei prowadzi do nieodpowiedniego doboru materiałów budowlanych. Jednym z częstych błędów jest mylenie oznaczeń różnych materiałów, co może wynikać z braku znajomości odpowiednich norm, takich jak PN-EN 1990. Wiele osób może pomylić oznaczenie zaprawy z innymi symbolami, takimi jak oznaczenia dla betonu czy innych mas budowlanych, co skutkuje niewłaściwym zastosowaniem materiałów. Ważne jest, aby przed przystąpieniem do realizacji projektu, dokładnie zapoznać się z symboliką i oznaczeniami, aby uniknąć pomyłek. Zrozumienie różnic pomiędzy poszczególnymi oznaczeniami jest kluczowe dla efektywnego zarządzania projektem budowlanym oraz zapewnienia, że każdy etap budowy będzie realizowany z zachowaniem najwyższych standardów jakości. Dodatkowo, nieznajomość standardów i błędne interpretowanie rysunków może prowadzić do kosztownych błędów wykonawczych, które będą miały długofalowe konsekwencje dla całego projektu.

Pytanie 26

Do wykonania murów z bloczków systemu Ytong na cienkie spoiny trzeba przygotować

A. zaprawę cementowo-wapienną
B. zaprawę wapienną
C. zaprawę cementową
D. zaprawę klejową
Wybór zaprawy wapiennej do murowania bloczków Ytong jest niewłaściwy, ponieważ ten rodzaj zaprawy nie zapewnia odpowiedniej przyczepności i nie jest przystosowany do cienkowarstwowych technik murowania. Zaprawa wapienna, choć ma swoje zastosowanie w tradycyjnym budownictwie, jest zbyt elastyczna i może powodować osiadanie murów, co jest szczególnie niepożądane w przypadku lekkich bloczków Ytong. Z kolei zaprawa cementowo-wapienna, choć lepsza od czystej zaprawy wapiennej, nie jest idealnym rozwiązaniem, gdyż jej skład nie pozwala na uzyskanie wymaganego stopnia szczelności i izolacyjności. Ostatecznie, zaprawa cementowa, stosowana bezpośrednio w systemach Ytong, może prowadzić do powstania zbyt grubych spoin, co negatywnie wpływa na właściwości termoizolacyjne budynku. Typowym błędem jest myślenie, że zaprawy oparte na cemencie są uniwersalnym rozwiązaniem, jednak ich zastosowanie w cienkowarstwowych systemach murowania często prowadzi do nieodpowiednich efektów. Dlatego tak ważne jest, aby wybierać materiały budowlane, które są dostosowane do specyfiki używanych bloczków, co w przypadku Ytong oznacza konieczność stosowania zaprawy klejowej, a nie innych typów zapraw.

Pytanie 27

Tynk należący do kategorii IV jest tynkiem

A. 3-warstwowym
B. 1-warstwowym
C. 4-warstwowym
D. 2-warstwowym
Tynk kategorii IV, znany jak tynk trzywarstwowy, to sprawdzony sposób na solidne i estetyczne wykończenie budynku. Składa się z trzech warstw: podkładowej, właściwej i końcowej. Ta pierwsza, zazwyczaj z zaprawy cementowo-wapiennej, daje mocny fundament, co jest ważne, żeby następne warstwy dobrze się trzymały. Warstwa właściwa, często z dodatkami, jak włókna szklane czy polipropylenowe, dodaje tynkowi wytrzymałości i sprawia, że jest odporny na pęknięcia. Na końcu mamy warstwę końcową, która odpowiada za wygląd tynku i może mieć różne faktury i kolory. W praktyce tynki trzywarstwowe używa się często w budynkach, które muszą stawić czoła trudnym warunkom atmosferycznym, co jest zgodne z normami PN-EN 998-1. To rozwiązanie jest polecane zarówno w budynkach publicznych, jak i mieszkalnych, bo znacznie zwiększa trwałość budynku i obniża koszty konserwacji.

Pytanie 28

Rozbiórkę ręczną stropu ceglanego na belkach stalowych należy zacząć od

A. wycięcia belek wzdłuż ścian
B. skucia wypełnienia stropowego
C. zbicia tynku z powierzchni stropu
D. rozebrania górnej części stropu, czyli podłogi
Rozpoczęcie rozbiórki stropu ceglanego od rozebrania wierzchu, czyli podłogi, jest niewłaściwym podejściem, ponieważ może prowadzić do poważnych konsekwencji strukturalnych i bezpieczeństwa. Zanim przystąpimy do demontażu podłogi, kluczowe jest zrozumienie, że bez uprzedniego usunięcia tynku, nie będziemy w stanie ocenić, jak dobrze zachowały się elementy nośne stropu. Tynk często ukrywa uszkodzenia lub osłabienia w konstrukcji, które mogą stać się widoczne dopiero po jego usunięciu. Ponadto, skuwanie wypełnienia stropu przed usunięciem tynku może spowodować, że fragmenty strukturalne będą niestabilne, co stwarza ryzyko dla pracowników. Wycinanie belek przy ścianach bez wcześniejszej analizy stanu tynku również jest niezalecane, ponieważ może prowadzić do osunięcia się stropu, co zagraża nie tylko bezpieczeństwu wykonawców, ale również osób znajdujących się w obrębie budynku. Zbijanie tynku ze stropu, jako pierwszy krok, umożliwia przeprowadzenie niezbędnych analiz i prac przygotowawczych, co jest zgodne z zaleceniami standardów budowlanych i najlepszymi praktykami branżowymi. Dlatego kluczowe jest, aby najpierw zrealizować ten etap, zanim przejdziemy do bardziej skomplikowanych prac związanych z demontażem stropu.

Pytanie 29

Na której ilustracji przedstawiono cegłę, którą należy zastosować do wykonania zewnętrznych ścian nośnych piwnicy?

Ilustracja do pytania
A. Na ilustracji 4.
B. Na ilustracji 3.
C. Na ilustracji 1.
D. Na ilustracji 2.
Cegła przedstawiona na ilustracji 3 jest odpowiednia do budowy zewnętrznych ścian nośnych piwnicy z kilku powodów. Przede wszystkim, cegły pełne charakteryzują się wyższą wytrzymałością na obciążenia, co jest kluczowe w konstrukcjach nośnych. W praktyce oznacza to, że mogą one efektywniej przenosić obciążenia z górnych kondygnacji, co jest szczególnie istotne w przypadku piwnic, które są częścią całej struktury budynku. Dodatkowo, cegły pełne mają lepsze właściwości izolacyjne, co przekłada się na mniejsze straty ciepła, a tym samym na obniżenie kosztów ogrzewania. W kontekście norm budowlanych, użycie pełnych cegieł jest zgodne z zasadami projektowania budynków energooszczędnych, co staje się coraz bardziej istotne w obliczu zmieniających się regulacji dotyczących efektywności energetycznej budynków. Warto również zauważyć, że pełne cegły są mniej podatne na wnikanie wilgoci, co w kontekście piwnic, gdzie problem wilgoci może być szczególnie uciążliwy, stanowi znaczną zaletę.

Pytanie 30

Jaki będzie koszt mieszanki betonowej potrzebnej do zbudowania dwóch słupów o wymiarach 60×60 cm i wysokości 3 m każdy, zakładając, że norma zużycia mieszanki betonowej wynosi 1,02 m3/m3, a cena 325,00 zł/m3?

A. 716,04 zł
B. 351,00 zł
C. 702,00 zł
D. 358,02 zł
Obliczanie kosztu mieszanki betonowej do zrobienia dwóch słupów o wymiarach 60 na 60 cm i wysokości 3 metry zaczynamy od wyliczenia objętości jednego słupa. Tak więc 60 cm na 60 cm daje nam 0,6 metra na 0,6 metra, co w rezultacie to 0,36 metra kwadratowego. Potem mnożymy to przez wysokość, czyli 0,36 m² pomnożone przez 3 metry daje 1,08 metra sześciennego. Ponieważ mamy dwa słupy, całkowita objętość betonu wynosi 1,08 metra sześciennego razy 2, co daje 2,16 metra sześciennego. Właściwie licząc zużycie mieszanki betonowej, zakładając normę 1,02 m³/m³, wychodzi nam 2,16 metra sześciennego razy 1,02, co daje około 2,20 metra sześciennego mieszanki. Na końcu, żeby obliczyć koszt, mnożymy to przez cenę za m³ betonu, na przykład 2,20 m³ razy 325 zł za m³ wychodzi 716,04 zł. Dobre obliczenia i znajomość norm w budownictwie są na prawdę istotne, bo to pomaga zaplanować wydatki na materiały budowlane w projekcie.

Pytanie 31

Na podstawie przedstawionej receptury roboczej oblicz ilość piasku potrzebną do wykonania 1,5 mieszanki betonowej.

Receptura robocza wykonania 1 m3 mieszanki betonowej
cement 42,5430 kg
piasek320 kg
żwir578 kg
woda267 l
A. 867 kg
B. 320 kg
C. 480 kg
D. 645 kg
Twoja odpowiedź jest poprawna! Ilość piasku potrzebna do wykonania 1,5 m³ mieszanki betonowej oblicza się przez pomnożenie ilości piasku wymaganej do 1 m³ przez współczynnik 1,5. Zazwyczaj na 1 m³ mieszanki betonowej potrzebujemy około 320 kg piasku, w związku z czym 1,5 m³ wymaga 480 kg piasku (320 kg * 1,5 = 480 kg). W praktyce stosowanie odpowiednich proporcji składników jest kluczowe dla uzyskania pożądanych właściwości betonu, takich jak wytrzymałość i trwałość. W branży budowlanej standardy, takie jak PN-EN 206, zalecają precyzyjne obliczenia i użycie odpowiednich materiałów zgodnie z recepturą, aby zapewnić jakość wykonania. Zrozumienie, jak obliczać proporcje składników, jest niezbędne dla każdego inżyniera budownictwa oraz technika, co przekłada się na efektywność pracy oraz bezpieczeństwo konstrukcji.

Pytanie 32

Tynki przeznaczone do użytku na zewnątrz obiektów powinny wyróżniać się wysoką

A. nasiąkliwością
B. mrozoodpornością
C. kapilarnością
D. higroskopijnością
Zaprawy tynkarskie przeznaczone do stosowania na zewnątrz budynków muszą charakteryzować się mrozoodpornością, aby zapewnić trwałość i ochronę elewacji przed szkodliwym wpływem niskich temperatur oraz zjawisk atmosferycznych. Mrozoodporność oznacza, że materiał jest odporne na cykle zamrażania i rozmrażania, co jest kluczowe w klimacie, gdzie występują takie warunki. W praktyce, użycie zaprawy mrozoodpornej minimalizuje ryzyko pęknięć, łuszczenia się tynku oraz innych uszkodzeń, które mogą prowadzić do konieczności kosztownych napraw. W standardach budowlanych, takich jak PN-EN 998-1, określone są wymagania dotyczące zapraw tynkarskich, w tym odporności na działanie mrozu. Przykładem zastosowania są budynki jednorodzinne oraz wielorodzinne, gdzie elewacja narażona jest na działanie zmiennych warunków atmosferycznych. Osoby budujące lub odnawiające elewacje powinny zawsze wybierać materiały certyfikowane pod kątem mrozoodporności, aby zagwarantować wysoką jakość i trwałość wykończenia."

Pytanie 33

Aby przygotować 1 worek (25 kg) zaprawy tynkarskiej, trzeba zastosować

A. betoniarkę wolnospadową
B. betoniarkę przeciwbieżną
C. agregat tynkarski
D. wiertarkę z mieszadłem
Betoniarka przeciwbieżna do mieszania zaprawy tynkarskiej to nie najlepszy wybór. Ta maszyna jest raczej przystosowana do dużych ilości betonu, a nie do tynków. Betoniarka działa na zasadzie przeciwstawnych ruchów bębna i jest ok, ale jej jakość mieszanki tynkarskiej może być kiepska. Przy zaprawach ważne jest, żeby uzyskać jednorodną konsystencję, a z betoniarką czasem mogą być z tym problemy. Agregaty tynkarskie, mimo że są do aplikacji tynków, nie służą do początkowego mieszania. W sumie używa się ich do transportu gotowej zaprawy, a nie do jej przygotowania. Betoniarki wolnospadowe też najlepiej nie używać do takich cienkich materiałów, jak tynki, bo są raczej zbudowane do betonu. To typowy błąd, że myślisz, że każde urządzenie do mieszania można stosować zamiennie, a tak nie jest. Nieodpowiednie narzędzie do rozrabiania zaprawy może spowodować różne problemy, jak trudności w aplikacji, brzydki wygląd tynku, a nawet obniżoną trwałość. Lepiej postawić na to, co jest przeznaczone do tynków!

Pytanie 34

Który z elementów sklepienia oznaczono na rysunku cyfrą 5?

Ilustracja do pytania
A. Podniebienie.
B. Pachę.
C. Czoło.
D. Grzbiet.
Element sklepienia oznaczony cyfrą 5 to podniebienie, które pełni kluczową rolę w anatomii i funkcjonowaniu organizmu. Podniebienie, będące dolną częścią sklepienia jamy ustnej, oddziela jamę ustną od jamy nosowej. Dzięki swojej budowie, podniebienie przyczynia się do prawidłowego funkcjonowania procesów takich jak mówienie, połykanie oraz oddychanie. W praktyce klinicznej, zrozumienie anatomii podniebienia jest istotne w kontekście leczenia zaburzeń ortodontycznych czy też w procedurach chirurgicznych, takich jak plastykę podniebienia. Ponadto, poprawne funkcjonowanie podniebienia ma wpływ na jakość życia pacjentów, co podkreśla znaczenie jego odpowiedniego zrozumienia i diagnozowania wszelkich patologii. W standardach medycznych i stomatologicznych kładzie się duży nacisk na znajomość budowy i funkcji podniebienia, co pozwala na skuteczne podejmowanie działań terapeutycznych.

Pytanie 35

Remont odspojonego tynku należy przeprowadzić w poniższej kolejności:

A. skuć odspojony tynk, odkurzyć podłoże, zwilżyć podłoże wodą, otynkować ścianę
B. skuć odspojony tynk, zwilżyć podłoże wodą, odkurzyć podłoże, otynkować ścianę
C. odkurzyć podłoże, skuć odspojony tynk, zwilżyć podłoże wodą, otynkować ścianę
D. odkurzyć podłoże, zwilżyć podłoże wodą, skuć odspojony tynk, otynkować ścianę
Odpowiedź wskazująca na kolejność: skuć odspojony tynk, odkurzyć podłoże, zwilżyć podłoże wodą, otynkować ścianę jest prawidłowa, ponieważ odzwierciedla właściwy proces naprawy odspojonego tynku. Pierwszym krokiem jest skuśnięcie odspojonego tynku, co pozwala na usunięcie luźnych fragmentów, które mogłyby wpłynąć na jakość nowej warstwy. Następnie, przed dalszymi pracami, kluczowe jest odkurzenie podłoża, co eliminuje wszelkie zanieczyszczenia oraz pył, które mogą osłabić przyczepność nowego tynku. Zwilżenie podłoża wodą jest kolejnym istotnym krokiem, ponieważ wilgoć na podłożu pomaga w poprawnej adhezji materiału tynkarskiego. Na koniec, otynkowanie ściany tworzy nową, stabilną powierzchnię ochronną, która jest dobrze przylegająca do podłoża. Taki sposób działania jest zgodny z najlepszymi praktykami w budownictwie oraz standardami jakości, co zapewnia trwałość i estetykę wykonania. Warto również pamiętać, że staranność na każdym etapie procesu jest kluczowa dla uzyskania zadowalającego efektu końcowego.

Pytanie 36

Jeśli norma zużycia cegieł kratówek do postawienia 1 m2 ściany wynosi 50 sztuk, a koszt jednej cegły to 2 zł, to jaki będzie łączny koszt zakupu cegieł potrzebnych do budowy 10 m2 muru o grubości 25 cm?

A. 100 zł
B. 1 000 zł
C. 2 000 zł
D. 500 zł
Koszt zakupu cegieł do wykonania 10 m2 muru można łatwo obliczyć, stosując dane podane w pytaniu. Jeśli norma zużycia cegieł do wymurowania 1 m2 ściany wynosi 50 sztuk, to do wykonania 10 m2 potrzebujemy 500 cegieł (50 cegieł/m2 x 10 m2 = 500 cegieł). Każda cegła kosztuje 2 zł, więc całkowity koszt zakupu cegieł wyniesie 1000 zł (500 cegieł x 2 zł/cegła = 1000 zł). Tego typu obliczenia są standardową praktyką w budownictwie, gdzie precyzyjne oszacowanie kosztów materiałów ma kluczowe znaczenie dla planowania budżetu projektu. Przykładowo, w przypadku budowy ścian nośnych lub działowych, właściwe określenie liczby cegieł i ich kosztów pozwala na uniknięcie nieprzewidzianych wydatków oraz pozwala na lepsze zarządzanie finansami projektu budowlanego. Warto również zwrócić uwagę na możliwość zamówienia materiałów z wyprzedzeniem, co może przyczynić się do obniżenia kosztów poprzez negocjacje z dostawcami.

Pytanie 37

Jakiego rodzaju spoiwa używa się do produkcji betonów zwykłych?

A. Wapienny.
B. Akrylowy.
C. Gipsowy.
D. Cementowy.
Cement jest podstawowym spoiwem stosowanym do produkcji betonów zwykłych, które są szeroko wykorzystywane w budownictwie. Cement, jako składnik betonów, zapewnia im odpowiednią wytrzymałość i trwałość, co jest kluczowe w przypadku konstrukcji narażonych na obciążenia mechaniczne. Proces wiązania cementu, znany jako hydratacja, prowadzi do powstania silnej struktury, która z czasem osiąga swoje pełne właściwości wytrzymałościowe. W praktyce beton cementowy znajduje zastosowanie w budowli infrastrukturalnych, takich jak mosty, budynki, drogi czy chodniki. Przy projektowaniu betonu uwzględnia się różne klasy i gatunki cementu, co pozwala na dostosowanie jego właściwości do specyficznych wymagań konstrukcyjnych. Warto również znać normy PN-EN 197-1, które regulują wymagania dotyczące rodzajów cementów i ich zastosowania w budownictwie, podkreślając istotność właściwego doboru tego materiału w celu zapewnienia bezpieczeństwa i trwałości budowli.

Pytanie 38

Który etap wykonania ocieplenia ścian budynku metodą lekką mokrą przedstawiono na ilustracji?

Ilustracja do pytania
A. Wtapianie siatki zbrojącej.
B. Wyrównanie powierzchni płyt styropianowych.
C. Nakładanie zaprawy klejowej.
D. Nakładanie tynku cienkowarstwowego.
Nakładanie tynku cienkowarstwowego to kluczowy etap w procesie ocieplania ścian budynku metodą lekką mokrą. W tej fazie, po uprzednim przygotowaniu powierzchni, na którą nałożono warstwę styropianu i siatkę zbrojącą, aplikowany jest tynk o jednolitej, gładkiej konsystencji. Tynk cienkowarstwowy ma na celu nie tylko estetyczne wykończenie, ale również ochronę przed warunkami atmosferycznymi. Właściwe nałożenie tynku pozwala na uzyskanie odpowiedniej paroprzepuszczalności oraz odporności na czynniki zewnętrzne. W standardach budowlanych, takich jak PN-EN 998-1, tynki powinny spełniać określone wymagania dotyczące wytrzymałości i trwałości. Zastosowanie tynku cienkowarstwowego jest szczególnie zalecane w budownictwie energooszczędnym, gdzie istotne jest ograniczenie strat ciepła oraz poprawa komfortu termicznego. Dobrą praktyką jest stosowanie tynków w harmonii z systemem ociepleniowym, co zapewnia długotrwałe efekty izolacyjne.

Pytanie 39

Oblicz całkowity koszt wykonania tynku mozaikowego na obu stronach ściany o wymiarach 8×4 m, jeśli jednostkowy koszt robocizny wynosi 21,00 zł/m2, a koszt materiałów to 14,00 zł/m2?

A. 2 420,00 zł
B. 2 240,00 zł
C. 1 120,00 zł
D. 1 792,00 zł
Aby obliczyć całkowity koszt wykonania tynku mozaikowego, należy najpierw obliczyć powierzchnię ściany. Ściana ma wymiary 8 m x 4 m, co daje 32 m². Ponieważ tynk ma być wykonany po obu stronach ściany, całkowita powierzchnia wynosi 64 m². Koszt jednostkowy robocizny wynosi 21,00 zł/m², co daje koszt robocizny: 64 m² x 21,00 zł/m² = 1 344,00 zł. Koszt materiałów to 14,00 zł/m², co daje koszt materiałów: 64 m² x 14,00 zł/m² = 896,00 zł. Łączny koszt wykonania tynku to suma kosztu robocizny i materiałów: 1 344,00 zł + 896,00 zł = 2 240,00 zł. W praktyce, przy planowaniu budowy lub remontu, kluczowe jest dokładne oszacowanie kosztów, co pozwala na kontrolę budżetu oraz uniknięcie nieprzyjemnych niespodzianek finansowych. Dobrze jest również uwzględnić ewentualne dodatkowe koszty, takie jak transport materiałów czy wynajem sprzętu, co jest standardem w branży budowlanej.

Pytanie 40

Oblicz objętość 2 nadprożowych belek żelbetowych długości 1,4 m każda, których przekrój poprzeczny przedstawiono na rysunku.

Ilustracja do pytania
A. 1612,800 m3
B. 806,400 m3
C. 0,081 m3
D. 0,161 m3
Poprawna odpowiedź wynosi 0,161 m³, co odzwierciedla prawidłowe obliczenia objętości dwóch nadprożowych belek żelbetowych. Aby obliczyć objętość belek, należy najpierw ustalić pole przekroju poprzecznego pojedynczej belki. W tym przypadku, przekrój belki wynosi 576 cm², co po przeliczeniu daje 0,0576 m². Następnie, aby obliczyć objętość jednej belki, mnożymy pole przekroju przez długość belki. Dla belek o długości 1,4 m, objętość jednej belki wynosi 0,08064 m³. W przypadku dwóch belek, obliczamy objętość jako 2 razy objętość jednej belki, co daje wynik 0,16128 m³. Po zaokrągleniu do trzech miejsc po przecinku otrzymujemy 0,161 m³. Takie obliczenia są fundamentalne w inżynierii budowlanej, ponieważ pozwalają na precyzyjne oszacowanie materiałów potrzebnych do budowy oraz ich kosztów. Dobrą praktyką w projektowaniu struktur jest przeprowadzanie takich obliczeń z dużą dokładnością, by zapewnić bezpieczeństwo i stabilność konstrukcji.